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Abstract. High-softening two-dimensional models, frequently
employed in /N-body experiments, do not provide faithful sim-
ulations of real galactic discs. A prescription [Egs. (17) and
(18)] is given for choosing meaningful values of the softening
length in standard regimes of astrophysical interest, when both
the stellar and gaseous components are present. In addition, a
stability criterion [Eq. (10); see also Eq. (11)] is given for choos-
ing meaningful input values of the Toomre parameter for a given
softening length. Such a criterion should also provide a key to
the correct interpretation of computational results in terms of
real phenomena.
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1. Introduction

N-body simulations employing particle-mesh codes have nowa-
days become a very powerful tool for investigating the dynamics
of disc galaxies. In particular, two-dimensional N-body mod-
els in which stars and cold interstellar gas are treated as two
different components have extensively been applied in studies
of spiral structure (e.g., Salo 1991; Thomasson 1991; Combes
& Elmegreen 1993; Elmegreen & Thomasson 1993). The cor-
rect interpretation of computational results in terms of real phe-
nomena poses serious problems, not least because there are
quantities introduced for numerical reasons which do not have
clear physical counterparts. One such artificial quantity is the
softening length of the modified (non-Newtonian) gravitational
interaction between the computer particles, and its value can
critically affect the results of N-body experiments. It is thus
of fundamental importance to have a prescription for choosing
meaningful values of the softening length.

Two basic physical properties are affected by artificial soft-
ening: relaxation and stability. Optimal choices of the softening
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length should altogether satisfy relaxation and stability require-
ments.

From the relaxation point of view, softening is essential.
Two-dimensional discs with Newtonian gravity are in fact
always collision-dominated (Rybicki 1972), whereas in real
galactic discs relaxation effects become appreciable on secular
timescales (see, e.g., Binney & Tremaine 1987). The welcome
effect of softening is then to suppress unphysical small-scale
fluctuations induced by the artificial geometry, largely respon-
sible for such a rapid relaxation. The two-body relaxation time
is directly proportional to the softening length and the num-
ber of particles. Thus, by choosing conveniently large values
of the softening length, it is possible to simulate collisionless
systems with a non-prohibitively large number of computer par-
ticles. The relaxation problem was extensively discussed by
White (1988), but there are still controversial points favour-
ing the choice of more moderate values of the softening length,
whose importance has recently been emphasized by Pfenniger
& Friedli (1993).

From the stability point of view, there is a persistent confu-
sion about which values of the softening length are physically
consistent, and should therefore be preferred. It is indeed the
first objective of our paper to clarify this delicate point. In par-
ticular, we draw attention to a fact which so far has only partially
been recognized, namely that values of the softening length as
large as those commonly chosen alter the stability properties
to an unacceptable degree. The stability problem is more thor-
oughly explained in Sect. 2, and is then investigated in detail in
Sect. 3 on the basis of a comparative stability analysis between
two-dimensional N-body models and real galactic discs.

Strictly connected with that aspect of the stability problem
is the choice of meaningful input values of the Toomre param-
eter for a given softening length. In contrast to the softening
length, the Toomre parameter is directly related to observable
quantities, has a clear physical meaning, and its output values
in N-body experiments can be compared with those predicted
by theories of spiral structure and secular heating. A key to this
aspect of the stability problem is provided by identifying which
values of the Toomre parameter correspond to stable situations
for a given softening length. It is indeed the second objective
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' of our paper to clarify this other delicate point. The identifica-
tion of the stability threshold is the first and unavoidable step
in studies of spiral structure and secular heating, once physical
consistency has been ensured.

