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Abstract

In computer graphics, there are two general approaches to achieve a picture that re-
sembles reality; rasterization and ray tracing. Rasterization is often used for real time
purposes. However, this approach makes it hard and costly to achieve some effects phys-
ically correct, for instance reflections and refractions. Ray tracing is a technique that is
usually used for offline rendering but makes it much simpler to achieve correct reflections
and refractions. Hybrid rendering combines rasterization and ray tracing in a way that
tries to benefit from both techniques. This thesis examine hybrid rendering solutions
for real time use in the graphics engine Ogre3D using the ray tracing platform Nvidia
Optix. The study has resulted in a plugin for Ogre3D that implements some of the usual
raytracing techniques and allows the user to mark some of the virtual scene to be ray
traced in real time, while the rest of the scene is rasterized.

Keywords: computer graphics, rendering, ray tracing, hybrid rendering

Sammanfattning

Inom datorgrafik finns det tv̊a tillvägag̊angssätt för att skapa en bild som p̊aminner
om verkligen; rasterisering och str̊alföljning. Rasterisering används oftast för att skapa
realtidsgrafik men tekniken gör det sv̊art och kostsamt att åstadkomma vissa effekter
fysikaliskt korrekt, till exempel reflektioner och refraktioner. Str̊alföljning är en teknik
som oftast används vid förrenderad grafik och gör det mycket enklare att skapa korrekta
reflektioner och refraktioner. Hybridrendering kombinerar rasterisering och str̊alföljn-
ing i ett försök att beh̊alla fördelarna med b̊ada teknikerna. I rapporten undersöks
en hybridlösning för realtidsprogram i grafikmotorn Ogre3D som använder str̊alföljn-
ingsplattformen NVidia Optix. Studien har resulterat i en tilläggsprogram för Ogre3D
som implementerar den vanliga str̊alföljningsmodellen och till̊ater användare att markera
delar av den virituella scenen för rendering med str̊alföjning i realtid, medan resterande
delar av scenen rasteriseras.

Nyckelord: datorgrafik, rendering, str̊alföljning, hybridrendering

All code created for this thesis are available from https://github.com/davidsundelius.
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1 Introduction

This thesis proposes a solution based on combining ray tracing techniques with the
use of classic rasterization techniques in real-time computer graphics. This method
can generate for instance high quality reflections and refractions (which is a benefit of
ray tracing) but still make use of the hardware specialization and the large library of
optimized rasterization techniques.

1.1 Purpose

The aim of this study is to develop technology to let programmers and designers render
important pieces of an image with ray tracing (in high quality) and the less detailed
parts with classic rendering methods in real time. This combination technique could be
used in a lot of different real-time software where image quality is an important factor,
such as games, development environments, CAD-tools or visualization software.

The work was done in collaboration with EON Reality AB, a company specialized
in providing interactive 3d solutions for business and education. The result of the thesis
could eventually be implemented in the EON platform for instance to create more real-
istic images for product advertisement and to improve image quality in other real-time
applications.

1.2 Problem definition

The research described in this report evaluates the possibilities of using hybrid rendering
with modern computer hardware to create high-quality images in real time. Some issues
that will be handled in this thesis are:

• How, and to what cost, can real time rendering using rasterization techniques be
improved by using ray tracing on some specific parts of a scene?

• What ray tracing techniques could be implemented in a hybrid renderer to improve
quality, while still being usable in real time?

• Is partial ray tracing a feasible and beneficial technique for real time applications
on todays hardware?

1



1.3. SCOPE CHAPTER 1. INTRODUCTION

1.3 Scope

This thesis will focus on the use of Nvidia Optix for ray tracing and Ogre3D for ras-
terization rendering. This will limit the hardware available for benchmarking to NVidia
graphic cards and fairly recent processor/RAM. The use of these systems will also limit
the study to not view other alternatives of partial ray tracing that might differ in pros
and cons. However, the report studies the theoretical use of hybrid rendering and can
be useful for future research on the subject independent of engines and API:s.

1.4 Background and previous work

In the field of computer graphics, the aim usually is to imitate the physical reality as
close as possible (although sometimes with some artistic changes). To accomplish this,
a simulation of the physical laws of light, as accurate as possible, will be needed. A way
of mathematically model this was proposed by James Kajiya in 1986 and is called the
rendering equation.

L0(x, ω0, λ, t) = Le(x, ω0, λ, t) +

∫
Ω
fr(x, ωi, ω0, λ, t)Li(x, ωiλ, t)(ωi · n)dωi

The equation describes the radiosity of a point in space based on two terms, the light
emitted from the point (for instance a light source) and the integral of all incoming light
over the hemisphere of the point. In this integral, the incoming light is calculated by
taking the incoming light in each direction and multiply the result with the percentage
that hits the camera (the dot product of the incoming angle and the normal) and the
bidirectional reflection distribution function (BRDF). The BRDF is a function which has
unique properties for each specific type of material (reflecting properties for instance).

This equation can however never be completely solved for a point in a computer,
since it is eternally recursive. Another problem is that it is infeasible in todays hardware
to solve the exact integration problem several times for each pixel. However, we can
use approximation models, based on the rendering equation, to generate almost photo-
realistic images in ordinary personal computers.

1.4.1 Rasterization

Rasterization is the simplest technique that can be used to display 3d graphics onto a
computer screen. The process simply projects all the data points from 3d onto a 2d-plane
that is placed in the point where the camera is set. Different matrices is used for this
to create an illusion of reality. These are multiplied by all the data points in the scene.
The usual matrix model, that are used by most rasterization applications, depends on a
a projection matrix, a model matrix and a view matrix (Akenine-Möller et al, 2008).

modelV iewProjectionMatrix = projectionMatrix ∗ viewMatrix ∗modelMatrix
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1.4. BACKGROUND AND PREVIOUS WORK CHAPTER 1. INTRODUCTION

The projection matrix can be thought of as a model of a camera lens. Changing
values in the projection matrix could for instance change the field of view (how wide
angle that can be scene from a given point), the screen ratio and at what distance
objects are visible. The view matrix models a camera position and orientation in world
space coordinates. A model matrix is assigned to each object in the scene (for instance
a 3d model) with the task to determine that objects position and orientation. Model
matrices can also be hierarchically placed in model objects to simulate objects moving
relative to each other. Each joint in an object, when using skeleton based animation, is
usually assigned a model matrix that describe the position relative to the model origo.
These matrices are multiplied together to create a ModelViewProjection matrix used
that is multiplied with each separate vertex to project the data points into screen space
coordinates that can be drawn onto the screen.

