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Abstract

Mobile ad-hoc networks (MANETS) require robust and carefully designed Media Access
Control (MAC) solutions to cope with all the inherent problems of wireless communi-
cations. Today, quite a lot of solutions, that promise to address these challenges, exist;
nevertheless, their practical applicability to a particular situation has not been exam-
ined in real world scenarios and hence, many of them have remained on paper and in
simulations. We believe it is important to evaluate the performance of the protocol in
simulators and real platform.

In this study the performance of deterministic collision-free despite continuous mo-
tion (DCFA) algorithm has been evaluated in simulators and on a real platform. For
the evaluation, the DCFA algorithm has been implemented in tinyos-2.1.1 using the nesc
programming language and a special python script to handle the topology for simula-
tion on TOSSIM simulator; and the C++ programming language for simulation on the
OMNET++ and Castalia simulators. For the evaluation of the DCFA algorithm on sim-
ulators, we have used TOSSIM, OMNET++ and the Castalia simulators. To evaluate
DCFA on a real platform, we have implemented it on Crossbow’s MicaZ platform motes
with a CC2420 radio. The performance of the DCFA algorithm has been measured in
terms of throughput and success-rate. Since the evaluation of the DCFA algorithm is
on mobile nodes, we have considered two mobility models to evaluate the performance
of the DCFA algorithm. Two mobility models have been designed in this study in order
to challenge the DCFA algorithm and evaluate it. When the nodes move in parallel and
reach the boarder of the grid, the first mobility model lets the node move to the next
line of the the grid and continue in the opposite direction; the other mobility model lets
the node go back to the beginning where it started the mobility and continues in same
direction. From the study, we have observed that the DCFA algorithm does not have
self stabilisation when unexpected things happen in the network.
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1
Introduction

1.1 MANETs

MANETs are networks of self-controlling and configuring mobile devices, referred to as
”nodes”. Such nodes have no centralized aid and are responsible for scheduling them-
selves, creating and maintaining their network. MANET applications range from their
early conception in military networks to more recent and modern applications such as
wildlife tracking, intelligent transport systems and vehicular ad hoc networks, VANETs.
Some of the key characteristics of general MANETs are energy efficiency, scalability,
throughput, adaptability to changes and self stablilzation. It still remains a challenge
to design such an ideal MAC protocol with all these desirable features, and practically
one is achieved on the expense of the others. There is no standard MAC protocol that is
best in all aspects [1] . Some protocols such as DMAC [2] are designed with the intent
of reducing latency where-as others like TreeMAC [3] focus on improving throughput as
well as energy consumption.

The implementation of MAC protocols can broadly be classified as contention based,
as in the traditional IEEE 802.11 [4] specification that use CSMA, or a contention free
like FDMA, CDMA, TDMA. Protocols that use a combination of the two also exit, like
TRAM [5] that uses a combination of TDMA and CSMA.

This thesis is based on the paper entitled ’Deterministic Collision-free algorithm
despite continuous motion’ [6]. In there work, they proposed a deterministic collision-
free MAC solution applicable for general Mobile Ad-hoc Networks (MANETS) with a
special recommendation for Vehicular Ad-Hoc networks (VANETS).

In this thesis, the DCFA algorithm [6] implementation is the combination of space
division multiplexing (SDM) and time division multiplexing (TDM). As per [6] study,
the goal of the DCFA algorithm is to have a collision free communication protocol for
continuously mobile nodes. Hence, as claimed by the authors in [6], this type of protocol
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1.2. OBJECTIVE CHAPTER 1. INTRODUCTION

is an ideal choice for safety critical environments such as VANETs.

1.2 Objective

The main objective of this thesis is to evaluate the DCFA algorithm performance by
simulation on simulators and platform. The performance has been measured in terms
of throughput of the protocol and its success-rate with respect to the number of mobile
nodes which have exchanged neighborhood information messages successfully.

This thesis objective is not limited to just only the evaluation of the performance of
the algorithm. After meeting the above objective, the protocol has criticized. Protocol
limitations have been pointed out.

1.3 Research Questions

These research questions help for further understanding the performance factors and
efficiency of the DCFA algorithm. This study answers the following questions:

1. Is the DCFA algorithm a collision free communication protocol for continuously
mobile nodes under all circumstances?

2. Does the DCFA algorithm fulfill the main MAC protocol properties to be called
or categorized as a MAC solution applicable for general MANETs?

1.4 Hypothesis

In order to address these questions, the DCFA algorithm was implemented in TOSSIM,
OMNET++ and the Castalia simulators and the micaZ platform. The nodes then have
to exchange neighborhood information messages on the implemented simulators and
platform without any collisions. The implementation of the algorithm on the platform
has been done by other groups of the project. However the result from the platform has
been evaluated in this study with the simulators result.

On the DCFA algorithm implementation, the nodes are located on a two-dimensional
plane. For the SDM part of the DCFA algorithm solution, the plane is tiled by hexagons
similar to Viquar et. al [6] study. However, in a study performed by Viquar et. al [6],
they did not mention that there is a problem if the two-dimensional plane of the DCFA
algorithm implementation is tiled in a different way other than with hexagons. Therefore,
we have tiled the two-dimensional DCFA algorithm implementation plane with squares
instead of the hexagons. The square tiled plane, called grid plane, has to have different
colors in each square. If two squares have the same color, they have to be located far
a part by using the given parameter in the DCFA algorithm to don’t have interference
in each others broadcast. The mobile nodes’ broadcast slots are dynamically allocated
depending on the tile color. The tile color and the interference will be explained in detail
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1.5. ASSUMPTIONS CHAPTER 1. INTRODUCTION

in the next chapters. Despite the plane tile, we have been following the same parameters
and methods of the DCFA algorithm for the implementation in the simulators and in a
real platform. The evaluation of the DCFA algorithm has focused on its performance;
specifically on its throughput and success rate with respect to the number of mobile nodes
which have exchanged neighborhood information successfully. To evaluate the DCFA
algorithm, two mobility models have been designed and tested on the simulations. The
first mobility model represents the real car mobility. It is used to see if the algorithm
works like expected. The second mobility model has been designed to challenge the
algorithm in an unexpected scenario and to see if it is still works like expected. Therefore
the DCFA algorithm has been tested with the two mobility models, and its performance
has been measured on both the simulators and the real platform.

1.5 Assumptions

The underling assumption of the evaluation of the DCFA algorithm’s performance is that
it is 100% successful when exchanging neighborhood messages under all circumstances.

