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SUMMARY

The crucial role that the cold interstellar gas can play in the dynamics and structure of
early normal spiral galaxies has been shown in our previous works, where finite-
thickness effects have not been taken into account. In view of the importance that
such effects might have in the self-regulation mechanisms which are expected to
operate in galactic discs and to be at the basis of their secular heating, we have tried to
evaluate them. This can be done only after their vertical structure at equilibrium has
been carefully investigated. A detailed analysis has thus been carried out to study the
thickness-scales and the local parameters relevant to both the equilibrium and
stability of two-component galactic discs in regimes of astrophysical interest.

The results obtained, as regards the vertical structure at equilibrium of two-
component galactic discs, are used to investigate their local linear stability properties.
Under reasonable assumptions, finite-thickness corrections to the local dispersion
relation can be expressed in terms of two reduction factors weakening the response of
the two components or, equivalently, lowering their equilibrium surface densities. An
ansatz for such reduction factors, justified by extending the analysis performed for
one-component purely stellar discs, is made, and the corresponding two-fluid
marginal stability curve is studied in standard star-dominated and peculiar gas-
dominated regimes. It is found that the stabilizing role of finite-thickness effects can
partially counterbalance the destabilizing role of the cold interstellar gas in linear
regimes.

Key words: instabilities - galaxies: interstellar matter - galaxies: kinematics and
dynamics - galaxies: spiral.

1 INTRODUCTION

The spiral structure theory relies on a number of working assumptions which make the linearized system of the coupled fluid (or
Vlasov) and Poisson equations more tractable, but in some situations of astrophysical interest the validity of such assumptions
may be questioned. For instance, we know that real galactic discs have finite, although small, thickness and the possibility of
regarding them as infinitesimally thin depends on the relevant wavelengths of the perturbations excited. In some cases, when the
underlying spiral structure has a high winding degree, finite-thickness effects should be taken into account in the stability
analysis. In view of the importance that such effects may have in the self-regulation mechanisms which are expected to operate in
galactic discs and to be at the basis of their secular heating (Romeo 1987, 1990b), we have tried to evaluate them. This can be
done only after their vertical structure at equilibrium has been carefully investigated.

In performing this analysis, we have made use of simplified models of galactic discs in which the stars and the cold interstellar
gas are treated as two different components. Although such models might be thought of as being inadequate to describe actual
galactic discs, which are known to consist of different populations of stars and gas components, they nevertheless incorporate
the most essential features as regards their stability properties. In this context it should be noted that such a single equivalent
stellar component is taken to be representative of the whole active stellar disc, consisting of stars with low velocity dispersion
(stars with high velocity dispersion do not participate appreciably in spiral structure), whereas the single gaseous component is
taken to simulate H 1 regions of neutral atomic hydrogen and giant molecular clouds and complexes. Generally, even more
drastically simplified galactic models are used, in which the cold interstellar gas is not taken into account. In some situations of
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astrophysical interest this further simplification is not justified, because the cold interstellar gas is expected to play an important
or even crucialrole in the stability of galactic discs due to its low turbulent velocities (cf. the infinitesimally thin case discussed by
Romeo 1985, 1989, 1990b, and Bertin & Romeo 1988). For a more detailed account of the results presented in this paper, see
Romeo (1990b). A brief account was given by Romeo (1991a, b, c, d); see also Romeo (1990a).

2 VERTICAL STRUCTURE AT EQUILIBRIUM

The vertical structure of galactic discs has been investigated in detail by a number of authors, who made use of multicomponent
locally isothermal models (e.g., Woolley 1957; van der Kruit & Searle 1981; Bahcall 1984; Bahcall & Casertano 1984; Bahcall,
Flynn & Gould 1991; see Boulares 1989 for a discussion of non-thermal effects). Alternative approaches have also been
employed (e.g., Bienaymé, Robin & Crézé 1987; van der Kruit 1988; Crézé, Robin & Bienaymé 1989; Kuijken & Gilmore
1989a, b, c; see also Gilmore, Wyse & Kuijken 1989; Statler 1989; Wainscoat, Freeman & Hyland 1989; Gould 1990; Amendt
& Cuddeford 1991; Cuddeford & Amendt 1991). These analyses take into account the fact that galactic discs are nearly self-
gravitating perpendicular to their symmetry plane, so that standard asymptotic expansion techniques can be employed. While, in
the case of one-component stellar discs, this is all that is needed to make the problem analytically tractable (see Vandervoort
1967, 1970a for the most rigorous analysis in this context), when multicomponent models are considered, further assumptions
must be made. Generally, the component with the largest scaleheight is taken to have the largest mass density, so that a perturba-
tive approach can be employed. In our two-component model this assumption is certainly satisfied, but a perturbative approach
of this kind may not always be suitable because in the outermost regions of galactic discs the mass density of the cold interstellar
gas becomes comparable to that of disc stars. For this reason we have relaxed this assumption and made a detailed analysis in
regimes of astrophysical interest. The results obtained in this section form the basis of the further investigation which we shall
carry out in Section 3.

While the investigation of the one-component case is more or less straightforward to the non-trivial lowest order of approxi-
mation, the same is not true for two-component galactic discs: several complications arise, some of which are already hidden in
the one-component case.