Figure 1.1: The matrix model

The first generated 3d graphics was done by Timothy Johnson in 1963 in a pro-
gram called Sketchpad III. This program was used to draw simple lines and circles in
three dimensions on a computer screen (Johnson, 1963). This was later combined with
4x4-matrixmodel to show and animate 3d images. In the 70’s Phong and Gouraud in-
vented the standard shading algorithms to approximate lights, reflections and color in a
artificially generated picture (Phong, 1975).

Today, the rasterization (and the matrix-multiplications) are often done on hardware
specialized on doing specifically these steps really fast (using parallelization and special-
ized vector and matrix computation units) since it is fast and still can provide very nice
looking graphics by adding different shading techniques. This method is used in almost
all real time computer graphics applications today (Akenine-Möller et al, 2008).

1.4.2 Ray tracing

Ray tracing is a rendering technique that was developed in 1968 by Arthur Appel and
was based on the idea of treating incoming light as rays that hit the eye or camera.
(Appel, 1968) To make this feasible to visualize using a computer Appel calculated
the light in reverse, sending rays from the eye and calculating the color of the object
that the ray is intersecting. This simple algorithm was called ”Ray casting”. In 1972
Turner Whitter developed the concept into the first ray tracing algorithm by sending
out three new rays when a ray hit an object; one reflection ray, one shadow ray and
one refraction ray. The results of the rays could then be summarized to compute the
resulting color of that intersection. This step could also be repeated using recursion to
get a more physically correct result for each beam type (Whitter, 1980). It should be
noted that, even though both the Appel and the Whitted approach to ray tracing can
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produce realistic looking results, it does not fully correspond to the render equation and
does not create photo-realistic results. To really simulate all the light in a scene and
make it as correct as possible, the ray tracing technique has been further developed into
algorithms such as path tracing and global illumination (Kajiya, 1986). These subjects
will, however, not be in the focus of this study.

To do efficient ray tracing, an acceleration data structure has to be used to store
the environment data to allow fast tracing. These structures are often built in trees
to allow the ray tracer to prune branches of the structure and thus eliminating a lot
of comparative computations. A simple structure that can be used is called ”Bounding
volume hierarchies” (BVH). To build this structure, we divide the scene in rectangular
cuboids (since the comparison function of a ray against a plane is a cheap and simple
computation). Inside all of the cuboids, the scene is split again into smaller blocks. The
more objects there are present within a block, the more the ray tracer gains by splitting
them into smaller blocks (Akenine-Möller et al, 2008).

A ray inside a ray tracer is mathematically represented by the equation R = (destina-
tion – origin)*k, which is the point-slope form of the common linear equation y = kx+m.
Each ray is set equal to the bounding box of a given object (the order and mathematical
representation of the object that is used is depending on how the used data structure is
representing the scene) and if there is at least one solution where k is a real number, it
is determined that the ray hits an object.

Figure 1.2: Ray tracing

Ray tracing has mostly been used in offline rendering (such as computer-animated
movies), since it is a very heavy computational technique but has the possibility to
produce a near photo-realistic quality for pictures (Whitter, 1980).

Since the evolution of graphics hardware in the beginning of the 1990’s the work to
effectively implement efficient ray tracing on graphics cards has made some progress.
The pixel shaders enabled the developer to create fairly efficient GPU ray tracers on
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the programmable pipeline, but it was not until techniques such as CUDA and OpenCL
was introduced that the fully flexible pipeline allowed programmers to use the GPU:s
potential to create efficient ray tracers on graphics hardware (Steffen et al, 2009).

1.4.3 Hybrid rendering

Hybrid rendering is a concept where the rasterization approach is combined with ray
tracing to try to take advantages of both models benefits. For instance, more realistic
reflections and refractions can be created using ray tracing than with the usual environ-
ment maps normally used for reflections in rasterization (Christansen et al, 2006).

This type of combined rendering technique was not used in industry scale until the
Disney Pixar movie ”Cars” in 2006, where the standard Reyes engine was extended to
support ray tracing reflections, since this was very important to get a realistic feeling
of the cars’ metal (Christansen et al, 2006). This engine, however, worked offline to
generate images into a video stream.

The technique have been discussed and discredited for some specific purposes in real
time rendering (Pohl, 2008). This is due to the fact that hybrid rendering does not
provide any performance boost over pure ray tracing in specific cases (for instance, if the
camera is zoomed in on a ray traced object). It also requires redundant data storage, in
different data structures, to be efficient enough to use for real time purposes.

1.4.4 Shading

Shading is the process of calculating the output color of a specific point of a surface
in a 3d environment, dependent on the lights of the scene, properties of the materials,
orientation of the object and incoming angle. This process is usually divided into two
steps, an interpolation model and an illumination model. The chosen interpolation
model determines how the end color of a specific pixel will be calculated depending on
the normal of each vertex of a polygon. There are three models normally used for this:
flat shading, Gourand shading and Phong shading.

Figure 1.3: The three different interpolation models

Flat shading simply takes the average normalized surface normal based of each vertex
normal and use the result to calculate the color intensity for each pixel, resulting in the
same color for each pixel on a given polygon. Today this shading model is only used
when other models are too costly for the task or for debugging purposes since it does
not give a good approximation of reality.
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Gourand shading calculates the color for each vertex normal of a polygon and then
uses bilinear interpolation of the color intensities of each normal over the pixels of a
polygon. This is a fast method to achieve fairly good results. However it can give
insufficient results for the specular reflections of a surface.

Phong shading calculates a new normal for each pixel on a polygon using bilinear
interpolation between each of the vertex normals. This approach is the most used today
and gives good results for most cases. Other models have been presented, but the Phong
shading model has a good balance between physically correctness and speed (Akenine-
Möller et al, 2008).

1.4.5 CUDA and Optix

CUDA (Compute Unified Device Architecture) is Nvidias platform and programming
model for use of the parallell computational power of the GPU. This model allows pro-
grammers to directly access the instructions and the memory on the GPU, as well as
control over the threading process and use the graphic cards as general processing units
and since usable for other purposes than computer graphics.

