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Summary. Much of the current discussion on the comparison
between expected values of the velocity dispersion of stars (i.e. the
Q parameter) in galaxy disks and the relevant observational data
relies on theoretical work on the stability of infinitesimally thin
one-component models. On the other hand a given model should
be supplemented with studies of many physical effects that are
often not directly included for simplicity, such as those associated
with resonances and other stellar dynamical properties, finite
thickness and disk-halo interaction. Here we contribute to this
theoretical effort by a linear study of the role of gas on global spiral
modes in stellar disks using a simple two-fluid model. The local
destabilizing role of a cold component has been known for many
years and calculated by various authors. We confirm the effective-
ness of a small amount of gas in fueling spiral instabilities with a
response which is primarily at short wavelengths by constructing a
synthetic diagram which summarizes the local stability analysis.
Then we proceed to consider global spiral modes in two-
component systems with applications to regimes of astrophysical
interest that are expected to be associated with normal spiral
structure. Moderate growth spiral modes are found that are very
close in structure to those of one-component systems, but for
substantially higher values of the stability parameter Q. A simple
model of self-regulation is also presented.
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1. Introduction

Recent progress in the study of the dynamics of disk galaxies is
mostly based on the theory of infinitesimally thin one-component
disks (see, e.g., Lin and Lau, 1979; Bertin, 1980; Toomre, 1981).
These simplified basic states are to be considered as representative
(equivalent) models of the real systems. Any resulting prediction
should be carefully interpreted, since many physical effects, such
as those associated with resonances and other stellar dynamical
properties, finite thickness and disk-halo interaction, even though
studied separately by various authors, are often not explicitly
included for simplicity. This approach is quite natural and even a
one-component fluid model, if properly modified and carefully
interpreted, has proved to be very useful (see Lin and Bertin,
1985).
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Following certain observational developments, renewed atten-
tion has been paid recently to one important feature of galaxy
disks, i.e. the fact that (except for the rare case of smooth armed
spirals) spiral galaxies are associated with the presence of cold
interstellar gas, mostly detected as atomic hydrogen. Local
analyses have long recognized the dual/ dynamical role of such a
cold gas component. On the one hand cold material, even in small
amounts, can significantly destabilize a stellar system (Lin and
Shu, 1966; Lynden-Bell, 1967; Miller et al., 1970; Quirk, 1971;
Jog and Solomon, 1984a,b; Sellwood and Carlberg, 1984).

-On the other hand cold gas can be shocked and can dissipate

energy in such a way as to saturate otherwise exponentially
growing spiral instabilities (Roberts, 1969; Kalnajs, 1972; Roberts
and Shu, 1972). In this sense the gas has a damping role which can
counteract and balance, at finite amplitudes, the excitation
mechanisms of spiral structure. This latter effect is typically non-
linear (see remark by Shu, 1985). Thus the interstellar medium
provides a welcome source of self-regulation for spiral insta-
bilities, by inhibiting excessive heating in the stellar disk (cf.
Ostriker, 1985; Lin and Bertin, 1985).

A complete understanding of the dynamics of stellar disks with
gas would require a self-consistent global non-linear analysis of a
two-component system, which is presently not available. While
certain authors (Lubow et. al., 1986) have recently focused their
efforts on the non-linear aspects of the problem by developing a
full self-consistent Jocal theory, in this paper we restrict our
attention to the linear analysis but are able to offer a self-
consistent theory of global spiral modes in two-component
systems. It is interesting to note that so far both approaches rely
on approximations that apply to tightly wound spirals and,
therefore, they should be taken only as indicative of possible
trends for late spirals (that are richer in gas but not consistent with
the tightly wound limit). These studies might be generalized in the
near future to the regime of more open spiral structure (see Bertin
et al., 1984), but we now limit our conclusions to the case of early
spirals.