The two components are denoted by different subscripts, H (for hot) and C (for cold), in order to recall that they are
characterized by different vertical velocity dispersions. Having in mind cases of astrophysical interest, we refer to them as the
stars of the active disc (H) and the cold interstellar gas (C). We could, however, also consider the case in which gas is absent but
two stellar populations with different scaleheights can be identified. It is assumed that the system is in an axisymmetric and
plane-symmetric equilibrium state, and that each component is locally isothermal perpendicular to the galactic plane. The only

interaction between the two components is taken to occur via the gravitational field (Poisson equation). We have adopted the
following parametrization:

C
y=2C g=5C (0<y<two, 0<B<1) (1)
PoH CiH

The cases y=0, y—~ + = represent the limit of a one-component system, and the case 3, = 1 represents the limit of a system in
which the two components have the same scaleheight.

The total volume density in the plane determines the Gaussian thickness-scales of the two components:

= pg;€x —Z—2 where zg,= c—zz’ = 0oyt Oocs (2)
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while the total surface density determines their exponential thickness-scales:
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and hereafter
(i=H,C). (4)

The z-independent exponents K; depend on higher order corrections, and can only formally be expressed as series in terms of
thc_a local parameters y anq B.. The global effective thickness-scale of the system, which can be identified with the expansion
thickness-scale (z), can easily be expressed in terms of the asymptotic thickness-scales of the two components:

<z>=i=z_(23"_ deiedele
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Equations (2), (3) and (5) admit a trivial generalization to the case of n-component systems.
As regards the effective thickness-scales of the two components:

lof 10— du ,
ZeffHEﬁ=2zEH |:— 1+‘yﬂzJ’ ’ (6)
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the situation is not so straightforward: they cannot be expressed explicitly in terms of elementary or special functions for
arbitrary values of the local parameter B, (see, e.g., Gradshteyn & Ryzhik 1980; Prudnikov, Brychkov & Marichev 1986). The
determination of the effective thickness-scales of the two components is indeed a delicate point. Some authors (e.g., Talbot &
Arnett 1975; see also Jog & Solomon 1984a), in fact, have tried to generalize the equation found in the one-component case and
obtained the wrong relation o;=0,/(22¢;), in which the effective thickness-scales are identified with the Gaussian thickness-
scales. On the other hand, the tricky relation

0= Pou(42gn) + Poc(42£c) (8)

does not imply the further relation o,= 0,{4zg;), in which the effective thickness-scales are identified with twice the exponential
thickness-scales (¢f. Mihalas & Binney 1981). The reason for the existence of such a simple relation involving o,; and zg;, as
expressed by equation (8), lies in the fact that, while the volume densities are not separately integrable in terms of elementary or
special functions, a proper linear combination of them is elementarily integrable. The Gaussian and the (self-consistent)
exponential approximations to the effective thickness-scales of the two components are thoroughly justified only in the
asymptotic regimes, in which the system can suitably be represented by a single equivalent component or by two components
with the same vertical velocity dispersions. This difficulty is not apparent in the one-component case, where the Gaussian, the
exponential and the effective thickness-scales are identical apart from numerical factors.
Let us now introduce the local parameters

aE$=Yﬂzeﬁa ﬁzeﬁEzeﬂc (O<a< +°°’ O<ﬂzeff<1): (9)
Oy ZeffH

since in a flat galactic disc the surface densities are more relevant than the volume densities. More restrictive limitations can be

given, where the lower and the upper bounds are nothing but the estimates provided by the (self-consistent) exponential approxi-
mation

zeffi~2in = a~)/ﬂz9 ﬁzeﬁ~ﬂz’ (10)
and the Gaussian approximation

zeffi‘vZGi: a"")/\/E, ﬂzeff~‘/zz’ (11)

respectively. In Fig. 1 the ‘exact’ a is compared to its Gaussian and exponential approximations. It is apparent that, although only
the exponential approximation is self-consistent, as expressed by equation (8), the Gaussian approximation works better in
regimes of astrophysical interest.
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Figure 1. Ratio between the surface densities of the two components as a function of the local parameters y and 3, in regimes of astrophysical
interest, compared to its Gaussian and (self-consistent) exponential approximations. Note that none of these analytical approximations is
particularly accurate throughout the ranges considered.
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Figure 2. Comparison between the ‘exact’ a and its fit approximation. Note the remarkable accuracy of such a simple approximation through-
out the ranges considered, except for yz1and ,<5x 1072

A simple numerical approximation, much more accurate than those considered so far, has been derived employing a rough
fitting procedure in the ranges 0 < y<1 and 0 < 8, <1, which are those most relevant from an astrophysical point of view. In the
following we shall refer to it as the fit approximation:

a=yp,  Pew=p". (12)

No intuitive physical interpretation can be given for this specific power law. The remarkable accuracy of such a simple approxi-
mation is shown in Fig. 2. When y2 1 and 8,5 X 10~ ? (these estimates are crude and mutually dependent), this approximation
no longer adequately represents the real physical situation. More accurate approximations can be obtained by sacrificing the
mathematical feature which it shares with the Gaussian and the exponential approximations and makes it so attractive: it avoids
the y-dependence of B, ..