To do the implementation and evaluation of the DCFA algorithm, there are many
good simulators and platforms available. Between the simulators TOSSIM and OM-
NET++ which have used in this study, Castalia is the one which has been selected for
further investigation of the DCFA algorithm evaluation. However, because of the short-
age of enough documentation, it was a bit hard to collect the DCFA algorithm evaluation
result from the Castalia simulator implementation.

Castalia has a GUI for monitoring the simulation flows, uses C++ development
and visualization [7]. It has available models for MAC protocols, like TMAC, SMAC,
Tunable MAC and it works on the platforms of OMNET++. However in this study, we
has chosen TOSSIM and OMNET++ to implement DCFA algorithm. Even if Castalia
has many interesting features, its in the state of active development and it has not made
lager impact so far.

Protocols which are related with the DCFA protocol like TDMA and others, have
many common features, drawbacks and good points. For this study, we choose the
TDMA protocol properties as a baseline for our DCFA algorithm evaluation. We have
assumed that TDMA is the best choice to evaluate and compare the DCFA algorithm
with. One of the main reasons for selecting the TDMA protocol from other protocols for
comparison is that TDMA is one very popular scheduling algorithm. Additionally, the
DCFA algorithm is designed from some of the TDMA protocol features. For example
the DCFA algorithm has deterministic scheduling for nodes in a MANET to avoid col-
lisions by allowing nodes to maintain information about their neighboring nodes. This
node’s scheduling methods of the DCFA algorithm has been taken from the TDMA pro-
tocol features. This feature ensures that nodes in different colored squares (tiles) never
broadcast at the same time.
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1.6. STRUCTURE OF THE THESIS CHAPTER 1. INTRODUCTION

1.6 Structure of the thesis

The rest of the thesis is organized as follows. In Chapter 2 related work is described
to put our work in context. Then in Chapter 3 the algorithm description is presented.
In Chapter 4 the details of the implementation in simulators is presented. Chapter 5
contains a detailed explanation of the DCFA implementation in MicaZ platform. Chapter
6 presents the detailed simulators results of the work. The discussion and the future work
are described in Chapter 7. Finally, Chapter 8 presents the conclusion.
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2
Literature Review

2.1 Introduction

Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise
of wireless mobile nodes which can freely and dynamically self-organize into arbitrary
and temporary network topologies [5]. MANETs have some challenges for MAC protocol
design such as mobility, radio link and so on, therefore MANETs have to have efficient
and distributed MAC protocols and it is necessary to evaluate MAC protocols and see
if they can give the right functionally for MANETs.

Many researches have been evaluating wireless sensor networks algorithms using dif-
ferent simulators, testbeds or using their own framework. In the past, some researches
were criticizing simulators since they could lead to incorrect conclusions. From this mo-
tivation many researchers have been doing much research work on comparing simulators
and testbeds for simulation and also criticising them. At the same time, some researchers
developed frameworks to evaluate algorithms, like ’Towards Reliable Communication and
Agreement in Mobile Ad-hoc Networks: Algorithms, Simulation and Testbed’ [8] research.

2.2 MAC protocols in MANETs

As mentioned in the introduction of this chapter, MANETs have some challenges to
design MAC protocols. However, MAC protocols have to fulfill at least the basic charac-
teristics of MANETs. Researchers from university of Florida [5] studied challenges that
MAC design is facing and how they impact the performance of MANETs.

Some of the MAC protocol design challenges are: there is no centralized controlling
system; due to hardware constraints, a node can not immediately detect collisions during
the transmission which leads to channel inefficiency; the network topology may change
from time to time since the nodes are in mobile, then each node may experience different
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2.3. SIMULATIONS IN MANETS CHAPTER 2. LITERATURE REVIEW

degree of channel contention and collision. Other important MAC protocol issues are
energy efficiency, fairness and quality of service provision [5]. During the design of MAC
protocols for MANETs, these challenges need to be considered carefully.

The MAC protocol specifies how nodes in a sensor network access a shared com-
munication channel [9]. The desired properties of MAC protocols are [9]: it should be
distributed and contention-free; it should self-stabilize for changes in the network and
these changes should be contained; it should not assume that nodes have a global time
reference.

Many researches have been studying properties and challenges of the MAC protocols.
In addition, some researches particularity highlight which properties of MAC protocols
have to be fulfilled during MAC protocol design. These research studies have helped
us to evaluate the coming new MAC protocols and determine whether they are efficient
protocols for MANETs or not. Our study has also followed these research direction when
evaluating the DCFA algorithm.

2.3 Simulations in MANETs

Even if simulation is useful for evaluating protocol performance, several recent studies
underlined the lack of stability of the applications that threatens the credibility of the
published claims. However some researchers were arguing against the idea of the lack of
simulations on the stability of the applications. Ivan Stojmenovic [10] is one researcher
who advocates for a different overall view on his simulations in wireless sensor and ad-
hoc networks: matching and advancing models, metrics, and solutions article; even if he
while he was agreeing with some of the criticism on simulation. As Ivan Stojmenovic
mentioned in his study, the primary goal of simulation is to provide sufficient support for
new concepts and protocols, for an overall combined contribution. He has stated that
Proof of concept is basic (not thorough or testbed based) simulation using assumptions
in designed protocol, including comparison with truly competing existing solutions. Ivan
Stojmenovic concentrated on simulations as an independent task, and advised to have
better reporting (repeatability), more reliability, more realism, and more scenarios in
simulation. However in their study, they discussed the more general view of simulation
as a support for new ideas and theories, providing a platform for their comparison with
truly competing existing solutions, not for their validation. Then they support the use
of models, matching assumptions and metrics in the problem statement and simulation
to provide a basic ”proof of concept” and comparison with truly competing solutions.

As a conclusion, Ivan Stojmenovic et.al [10] recommend carrying out a proper and
effective simulation activity for protocol design and evaluation. Having this study in
mind as a support, we moved forward on our study to evaluate the DCFA algorithm by
simulating on both simulators and on real platforms.
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2.4 Simulators comparison for MANETs

Since simulators have differences between them, it would be good idea to study their
behavior and impact on the algorithms used for simulation; instead of picking one ran-
domly. Some studies compare simulators to choose the best one for the given task by
studying their behavior. By taking this point in to consideration, we have been compar-
ing and evaluating different simulators for our DCFA algorithm simulation.