Before starting our analysis, we briefly recall some obser-
vational studies that have attracted new interest in the dynamics of
two-component systems. Relatively recent radio data have shown
that a substantial fraction of the interstellar gas could be in the
form of molecular hydrogen (see, e.g., Blitz and Shu, 1980). It is
generally agreed that in the Milky Way, and also in some external
galaxies, the distribution of molecular hydrogen exhibits a rather
sharp peak, in a ring-like fashion, in contrast to the essentially flat
distributions which characterize atomic hydrogen. However the
exact values of the mass density of the molecular component are
somewhat controversial (Blitz and Shu, 1980; Solomon, 1981;
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Young and Scoville, 1982a, b; Solomon et al., 1983; Sanders et al.,
1984; Bhat et al., 1985; Young, 1985). The equivalent acoustic
speed associated with the molecular component is known to be
smaller than that relevant to the atomic hydrogen (which is in the
range 8—10km s~ 1), but its value is also under debate. Proposed
values for the effective velocity dispersion range from 4kms™!
(Liszt and Burton, 1981) to 8 kms ™! (Stark, 1979). One theoret-
ical problem motivated by the above mentioned observations is
the formation of giant molecular clouds and complexes (Jog and
Solomon, 1984a,b; Balbus and Cowie, 1985; see also Mous-
chovias et al., 1974; Blitz and Shu, 1980), but we will not pursue
this line of research in the present paper.

Another source of interest in two-component systems derived
from the recent progress in measuring the velocity dispersion of
stars in galaxy disks. The level of random motions in the stellar
component is expected to be determined by a process of self-
regulation. Values of the dimensionless parameter Q larger than
unity, as reported for NGC 488 by Kormendy (1985), are not at all
surprising for a number of reasons (see Lin and Bertin, 1985). One
important factor to keep in mind is that the presence of some cold
material, even in small amounts, can indeed destabilize a stellar
system so that higher values of the stellar velocity dispersion can
be allowed for a given degree of stability with respect to spiral
modes. One purpose of the present paper is to substantiate this
point further, at the level of global spiral modes. However, even in
gas-poor galaxies such as NGC 1553 and NGC 936 (Kormendy,
1984a, b), other factors can justify relatively high values of the
observed Q. One such a factor, that we will not discuss in the
present paper, is the different regime of spiral instabilities that
occurs when the disk density is sufficiently high (/2 0.5, see Bertin
et al., 1984, Fig. 3).

2. Local properties of stellar disks with gas

In order to proceed with the global analysis of two-component
systems, in this section we recover a number of results for the local
analysis. Even if many of these are essentially known (Lin and
Shu, 1966; Lynden-Bell, 1967; Graham, 1967; Kato, 1972; Jog and
Solomon, 1984a,b), our contribution here is to clarify certain
points by constructing a handy phase diagram (Fig. 4) and by
discussing the relative response of the two components. For
simplicity we adopt a two-fluid model, which we compare in a set
of marginal stability curves with the more appropriate fluid-
kinetic model of Lin and Shu (1966).

2.1. Local dispersion relation

We consider an infinitesimally thin, self-gravitating two-
component disk system in differential rotation Q(r). The two
components are denoted by different labels, H and C, in order to
recall that they are characterized by different equivalent acoustic
speeds. Having in mind cases of astrophysical interest, we will
refer to them as the stars (H) and the cold interstellar gas (C).
However we could also consider the case where gas is absent but
two stellar populations with different velocity dispersions can be
identified. Each component is described by the standard Euler-
continuity equations supplemented by a polytropic equation of
state. The only interaction between the two components is taken
to occur via the gravitational field (Poisson equation).
Linear perturbations of the spiral form

fi=fi exp |:i (jr'kdr’+m9—wt>:|,

with m > 0 (in this notation trailing disturbances are characterized
by k> 0), on the axisymmetric basic state are studied under the
ordering

m Cy
T e < 1, M
where ¢y represents the radial velocity dispersion of the stars and k
is the epicyclic frequency. This is the approximation of tightly
wound spiral structure which is expected to be applicable to early
normal spirals (see discussion of regimes of spiral structure by Lin
and Bertin, 1985; Bertin et al., 1984). To lowest order the density
response for each component is given by

N
= T T e @

where j = H, C, o is the unperturbed disk density, ¢ the equivalent
acoustic speed, and v= (w — mQ)/k is the relative dimensionless
frequency of the spiral perturbation. The perturbed potential @,
obeys the (asymptotic) Poisson equation

—k|®;=27G (01y+0:c)- (3)