2. Overview of the stability problem

From the theoretical point of view, the stability problem was
first investigated by Miller (1972) in the case of a softened point-
mass potential of the standard (Plummer) type

Gm

Qs(z,y) = ——F——,
Sy Va2 +y?+s?

where the softening length s is introduced for curing the diver-
gence at short distances. This can be viewed as the Newtonian
potential in a plane offset a distance |z| = s. Correspondingly,
the stability analysis of two-dimensional discs with softened
gravity can be carried out as in the case with Newtonian grav-
ity with only minor modifications. Miller (1972) performed a
calculation parallel to that of Toomre (1964) to allow for the
modified gravitational interaction, and showed that softening
has a twofold effect. The direct effect is to weaken the potential
perturbation induced by a given surface-density perturbation by
a factor

(M

S =e M, @)
k being the radial wavenumber. Correspondingly, the contri-
bution of self-gravity to the dispersion relation is weakened
through a reduction of the active unperturbed surface density
by the same factor. This, in turn, has a stabilizing effect. In
particular, there exists a critical value of the softening length
beyond which even discs supported by rotation alone are stable,
in contrast to the case with Newtonian gravity:

STABILITY (CoLD Discs) <=

127G%
8§ > Scrit = — 2
c K

; 3)

where X is the total unperturbed surface density and « is the
epicyclic frequency. Below such a critical value of the soften-
ing length only discs supported by both rotation and sufficient
random motions are stable, as in the case with Newtonian grav-
ity but with a lower stability threshold. The dispersion relation
of cold discs with softened gravity was also compared with
the dispersion relations of kinetic and fluid warm discs with
Newtonian gravity (Toomre 1977; Athanassoula 1984), in the
spirit of an analogy drawn by Miller (1974) (see also Binney &
Tremaine 1987) and further explored by Erickson (1974) and
Toomre (1981).

From the experimental point of view, the stability problem
has more extensively been investigated (e.g., Miller 1972, 1974,
1978a, b, c; Sellwood 1981, 1983, 1989; Sellwood & Athanas-
soula 1986; Sellwood & Kahn 1991). In particular, Sellwood
(1981) stressed how effective softening can be in suppressing
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even bar instabilities, and thus how important it is to choose the
softening length carefully.

Athanassoula & Sellwood (1986) suggested that the choice
of a softening length comparable to the expected disc scale
height automatically introduces a quite realistic thickness cor-
rection for a two-dimensional model, as can be guessed from
Eq. (1) and following physical interpretation (see also Byrd et
al. 1986; Sellwood 1986, 1987). The disc scale height h is in-
deed the natural softening length since most stellar passages are
at impact parameter b ~ h (Binney, private communication).

Our contribution to the understanding of the stability prob-
lem is twofold. First, we analyse the stability of two-dimensional
N-body models in which stars and cold interstellar gas are
treated as two different components. In particular, in Sect. 3.1
we identify the stability threshold and provide a simple approx-
imation to it applicable in standard regimes of astrophysical in-
terest. The consideration of the gaseous component represents
an important extension to Miller’s (1972) contribution. In fact,
the crucial role which cold interstellar gas can play in the dy-
namics of disc galaxies has progressively been recognized since
then (e.g., Romeo 1985, 1990 and references therein; Pfenniger
et al. 1994; Pfenniger & Combes 1994), and nowadays a large
number of N-body simulations employ such two-component
models. Second, we compare the weakening and stabilizing ef-
fect of softening with the effect of thickness in real galactic
discs. In particular, in Sect. 3.2 we identify the sources of dis-
similarity and point out the deep physical inconsistencies which
can arise, and in Sect. 4 we discuss their serious implications
for studies of spiral structure and secular heating.

3. Comparative stability analysis
3.1. Two-component two-dimensional N-body models

In formulating the stability problem, we assume that the soft-
ened point-mass potential is of the standard type. In addition,
we adopt the lowest-order WKBIJ approach in the framework of
the basic two-fluid description, as in the case with Newtonian
gravity investigated in a previous paper (Bertin & Romeo 1988,
hereafter Paper I). In interpreting the results, one should replace
the planar sound speeds of the stellar and gaseous fluids with
the radial velocity dispersion of the stellar component and the
one-dimensional turbulent velocity dispersion of the gaseous
component, respectively, and the coefficient 7 appearing in the
definition of the Toomre parameter of the stellar fluid with 3.36.