In the CUDA SDK, a compiler for C/C++ (nvcc) is provided as well as a debugger
and several other usable tools for GPU computation. These can be used to program high
level applications directly in the same language (often C, or one of the dialects) that is
used for the rest of the project and to easily move code from the CPU to the GPU (or
the other way around) for conventional optimization of the computational pipeline.

Nvidia Optix is an API (implemented mostly in CUDA) used for general purpose ray
tracing using the GPU. It provides a stable, generic and fairly fast way (both performance
and implementation wise) to create ray tracing applications that are highly parallellized
and make use of the latest features in the GPU. Optix is implemented in two different
parts: the host based API to control the ray tracer from within a C/C++ environment
and the device based CUDA-style programming language used to write the programs
used within the ray tracer (compiled using nvcc) (Parker, 2010).

1.4.6 Ogre3d

Ogre3d (Object-oriented graphics rendering engine) is a very popular and proven open
source graphics rendering engine that is easy to use and makes it simple to produce fast
results using classic rasterization techniques. It is also a very customizable system that
allows for straightforward manipulation of most of the rendering steps. The Ogre engine
abstracts away the rendering API:s (for instance OpenGL or DirectX) using the plugin
system, making it possible for most applications to support several different techniques
for rendering.

The engine is licensed under the MIT license and are completely open source, crowd
developed and free to use in any application. It relies on an active community of devel-
opers and companies that supports the project and uses it for their own products.

It supports a highly customizable plugin system to encourage developers to contribute
modularized solutions to extend the engine (Ogre, 2014). Several plugins, that span from
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providing new rendering systems and stereoscopical view to particle systems and special
scene loaders, are available today. The engine is built upon the factory pattern and with
precompiled plugin libraries it is possible for developers to change almost any factory
in the engine to produce specialized objects fitted for the developers purposes. As an
example, the Ogre tutorials mentions the BSP Scene loader plugin, which replaces the
scene class, with a specialized method for parsing and translating a BSP-file to a format
usable by the engine.

1.4.7 Software engineering methodology

The requirements management of a project is the process of elicitation, analyzing, spec-
ifying, maintaining and verifying the requirements on a system. The methods for these
different stages varies depending on the chosen software engineering method. In the
waterfall model, the requirements are identified in the beginning of the project, well
specified, never changed during the process and in the end verified against the end prod-
uct. In an agile development process on the other hand, the requirements are identified
along with the development and the specification is compact but updated every predi-
cided time fragment, to more closly mimic the changes in the requirements of a system
(Sommerville, 2007).

The evolutionary development process is an iterative process, often used in more
research heavy development. The process focus on short, iterative sprints where func-
tionality is added each new continuous delivery. It also involves always having a runnable
version of the software after each sprint. The advantages of this is, among others, to
always be ready for a demonstration of the progress and make it possible to easily roll
back the progress if a new feature does not work. Both abilities make it fit for research
development. (Sommerville, 2007).

1.4.8 Open source software

Open source software is a collective term used to describe the type of software where
the user has access to the full, or parts of, the source code of a program. The term is
often misinterpreted as meaning that a given software is free, as in no cost, to use. Most
programs that are open source are however also free to use as well. Some of the most
well known open source programs are the GNU/Linux operating system (including the
most known distribution Ubuntu), the web browser Firefox and the webserver Apache.

There are many advantages with using open source software. Transparency, to be
able to review the code and see what the program does in detail, is an important part
of the delivered program. The possibility for anyone to review the code could also lead
to increased security, since anyone trying to break the system knows all there is to know
about the system and could also fix holes in the software. Another advantage is the
possibility to modify the code to make the program more fit for its intended purpose
(Stallman, 2013).

Some, however, argue that this type of software development results in obscurity in
the code, design and interface of the programs. It also often lacks professional support
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needed to be used in the industry by some companies and it may lead to bad quality
software (Tarver, 2009).
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2 Analysis

This section describes the theory behind the work process and the method used to solve
the problem at hand. It also discusses and motivates the design choices and different
alternatives that was discovered during the work.

2.1 Method

To answer the research questions defined in earlier paragraphs, a proof of concept pro-
gram was implemented in C++, Ogre, Nvidia Optix, CUDA and related tools and script-
ing languages. It is also the basis of the rendering part of the EON platform. Nvidia
Optix is a flexible ray tracing API which uses CUDA to create a pipeline specialized at
ray tracing. It provides a relatively simple interface to implement a ray tracer on the
GPU. The implementation is based on the theory specified in Chapter 1.4 of this report
and the specification on the API:s of the chosen technology.

2.1.1 Literature study

The thesis work began by doing research on the given topic of ray tracing, rasterization
and hybrid solution. This was followed a comparative study of software engineering
methods, requirements engineering and open source methodology. Finally, the different
technology choices of the project (languages, API:s, etc.) that was possible to use for
the proof of concept was examined.

2.1.2 The development process

Since the project was fairly small from a software engineering perspective and only one
programmer worked on the task, a simple iterative and evolutionary approach was chosen
for the development of the proof of concept program. A requirements list was produced
for the project, and from this, a UML diagram was designed to grasp the programs
architecture from the beginning. These models was revisited and redesigned at a weekly
basis to take into account technical limitations, new ideas and new acquired knowledge
of the used technology.

9



2.1. METHOD CHAPTER 2. ANALYSIS

Figure 2.1: The UML diagram of the HybridPlugin project

2.1.3 The final requirement list

• The program should be an implemented solution to show the possibilities and
problems associated with hybrid rendering.

• The program should be a plugin for Ogre3d and depend on Optix for hardware
ray tracing.

• The program shall depend on OpenGL and rely only on OpenGL, Ogre and Optix
libraries (no other third party software should be needed to run the program).

• The program should be able to run at a framerate of at least 15 fps for simple
scenes containing both reflective and non-opaque entities.

• The program should be able to be installed in an pre-made engine based on Ogre3D

10
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without corrupting data or otherwise change configurations or data unrelated to
the hybrid rendering.

2.2 Implementation

The implementation of the project was divided into four parts that was separated into
different processes to increase the modularity of the program and to be easier to under-
stand.

1. Implement a ray tracing engine.

2. Find a way to choose what parts of the screen that is supposed to be ray traced.

3. Construct an interface for Optix to transfer the ray traced data back into Ogre.

4. Create a translator for transferring environment data form Ogre to Optix.

The first part was to implement a modularized ray tracing rendering engine in Optix.
This renderer used OpenGL and GLUT to create a window to render a simple scene using
the C++ wrapper of Optix to get an object oriented ray tracing component that can be
used to interact with a rasterization engine.