Since we adopt an infinitesimally thin disk model, we should keep
in mind, when dealing with observational implications, that the
present discussion is restricted to relatively long waves, in the
sense that when |k <{z)>| 2 1 finite thickness ({z)) effects should be
considered. The local dispersion relation is derived by combining
Eq. (2) with Eq. (3) (see, e.g., Jog and Solomon, 1984a). Here we
write it in dimensionless form:

AR [EIA+B — (1 +a)+ k1P Bl —(@+B]=0, (4)

where £ and ¥ are convenient dimensionless forms of the local
radial wavenumber k& and frequency, respectively:

F ==, 5
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Marginal stability is characterized by #2 = Q%/4. Thus the local
dispersion relation depends on the two dimensionless parameters
o and f which are defined as:

ag

a=;§- ©)
6’2

ﬂ=é- (10)

Roughly speaking o represents how much gas is locally present in
the disk and § how cold it is. In the following we will take a, § to
vary in the ranges 0 <o < 00,0 <f<1. Thecasesa =0and f=1
represent the limit of a one-component system. The parameter Qy
related to the hotter component is analogous to the Q-parameter
for one-component systems, and 2y/2 is analogous to /2 which
defines a typical wavenumber for tightly wound spiral modes.
Finally we note that with a proper transformation of variables
(7> —k*@?; | k| - k?) the discussion of this dispersion relation
can be given in complete analogy with the case of the Jeans
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stability for a two-component three-dimensional homogeneous
system in the absence of rotation.

2.2. Wave branches

For any fixed |£| the local dispersion relation (4) is a quadratic
algebraic equation in the variable #2. The two solutions, which are
always real, will be labeled by the symbols (+) and (—) according
to the property v2 > v2 . Note that v2 > 1. These two branches of
the local dispersion relation merge only for k| -0, where
vZ ~vZ 1. From a physical point of view this means that these
wave branches are independent and do not interact with each
other except, possibly, at the Lindblad resonances (where the
present model is inadequate).

In order to study the relative response of the two components
for a given perturbation, it is convenient to introduce the response
function y defined as

2+ k2
1;2 + ,B k"‘2
In analogy with simple mechanical systems of two coupled
pendula it is found that the two wave branches v and v2 have
opposite parity. In particular, the branch v2 is odd, in the sense
that y_ <0, and v% is even, as y, > 0. In addition, the odd branch
is entirely dominated by the hotter component, because for any
value of a,f we have |y_| < 1. When the colder component is
heavier (¢>1), it dominates entirely the even branch (y, >1).
Otherwise, for a <1, the colder component dominates the even
branch only at short wavelengths A= EO ,  with
ko =2(1 —a)/(1—p). (The decoupling of the two components can
be noted directly by inspection of the dispersion relation). In Fig. 1
we illustrate these properties.

In Eq. (11) we have also introduced the reduced response
function §, which is independent of the values of the unperturbed
densities. Thus the function § measures the relative response
referred to the initial concentrations: §=(6,c/o¢)/(01u/on),
which we may call relative compressibility. In particular for the
even branch v2 the colder component is more compressible than
the hotter one at any wavelength and for any value of «, f8, since
7+>1

Since the odd wavebranch is available only outside the
Lindblad resonances (v2 >1), where a completely different
analysis is required for a stellar system with gas, in the following
we will focus our attention only on the even branch. This is
characterized by 2 <1 in the wavenumber range
|| < ky =1+ (2/B). It is in this range that we can find, for a given
value of «, B, conditions of local instability (v2 < 0).

il

~ ag n
1=x(k)="2E=u g (11)
O1H

2.3. Local stability

Setting > = Q4/4, i.e. v2 =0, in the local dispersion relation (4),
we obtain the conditions for marginal stability of our perturba-
tions. Note that this can be seen as determining a value for Q3/4,
when o, fand k have been fixed. This value is positive in the range
|k| < ky. From this relation a local stability criterion can be stated
in analogy with the case of one-component systems. A function
0? = 92 (a, B) can be defined in such a way that when Q% = 02 the
system is locally stable at a/l wavelengths. The function 02, which
reduces to unity when o = 0, will be discussed in this subsection.
Here we note that for Q% < 02 we expect the system to be locally
unstable in ranges of wavelengths defined by the marginal stability
condition.
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Fig. 1. Plots of the response function y =, c/o,y, as a function of £, relative to
the odd wave-branch (y-) and to the even wave-branch (x ) for two values of
the local parameter f§ with fixed a = 0.1. The wavenumber £, =2 (1 —a)/(1 —p),
beyond which the response of the colder component dominates the even branch
(x+>1),isky =2 in the case « = 0.1 and f= 0.1, &, = 18 in the case « = 0.1 and
£=0.9