On simulator selection, the NS-2 simulator has taken our attention to implement the
DCFA algorithm. However, Nicolas Eude, Bertrand Ducourthial and Mohamed Shawky
research work and findings using this simulator made us change our mind [11]. They
used both experimentation and simulations to develop efficient algorithms for C2C (car
to car) communication using the NS-2 simulator. However the propagation models of
the NS-2 simulator was not sufficient on preciseness. Therefore they extended their
study by adding a new functionality to NS-2 in order to achieve the required precision
on car-to-car communication experiments. From their study, it’s possible to see that the
NS-2 simulator is not sufficient for preciseness for high mobility ad hoc networks. The
NS-2 simulator needs additional functionality to have such preciseness in the simulation
experiments.

TOSSIM is one of the simulators which has been studied and used in many researches.
The TOSSIM simulator is a network emulator and can support thousands of nodes.
TOSSIM emulates hardware componenets like clock, radio, potentiometer etc. It can
simulate the real world situation more accurately [12] than other simulators like NS-2.
One of the main point of it’s accuracy, unlike NS-2, is that it has the functionality to
have preciseness in the simulation experiments. This emulator may provide high speed
simulation result at component levels because of its behaviour of compiling directly to
native code [12]. However, TOSSIM has also some limitations. One of its limitation as
presented in [12] study, is that it is designed to simulate behaviors and run applications
only on TinyOS. Comparing TOSSIM simulator with the NS-2 simulator and others, it
is a good simulator; especially when it comes to wireless and high mobility in ad-hoc
networks.

Cavin [8] believed that simulations have some shortcomings. In order to avoid the
shortcomings of simulations, he proposed to have an adequate software framework to
ease the development and the deployment of applications and algorithms. He showed
in his study that evaluation of an algorithm by simulation leads to incorrect conclu-
sions. Then he has developed FRANC, a high weight Java framework dedicated to the
implementation of real ad-hoc applications.

As a conclusion, some simulators are good and some are not good depending on the
given problems and the algorithms. In our study, we found that the TOSSIM simulator
is much a better simulator to simulate the DCAF algorithm. In addition, we have been
using the OMNET++ simulator as well for more findings. A detailed explanation of the
OMNET++ simulator is presented in implementation chapter.
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2.5 Summary

First of all, the first two papers [5] and [9] showed the MAP protocol challenges and it’s
desired properties which an efficient MAC protocol needs to take into account during
design. This helped us to evaluate DCAF’s algorithm properties based on these MAC
protocol properties. The second paper [10] advised to carry on a proper and effective
simulation activity for protocol design which shows the goodness of simulation. This
study helped us to go on for our simulation to evaluate the DCFA algorithm. The rest
of the papers are comparing and showing the behavior of simulators on algorithms and
also compare simulators with real environments. This helped us to choose the proper
simulator to evaluate DCFA algorithm and gave us a clue about that it might not be
enough to evaluate algorithms using only one simulator to tell the performance and
efficiency of the protocol.
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3
Description of the algorithm

3.1 Deterministic collision free despite continuous motion
algorithm

The DCFA algorithm communication plane is developed on the hexagon network topol-
ogy model. This communication plane is partitioned by hexagons as shown in figure
3.1. Each hexagonal region is called tile and each tile contains a bounded number of
nodes. Tiles are grouped to form a super tile; the larger communication domain con-
sisting of different colored tiles. The numbers 0-6 in figure 3.1 correspond to different
colors of the tiles. Colors in a super tile are unique but they are repeated in each super
tile. The transmissions of tiles with different colors are scheduled separately by TDMA;
whereas all tiles which have similar color broadcast simultaneously. As shown in the
figure 3.1, there are tiles with number 0 which have shaded color; such tile nodes in
different super tiles can be able to transmit the neighbor information simultaneously as
long as the distance between them is greater than the minimum required threshold at
any moment of time. The information allows nodes to maintain information about their
local neighborhood. This information in turn is used to keep the schedule collision-free.
In our implementation, between 80 and 850 nodes have been used in the topology to run
different experiments where we have studied the performance of the algorithm.

When the DCFA algorithm was developed, it was not mentioned why the hexagon
network topology model was chosen as a communication plane. This situation opens
the door for this thesis to choose any topology model which has a good performance
on networks. Therefore, we have been using grid topology as a communication plane
for the DCFA algorithm implementation. Different network topologies have different
effects on the properties of the network [13], such as the reliability, energy consumption
and latency of the network. From the list of the network topologies, grid topology has
the best reliability comparing with the regular hexagon topology and the equilateral
triangle topology models [13]. However, the definitions and properties, which are used

9



3.1. DETERMINISTIC COLLISION FREE DESPITE CONTINUOUS MOTION
ALGORITHM CHAPTER 3. DESCRIPTION OF THE ALGORITHM

Figure 3.1: Partitioning of a plane in to hexagons

in the hexagon topology for the DCFA algorithm, are still used and applied in the grid
topology in our study; like tiles, round, colors and the like. The topology change, which
was made in this thesis, does not change the behaviour, requirements and parameters of
the DCFA algorithm. The grid network topology is shown in figure 3.2.

The time allocated for a single node is called a broadcast slot. The group of broadcast
slots denoted by U in a given tile is called a round. If there are M tiles in a super tile
then MU broadcast slots are required for scheduling. It is assumed that there is an
upper bound on the number of nodes that can exist in a given tile at any instant of time;
this bound is denoted by V< U. Hence, V slots of a tile are used by the nodes; whereas
the remaining U-V slots are used for the other protocol, see figure 3.3.

For scheduling, the orders of the rounds have been allocated on different colored tiles
per super tile. Two scheduling models were used for the DCFA protocol by considering
directional bias. The second scheduling model does not experience directional bias like
the first scheduling model. To get a good understanding of these two scheduling models,
they are explained in the next paragraphs.

The first model has information propagation in one direction. In this model, the
node’s time slot is allocated from right to left and top to bottom for each phase in
a super tile. This model has directional bias; this means it favors the propagation of
information in one particular direction. Consider the horizontal path b shown in Figure
3.4 In this scheduling each color is allocated exactly one round during one phase and the

10
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Figure 3.2: Grid topology

Figure 3.3: TDMA slot of M tiles with color from 0 to M-1

sequence of colors is the same for every phase [6].

The second model, the node’s time slot allocation is done in a concentric circle in a
super tile. As shown in figure 3.4 c: multiple paths in different direction, the information
propagation schedule should propagate along all the six paths from the center equally [6].
Therefore the second model starts with allocating the slots from the center of the super
tile to its boundary. Then the information propagates from the boundary of the super
tile to the center. When this information propagation is done in the first phase, the next
phase propagates information in the opposite direction by allocating the slots starting
from the boundary to the center of the super tile. The periodicity of this schedule is
shown in the figure 3.5. This model does not show any directional bias, all nodes get
fair scheduling to propagate information in each phase.