Figure 2.2: This picture shows a simple scene called the Cornellbox, rendered using the
Hybrid Renderers ray tracer. The right sphere is a total mirror while the left sphere is semi
transparent and semi reflective. The front wall is a mirror that reflects the whole scene,
including the skydome outside the box.

The second part was to implement a way for the hybrid renderer to know what part
of the screen that is supposed to be ray traced. Thirdly, the Optix part of the program
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had to present the result in a way that was usable for the hybrid program. Lastly Optix
needed to understand the loaded environment including scene geometry, lighting, camera
settings and materials.

Then the finished hybrid rendering program was refracted into an Ogre plugin to
provide an easy interface for programmers to use in their own graphic engines. When
the implementation phase was over the remaining time of the thesis project was used
to benchmark and optimize the implementation to get the data presented later in this
thesis.

2.2.1 System overview

The implementation is called OgreHybrid and is an Ogre plugin that allows the users to
mark objects in a scene (imported in any way, for instance manually created or loaded
using another plugin) to be ray traced using a real time ray tracer. The aim with the
plugin was to make as little change as possible to the standard state of the program to
allow the user to activate the plugin to work with Ogre applications designed for other
purposes to enhance their appearance.

Figure 2.3: The components of the OgreHybrid plugin. A solid arrow means that a
component sends/receives data at startup and then observes the original data for a change. A
dotted arrow means that the component communicates each frame. The solid lines interprets
as ”is a part of”.

OgreHybrid is built in three separate components; the ray tracer engine, the trans-
lator and the hybrid renderer. The three components are designed to be used as stand
alone components, e.g. the ray tracer could be connected to another component that
just views the output to the screen. The translator component synchronizes the data
between Ogre and Optix. The ray tracer component is a fully workable ray tracer, with
the addition that it takes a mask (with the same resolution of the rendertarget) as input
that determines if a specific pixel should be ray traced. The hybrid renderer component
is responsible for rendering the mask texture and controlling the Ogre objects. The com-
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munication of data between the components are controlled by the HybridPlugin master
class (see figure 2.1 for UML diagram).

2.2.2 Hybrid renderer component

The approach chosen to accomplish hybrid rendering was to let the user mark the parts
of the models in a scene that they want to ray trace. This allows for a lot of flexibility
and makes it easy to customize the renderer for specific scenes.

Other approaches discussed to solve this problem was to let some materials be ray
traced. This, however, would not be as simple to use, since that would force the user
to write separate materials for ray-traced objects and would not allow for users to just
install the plugin in their engines and use it without any settings or customizations of the
application. Another solution proposed was to write an algorithm to choose what parts of
a scene that would benefit the most from being ray traced and activate hybrid rendering
for these areas. This approach would be interesting, it is however quite complicated to
implement and still would have artists change the proposed settings since it does not
exactly fit the given scene.

When the OgreHybrid plugin is initialized, it adds a new rendertarget and sets it
to render a specific hybrid material scheme. It also adds a black solid material to all
entities in the scene and connects that material to the hybrid rendering scheme. When
an object is marked as ray traced, the hybrid material is changed to a solid white color.
This makes the rendertarget create a black and white stencil each frame that is sent to
the ray tracer as an input buffer.

When the ray tracer has generated a result, this buffer somehow has to be transformed
into a texture that is usable to show onto the screen. Several different approaches was
tested to achieve this; the simplest being saving Optix-output to a buffer on the CPU
and then loading this as a texture in Ogre by looping through the output buffer and
insert the result into a texture. This is a very slow approach and slowed the program
down several frames per second,. The next approach is to use PBO:s and simply copy the
data from the CPU into GPU memory in one go (using memcpy). This is a lot faster but
still very slow. It is, however, the solution in the final product, since it is possible to do
on all computers independent of hardware and since there are several limitation to using
PBO streaming in Ogre and it is not possible to write directly to the texture memory
from Optix. Several different approaches was implemented and tested. However, none
of them worked properly, since the previous mentioned limitations of Ogre and Optix.
This will be fixed as soon as Optix is updated to make use of CUDA 5.5, where there
is a feature called surfaces that can can be used to write directly to texture memory.
This feature would allow OgreHybrid to skip a lot of data transfers. However, surfaces
require hardware based on the Nvidia Kepler core, which is not present in most personal
computers at the printing of this report.

Another approach, which was tested, is the use of pixel buffers generated by Optix
and then streamed to an Ogre texture. This was implemented very easily using pure
OpenGL using the algorithm:
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glBindTexture (GL TEXTURE 2D, t a r g e t ) ;
g lB indBuf f e r (GL PIXEL UNPACK BUFFER, vboId ) ;
g l P i x e l S t o r e i (GL UNPACK ALIGNMENT, 4 ) ;
glTexImage2D (GL TEXTURE 2D, 0 , GL RGBA8, width , height , 0 ,

GL BGRA, GL UNSIGNED BYTE, 0 ) ;
g lB indBuf f e r (GL PIXEL PACK BUFFER, 0 ) ;
glBindTexture (GL TEXTURE 2D, 0 ) ;

Pixelbufferobjects (PBO:s) are however not supported in the current version of Ogre
to create textures, which makes it impossible to use for most purposes without patching
Ogre manually. More on this issue, its consequences and solutions are discussed in the
results chapter.

2.2.3 Ray-tracer engine component

The ray-tracer component is a ray-tracing engine based on Optix, which takes a scene at
startup from the translator component and a mask texture, from the hybrid component,
identifying the regions of the screen that is supposed to be ray traced and then outputs
a buffer that is filled with the color values of the ray-traced pixels.

This component is also capable of doing full real-time ray tracing of a given scene, if
connected to other components. For instance, the simple OpenGL renderer used in the
testing of this component works for this purpose.

Ray tracing is done using the Optix model for ray tracing. Thus, the device-part of
the ray tracer (the code running on the GPU) is divided into 7 different types of programs;
the ray generator, miss, exception, closest hit, any hit, intersection, bounding. There
are also selector-programs available. These are, however, not used in OgreHybrid.

The ray generation program handles the input and output buffers and generates rays
for each pixel on the screen that is marked by the input buffer to be ray traced. It also
implements dynamic super sampling to get less aliasing in the result buffer. This feature
can be configured during runtime from the OgreHybrid-plugin.