Using the fit approximation, we have expressed all the dimensionless quantities introduced so far (the ratios between the
relevant thickness-scales and the remaining local parameters) in terms of a, 8, and a, f,. These parametrizations will be used
in Section 3 for investigating the stability of galactic discs when finite-thickness effects are taken into account. Note that this
‘inversion of coordinates’ is made possible by the fact that the three parametrizations considered are diffeomorphic. Finally, we
have performed a test to check a posteriori the accuracy of the fit approximation. We have first recalculated the relevant local
parameters at the second step of iteration, and then we have compared these values to those obtained at the first step of iteration.
In standard regimes the agreement is satisfactory, whereas significant discrepancies occur near the ‘forbidden’ asymptotic
regimes mentioned in the previous paragraph, as expected.

3 LOCAL FINITE-THICKNESS EFFECTS

Several attempts have already been made to estimate finite-thickness corrections to the local dispersion relation in one-
component galactic discs (e.g., Sweet & McGregor 1964; Toomre 1964, 1974; Goldreich & Lynden-Bell 1965a, b; Vandervoort
1970b; Genkin & Safronov 1975; Bertin & Casertano 1982; Yue 1982a, b, c; Balbus & Cowie 1985; Morozov & Khoperskov
1986; Peng 1988; Fridman 1989; see also Fridman & Polyachenko 1984 for a review). While it is generally agreed that the form
of the dispersion relation remains the same provided the unperturbed surface density is multiplied by a suitable reduction factor,
different estimates of this reduction factor have been given by the various authors. The most reliable and complete analysis is
that performed by Vandervoort (1970b), which is local in the galactic plane and global perpendicular to it. The reduction factor,
found by solving an eigenvalue problem, has been shown to be very well approximated by the simple expression

1

3=m, |kl(z)=0(1), (13)

where k is the local radial wavenumber of the perturbation and (z) is the thickness-scale of the galactic disc. This estimate should
be compared to that naively obtained by Toomre (1964):

1 _e—|k|<l>

1_—W’ |k|{(z) < 1. (14)
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The aim of our calculations is just to extend the rigorous partially global analysis carried out by Vandervoort (1970b) in such a
way as to include the cold interstellar gas as well. The investigation performed by Yue (1982a, b, c) is also of considerable
interest, because it represents an attempt to take finite-thickness effects into account at a fully global level. As a compromise of
this extension, the k-dependent reduction factor has been approximated by replacing the wavenumber with its characteristic
local value corresponding to the maximum of the marginal stability curve.

As regards more realistic models of galactic discs in which more (than one) components are present, no such rigorous partially
global analysis has been performed (e.g., Shu 1968; see also Lin 1970; Vandervoort 1970c; Lin & Shu 1971; Nakamura 1978,;
Jog & Solomon 1984a, b). Among these attempts, the contribution of Shu (1968) is surely the most important one, while
Vandervoort (1970c) refers only to a particular continuous model of stellar populations without performing a proper stability
analysis. The basis of our investigation, has already been mentioned, is the stability analysis performed by Vandervoort (1970b)
in the case of one-component purely stellar discs. The method we have employed is in fact a straightforward extension of that
developed by Vandervoort (1970b) to the case in which two components are present (the consideration of a fluid component
does not give rise to difficulties), but the resulting analysis is much more complicated than in the one-component case.

3.1 Ansatz for the reduction factors

The working assumptions made by Vandervoort (1970b) are the same as those used in the local kinetic formulation of the spiral
structure theory, except that concerning the infinitesimal thickness of the models. The method employed to solve the Vlasov
equation when z-motions are taken into account is based on the existence of an adiabatic invariant J,, whose approximate
constancy characterizes the vertical motion of disc stars. This is a characteristic of highly flattened galactic discs, where the
frequency of the oscillation in the z-direction is large compared to the frequency of the epicyclic motion in the symmetry plane,
which in turn is generally of the same order as the pattern frequency of spiral waves.

When two stellar populations are considered instead of one, the method employed by Vandervoort (1970b), to solve the
Vlasov equation when z-motions are taken into account, applies separately to each component. The same relation between the
perturbations induced in the volume density and in the potential can be obtained in the framework of a fluid approach to the
non-trivial lowest order of approximation, provided a proper reinterpretation of the relevant quantities is given (cf. Shu 1968).
Therefore, assuming that the ordering

Dy, M Sy k=00) (15)
(r) |klr
holds, we find that the wave equation (65) of Vandervoort (1970b) is replaced by

2

(o A A
92 g, = —|Du Pu, Ac pe)g

Jz Zefin Oon  Zefic Ooc

im ®,(r, 6,z;)=0, where  A,;=|k|z.4,D. (16)
|z| =+

In analogy with the one-component case we have defined:

4nGoozei il k| 2nGojl k|
D=—— — aululx)=——— 5 F(x), 17
T = (- mQ) wl %) = (w—mQ) (x) (17)
1-° ve i |TT L esp
Fiin i Xiin 1) = 1-— e "““Pcos(vp)dp |, (18)
kin i 2sin (vrr) |-,
Faudai)= 1 " (19)
me 1+ (xp,/1-v)
- mQ 2 2
y=2 ) xkiniEkzc_rZI: xﬂiEk2C_lz' (20)
K K K