In this thesis, the second scheduling model idea has been used for the implementation
of the DCFA algorithm. Our study has not been following the exact steps of the second
scheduling model to allocate slots. Mainly, we have been considering the idea of not
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Figure 3.4: Information flow on all paths without directional bias

having directional bias by allocating slots starting from different directions in every phase
instead of following only one direction. Since we have been using grid topology, the slots
allocation are not exactly from the center to the boundary and from the boundary to the
center just like the second scheduling model. However, we have been handling directional
bias by allocating slots from the right to the left and from the left to the right direction
in every phase.

3.2 Statistical Analysis

In the statistical analysis section, the success rate assumption and the algorithm’s con-
straints which have explained in the [6] paper will been seen.

When a node successfully transmits a neighborhood message, all nodes within the
nodes broadcast radius receive the message. However, logging all such received messages
requires large amount of memory in the order of O(pq); where p is the number of
senders and each senders send q messages. To avoid the problem of having large amount
of memory, we have only considered to log the information of the ratio of the receivers
for the propagated neighborhood information from sender. The ratio of the number of
receivers to the sender is the success rate.

12
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Figure 3.5: An example of the network division in to regions

The algorithm assumes two constraints on the mobility of the nodes:

• Constraint 1- In figure 3.6, there are two nodes n1 and m1 in the two far ends of
the two neighboring tiles. At the beginning of the phase, they move away from
each other by a distance muσ. In the phase, mu stands for the total broadcast slot
for one super tile and σ represents a fixed speed. They should still receive each
other’s broadcast throughout the phase based on the equation 3.1.

ρ+ 2muσ <= R (3.1)

The maintenance of this neighborhood knowledge is a part of [6] proposed solu-
tion and is interleaved with the collision-free schedule. This constraint guarantees
the maintenance of the neighborhood knowledge with the assumptions that every
nodes’ broadcast is heard by all others within their broadcast radius R.

• Constraint 2- n1 and m1 are two concurrently transmitting nodes moving towards
each other, as shown in the figure 3.7. The distance between these two nodes should
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Figure 3.6: Two nodes n1 and m1 moving away from each other from the far ends of two
adjacent tiles in a super tile

still be greater than the minimum threshold throughout the phase. Therefore their
transmissions do not interfere. It’s shown in equation 3.2.

λ− 2muσ >= R+R′ (3.2)

R stands for broadcast radius and R’ for interference radius which is roughly 2.2*R.
This constraint ensures collision avoidance.

Figure 3.7: Two nodes n1 and m1 moving toward each other from the far ends of two
adjacent tiles in a super tile
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4
Implementation

4.1 Introduction

In our study, the implementation of the DCFA algorithm was done using the TOSSIM
and OMNET++ simulators, and the micaZ platform implementation from another group
of students. From the implementation, the performance and efficiency of the DCFA
algorithm was studied.

The implementation started on the TOSSIM simulator with the TinyOS applications
using the NesC programming language with the help of python to run the simulation and
to setup the topology. In addition to the TOSSIM simulator, the OMNET++ simulator
was used as another simulator to study the performance of the DCFA algorithm. The
implementation of the DCFA algorithm was done on the OMNET++ simulator using the
C++ programming language. Unlike the TOSSIM simulator, the OMNET++ simulator
simulate the simulation process on graphical user interfaces which are highly useful for
demonstration and debugging purposes. The implementation has continued on the micaZ
platform by another group of students.

Before we did our implementation, the DCFA algorithm’s parameters was studied
and identified to use the correct values of parameters in the DCFA algorithm instead of
using the default values from the simulator.

The implementation has been done on the two mobility models by letting the nodes
follow these models during their mobility. The DCFA algorithm was then evaluated based
on the result which has been collected from the two mobility models implementation. As
explained in the previous chapters, the main reason of using the second mobility model
is to evaluate the DCFA algorithm response in unexpected environments; especially to
evaluate its self stabilization property if something unexpected happens in the network.
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4.2 Tools

TinyOS [14] [15] is a light weight operating system designed for the domain of wireless
sensor networks. The core OS takes a few hundred bytes of memory space which can be
easily compiled into the motes memory. TinyOS applications make use of components
which are software abstractions of the underlying hardware functionalities. Components
either provide or use an an interface and interfaces contain commands that the applica-
tion calls and events which are hardware interrupts that the caller must handle. There
are two types of components called modules and configurations. Configuration contains
declaration and wiring of components while modules do the actual implementation of
the code written in the nesC[16] programming language. NesC is a variant of the C
programming language with libraries supporting components based programming.

TinyOS uses TOSSIM as a library and it is one of the most widely used wireless
sensor network simulators available. As described by the developers in[17], TOSSIM is
a discrete event-driven simulator where all simulation events associated to a mote are
timestamped and kept in a separate event queue in a global time order, and executed
one by one.

In tinyOS, a call to a certain time taking operation such as sending a message,
returns immediately; on compile time, the component that provides the service notifies
the caller through a signal. Such an operation mode where the command and the signal
are decoupled is called split-phase operation [17]. TinyOS splits the invocation and the
compilation in two different phases. Commands and events are the main driving factors
of an execution of a tinyOS application. TinyOS also uses operation tasks that could be
deferred for later execution. In the TinyOS, tasks run at the background and can not
be preempted by other tasks but by hardware event handler. The TinyOS commands or
events can post a task whenever needed and return immediately which make them more
responsive [17].

TOSSIM fulfills most of the required properties of a tinyOS simulator such as scal-
ability, completeness, fidelity and bridging [17]. It can simulate a network of thousands
of motes, with the current practical experience, in this study we have used up to 850
nodes, and also it captures the behavior of the network at high fidelity.

The command line execution of the TOSSIM has a debugging facility with which
users can print debugging messages on the screen and use it in more suitable way. There
is a recent tinyviz plug in, a Java based graphical user interface for enhanced user control
and feedback. The original implementation of the TOSSIM does not model thread based
execution and also lacks support for modeling the CPU time/energy [17], but there is a
later extension called powerTOSSIM for the modeling power consumption [18].