In order to compare more easily the two-fluid model with the
well-known one-fluid marginal stability curve, and with the fluid-
kinetic results reported by Lin and Shu (1966) (see our Fig. 2), itis
convenient to use the following, more standard scaling. We define

/T—m, (12)
where
2
H= ZnKGaH' (13)

Then the marginal stability curve in the (1, Q%) plane is defined by
the following relation:

0= (%) Nat+hH—T(+H)

+ /P A=-p? =27 (1=p) (=B +(@+f)]

which we consider in the range 0 < 1< 1 +a.

In Fig. 3 we show situations characterized by different values
of the parameters «, f. Note that in certain cases the marginal
stability curve exhibits two maxima. We shall refer to the
maximum which occurs at short wavelengths as the gaseous peak,
and to the maximum which occurs at intermediate wavelengths as
the stellar peak. The gaseous peak can be very high at low values of
B. This fact shows how effective a small amount of gas can be in
destabilizing the disk, provided the gas is sufficiently cold.

(14)
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Fig. 2. Fluid-kinetic (readapted from Lin and Shu, 1966) and two-fluid
marginal stability curves in the (1, Q%) plane for some values of the local
parameter o, with fixed #=0.1. Note that the peaks of the two-fluid curves
are always higher and the corresponding wavelengths are always smaller than in
the fluid-kinetic case
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Fig. 3. Two-fluid marginal stability curves in the (7, Q2) plane for some values
of the local parameter « and fixed f=0.01. Note the quick appearance of the
gaseous peak which occurs at short wavelengths A~ 4o and the smoother
behavior of the stellar peak occurring at intermediate wavelengths 1~ 4
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Fig. 4. Inside the two-phase region in the (B, «) plane, which is the triangular
region with vertex (8, , o), the marginal stability curve exhibits two maxima. In
the stellar (gaseous) regime the stellar (gaseous) peak is dominant; the curve
o= ]//7 corresponds to the transition between these two regimes. A cusp formed
by the intersection between the upper and lower boundaries of the two-phase
region and the transition curve occurs at the “triple point™ (B,, ¢y ). Four points
are marked corresponding to the cases illustrated in Fig. 3

In Fig. 4 we illustrate the phase diagram which summarizes the
properties of the marginal stability curve (14). Inside a triangular
region of the (B, ) plane that we will call two-phase region the
marginal stability curve is characterized by the presence of two
peaks, so that local stability properties are qualitatively different
from those of single-component systems. Outside the two-phase
region the marginal stability curve exhibits a single maximum.

The upper and the lower boundaries of the two-phase region
join at a cusp (f,,0,) that we will call triple point:

% =3-2]/2~0.172
0 =17-12/2~0.0294.

Correspondingly, the marginal stability curve exhibits a single
flat maximum at 1,=1— (]/5/2) ~0.293 with 92 =2. Certain
points that define the cases shown in Fig. 3 are marked in the
phase diagram. The two-phase region is divided in two parts by

the curve o = [/B that defines the situation where the two peaks
have the same height. Thus we will call the case a? > f the gaseous
regime, since the value of (2 is there determined by the gaseous
peak. In contrast, in the stellar regime («? <p) the stellar peak is
higher and determines the marginal value Q2 for stability at all
wavelengths. Therefore we expect a discontinuity in the behavior
of the Q2-contours on this curve (see Fig. 5). This distinction of
regimes may be extended to the part of parameter space outside
the two-phase region, especially for < f,.
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Fig. 5. a 0*-contours in the (8, @) plane, showing the transition inside the two-phase region and b the large-scale behavior in the ranges0 <a<1land0<p<1.Each
contour is labeled with the appropriate value of Q2. Note the flat behavior in the stellar regime

In the two-phase region we can apply the ordering a <1,
B=0(2*)<1 and derive approximate expressions for some
interesting quantities. For example, the gaseous peak is located
approximately at 4 ~ /2 with height Q3 ~ («*/B) + 4o.. Note the
arbitrarily large values that are obtained for fixed values of « when
B—0. The stellar peak occurs at 1=(1/2)+ 0 («?) with
0% ~ 1+ 4a. The last expression for the height of the stellar peak
holds even outside the two-phase region provided f~a <1 (see
Lin and Bertin, 1985).