In these formulae, Z;+2Z-=1 is just the uncorrected local dispersion relation; F,(X;)= Fy i(¥xin:), FanlXq;) are reduction
factors which lower the response of components with high random motion in the plane, and whose dimensionless arguments
involve the radial velocity dispersion ¢,; and the equivalent planar acoustic speed c;, respectively, depending on the kind of
approach employed to describe each component; v is the dimensionless Doppler-shifted frequency of the spiral wave; Q is the
angular velocity; « is the epicyclic frequency; w is the frequency of the spiral wave; m is the number of spiral arms. In what
follows we shall adopt the usual fluid description, obtained by imposing a proper closure of the moments of the collisionless
Boltzmann equation, which is more convenient for investigating the stability properties of galactic discs analytically and
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reproduces the main results almost completely except near the Lindblad resonances (see, e.g., Berman & Mark 1977, 1979;
Sygnet, Pellat & Tagger 1987).

In contrast to the one-component case which is exactly soluble (see, e.g., Landau & Lifshitz 1977 for the corresponding
quantum-mechanical problem), for arbitrary values of the local parameter 8, = c2./c%; or, equivalently, B, = Zegc/Zesp, the
Schrddinger-type wave equation (16) cannot be reduced to a Fuchsian differential equation, or to other well-known classes of
differential equations whose solutions are expressible in terms of elementary or special functions, even in the Gaussian and
exponential asymptotic limits (see, e.g., Morse & Feshbach 1953; Erdélyi 1956, 1981; Smirnov 1964; Abramowitz & Stegun
1970; Bender & Orszag 1978; Gradshteyn & Ryzhik 1980). In order to overcome such difficulties connected with the solution
of this double-eigenvalue problem for A 4 and A ., we have developed a perturbative method (Romeo 1987) similar but not
identical to that employed in quantum mechanics to solve the time-independent Schrodinger equation when the potential is of
the form U(z)= V(z)+ W(z), W(z) representing a small perturbation to V(z) (see, e.g., Bender & Orszag 1978). Differences
between our perturbative method and that used in quantum mechanics arise because, in quantum-mechanical language, the
energy of the particle is kept fixed and two eigenvalues are associated with a double-term potential. This method has been
further investigated and refined by the author, but the results are still in a preliminary form. Note that a WKBJ approach leading
to a quantum condition of the Bohr-Sommerfeld type cannot be employed here because it fails for small values of the quantum
number (recall that we are interested in n=0), as can be deduced by a comparison with the one-component case. For what
follows it is sufficient to make some general remarks concerning the wave equation (16), without going into the details of the
perturbative method. The quantum condition of this double-eigenvalue problem, which determines the corrected local disper-
sion relation, is expected to be of the form

@(Aialklzeﬁp a; n)=0' (21>

While it seems reasonable that in this two-component case also, only the lowest eigenvalues (n=0) are physically relevant by
virtue of their consistency with the infinitesimally thin limit, it cannot be expected a priori that such a relation can be reduced to
the particular form

DTl K| 2ot @) + DTS K 2ot @) =1, (22)

in analogy with the one-component case, where I(| k|z.,, ) are the reduction factors of the two components. If this is not the
case, finite-thickness corrections to the local dispersion relation cannot simply be expressed in terms of two reduction factors,
one for each component. In other words, the local dispersion relation cannot be reduced to the form obtained in the case of
infinitesimally thin discs by a suitable scaling of the surface densities of the two components. It is interesting to note in this
context that the condition for the occurrence of a restricted quantum condition, giving rise to a local dispersion relation of the
‘reduced’ form (22), can be identified with the convergence criterion of the perturbative method, which is expected to take place
only in particular asymptotic regimes of the local parameters a, 3, or equivalently 8, .« (Romeo 1987, and unpublished results;
¢f- Shu 1968).

From the considerations made above it follows that, in contrast to the one-component case, finite-thickness corrections to the
local dispersion relation do not generally reduce to a simple scaling of the surface densities of the two components. The use of
two corresponding reduction factors can reasonably be justified only when the two components are not strongly coupled. For the
moment we are not able to express this statement in a precise mathematical form. In most situations of astrophysical interest,
such as in the case in which the two components are identified with the stars of the active disc and the cold interstellar gas, this
condition is rather general and is fulfilled throughout the galactic disc, except possibly in the outermost parts where the mass
density of the cold interstellar gas becomes comparable to that of low velocity dispersion stars. It is to such cases that our
analysis is devoted.