Python is one programming interface which is supported by the TOSSIM library.
TOSSIM does not run simulations by itself; it rather relies on a special python or C++
script that configures the network. It defines the underlying radio behavior and also
runs the simulation. Such a script creates a set of properties to simulate the propagation
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strength between links. In this thesis, the DCFA algorithm implementation uses a python
script to run the TOSSIM simulation.

The python script is responsible for creating the original topology and keeping track
of the node’s location when they move. Additionally it defines the radio properties and
also controls the simulation. A special Java application is used to create the propagation
strength between the nodes. Whenever the nodes change location, the application takes
the new locations as a parameter then outputs the corresponding gain between every
pair of locations. Additionally, this application sets a predefined noise floor value from
a configuration file to each created motes. There is also a python radio object that can
be created to define the gains between a pair of coordinates. But this radio object is
less efficient; and in this study, we have decided to manually define the locations and
the corresponding gains. The radio object is also used to monitor the status of the link
between the two motes at any time in during the simulation. These include checking the
existence of a link between a pair of nodes, and getting the corresponding gain between
a pair of locations and the like.

The other simulator which has been used for the implementation is OMNET++.
OMNET++ [19] is an object-oriented modular discrete event network simulation frame-
work. It has a generic architecture, so it can be (and has been) used in various problem
domains. It is useful for modeling and simulation of any system where the discrete event
approach is suitable, and can be conveniently mapped into entities communicating by
exchanging messages [19].

In OMNET++, modules are programmed using C++. These modules can be con-
nected with each other via gates and combined to form compound modules. Modules
communicate through messages passing along predefined paths via gates and connec-
tions, or directly to their destination [19]; the latter is useful for wireless simulations.

4.3 Simulators

4.3.1 Implementation on TOSSIM simulator

The DCFA algorithm implementation is a pure TDMA algorithm that completely ignores
the default Carrier Sense Multiple Access (CSMA) properties of the TOSSIM simulator.
Hence in this thesis, the DCFA algorithm implementation has to disable the default mac
properties of the TOSSIM simulator in the TOSSIM mac object. This has been done
through the use of the mac object or more efficiently using a tinyOS component that
provides these services.

During the experiment, the initial topology creation was handled by python for the
selected number of nodes. Once the nodes are placed in the topology and they get their
initial coordinate, they know their color (tile) with the help of the function which is
implemented in python. The nodes have mobility in every round; this means, when a
node start a broadcasting message in a new round the nodes have moved since their
previous location.
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For simulating node mobility, the two mobility models described earlier have been
used. The first mobility model represents real world vehicle movement with parallel
mobility in different directions. Unlike the first model, the second mobility model does
not exist in the real world vehicle movement. Since self stabilization is one of the main
characteristics that MAC protocols have to have and shows their efficiency in MANETs,
the second mobility model was chosen as a challenge. These mobility models are further
explained in sub section 4.3.2.

The DCFA algorithm does not handle initial discovery of the neighbors. It assumes
that initially all nodes know all other nodes within their broadcast radius R. During the
implementation of the DCFA algorithm in this thesis, the introduction phase has been
denoted by phase -1; and in this phase all nodes broadcast their information consecutively
based on their ID. Therefore, in the beginning of the phase 0, all nodes know all other
nodes in their broadcast radius.

The nodes’ slots have been allocated at the beginning of every phase based on the
rank and the color of the nodes. Then nodes wait for their time-slot to broadcast the
packet. Note that nodes may have the same time-slot but in different super tiles. The
nodes with the same time-slot broadcast simultaneously without collision; since they are
in different super tiles. Each node calculates their slot using formula 4.1; where color is
the color of hexagon (in our case the square of a grid) and rank is identifier of the nodes
from U slots in its round and it starts from one. The pseudo code of the algorithm is
available in the original paper [6].

color + rank − 1 (4.1)

In the DCFA algorithm, time synchronization on the real platform is handled by the
token circulation which will be explained in explanation of MicaZ platform chapter. On
a real platform implementation, a simplified way of centralized base station and sub-
base stations that serve as a relay between the nodes and the base stations was used.
However, in TOSSIM a global time has been assumed.

4.3.2 Mobility Models

Two mobility models have been used for nodes to implement movement in the network
while they are propagating message in every round.

The first model represents real world node movement. It’s used to see whether the
algorithm is giving the expected result while the nodes are in movement. The nodes in
this model move in parallel but in opposite directions. When nodes reach the border
of the network, they turn to the other lane of the road and continue their movement.
This movement has been repeated in every round. As figure 4.1 shows as an example,
there are two parallel lanes and nodes move in opposite direction on the lanes. At the
beginning and ending of the lane, there are arrows to show the direction of the next line
of the road When the nodes reach the end of the lane, they move to the next lane of
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the road and continue the mobility. In figure 4.1, the nodes color does not represent
anything.

Figure 4.1: The first mobility model

In python, this model is handled as follows:

de f move ( ) :

#This function handles the movement of nodes in every round ;
#those nodes which are on y=0.375 and y=1.875 p o s i t i o n s
#move in oppos i t e d i r e c t i o n s in each other .

f topo = open ( t o p o f i l e , ”w”)
#open topology f i l e for wr i t i ng the new node p o s i t i o n

for i in range (0 ,NODE) :
i f (n [ i ] . y==1.5): #nodes on y=1.5 p o s i t i o n

n [ i ] . x = n [ i ] . x + speed1
i f (n [ i ] . x >=(Dimension∗UnitDistance ) ) :

n [ i ] . x = ( Dimension∗UnitDistance )−(n [ i ] . x . .
\%(Dimension∗UnitDistance ) )

n [ i ] . y=4.5
e l i f (n [ i ] . y==4.5): #those on y=4.5

n [ i ] . x = n [ i ] . x−speed2
i f (n [ i ] . x < 0 ) :

#node come back on y=0.375
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n [ i ] . x=−(n [ i ] . x )
n [ i ] . y=1.5

n [ i ] . c o l o r = f indCo lo r (n [ i ] . x , n [ i ] . y )
c [ i ]= s t r (n [ i ] . id ) + ” ” + s t r ( ’ \%.3 f ’\%(n [ i ] . x ) ) + ” ” . .