In Fig. 5 we illustrate the behavior of the function 02 («, ) by
providing contours of constant Q2 in the (8,«) plane. This
function plays a crucial role in the discussion of global modes that
we will give in the next section. We re-iterate that the condition
Q% > 07 replaces the well-known (see Toomre, 1964) condition
Q?*> 1 for one-component systems. These and other dispersion
properties are discussed in detail by Romeo (1985), where some of
the conclusions are generalized to the case of systems with many
(more than two) components.

3. Discrete global spiral modes

In this section we will calculate some examples of discrete global
spiral modes in stellar disks with gas, by applying asymptotic
methods that have been used widely in the study of one-compo-
nent systems (see Lin and Lau, 1979; Bertin, 1980). Our aim
is to investigate this new case of two-component disks and to
compare modes with moderate growth rates and the equilibria
that support them. In particular we will show (i) to what extent the
basic states must be changed, when some gas is added, in order to
be subject to modes with a growth rate comparable to that of the

no-gas case and (ii) whether modes with comparable growth rates
change their morphology when the presence of gas is taken into
account.

3.1. Choice of the equilibrium models

We have decided to base our investigations on the family of
equilibrium disks called E3 models (Lowe, 1988). The reason for
this choice is that these models were designed so as to include the
key features of disk galaxies and their stability properties were
accurately computed in an extensive numerical survey (Bertin et
al., 1988). For the present purposes a detailed definition of the E3
models is not needed. The main properties of these equilibria are:
(1) the mobile part of the basic state is an infinitesimally thin one-
component disk with mass density ¢ (¥) which, outside a bulge
region where it is cut, becomes exponential with a scalelength 4. (ii)
the rotation curve rises for < 4 and becomes asymptotically flat
for 2 h. (iii) the additional mass that is required so support the
rotation curve is taken to be distributed in a bulge-halo spheroid
which does not participate in the spiral perturbations.

Within the family of E3 models we refer to one case which is
representative of the regime of normal spiral structure (i.e. J < 0.5,
see Bertin et al., 1984, Fig. 3). The particular model we refer to is
illustrated in Fig. 6, where we also show the Q-profile which is
consistent with the presence of a bulge in the inner regions and
with a mechanism of self-regulation (see Lin and Bertin, 1985) in
the active disk. We will call this model E3,,.

Now we modify E3, into a two-component model E3g with
the same total mass distribution o (r) and with gas mass distri-
bution o (r) so that:

oc()+ou(=0u() A+a@)=0o(n). (15)
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Fig. 6. Rotation curve, disk density distribution, and Q profile for the one-
component equilibrium model E3,. The rotation curve is supported by the
combined effect of an active disk and of a spheroidal bulge-halo (the density
distribution of the latter component is not shown here)
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Fig. 7. (8,«) tracks for the galaxies NGC 4565, NGC 5907 and for the two-
component equilibrium models E3a and E3b. E3ais characterized by a flat gas
mass-distribution g =3 10 M, okpe” 2 simulating the atomic neutral hydro-
gen distribution, and by a constant equivalent acoustic speed cc = 8kms™'. E3b
is characterized by a gaussian ring overlapped to a flat background
oc={4+6exp[—4(F—4)*]} 10° Mykpc™? with 7 =r/1kpc, simulating the
presence of a ring of molecular hydrogen, and by a constant equivalent acoustic
speed cc=6kms™!