RT PROGRAM void generate ( ) {
f l o a t 2 sc = make f loat2 ( index )/ make f loat2 ( outBuf f e r . s i z e ( ) ) ;
i f ( tex2D (mask , sc . x , sc . y ) != 0 .0 f | | skipMask ) {

f l o a t 2 d = sc ∗ 2 .0 f − 1 .0 f ;
f l o a t 3 org in = camPos ;
f l o a t 3 d i r e c t i o n = w + d . x∗u − d . y∗v ;
Result r e s ;
f l o a t 3 c o l o r = make f loat3 ( 0 . 0 f ) ;
f l o a t 3 tmpDir ;
for ( int i =0; i<numSamples ; i++) {

i f ( i ==0)
tmpDir = d i r e c t i o n ;

else i f ( i ==1)
tmpDir = d i r e c t i o n+e p s i l o n ∗u+e p s i l o n ∗v ;
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else i f ( i ==2)
tmpDir = d i r e c t i o n−e p s i l o n ∗u+e p s i l o n ∗v ;

else i f ( i ==3)
tmpDir = d i r e c t i o n−e p s i l o n ∗u−e p s i l o n ∗v ;

else
tmpDir = d i r e c t i o n+e p s i l o n ∗u−e p s i l o n ∗v ;

Ray r = make Ray ( orgin , tmpDir , rayTypeRadience ,
0 .005 f , RT DEFAULT MAX) ;

r e s . depth = 0 ;
r e s . importance = 1 .0 f ;
r tTrace ( scene , r , r e s ) ;
c o l o r+=r e s . c o l o r ;

}
c o l o r/=numSamples ;
outBuf f e r [ index ] = make f loat4 ( co lo r , 1 . 0 f ) ;

} else {
outBuf f e r [ index ] = make f loat4 ( 0 . 0 f , 0 . 0 f , 0 . 0 f , 0 . 0 f ) ;

}
}

The miss program is called when a ray misses all objects in the scene. In OgreHybrid
this calculates a color from the environment map passed from the translator to imitate
the skydome or skybox from the Ogrescene.

Exception programs are called if, at some point during execution of a thread in Optix,
an exception is thrown. These exceptions could for instance be a stack overflow or an
out-of-memory-exception. In these cases, the specified pixel is given a distinct pink color
to be easily identifiable during debugging.

Intersection and bounding-box programs are used to describe specific geometry in a
scene of Optix. Bounding-box programs are called to check for a larger intersection and
are often simpler, while the intersection program is run if the bounding-box program for
a given object is marked as hit. OgreHybrid includes two different geometries: planes
and spheres. However, since most rasterization engines work with triangle meshes, all
geometry directly converted through the Translator component use the paged triangle
mesh loader included in Optix utilities package.

The closest hit program can be thought of as a pixel shader in classic rendering.
It determines the color returned by a specific ray depending on the closest hit objects
properties. OgreHybrid contains an implementation of Phong shading that is dependent
on the material properties fetched from the Translator as well as values of reflectiveness,
opaqueness and refractive index of an object given as input to the object by the user.
It also generates shadow rays to calculate hard shadows for the hit point, reflection rays
for reflective objects and refraction rays for non-opaque objects.

RT PROGRAM void c l o s e s t H i t ( ) {
// Ca l cu l a t e normals and ray h i t p o i n t
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// Ca l cu l a t e each l i g h t components c on t r i b u t i on
// to the p i x e l s end co l o r :
//Ambient
//Direc t ( d i f f u s e , shadow , specu l a r ) f o r each l i g h t source
// Re f l e c t i on , Refract ion , Emissive
r e s . c o l o r = tA + tD + tRefr + t R e f l + emi s s i v e ;

}

Any hit programs determines if a ray has hit an object. It does not, however, get
any information on where along the ray the object is hit, which makes it perfect to use
for calculation of shadows (where we only need to know if a point is occluded from a
light source or not). In OgreHybrid, AnyHit programs are used to calculate shadows
(opaque and semi-transparant created by non-opaque objects) and an approximation of
simple caustic effects. The formula used to create the caustics was developed using an
approximation of the natural laws of optics.

f loat r i = clamp ( r e f r a c t i v e I n d e x −1.0 f , 0 . 0 f , 1 . 0 f ) ;
i f ( r i >0.01 f ) {

f loat exp = powf ( 2 . 0 f , l e r p ( 0 . 0 f , 9 . 0 f , r i ) ) ;
sRes . a t t enuat ion ∗=powf ( theta , exp )∗ r e f r a c t i v e I n d e x

∗ l e r p ( 1 . 0 f , 5 . 0 f , r i ) ;
}

Figure 2.4: The approximated caustics

2.2.4 Translator component

To be able to render both by ray tracing and rasterization at the same time, both of the
systems need to be able to operate on the same environment data, such as geometry,
camera, textures, camera position and orientation and light sources. This is done by
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parsing the Ogre environment and, with the result, try to recreate the environment
in Optix. Afterwards, the Translator component sets up a system to keep the Optix
environment updated when data is changed in the Ogre setup. Using this method the
data can be stored in the most efficient way possible for the specific rendering system but
still be rendered at the same time. It also allows the user to concentrate on working with
the Ogre environment and does not concern the user to worry with the Optix renderer
at all. The drawback of this approach is that all data has to be stored redundantly and
for big scenes. This can create a limitation caused by memory shortage.

The structure of the translator system tries to mimic the system of Ogre as near
as possible to fit into the different design patterns used in Ogre to keep components
updated with the same data.