+ s t r (n [ i ] . y ) + ” ” + s t r (n [ i ] . c o l o r ) + ”\n”
f topo . write ( c [ i ] )
f topo . c l o s e ( )

When the coordinate of the nodes changes, it is saved in the opened topology file and the
link gain has been modified based on the new node location.

os . popen ( ” java LinkLayerModel c o n f i g . txt ” + l a y o u t f i l e . .
+ ” ” + t o p o f i l e )

After the DCFA algorithm’s performance was studied on the first model, we continued to
investigate how it handles some unexpected situations using the second model has proposed.
This second model does not exist in the real world and does not represent real car mobility.
Here when nodes reach the border of the network, they jump to the other side of the border and
continue their movement. As figure 4.2 shows, nodes in parallel lanes move in different direction;
when nodes reach the end of the lane, they jump to the beginning of the lane as the arrows show
in the figure at the beginning and ending of the lanes. Just like figure 4.1, figure 4.2 nodes’ color
does not have special meaning or representation in the figure for the model.

Figure 4.2: The second mobility model

The second mobility model is handled in python in the same way as in the first model, except
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some modification on ’move’ function. The modification of the ’move’ function and the node
turning statement. The code is as follows:

de f move ( ) :

# Almost a l l statement of the function i s the same with
# the above f i r s t model code . The only d i f f e r e n c e i s on
# the turn ing po int .

. . . . . .

f topo = open ( t o p o f i l e , ”w”)
#open topology f i l e for wr i t i ng the new node p o s i t i o n

for i in range (0 ,NODE) :
i f (n [ i ] . y==1.5): #nodes on y=1.5 p o s i t i o n

n [ i ] . x = n [ i ] . x + speed1
i f (n [ i ] . x >=(Dimension∗UnitDistance ) ) :

n [ i ] . x = ( Dimension∗UnitDistance ) )

e l i f (n [ i ] . y==4.5): #those on y=4.5
n [ i ] . x = n [ i ] . x−speed2
i f (n [ i ] . x < 0 ) :
n [ i ] . x = 0

n [ i ] . c o l o r = f indCo lo r (n [ i ] . x , n [ i ] . y )
c [ i ]= s t r (n [ i ] . id ) + ” ” + s t r ( ’ \%.3 f ’\%(n [ i ] . x ) ) + ” ” . .

+ s t r (n [ i ] . y ) + ” ” + s t r (n [ i ] . c o l o r ) + ”\n”
f topo . write ( c [ i ] )

. . . . .
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4.3.3 Implementation on OMNET++ simulator

The first implementation of the DCFA algorithm was done on the TOSSIM simulator. For more
accuracy, another implementation was done using the OMNET++ simulator. However the re-
sult from the OMNET++ simulator was not taken into consideration because of the simulator’s
signal-to-noise ratio (SNR) behavior. The implementation was done without any modification
of the parameters and formats from the TOSSIM simulator implementation. For example, the
topology model and scheduling model are the same. And the DCFA algorithm implementation
has to allow an interference in the simulation environment to see the performance. Even if the
OMNET++ simulator does not have a signal-to-interference-plus-noise ratio (SINR) interference
model, we have implemented the interference environment by C++. This interference environ-
ment has been implemented by giving same time slot for each node which are found in different
super tiles. TThough, it would be good to have real interference in the simulation environment
for clear and precise evaluation.

The implementation of the DCFA algorithm on OMNET++ started by building modules
using C++. An OMNET++ model is built from components (modules) which communicate by
exchanging messages. By nesting modules, compound modules can be formed; that is, several
modules grouped together. When a module is created, the system (each node) maps it into a
hierarchy of communicating modules. As shown in below, the system keeps track of data rate
and delay as well; N followed by a number represents the system (node), the arrow represents
the connection between the systems, and the out and in arrays represent gates (ports).

connec t i ons :
N0 . out [0]−−>{ d e l a y =0.1ms ; d a t a r a t e =24bps ; @disp lay ( ” l s=b lack , 0 ”) ;
}−−>N1 . in [ 0 ] ;

N0 . out [1]−−>{ d e l a y =0.1ms ; d a t a r a t e =24bps ; @disp lay ( ” l s=b lack , 0 ”) ;
}−−>N2 . in [ 0 ] ;

N0 . out [2]−−>{ d e l a y =0.1ms ; d a t a r a t e =24bps ; @disp lay ( ” l s=b lack , 0 ”) ;
}−−>N3 . in [ 0 ] ;

. . .

The modules structure was defined in the NED files using NED language. The NED files can
be edited in a text editor or in the graphical editor in the Eclipse-based OMNeT++ Simulation
IDE. But the active components of the model (simple modules) have to be programmed in C++,
using the simulation kernel and class library. The NED file structure, the models with parameter,
gates and connection is shown in the following box.

network SN
{

parameters :
doub le f i e l d x ;
doub le f i e l d y ;
doub le f i e l d z ;
doub le numNodes ;

@disp lay ( ”bgb =2000 ,1000”);
submodules :

N0 : SensorNodes {
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parameters :
// most parameters are s e t wi th the . i n i f i l e

load = 1.71987 ;
nodeColor = 0 ;
@disp lay ( ” i=b l o c k / c i r c l e v s , b l u e ; p =25 ,25”);

g a t e s :
in [ 8 ] ;
out [ 8 ] ;

}
N1 : SensorNodes {

parameters :
// most parameters are s e t wi th the . i n i f i l e

load = 1.64169 ;
nodeColor = 0 ;
@disp lay ( ” i=b l o c k / c i r c l e v s , b l u e ; p =50 ,25”);

g a t e s :
in [ 1 0 ] ;
out [ 1 0 ] ;

. . . . . .
connect ions :

. . . .
}

The OMNeT++ configuration and models parameter is provided in the configuration file
which is called omnetpp.ini. This file contains settings which control execution of the simulation.

When the program starts, it reads all the NED files first which contains model structure.
Then it reads the configuration file which is omnetpp.ini. The user interfaces is provided by the
link which has created between the OMNeT++ simulation kernel and the code. The OMNet++
has both command line (batch) and interactive graphical user interfaces.

The simulation results have been written in output vector, output scalar files and also the
user’s own output files. By using the analysis tool in Simulation IDE, the results can be visualized.
The result files are text-based; therefore they can be further processed by other ways like R,
Matlab or other tools.

It would be interesting to extend this simulation by implementin it on the Castalia simulator
to see the DCFA algorithms implementation result on SINR interference model. The Castalia
simulator is a generic simulator intended for first order validation of high level algorithms.

4.4 Considerations and implications

Some of the main implementation procedures and timer set up which have been considered on
the TOSSIM are presented in the following paragraphs with some brief descriptions and sample
codes.