As for the velocity dispersion distributions, we refer for
simplicity to a case where the cold component has an approxi-
mately constant equivalent acoustic speed cc. In order to be
consistent with processes of self-regulation, i.e. to keep a compar-
able level of stability with respect to spiral perturbations, we
impose the following constraint:

Qu(N=0(r) O (. p) (16)

since for a,f+0 the stellar dispersion required for marginal
stability is higher and governed by 0. In Eq. (16) the profile of

=a(r) is determined by our choice of o (r) and by Eq. (15).
Then, for a given choice of the equivalent dispersion speed c¢, Eq.
(16) determines the profile of the parameter f= f(r). In fact, we
can rewrite (16) as

ek (1+9)
VP=36s 006h"

(17

where k, o, and Q are given by the model E3. At each location r,
once cc, o are specified, we can determine the solution f by
iteration, starting from

ﬁ 2 K'Z 1 1 8)
~C@Ga? 0% (

As a result of this discussion we see that the model E3g is
completely determined once the gas distributions oc, cc are
specified. In order to make a realistic choice for these distributions
we have considered profiles of the kind reported by studies of
external galaxies, such as NGC 5907 (see Casertano, 1983) and
NGC4565 (Sancisi and Casertano, 1987), which suggest a rela-
tively flat H1distribution. Then we have taken (i) the case of a flat
oc (E3a) and (ii) the case of a distribution with a (molecular) ring
(E3b; see discussion of H, distributions in the Sect. 1). In the first
case a flat distribution of gas with cc = 8kms™* is taken, in the
other a (gaussian) ring is added with ¢ = 6kms~!. These being
taken as representative plausible models, we did not try to model
any specific galaxy. In Fig. 7 we show the (5, «) tracks for models
of NGC 5907 and NGC4565 provided for us by Casertano
(private communication), where for simplicity we assume that the
cold component is given by the H1 distribution only (i.e. no
molecular hydrogen is considered) with cc=8kms™!. On the
same plot we consider the theoretical models E3a, E3b.

3.2. Reference spiral modes in the one-component case

For a given model the local dispersion relation can be used to
calculate the global (discrete) spiral modes. This is obtained by
imposing the following quantum condition (see, . g., Lin and Lau,
1979; Bertin, 1980):

Gk (r,0p) dr=(2n+1)n (19)

taken between the inner turning point r., where the bulge
terminates, and the corotation circle r.,. This equation fixes the
pattern frequency of the #n-th mode. The growth rate of the mode is
inversely proportional to the propagation time 7 taken along the
relevant wave-cycle. Our E 3, model supports a normal tight two-
armed spiral mode with moderate growth rate, since the relevant
parameter regime is that of domain A in Fig. 3 of Bertin et al.
(1984). The propagation diagram k =k (r) of the (n=0, m=2)
mode, which identifies the relevant wave-cycle and excitation
mechanism, is essentially the same as that shown in Fig. 8a. A
discussion of the mechanisms of excitation and maintenance of
normal spiral modes of this kind has been given on several
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Fig. 8. a Propagation diagrams relative to the mode (n=0, m=2) for the two-component equilibrium models E3a and b E3b, with the indication of the
corresponding bulge radius r,., corotation circle r,,, location of the outer Lindblad resonance ropg and pattern frequency €,. The propagation diagram of a
essentially coincides with that obtained for the one-component equilibrium model E3,. The distortion in b which affects appreciably the short-wave branch is due
to the presence of the molecular ring. Thus, when gas is included, there is a shift towards shorter wavelengths and the size of the pattern, as measured by the radial

range of the loop, shrinks

occasions and we refer the reader to the literature cited. We only
note that in this regime of low disk mass (i.e. of low J) the
approximations we made in Sect. 2 in deriving the local dispersion
relation are reasonably justified.

3.3. Global modes in stellar disks with gas

At this stage it is very easy, at least for parameter regimes well
outside the two-phase region of Fig. 4 (see further discussion at
the end of this paragraph), to proceed to calculate global spiral
modes in our two-component models. We have computed the new
eigenvalues of the E3a and E3b models for the » =0 mode by
calculating the propagation diagram k = k (r) following the local
dispersion relation (4), and by adjusting slightly the value of the
pattern frequency in order to satisfy the quantum condition (19).
The resulting propagation diagrams for the two cases are shown in
Fig. 8a and b.