We shall now make a simple ansatz concerning the form of the two reduction factors, which for the moment can only be
justified at an intuitive level. A comparison between the wave equations derived in the one-component and in the two-
component cases [equation (65) of Vandervoort (1970b) and equation (16) of this paper, respectively] shows that A and z 4, play
in a sense a similar role: they are the effective thickness-scales which allow us to express the local dispersion relations in terms
of the unperturbed surface densities, introduced in place of the unperturbed volume densities in the plane. On the other hand,
the different z-dependence of the equilibrium volume densities in the two cases is a source of dissimilarity in such a role. This
argument suggests that when the contribution of the last effect can be neglected, or in other words when the two components are
not strongly coupled (cf. the non-restrictive condition mentioned above), the corresponding reduction factors should be fairly
well approximated by the effective ansatz:

—_ Ored i —~ — 1 _

zl o, Zef\‘z 1+lk|zefﬁ “klzeffz 0(1)]’ (23)
where we have indicated the formal ordering which we expect to be required by the underlying approximation. Note that the
orderings specified in equations (15) and (23) are to be understood in the maximal sense (c¢f. maximal orderings in asymptotic
perturbation expansions), and hence are not mutually exclusive. Asymptotically, our ansatz matches the reduction factors
derived by Shu (1968) when the system approaches the limiting cases in which only one component is present or two
components with the same vertical velocity dispersions can be identified, apart from the obvious infinitesimally thin case. Other
reasonable ansatz involving the asymptotic thickness-scales of the two components and characterized by a lower level of
accuracy can be justified heuristically.
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3.2 Local stability

The qualitative discussion given in the previous subsection will now be quantified by studying, in the framework of a fluid
approach, the marginal stability curve corresponding to the ansatz introduced above. The results obtained in the infinitesimally
thin case discussed by Romeo (1985, 1989, 1990b) and Bertin & Romeo (1988) are at the basis of this further investigation. We
shall introduce two parametrizations, the use of which is suggested by their astrophysical relevance and/or mathematical
convenience, as will be explained in detail later.

The reduction factors of the two components can be expressed in the following general dimensionless form:

z.“=1+—Q:*2*91., (24)
i 2)( il
where the functions % ; depend on the ansatz employed:
Ou Zen Boc Zenc
Q[e = -, ffc=ET— T, 25
fi 1ta 2zEH fic 1+a ZZEC ( )

in the same subscript notations used for the reduction factors. In these formulae we have adopted the following scaling and basic
parametrization (cf. the infinitesimally thin case):

- ky x’
A=—, h ky= ; 26
| l where H on GOH ( )
2
a=2, =5 (0<a<+w, 0<B<1) (27)
Oy CH
Oy= L (local stability parameter), (28)
nGoy
and the additional velocity-dispersion parametrization:
2
=3 (0<poc<du<l, 0<dcs1) (29)
based on the parametrization involving a, 3, introduced in Section 2 and so related to it:
2
=f—=. 30
Iy (30)

The case ;=0 represents the limit of an infinitesimally thin system. When the two components are identified with the stars of
the active disc and the cold interstellar gas (6-=1, due to its collisional nature), the cases 6y=p (ie., 8,=1) and dy=1
correspond to a totally ineffective vertical heating and to an isotropic heating, respectively. The marginal stability curve in the (Z,
Q%) plane can be derived from its uncorrected expression, by applying the reduction factors to each dimensionless quantity
involving the surface densities:

ﬁ%+4—7—%[z(1+ﬂ)—(a%+ﬂ)]+16—z—z[%—(1+azc—)]=0,

1:, ZHIf, Tu H H[¥H Ty
therefore
BU W Of+ 24 OF[22(1 + B) U gy A+ B(W g + W)+ 442 QH{AT2A W+ 2A(1 + B) (W g+ A) +[B—2(a yy + fAL)]}
+ 1623 Q3222 A+ A)+ A[(1+B)— 2 (aW  + A)|— (a+ B)} + 6425[4 — (1 + a)]=0, ' (31)

which we consider in the range 0<1 <1 + a. From this relation a local stability criterion can be stated in analogy with the case of
infinitesimally thin one-component systems. A function Q2= Q%(a, f8, d;), which reduces to unity when o =0 and 6,=0, can

be defined in such a way that when Q%> Q7 the system is locally stable at all wavelengths. For Q% < 02 we expect the system to
be locally unstable in ranges of wavelengths defined by the marginal stability condition. Note in this context that the ratio

Q= Q_ﬂ (effective local stability parameter) (32)

Q

plays the role of an effective Q-parameter (cf. the infinitesimally thin one-component case). Consistently with a mechanism of
self-regulation, we expect

Qu(r)=1 (self-regulation constraint) (33)

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1992MNRAS.256..307R

Y2 FNRAS 255 ~307R!

314 A. B. Romeo

throughout the active disc. The self-regulation constraint on the profile of the effective local stability parameter will be
considered in future applications (see Section 4).
Alternatively, the reduction factors of the two components can be expressed in the following dimensionless form:

e R +2p, (34)

where we have adopted the same scaling and basic parametrization used above, and the additional wavenumber parametrization:

Ze
CHEkHzeHHy ﬁzeffE e (O<ﬂzeff<1)’ ’ (35)

ZeffH

based on the parametrization involving a, B, introduced in Section 2 and similar to that adopted by Shu (1968). The case
&= 0 represents the limit of an infinitesimally thin system, and the case 8, .= 1 represents the limit of a system in which the two
components have the same scaleheight (and hence the same vertical velocity dispersions). Proceeding along the same line as
before, we derive the following expression for the marginal stability curve:

ﬂQ:{[IZ +ICH(1 + ﬂzeff) + C]z-[ﬂzeff]+472Q%{72(l + ﬂ)—x[(a + ﬂ)_ (1 + ﬁ) CH(l + ﬂzeff)]-'_ CH[(l + ﬂ) CHﬂzeff_<a + ﬂﬂzeff)]}
+ 1674{72 _I[(l + a) - CH(l + ﬁzeff)] + ;H[CHﬁzeff_ (a + ﬂzeff)]}=0’ (36)

which we consider in the range 0<2 <7, where the upper zero is given by

I‘F =% (1+a)—CH(1+ﬂzeff)+\/[(1+a)—CH(l+ﬁzeff)]z_4CH[CH/3zeff_(a+ﬂzeff>] <1+a‘ (37)

Note that in the context of this parametrization, the marginal stability curve can degenerate into the origin of the (1, Q%) plane in
the critical regimes of the local parameters &y and f3, . corresponding to the vanishing of its upper zero. The condition which
should be satisfied for avoiding this singular behaviour of the marginal stability curve can thus be expressed by imposing the
positivity of its upper zero:

a

ﬂzeff ’

This is not, however, a physical limitation for &y because it corresponds to the obvious conditions ;< + =, as can be deduced
by comparing the dimensionless forms of the reduction factors of the two components, evaluated according to the effective
ansatz in the context of these two parametrizations. Moreover, values of {y sufficiently close to such a critical upper bound are
not consistent with the working assumption | k|(z) = O(1) in the range of wavelengths relevant to the marginal stability curve.
Taking these considerations into account, the same local stability criterion stated in the context of the velocity-dispersion
parametrization and subsequent discussion apply, with 02 = Q% a, B, &y, B,est)-

We shall now discuss the advantages and drawbacks inherent in these two parametrizations. A considerable advantage of the
wavenumber parametrization lies in the fact that the equation for the marginal stability curve can be solved analytically accord-
ing to the standard technique employed in the case of quadratic algebraic equations. The equation for its stationary points can
thus be given in a relatively simple explicit form, which turns out to be extremely useful for investigating the corrected two-phase
region of the parameter space where the marginal stability curve exhibits two maxima (¢f. the infinitesimally thin case). Instead,
when the velocity-dispersion parametrization is adopted, the stationarity condition can only be given in the implicit form of a
system of two non-linear (quartic and cubic) algebraic equations, the alternative explicit relation being of no practical utility. An
advantage of the velocity-dispersion parametrization which should not be underestimated lies in the fact that, when the two
components are identified with the stars of the active disc and the cold interstellar gas, the lower and the upper physical limita-
tions (corresponding to a totally ineffective vertical heating and to an isotropic heating of the stellar component, respectively, as
derived on observational grounds and suggested by stability considerations) can be included directly, and the collisional nature
of the gaseous component can trivially be taken into account. Instead, when the wavenumber parametrization is adopted, the
previous conditions do not admit any straightforward translation.

Even though the wavenumber parametrization is not as physically transparent as the velocity-dispersion parametrization, its
use can reasonably be justified in view of its considerable mathematical convenience. Therefore, in order to make up for such a
drawback, it is of extreme interest to study the way in which the results obtained in the context of one of them can be translated
into corresponding results for the other. The first step consists in noting that these two parametrizations are so related:

2:>0= g, <1+ (38)

_1 5 On Zeirn
tu=3 G T (39)

as can be established by comparing equations (24), (25) and (34). Now the question arises as to which value of the local stability
parameter should be used in this relation. If the two-component equilibrium model is specified (global stability analysis), there is
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no ambiguity: the relevant value of the local stability parameter is that corresponding to the point where all the other profiles are
calculated. If the two-component equilibrium model is not specified (local stability analysis), and if we want to compare the
marginal stability curves derived in the context of these two parametrizations, a natural and physically meaningful choice is
represented by the global prescription:

1 -, Ou Zen
= =— _— 40
CH a—l 2 Q 1 +a 2ZEH B ( )

involving the global maximum of the marginal stability curve, which refers to situations characterized by the same critical level of
stability. Note, however, that this is not the only reasonable choice if peculiar gas-dominated regimes (cf. the infinitesimally thin
case) are involved: depending on the various situations, it could be of more interest to consider one of the other stationary points
of the marginal stability curve. If the global prescription is used to relate these two parametrizations, the corresponding marginal
stability curves are characterized by a global maximum having the same location and height. On the other hand, any other point
(Z, Q%) belonging to the marginal stability curve derived in the context of the wavenumber parametrization can be viewed as
belonging to the marginal stability curve derived in the context of the velocity-dispersion parametrization for correspondingly
larger values of the local parameters J;:

QZ

0;=98,=06,=>
On

1

0, (41)

as can be deduced by comparing equations (39) and (40) once the monotonic behaviour of 8, with varying j, at fixed a is
taken into account. Unfortunately, these descriptive complications cannot be avoided.