The configuration defined as TimerC and allows aggregation of components as shown below:

Conf igurat ion TimerC{
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components AppC as myApp , new TimerMil l iC ( ) ;
// TimerMil l iC () i s a new i n s t a n c e component
// t h a t p r o v i d e s the Timer I n t e r f a c e
myApp . Timer −> TimerMill iC ;
// Component wir ing ; App uses the Timer i n t e r f a c e
// prov ided by the TimerMil l iC

}

A Timer interface is shown below with two commands and one event. Each component is
specified by an interface and it provides ”hooks” for wiring components together; this increases
runtime efficiency.

i n t e r f a c e Timer {
command void s t a r t P e r i o d i c ( u i n t 3 2 t i n t e r v a l ) ;
command void s to p ( ) ;
event vo id f i r e d ( ) ;

}

A module structure which implements the application behavior is shown below:

module App{
uses {

I n t e r f a c e Timer<TMil l i>
// A timer i n t e r f a c e wi th m i l l i s e c o n d p r e c i s i o n

}
}

Now the implementation can use the timer interface by calling its command using the call
keyword:

c a l l Timer . s t a r t P e r i o d i c (MLLI SEC VALUE ) ;
// the f i r e event i s then handled us ing an event key word
event void Mi l l iT . f i r e d ( ) {

}

Task functions has been used as deferred computation mechanism shown in the following
sample code.

// S igna l ed by i n t e r r u p t handler
event void Receive . rece ivemsg ( message t ∗ msg) {
i f ( r e c v t a s k b u s y ) {
re turn ; // Drop !
}
r ecv ta sk busy = TRUE;
curmsg = msg ;
post r e cv ta sk ( ) ;
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}
task void r e cv ta sk ( ) {
// Process curmsg . . .
r e c v t a s k b u s y = FALSE;
}
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5
Using the MicaZ platform for

evaluation

The MicaZ platform implementation of the DCFA and analysis has been done by another group of
students. The result of the DCFA algorithm on MicaZ platform experiments have been compared
with the simulators results in this study to have robust conclusion of the DCFA algorithm
behavior.

The testbed is shown in figure 5.1 with a base station sitting on a 45 cm high table with
approximately the same distance from the two super-tiles, around 3.5m away on each side. The
height is preferred so as to increase the transmission range. In total 11 MicaZ motes have been
used. The DCAF algorithm was deployed in 8 of them, where each super-tile consists of only
one tile with four nodes. One central Base Station (BS) is attached to the PC and two motes
are used as Cluster Heads (CH) receiving messages from the nodes and passing it to the base
station.

The nodes have been running on RFPower = 7 equivalent to -15db with the observed trans-
mission range up to 3m on the floor; and hence the two tiles have been kept at around 7mts apart
less likely to interfere. The cluster heads just listen for the packets from the nodes and transmit
them to the BS, run at RFPower = 31, equivalent to 0db (the max range for cc2420 radio).
These CHs transfer the received message to the BS on different times so as to avoid collision at
the BS. The BS is used to synchronize the nodes in such a way that it sends a periodic start
message in every 520 ms with one slot being 100ms; hence, all nodes follow its clock. Nodes run
for one phase and wait for the start message from the BS before starting the next. This should
guarantee that the BS message reaches all nodes, otherwise they will not start their transmission,
or if they miss any of these start messages, they lag behind the others.

In the MicaZ platform experiment, the success rate of the DCFA algorithm on the static
nodes was computed. In this experiment, two super tiles with two tiles and each tile with two
static nodes without including the local BS have been considered. From the experiment, the
success rate result of the algorithm in each phase is shown in graph 5.2. As can be seen, the
DCFA algorithm is 100% successful in each phase.

26



CHAPTER 5. USING THE MICAZ PLATFORM FOR EVALUATION

Figure 5.1: Testbed

Figure 5.2: Success Rate of DCFA algorithm on Micaz platform
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6
Results

DCFA algorithm experiments have been conducted on both simulators and using a real hardware
platform. With the simulator, both static and mobile nodes have been considered, but only static
nodes on the platform. During the simulator experiment, the two mobility models explained in
the previous chapter, have been tested.

The first results have been collected from the TOSSIM simulator.The first result is the
success rate of the DCFA algorithm computed at the end of each phase, which shows the success
of the exchanged neighborhood information messages between the nodes. The second result
is the throughput collected by counting the number of nodes which have reported the right
neighborhood information. During the experiment 80 nodes have been considered. Each tile has
5 nodes; this means one node in one tile has four neighbors. In this case, when one node reports
that it has 4 neighbors, it means this node knows its whole neighborhood correctly. The nodes
report wrong neighbourhood information when they experience some problem in the propagation
of the neighborhood information or receiving the neighborhood information. In our experiment,
each tile has five nodes in total; even if the nodes are in mobility.

As shown in graph 6.1 the TOSSIM simulation result, the success rate of the DCFA algorithm
when exchanging neighborhood information messages between the static nodes is 100% successful.
The y-axis represents the success rate and the x-axis represents phases. The graph shows that
the neighborhood messages between static nodes have been exchanged successfully without any
collision or without any interruption. The second result on the static nodes is shown in graph
6.2. The y-axis represents the throughput and the x-axis represents the phases. It shows how
many nodes have reported that they have four neighbors at the end of each phase, and it is
possible to see that all the static nodes have reported the correct number of neighbors at the end
of each phase.

We continued to investigate the two mobility models. Like the static nodes experiment, the
two results have been collected from the first mobility model i.e. the nodes coming on the other
lane (cyclic) model. We can see that the success rate of the DCFA algorithm on exchanging
neighborhood information messages while the nodes are in mobility is 100% successful. As
a conclusion, graph 6.3 shows that the messages between mobile nodes have been exchanged
successfully with out any collision. The throughput is shown in graph 6.4. Like the static nodes
experiment results, it shows how many nodes have reported that they have four neighbors at the
end of each phase. It is possible to see that all mobile nodes have reported the correct number
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Figure 6.1: Success Rate of DCFA algorithm with the TOSSIM simulator on static nodes

Figure 6.2: Number of nodes which reported their neighborhood information correctly
using the TOSSIM simulator on static nodes

of neighbors at the end of each phase.
The results that have been collected in the previous experiments with both static nodes and

mobile nodes (the first mobility model) showed that the DCFA algorithm is working correctly.
However, the DCFA algorithm has not been working properly on mobile nodes using second
mobility model, i.e node jumps to the other side when it reaches on the border of the network
(plane or grid in our case). The DCFA algorithm could not stabilize itself immediately when the
mobile node jumps to the other corner of the network. As shown in figure 6.5, the success rate
of the DCFA algorithm with this model is far from 100% successful. When the mobile nodes
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Figure 6.3: Success Rate of DCFA algorithm with the TOSSIM simulator with mobile
nodes by following the first mobility model

jump to the other side of the grid, the DCFA algorithm takes time to stabilize and function
properly. When it stabilizes after a few phases, another mobile node jumps to the other corner
of the tile and disturbs the process. The problem is that when one mobile node jumps to the
other corner tile, the mobile nodes in this tile do not have any information about this new node.
They learn about this new node after exchanging some messages, and stabilize. However this
stabilization depends on the speed of the nodes mobility. If the nodes are moving fast, its hard
for the algorithm to stabilize.