The first component that needs to be synchronized is the camera. To do this, the
model-, view- and perspective matrices need to perform the same transformations in the
Optix environment as it does in Ogre. However, there are some difference in how Optix
and OpenGL handle the matrix stack. For instance, the Z-axis is reversed and the Optix
system is built upon a coordinate system set up by three unit vectors (u, w, w). This
demands some additional modification of the matrices at the right time in the pipeline.
The following pseudo code demonstrates how the camera translation is performed in
OgreHybrid.

f unc t i on ( input )
fovY = input . fovY ∗ 0 .5
fovX = tanˆ−1 ( tan ( inputFovY ) ∗ aspectRat io )

gu = firstRowOfMatrix ( input . modelViewPerspectiveMatrix )
gv = secondRowOfMatrix ( input . modelViewPerspectiveMatrix )
gw = thirdRowOfMatrix ( input . modelViewPerspectiveMatrix )

ulen = input . f o c a l ∗ tan ( fovX )
v len = input . f o c a l ∗ tan ( fovY )

u = ulen ∗ gu
v = vlen ∗ gv
w = f o c a l ∗ gw

end

To translate the geometry into the ray-tracing system, each Ogre node under the root
node of the type “Entity” is used as base to create a HybridEntity and a HybridModel
object. These objects are based on the position, scaling, orientation and materials of
the Ogre Entity and the geometry of the Ogre Mesh assigned to the entity. The mesh
data is parsed into an intermediate data structure similar to the Wavefront OBJ mesh
format (Murray, 1996), since the Ogre Mesh data structure is a bit more advanced than
the very simple system of Optix. This intermediate format also allows the translator to
make use of other model loaders by just implementing a new parsing method for the new
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format. Due to different math systems used by Ogre and Optix all data points (vertices,
normals and texture coordinates) have to be translated into the correct system to work
correctly.

The Ogre mesh system is built on a concept that all models has a top mesh with an
optional amount of shared vertex data and a specified number of “SubMeshes”. These
submeshes contain a “VertexDeclaration” object that specifies the structure of that spe-
cific submesh, for instance if it is using shared vertices and a map to the pointers of the
different data points. Each submesh may also contain a pointer to a material. The ma-
terial assignments can also be done via the “SubEntity” without affecting the SubMeshs
material pointer. Finally submeshes also have an “IndexData” object to keep track of
what vertices, normals and texture coordinates that together form polygons.

Figure 2.5: The structure of the Ogre entity and mesh system. In the image to the right,
the black areas mark some of the submeshes while the red area marks a whole mesh.

The intermediate format consists of five simple lists: vertices (vec3), normals(vec3),
texture coordinates(vec2), materials(Material) and polygons, where polygons are repre-
sented by a struct containing three indices to vertices, normals, texture coordinates and
materials (integers that references an index in the lists). The intermediate format uses
the glm library for math, since it is a generic and well-structured math library that is
easy to cast to both the other systems (Riccio, 2014).

From the intermediate format, the program creates seven Optix buffer objects con-
taining the vertex data, normal data, texture coordinate data, vertex index data, normal
index data, texture coordinate index data and material index data. These buffers are
then used to create a paged Optix Geometry object (assigned a Bounding box program
and an Intersection program).

During the process of going through all Entities and converting their meshes into
Optix format, each material used by any Entity in the loaded scene is converted and
saved into a list used later to create the full scene. Ogre materials are a part of a very
complex system with scriptable materials, custom shaders, with several possible passes
and techniques. To translate the whole system would be a massive work and did not
seem to be inside the scope of this thesis. However, to get a good approximation of most
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simple Ogre materials the translator takes the first pass of the first technique of the
material and converts the Phong variables assigned to each material (ambient, diffuse,
emissive, specular and shininess) and the most significant texture (the first in the texture
list) from each material and uses this to create an Optix Material object. A material
object contains a ClosestHit program and an AnyHit program. These are the same for
all materials but have different values assigned to their variables depending on the base
Ogre material.

To convert the texture some OgreHybrid had to access the underlying render system
of Ogre to get the low level index of the texture. This is the reason why OgreHybrid is
only usable with OpenGL. To port these parts to DirectX would not be a hard task and
is a possible next step for OgreHybrid.

From all the HybridEntities and Materials created in the part of the scene parsing,
the program creates a Transform object and GeometryInstance object. These types are
specified by Optix and are used to create scenes to be fast to ray trace. The Transform
specifies its children nodes position and orientation (much like a Model matrix, see
Section 1.4.1 for more information). A GeometryInstance is a connection between a
Geometry (a mesh) and a list of Materials – a fully defined object in a ray tracing scene.

Figure 2.6: An Optix scene graph

To mimic an Ogre scene, the light sources also have to be imported from the ras-
terization engine. This is done simply by looping through the light sources in the Ogre
scene and creating a sample struct object that is passed to Optix by a bufferobject.

Ogre uses a design pattern called “Factory pattern” to create some its objects, for
instance entities. This means that whenever a new entity is supposed to be created,
the engine calls the initialized entity factory and asks for a new object. This allows
for a very flexible way to create objects with specific properties. OgreHybrid replaces
the usual Entityfactory with the specially designed HybridEntityFactory. This creates
HybridEntities that has some specific properties, such as a HybridMaterial associated
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with each SubEntity and SubMesh as well as a flag to mark the SubEntity as ray traced.
The HybridMaterial keeps track of reflectivity, opaqueness and refractive index of the
material. This means that all entities in an Ogre application that have OgreHybrid
initialized has these properties. However, they are only used if the SubEntity is marked
as ray traced.

To keep the environments synchronized between the ray tracer and Ogre, OgreHy-
brid utilizes the observerpattern implemented in the Ogre architecture. When a new
Hybridobject is created (such as a scene node), the Hybridobject adds itself as a listener
to the Ogreobject. When this object is manipulated in some way (for instance rotated,
moved or removed), the Hybridobject gets this signal and tries to mimic its modification.
Using this pattern, no polling of objects are needed to keep the environments synchro-
nized. The only exception to this are the lights, where a simple command is needed
to update all the lights. This is due to the way the lights are transferred to the GPU
(as a buffer of structs). All the lights have to be reparsed each time one of the lighting
changes. Therefore, the design choice was made to let the user update these each time
the lighting changes.
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3 Results

The results of the study shows that this approach of hybrid rendering is applicable and
can be used within the boundaries set for this study.

Figure 3.1: Results

This picture shows a hybrid rendered scene where the two miniscreens to the lower
right on the screen shows, to the right, the mask layer that in is inserted into the ray
tracer and, to the left, the buffer output from the ray tracer. The parts rendered black
in the mask are rasterized in Ogre.
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Scene Rasterization Hybrid rendering Full ray tracing

Simple scene 1012 27 (20) 7 (2)

Intermediate scene 513 18 (8) 7 (2)

Complex scene 773 15 (6) 6 (1)

The numbers are representing frames displayed per second (fps) and the numbers
inside the parenthesis is with supersampled ray tracing enabled. All numbers have
FFXA enabled, since disabling it only had a minor effect on the result. The resolution
was 1024x768 and operated in windowed mode.