As an immediate consequence of the considerations made above, it can be shown that the wavenumber parametrization
exhibits some unphysical features already suspected in the discussion concerning the upper limitation (38). Here we do not want
to consider this problem in detail, but just to give a correct idea of the reason for such a singular behaviour. For any given value
of {y;, however small, the upper physical limitations ,<1 can only be fulfilled in a part of the range of wavelengths relevant to
the marginal stability curve, because as 1 approaches the lower and upper zeros the corresponding &, take arbitrarily large
values [see in particular equation (41) and related discussion]. Note in this context that, as regards the consistency with the
working assumption expressed by the maximal ordering | k|{z)= O(1), the upper bounds J;= 1 roughly correspond to the onset
of a ‘dangerous’ situation at the global maximum of the marginal stability curve or at the gaseous peak (cf. the infinitesimally thin
case), if present (the gaseous peak is always more ‘dangerous’ than the stellar peak, even in the case in which it is less high,
because it occurs at much shorter wavelengths). On the other hand, the lower physical limitations d5 > 86> 0 do not give rise to
such difficulties when the global prescription is used. From these considerations it follows that the marginal stability curve
derived in the context of the wavenumber parametrization does not provide a faithful representation of the local stability
properties of galactic discs.

In presenting the results of the local stability analysis performed in this paper, we have considered the standard star-
dominated and the peculiar gas-dominated regimes already investigated in the less general context of infinitesimally thin two-
component models of galactic discs (Romeo 1985, 1989, 1990b; Bertin & Romeo 1988). Moreover, other regimes of the
relevant local parameters which are typical in the solar neighbourhood have been considered. The marginal stability curves
derived according to the effective ansatz in the context of the velocity-dispersion and of the wavenumber parametrizations are
compared in Figs 3 and 4, respectively. We have used the global prescription to relate these two parametrizations, and the fit
approximation to express the equilibrium-related dimensionless quantities in terms of a and §,. The non-perfect agreement
between the critical levels of stability characterizing corresponding situations (in the sense of the global prescription) can be
ascribed to two facts: the low accuracy of the fit approximation in peculiar gas-dominated regimes, and the evaluation of the
input values for the wavenumber parametrization only up to the second decimal digit. Apart from these numerical effects, the
qualitatively different behaviour of corresponding marginal stability curves can be traced back to the fact that the wavenumber
parametrization contains the local value of the stability parameter implicitly, as already explained. As a result, when finite-
thickness effects are taken into account, the system tends to be more stable. More precisely, the stabilizing role of such effects
can partially counterbalance the destabilizing role of the cold interstellar gas in linear regimes. As a consequence of these
competing roles, in some cases the monotonicity properties of the marginal stability curve are qualitatively different from the
infinitesimally thin case. Note in this context that the profile of the effective local stability parameter and the shape of the
marginal stability curve are of primary importance in determining the propagation properties of the spiral waves and thus the
global stability properties of galactic discs.

We shall now use some qualitative arguments, based on the first step of an iterative method for calculating Q% from its
uncorrected value, to provide a simple justification of these results. Such arguments are only indicative, and may be quite
inaccurate if the convergence of the iterative method is slow. For what follows it is sufficient to understand the way in which the
points of the marginal stability curve relevant to the stability analysis are modified when finite-thickness effects are taken into
account. However, it should be borne in mind that such simple arguments are indeed able to account for all the basic properties
of the marginal stability curve. Specifically, we find for the upper zero:

Ze~IytaIcsl+a (42)
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Figure 3. Two-fluid marginal stability curves in the (Z, Q3) plane derived by evaluating the reduction factors of the two components according
to the effective ansatz for some values of the local parameters J;, a and fixed 8=0.01 (top), and for values of the same local parameters
corresponding to typical lower and upper bounds in the solar neighbourhood (bottom). The fit approximation has been used to express the
equilibrium-related dimensionless quantities in terms of a and 8,. The case 6,=0 represents the limit of an infinitesimally thin system. The
cases 0, = Band 0, =1 correspond to a totally ineffective vertical heating and to an isotropic heating, respectively.
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Figure 4. Same as Fig. 3 for the wavenumber parametrization. The input values of §,; and S, correspond to the input values of 6, in Fig. 3.
They are calculated according to the global prescription discussed in the text, which refers to situations characterized by the same critical level
of stability, with an accuracy of two decimal digits.
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for the stellar peak:

L1 .1 —

1~EIH SE’ On~Int+4a3T Icsl+4a; (43)

and for the gaseous peak:

T-atcsra Q2~a—212+4a‘1 T sa—2+4a (44)
2 C 2 ’ H /3 C H~C ﬂ .