It is convenient to scale the radial wavelength of the pertur-
bation in terms of the stellar Toomre wavelength:

A 21 4m G

A=-—"—, where Igqa=—=
Astar  Kstar K2

“

The unperturbed quantities which determine the stability prop-
erties can be reduced to the following dimensionless parameters:

Cstar K

Qstar = (stellar Toomre parameter) , 5)
TG Bstar
a= D (surface-density ratio) , (6)
Dstar
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— _&as
ﬂ = "2
star

(planar-temperature ratio) ,

(M

1 = Skyar (softening parameter)

®)

Cstar and cgs being the stellar and gaseous planar sound speeds,
respectively. The cases already investigated are recovered in
the following limits: Qgar — 0 (cold case), a — Oor § — 1
(one-component case), 7 — 0 (case with Newtonian gravity).

The physical meaning of Qe is clear and well known: it
measures the stability level of galactic discs and, at the same
time, serves as a thermometer for the stellar component. In gen-
eral, the stability threshold Q is a complicated function of
( and 7, which reduces to unity in the one-component case
with Newtonian gravity. More precisely, Q? is the global maxi-
mum of the marginal stability curve, i.e. the dispersion relation
for marginally stable perturbations viewed as a curve in the
(A, Q%) plane for given a, B and n:

s B+QL, {4:\ [X 1+8) —e " (a+ ﬂ)] }

+163 [A— e (1+a)| =0, ©)
where the exponential coefficient is the reduction factor . ex-
pressed in dimensionless form. The region above/below this
boundary curve corresponds to stable/unstable perturbations
[see Fig. 4 (left) discussed in Sect. 3.2.2]. In particular, values
of @2, > Q? correspond to stable situations at any :

STABILITY (WARM Discs) <
Qstar > Q(OI, B,n).

Even though Q can easily be calculated numerically, we provide
a simple analytical approximation to it applicable in standard
regimes of astrophysical interest:

Q,Bm=~1+2(@—mn (a~f~nKl). (an

This is an extra tool for estimating the stability threshold at a
glance. Note for completeness that the Miller stability criterion
for cold discs is a limiting case of our stability criterion. In fact,
for n = nei¢ the marginal stability curve becomes singular and
degenerates into the point (\, Q2,,) = ()erit, 0), and for 7 > nerie

it is undefined.

(10

3.2. Artificial softening vs physical thickness

The stability of galactic discs, which in reality are three-
dimensional systems with Newtonian gravity, has been inves-
tigated in a previous paper (Romeo 1992, hereafter Paper II),
where particular attention has been devoted to both the effect
of thickness and the roles of the stellar and gaseous compo-
nents. Thickness corrections to the dispersion relation can be
expressed in terms of two reduction factors weakening the ac-
tive unperturbed surface densities of the two components

1

T =
A1+ |k hogar

(12)
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SOFTENING vs THICKNESS: Weakening Effect
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Fig. 1. The reduction factors of two-dimensional discs with softened
gravity #°(|k|s) and three-dimensional discs with Newtonian gravity
T (|k|h), where k is the radial wavenumber of the perturbation, s is
the softening length and h is the characteristic scale height

1

Ty = ————
BT 1+ |kl hgas

13)

hstar and hgas being the stellar and gaseous characteristic scale
heights, respectively. The unperturbed quantities which deter-
mine the stability properties can be reduced to the dimensionless
parameters Qgr, @, 4 and

2
C star

Coar

¢, sar being the stellar vertical velocity dispersion. Note that
0gas = 1 since the gaseous component is collisional. The two-
dimensional case investigated in Paper Lis recovered in the limits
Ostars 5gas — 0.

The sources of dissimilarity between two-component two-
dimensional N-body models and real galactic discs can be iden-
tified with:

1. the different wavenumber-dependence of the reduction fac-
tors ¥ and 7 ;

2. the different number of ‘softening lengths’ involved in the
two cases, when both the stellar and gaseous components
are present: one artificial, s, and two natural, hse and hggs.

(stellar ‘temperature anisotropy’), (14)

6sw =

These two sources of dissimilarity are examined in Sects. 3.2.1
and 3.2.2, respectively, together with their direct consequences.