When comparing the above results with the MicaZ platform results from the previous chapter,
it is possible to conclude that the DCFA algorithm works property in real world situations.
However, if an unusual situation happens in this real world environment, the DCFA algorithm
does not stabilize itself. However, if this unusual situation happens only for a very short time, the
algorithm may stabilize itself after a few neighborhood messages are exchanged between nodes,
and then starts working properly.
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Figure 6.4: Number of nodes which reported their neighborhood information correctly
using the TOSSIM simulator with mobile nodes by following the first mobility model

Figure 6.5: Success Rate of DCFA algorithm on TOSSIM simulator with mobile nodes by
following jumping to the beginning model
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7
Discussion

7.1 Statement of primary findings of the study

The primary finding of this study is that the DCFA algorithm gives the expected result on under
certain circumstances. It has been experiencing some problems on unexpected situations which
we have created in the experiment to challenge it, and see it’s robustness and resistance on this
kind of situations. The pros and cons of the algorithm will be discussed in the next paragraphs.

The DCFA algorithm maintains neighborhood knowledge when the nodes move in and out
of each others broadcast range. This behavior works quite well in the first mobility model. The
DCFA algorithm has reliable communication scheme when the nodes are in the static or mobility.
However, the DCFA algorithm does not show good results in the second mobility model.

The DCFA algorithm has showed some problems to fully satisfy the required properties of
the MAC protocols. The important and main properties of a well-defined MAC protocol are
scalability and adaptability in dynamic networks. The changes in network size, node density
and topology should be handled rapidly and effectively in the MAC protocols for a successful
adaptation of nodes in the network [1]. Some of the reasons behind the network property changes
are limited node lifetime, having additional new nodes in the network and varying interference
which may alter the connectivity and hence the network topology [1].

7.2 Results from using the OMNET++ simulator

One of the main strengths of the DCFA algorithm is to do not have any interference between
two nodes in rounds. However, SNR is not considered in its calculations. Therefore, the im-
plementation result which is found on the OMNET++ simulator showed that all the messages
are propagating between nodes without any interference. This means that the implementation
is giving the expected result from the DCFA algorithm. However, it was necessary to test the
DCFA algorithm by SINR interference model which was embedded in the simulator, since it has
to be tested on how it handles the challenge of interference situations between the nodes. SINR
considers interference with noise, and this helps to see the algorithms response on interference
between nodes. Since OMNET++ does not implement SINR, the interference situation of the
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DCFA algorithm implementation on the OMNET++ simulator was written in C++ code. How-
ever, this C++ code, does not have many interference challenges like SINR interference model
to challenge the DCFA algorthm enough. Because of this reason, the results from the DCFA
algorithm implementation on the OMNET++ simulator has not been added in the results since
interference is one of the main properties which has to be seen in protocols. The implemented
interference environment in C++ is not that challenging as SINR.

There is another simulator for wireless sensor networks called Castalia. It’s based on the
OMNET++ simulator. Castalia can be used to test distributed algorithms and/or protocols in
realistic wireless channel and radio models with a realistic node behavior; especially relating to
access of the radio. Unlike the OMNET++ simulator, Castalia uses the SINR interference model
in its simulation. We had planned to continue working on the Castalia simulator, however, we
found it difficult to continue because of the time and shortage of enough resources about Castalia.
Therefore the implementation has remained on OMNET++ simulator. The Castalia extension
work is left for the future.

From the experiments we have performed on the DCFA algorithm, all the required and
expected properties of the algorithm have been met except one main property which many MAC
protocols have to meet namely self stabilization which is not seen in the DCFA algorithm. The
DCFA algorithm does not have the capacity to stabilize itself when unexpected things happen
in the network.

The remaining findings have positive feedback for the DCFA algorithm except the above
mentioned problem. It has a reliable communication schema for the mobile nodes with collision
free and also it maintains neighborhood knowledge while the nodes are moving in and out of each
others broadcast range; but it does not have self stabilization. Therefore, this study recommends
for future study to modify the DCFA algorithm by adding self stabilization feature for any kind
of situations in the algorithm.
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Conclusion

The main objective of this thesis is to evaluate the performance of the DCFA algorithm. From the
DCFA protocol experiments study, one of the criticisms has focused on the self stabilization. The
self stabilization property of the DCFA algorithm has been studied using two mobility models.
The first mobility model has followed the real world car mobility and the self stabilization of the
DCFA algorithm has been giving the expected results. However the second mobility model has
completely disturbed the slot assignment schema. In this second mobility model, when nodes
reach the border of the network, it jumps to the other corner of the network and continue its
mobility. When the jumped node leaves its neighbor nodes and moves to a new neighborhood,
it does not has any knowledge of its new neighbors; and the slot will be disturbed. The second
mobility model has been used to see how this algorithm can resist any kind of challenges and
stabilize itself from any environmental change and continue its process without any problem.

The very nature of the wireless communications inherently exposed to a lots of long term
and transient faults such as interference and message loss. Therefore protocols deployed on these
areas should be highly robust to faults and should be able to self stabilize within a bounded period
of time. The MAC protocols need evaluation on simulators to make sure that they are giving
the expected objective and also to encourage modification / upgrade on the protocol. To have
accuracy on the evaluation work of the protocols, it is a good idea to consider the real platform
evaluation as well. The implementation of the DCFA algorithm on the TOSSIM simulator has
shown that the DCFA algorithm never stabilizes unless it gets some lucky situations.

From the findings on the self stabilization, we have reached to the conclusion that the DCFA
algorithm can not recover quickly from an error and continue its proper work if any thing goes
wrong in the network. The implementation of the DCFA algorithm highly relies on the neighbor-
hood knowledge and if by any means the nodes in a neighborhood happen to have inconsistent
knowledge of each other due to neighborhood message loss, they might pick a colliding slot. And
such a collision goes on reproducing itself in the remaining phases and never recovers unless by
some lucky situations.
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