It is easily recognized that the eigenvalue and the structure of
the mode are qualitatively unchanged. For the case with a cold
ring, some modifications are present and affect mostly the short

wave branch. But in general we expect only a slight shift of the '

mode to a tighter spiral with a smaller corotation radius. The
reason for this modest qualitative change is obviously related to
two facts: (i) the self-regulation constraint (16) helps the propaga-
tion diagrams to stay close to each other because a local condition

of marginal stability is imposed. (ii) the (f, «) tracks of the basic
states stay away from the two-phase triangular region of Fig. 4;
since the basic models lie well outside, within the stellar regime,
only modest quantitative and no significant qualitative changes
are expected and found. In fact, the present simple analysis would
not hold for parameter regimes closer to or inside the two-phase
region of Fig. 4, since more complicated wave channels and wave
cycles would be available in this latter case. More comments and
details are reported by Romeo (1985).

The present analysis provides an important message. The basic
states E3a and E3b that support these modes are characterized by
relatively high stellar velocity dispersions. The profiles of the
“stellar Q-parameter” are shown in Fig. 9. One easily notes that
Oy lies above unity everywhere even for this regime of low disk
density. Still the models allow for spiral modes with moderate
growth rates, comparable to that of E3,. Obviously this is made
possible by the presence of the small amount of gas. Interestingly
enough, the qualitative behaviour of Qy for E3a resembles that
inferred by Casertano (private communication) for cases like
NGC4565 and NGC 5907 in his dynamical models of these
galaxies.

3.4. A simple model for self-regulation

In this paper we have often referred to a mechanism of self-
regulation as an important feature of galactic disks. In particular,
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we have imposed it [Eq. (16)] in order to justify our choice of
equilibrium models for the global mode calculation. In closing this
article we would like to be more specific about self-regulation.
This short discussion will also show how crucial is the role of gas in
the physical picture of spiral galaxies.

We would like to construct a simple mathematical model to
describe the following facts: (i) In the disk the stellar component
tends to heat up via gravitational instabilities and possibly because
of interaction with giant molecular clouds. The collective heating
mechanisms are quite sensitive to the value of the effective Q-
parameter, i.e. to the ratio Qy/Q(x, ). No obvious cooling
mechanisms are at hand. (ii) The gas component tends to cool off
on a short time-scale because of turbulent dissipation (inelastic
cloud-cloud collisions)!. It also suffers heating via the same
gravitational instabilities mentioned in (i), but at a faster rate
because of the stronger reaction of the (thinner) gas component.
(iii) Cooling is a source of dynamical instabilities, thus it generates
heating, ensuring self-regulation. Therefore a schematic simple
model can be formulated:

T 120, (20)
dll’lcc _
dt = _g+fC, (21)

where f. > f,; represent heating rates which are rapid functions of
(1—Q), so that for Q > 1, fy ~ fc ~ 0 and for Q <1, fcand f are
very large. The g-term is large and essentially Q-independent: it
represents turbulent dissipation, which is expected to act on a
short time-scale. On this short time scale, ¢ reaches a quasi-steady
state determined by the near balance of g anf f; the small
difference between these terms induces a slow evolution described
below. Given this physical picture we should check what are the

! In reality a fraction of the cold component, which is here referred
to as “gas component”, is stellar and thus not subject to cooling.
This fraction slowly increases in time as a result of star formation
processes. The following presents just a simplified discussion of
the mechanism of self-regulation

implications on the quantities f and Q («, §) which describe the
stability properties of the system. In this context o can be taken to
be a constant. We have:

dinQ dinQy dinQ

.~ dt dt (22)
_dinQy |kl dInp
Tt 2 dr 23)
=~k fat+ 1kl (—g+1fc), (29)

where we have defined

. {0InQ

h=2 <m>a <0. (25)

We notice that a qualitative idea of this gradient is provided by
Fig. 5. In general for interesting values of «, §, | 1| < 1, but it is not
small.

From Eq. (24) the mechanism of self-regulation is apparent,
due to the strong dependence of the heating functions on the value
of (1— Q) which implies d In Q/dt ~ 0. Thus

dlnp 2 dinQy

a ST a O

(26)

Therefore, the stellar component continually heats. In turn §
decreases in the process and the system moves on a horizontal line
to the left of the (8, o) plane. Depending on the initial value of « the
system may meet the sudden experience of a “phase transition” by
encountering the two-phase region of Fig. 4, or for o > ¢y it can
move towards a gas-dominated regime more smoothly directly
from the original star-dominated case. We note that these
processes of f-evolution are expected to occur secularly on a long
time-scale. A slow decrease of « could also be included in order to
describe the possible evolution of the Population I disk.
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