These results were measured on a computer with Intel Dual Core 6600 2.4 Ghz with
8GB of RAM and an Nvidia Geforce 760 GTX. The tests were performed with the Nvidia
Geforce driver 327.02 on Windows 7 Ultimate 64bit.

The first measured scene is a simple textured quad as floor and a non-textured wine
glass with no reflection or refraction enabled. Only the glass is marked as ray traceable.
The scene contained 19 625 triangles and had one moving and one static light source.

The second scene had two spinning, textured spheres, one reflexive and the other
semi transparent and semi reflexive. It contained a solid dragon model and a spinning
Ogre head. It also contained a transparent wine glass and a floor squad. Every object
except the floor was ray traced. This scene contained 128 232 triangles and had the
same lighting as the first scene.

The third scene was on an airplane bathroom (an industry used model for marketing
private jet planes), where most of the scene was marked as ray traced. The model can
be seen in Figure 3.3 (but another, more zoomed camera angle was used). The scene
contained 82 778 triangles and had two moving light sources. The measurements were
also performed with the transfer of the output buffer from the CPU to the GPU turned
off (the output buffer is thus not transferred from the GPU to the CPU and back to the
GPU as a texture every frame). This aimed to simulate a scenario where Optix is able
to write directly to a texture or a solution in Ogre is implemented to reflag data on the
GPU as texture memory (which is very easy to do in plain OpenGL). This resulted in
the following table:

Scene Rasterization Hybrid rendering Full ray tracing

Simple scene 1012 91 9

Intermediate scene 513 36 10

Complex scene 773 25 7

The first column is unaffected since the ray tracer is turned off and no ray tracing
data is transferred between the CPU and the GPU. In the other columns however, it
can be observed that the fps is up to 300% higher than the ordinary case.

22



CHAPTER 3. RESULTS

Figure 3.2: An inside picture

Figure 3.3: A bathroom scene from a private yet
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Figure 3.4: A simple scene with a Stanford dragon

Figure 3.5: A scene with moving light sources
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4 Discussion and conclusions

Hybrid rendering as a technique is, as shown in this study, usable in some applications
and can produce nice looking results. However, it is not applicable in all kinds of
implementations and fits especially well for some topics. The technology contains in
itself, by definition, some problems that has to be handled when using it.

4.1 The hybrid dilemma

The great drawback of hybrid rendering is the memory dilemma of double storage or
ineffective rendering. To perform efficient ray tracing, the data has to be stored in specific
data structures (spatial structures). These structures will not be the most efficient in
most cases (if it is even possible) for storing the data for a rasterization rendering. This
is especially problematic when applying a ray tracing solution to a graphics engine for
rasterization, since this already includes data handling for the nodes in the scene.

This results in the dilemma of either redundantly storing all scene data in two dif-
ferent data structures (as proposed in this report) and taking the toll of using a lot of
unnecessary memory or by using the same data structure but instead not getting the
benefits of optimized data structures (and the ability to use an established engine which
make a lot of code reusable).

Another problem with hybrid rendering approach (as mentioned in Section 1.4.3),
is that the engines performance is heavily dependent on how much screen space that is
currently occupied by ray traced objects. If the camera is zoomed onto a ray traced object
so the whole screen is ray traced, the hybrid solution is not gaining any performance
over a normal ray tracer, but will still be using double the memory (because of the
hybrid dilemma). Using the hybrid approach therefore requires some assessment of the
application that is using it, as well as the content that will be used by the application.
The application will need to assert that the camera will not zoom in onto some object
(or for instance accept framedrop, lower the resolution temporarily or stop ray tracing
if the camera is too close a ray traced object).

It is theoretacally possible to share the actual data of geometry, shaders and textures
between the ray tracer and rasterizer and only save pointers to the data inside the
different optimized datastructures. This is however not possible using the ordinary
OpenGL pipeline (for instance using the Ogre engine) and CUDA, since both CUDA
and OpenGL allocates their own memory and does not yet support shared resources. An
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own rasterzer engine that use the hardware in an optimized way could be implemented
in CUDA. Combined with the Optix framework this solution could be an interesting
topic for further research.

4.2 Applications

Using the approach described in this report, it is possible to use hybrid rendering in
interactive real-time systems in a professional environment at a usable speed for some
applications. The solution works best in situations where the ray-traced objects take
up a reasonably fixed part of the screen, since it is heavily dependent on how many
pixels that need to be ray traced. The software’s performance is also dependent on the
resolution, so it is best fitted for applications which is not dependent on high resolution,
or use hardware scaled to the resolution. The technology could be used in simulation
technology where it is important that some parts of the scene are physically correct,
for instance marketing and educational software for flight simulation or medical training
software.

As of now, this technology is not good for development of highly interactive software
that need to work on several different hardware, as well as letting the users change the
camera angle and zoom in onto ray traced objects. These types of behavior are often
wanted in most games. To make hybrid rendering appropriate for use in games, some
other types of optimizations need to be implemented. Some approximations could be
done by for instance only perform the ray tracing step when the camera is moving,
precompute some angles and blending between ray traced frames to make a new approx-
imation. Another approach that could be used is to only activate the ray tracing when
the environment is static, for instance by using an environment map to approximate the
appearance of the semitransparent objects until the user fixates the camera, and then
slowly blend over to the ray tracing solution, making the non-opaque objects rendered
more physically correct.

Hybrid rendering techniques such as this one is usable as a way to use ray tracing
in real applications now. In the future, when the graphics hardware is faster and more
customizable (or optimized for ray tracing purposes), ray tracing have the possiblity
to be the standard way to produce computer graphics. If this is the case, the hybrid
theories with all of its cons, such as redundant data structures for storing the scene,
will no longer be needed. Then, all computational power and memory can be used to
optimize the ray-tracing calculations.

4.3 Alternative approaches

The combination of ray tracing and rasterization could have been done in several other
ways than the approach of this thesis. These where discussed in the pre study of this
report, but was discarded since they all had some problems that made it unfeasible to
prove that they could improve the visual quality within the limits set up in the purpose
of the study.
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One of the first discussed solutions was to implement blended ray tracing. To render
a full ray traced image each frame as well as a rasterized one and then blend the pictures
together and calculate the balance between the two images uniquely for each pixel,
submesh or mesh. This solution would probably produce better looking visual results
than the solution that is proposed in this thesis. However, it would be a lot more
demanding on the hardware as well as more depending on the resolution of rendered
image.