In these formulae, the reduction factors of the two components are intended to be calculated to the non-trivial lowest order of
iteration. From these expressions follows, in agreement with physical intuition, the decoupling of the two components in peculiar
gas-dominated regimes, as expressed by the leading terms in the stellar and in the gaseous peaks. Although such qualitative
arguments account for the stabilization of these two peaks and their shift toward shorter wavelengths, a more sophisticated
asymptotic expansion analysis is required to obtain more reliable estimates. Specifically, in the context of the wavenumber
parametrization, we find for the upper zero:

Lzl-i_(a_CH)a [a <<1; /3=O(a)\//3=0(a2); CH’ ﬁzeff=0(a)]; (45}
for the stellar peak:

Iz%, Qi~1+4a—¢Cu), [a<1l; B=0(a)VB=0(a") &uB.u=Olal} (46)
and for the gaseous peak:

-1 , o _ (28 CuPi B Ol -

/1~2 a, On= ﬁ+4a [1 (a+2§H+ 5 )], la<k1; B=0(a%); &y, Brei=O0(a)) (47)

The orderings indicated beside the corresponding asymptotic expressions are suggested by the analysis performed in the
infinitesimally thin case, where they characterize the two-phase region of the (8, a) plane. Note in this context that the formal
ordering involving the local parameters §y and 3,4 is to be viewed as a maximal ordering, which at this stage we are not able to
specify more precisely.

4 CONCLUDING REMARKS

We shall now make some simple points concerning the astrophysical relevance of the two parametrizations introduced in this
paper. Even though the velocity-dispersion and wavenumber parametrizations cannot easily be compared in a local stability
analysis, when the two-component equilibrium galactic model is specified and a global stability analysis is performed, these two
parametrizations turn out to be equivalent (mathematical complications apart). As suggested by observations, for our Galaxy the
proper input local parameters might be d,(r) while for external galaxies y(r) and B,.4(7) might be more appropriate. Thus,
apparently, the situation seems to be more complicated for our Galaxy: the local stability analysis which should be carried out to
determine the global maximum Q%r) of the marginal stability curve in the context of the velocity-dispersion parametrization is
considerably more difficult. If we seek to bypass this difficulty by adopting the wavenumber parametrization, we should recall
that relating the former to the latter is also not an easy task and, indeed, is equivalently difficult because it requires the
knowledge of Q%r). The situation would certainly be more tractable, but still complicated, if the input profiles were c,(r), in
which case it would be convenient to derive z.(r) and to adopt the wavenumber parametrization. In our opinion, since the
vertical and planar heating mechanisms in galactic discs are almost decoupled as well as their relevant stability properties
(Romeo 1987, 1990b), the constancy of dy(r) throughout the Galactic disc, commonly invoked to fit or deduce the relevant
stellar velocity-dispersion profiles, should be viewed as a convenient observational working assumption rather than a well-
established observational constraint. Therefore J(r) might not be so meaningful as input parameters even for our Galaxy. Also
in the case of external galaxies there might be some interpretative complications in finding out whether the observed z.(r) have
the same physical meaning as those inferred on theoretical grounds: generally Gaussian, exponential or sech-squared profiles are
used to fit the observed brightness distribution of the stellar component, and a constant mass-to-light ratio is assumed to derive
the corresponding volume mass density profiles. Consequently, these fitting analyses are not able to discriminate between the
true Zoy(7) and zgy(7) or 2zgy(r), so that we should carefully reinterpret all the related local parameters and derive their correct
values. Alternatively, it could be wise to abandon the idea of performing a ‘strictly’ correct analysis, and to be content with
performing an ‘approximately’ correct analysis in the spirit of the Gaussian and (self-consistent) exponential approximations
discussed in Section 2 and of the homonymous ansatz discussed by Romeo (1990b): the essential physics is not missed. Other
discussions of related topics were given by Bahcall (1984) and Bahcall & Casertano (1984).

In view of a future comparison between theoretical predictions and observational results, we now want to draw attention to
some delicate points which are often not given sufficient consideration, and which make such a comparison not straightforward.
From a theoretical point of view, a single equivalent stellar component is taken to be representative of the whole active stellar
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disc consisting of stars with low velocity dispersion. The consideration of more stellar populations would give rise to several
complications due to their gravitational coupling via the Poisson equation, as required by the self-consistency condition. On the
other hand, it should be noted that observations tend to overestimate the effect of stars with high velocity dispersion, which are
not so dynamically relevant as regards their participation in spiral structure (see Lin & Bertin 1985; Romeo 1985). From a
theoretical point of view, a single gaseous component is taken to simulate H 1 regions of neutral atomic hydrogen and giant
molecular clouds and complexes. On the other hand, observational surveys often provide significantly different estimates as
regards the molecular hydrogen.

The analysis performed in this paper represents the first step of a long-term project devoted to the study of self-regulation
mechanisms, which are expected to drive the dynamical evolution of galactic discs and, in particular, to be responsible for their
secular heating (Romeo 1987, 1990b). A deep understanding of the problem which we have tackled can only be attained by a
scrupulous investigation into the stability properties of galactic discs, to which the above-mentioned self-regulation mechanisms
are intimately related, taking into account effects which are generally neglected for mathematical convenience (namely those
related to the presence of the cold interstellar gas and to the finite thickness of galactic discs) but which we have shown to be
important or even crucial. As a practical application of the analysis carried out in this paper, the profiles of the local stability
parameter Oy for two-component models of the Galaxy will be derived consistently with a mechanism of self-regulation in the
active disc, and compared to those inferred on observational grounds. In particular, this extension might require a deep
knowledge of the monotonicity properties of the marginal stability curve and of the behaviour of its global maximum in the
peculiar gas-dominated regimes characterizing the two-phase region, which at present is not available.
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