Another proposed solution was to write a new ray tracer in GLSL and simply apply
the hybrid technology in a post-process shader onto the Ogre rendering. This would
however result in a lot of work being put into creating the ray-tracer basics, as well as
doing optimizations and work-arounds to access the geometry data. To be efficient, the
ray tracer need to save data in the GPU memory and access it through optimized spatial
data structures. Due to limitations in GLSL, it is not possible to access the position
of vertices in post-processing pixel shader (where a ray tracer would be implemented).
Therefore, to implement a GLSL ray tracer all mesh data have to be sent from the CPU
each frame. There is also a limit to how much data that can be handled in arrays in
GLSL, making it hard to support larger scenes.

As an addition to the proposed solution in this thesis, a technique for identifying the
areas of the screen that benefited the most from the ray tracing was discussed. This,
however, was scoped out of the thesis after some domain research. In all scenes used,
it was easy by hand to identify what materials that would be better with ray tracing
(reflective and semitransparent materials was clearly the two properties of a material
that benefited most of the technique). Since this feature was not interesting from the
perspective of the task manager, it was not prioritized in the planning work.

4.4 Method choices

The choice of using Optix, OpenGL, OGRE3D and C++ where prerequisites in this
study to make it feasible to perform. However, it also, naturally, limits the possibilities
of testing the extent of hybrid technologies. These tools (with the exception of Optix)
are commonly used in the industry, and all of them have a lot of supporters, custom
tools and extensions that are freely available to be used in research.

Optix is still a relatively new product but has a good modular structure and is a
good model to create future rendering API:s from. The limitations to Nvidia hardware
and CUDA as a language will potentially harm the spreading of a standardization in ray
tracing API:s, but an open standard, potentially based on OpenCL, will probably be
agreed upon before this becomes a problem for ray tracing to become market standard
for heavy real time computer graphics.

4.5 Hardware dependencies

Since Optix is a fairly new technology and ray tracing as a concept demands a lot of
computational power, OgreHybrid was bound from the beginning to require quite a lot
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from the host computer. However, a goal of this thesis was to make it runnable on
today’s hardware. This was defined to be a graphics card based on Nvidias Fermi (as
Geforce 760 GTX) and a quite modern dual core processor. However, this limited what
was possible to do with Optix, since many of the more advanced features of CUDA
5.5 requires a Kepler-based GPU. For a proof of concept, however, this was never a
requirement. For future research, the recommendation is to use more bleeding edge
hardware, since this technology with high probability will be available to normal users
within short. This thesis also showed that this technology is not recommended to use for
programs where the user has full control of the camera angles, zooming and/or moving
freely around the virtual world. With this in mind and the fact that most of the graphics
heavy applications run on normal personal computers are these types of software, there is
really no reason to design the technology for hardware that has been around the market
for a couple of years.

4.6 Ethical complications

Since the proposed technology itself does not introduce new functionality or a new physi-
cal product, the model of ecological footprint at first sight is not affected nor the economy
of a company. However since the technology improves the presentation layer of applica-
tions, could improve selling of commercial products that use it, that may result in more
produced and shipped hardware products. The technology can potentionally demand
an upgrade of present hardware and marginally increase the power used by processors,
GPU:s and fans.

The technology can be used to further improve the visual quality to have a more
realistic appearance of applications. This could be used to improve medical training
software or educational software as well as military simulators or software used in for
instance the oil industry.

The choice of an MIT license of the source code for OgreHybrid was made since the
technology and knowledge is supposed to be free to use, improve as well as the possibility
to make use of it in commercial products. This could be essential for some small de-
velopers or new companies to be established regardless of the product or service that is
sold. These consequences and the concept of open knowledge was redeemed to be more
important than the risk of the technology allowing actions that might hurt mankind.
Especially since the hybrid technology in itself does not create any new incitement to
develop new such products or services.
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5 Future work

The OgreHybrid plugin is fully functional for basic tasks. However it could be improved
in several ways to accomplish more advanced tasks and make it more applicable for
specific purposes. First of all, the most significant bottleneck in the program is the
transfer of data from Optix back into a texture in OpenGL (Ogre). This step will
probably be easy to solve in future versions of Optix when it is possible to write to
specific texture memory from inside CUDA. There is a feature available in CUDA 5.5
called surfaces that aim to accomplish this. These features are, however, not available
in Optix yet. This optimization would grant an up to 300% performance boost to
OgreHybrid.

With more advanced hardware, effects like Monte Carlo-raytracing, soft shadows and
physically correct caustics would be interesting to investigate further.

The OgreHybrid plugin would also benefit from a more flexible structure when it
comes to compiled programs. One such possibility to be explored is to allow for de-
velopers to dynamically change specific entities to use certain ClosestHit and AnyHit
programs. This could possibly speed up some environments as well as allowing for new
graphical effects to be explored.

There are also several possibilities to improve the concept of hybrid rendering further,
by for instance making it possible to use classic shader effects in the raytracing engine.
This could be done by baking the environment textures in Optix at startup with the
normal shaders for static shaders or to run an extra pass in Ogre to rewrite dynamic
surfaces each frame (this would be very costly). This would make reflections even more
accurate when working with advanced shaded environments, as well as provide an easy
and similar way of creating shaders in a whole program.
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Tomas Akenine-Möller, E. H. & Hoffman, N. (2008), Real-Time Rendering 3rd Edition,
A. K Peters, Ltd., Natick, MA, USA, pp. 26–27, 53–71, 110–116, 647–654.

Whitted, T. (1980), ‘An improved illumination model for shaded display’, Magazine
Communications of the ACM, Volume 23 Issue 6 pp. 343–349.

31


	Introduction
	Purpose
	Problem definition
	Scope
	Background and previous work
	Rasterization
	Ray tracing
	Hybrid rendering
	Shading
	CUDA and Optix
	Ogre3d
	Software engineering methodology
	Open source software


	Analysis
	Method
	Literature study
	The development process
	The final requirement list

	Implementation
	System overview
	Hybrid renderer component
	Ray-tracer engine component
	Translator component


	Results
	Discussion and conclusions
	The hybrid dilemma
	Applications
	Alternative approaches
	Method choices
	Hardware dependencies
	Ethical complications

	Future work
	 References