3.2.1. One-component case

The weakening effects of artificial softening and physical thick-
ness are compared in Fig. 1. Softening weakens very effectively
all perturbations on scales less than s. This is convenient because
in a three-dimensional disc vertical velocity dispersion weakens
effectively all perturbations on scales less than h. So to a first
approximation we can ideally choose s = h and obtain a rea-
sonable response even at zero vertical velocity dispersion. On
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THICKNESS: Stabilizing Effect
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Fig. 2. Marginal stability curves of two-dimensional discs with softened gravity (left) and three-dimensional discs with Newtonian gravity (right),
where ) is the radial wavelength of the perturbation scaled in terms of the Toomre wavelength and @ is the Toomre parameter. In addition, n
is the softening parameter and § is the temperature anisotropy. The stability and instability regions are shown in the two-dimensional case with

Newtonian gravity

the other hand, the weakening effect is similar in the two cases
only on significantly larger scales, where the reduction factors
% and .7 have approximately the same linear k-dependence.
So we obtain a realistic response if and only if we choose, at the
same time, values of s ‘safely’ smaller than the inverse of the
typical radial wavenumber, in the sense specified by Egs. (17)
and (18) derived below. The less this condition is satisfied, the
more the dispersion (i.e., stability and propagation) properties
are altered.

The stabilizing effects of artificial softening and physical
thickness are shown in Fig. 2, and are then compared in Fig. 3.

Figure 2 shows that in general, as a direct consequence of the
first source of dissimilarity, the stabilizing effect is qualitatively
different in the two cases. The stability properties are character-
ized by the stability threshold @ and, in addition, by the radial
wavelength which requires the highest level of random motions
for being stabilized, Apmax, the shortest and longest unstable ra-
dial wavelengths in the absence of random motions, Xoi and
o2, respectively. These characteristic radial wavelengths cor-
respond to the global maximum, the first and second zeros of
the marginal stability curve, respectively. Indeed, Amax is also
the typical radial wavelength.

Figure 3 shows the degree to which Q, Amax, Aot and Aoz are
different in the two cases and, as a result of the comparison, the
ranges of approximate physical consistency and inconsistency.
Before discussing this figure, let us introduce two thickness-
related quantities. One is the characteristic scale height ex-

pressed in units of the inverse of the Toomre wavenumber, as
the softening length:

¢ = hkr (thickness parameter) . (15)
The other is the temperature anisotropy corresponding to the
stability threshold for a given (:

1. -1
60=¢ [5 QZ(C)] . (16)
The natural limitation 6(¢) < 1 is imposed in Fig. 3 for identi-
fying which values of ¢ are of astrophysical interest. As aresult,
¢S %, where the upper bound corresponds to the isotropic case.
We are now ready to discuss Fig. 3.

e If wechoose n = ¢ S %, the stabilizing effect is indeed
similar in the two cases. The deviations are at most linear,
and correspond to appreciable but modest alterations in the
stability properties. In particular, note the low sensitivity
of Amax, Which remains practically constant. Of course, the
smaller the value of 1 compared with Amax = 3, the better
the agreement between the characteristic functions in the
two cases.

o If we choose £ S 7 < Nerit = 1, the highly stabilizing effect
of artificial softening has no physical counterpart, and the
alterations in the stability properties are significant. More
precisely, the fact itself that @ is well below the natural
bound Q ~ % does not result in physical inconsistencies,
if we choose input values of @) corresponding to realistic
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SOFTENING vs THICKNESS: Stabilizing Effect
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Fig. 3. The stability thresholds of two-dimensional discs with softened
gravity Q(n) and three-dimensional discs with Newtonian gravity Q(¢)
(top) and the characteristic radial wavelengths Amax, Ao1 and Aoy in the
two cases (bottom), where 7 is the softening parameter and ¢ is the
thickness parameter. In addition, 6(¢) is the temperature anisotropy
corresponding to the stability threshold for a given . The ranges of
approximate physical consistency and inconsistency are shown
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stability levels, since Amax is still reasonably close to the
natural Apax ~ % Physical inconsistencies do instead result
from the fact that Ap; and Ag, are now ‘dangerously’ close
to S\max, which gives an irremediably bad representation of
the stability properties especially at short X. Of course, the
closer the value of 7 is to 7, the deeper the physical in-
consistencies are.

o If wechoosen > 7y = %, the stabilizing effect of softening
is so high as to suppress all instabilities artificially, and the
alterations in the stability properties are considerable and
unacceptable, at least in regimes of normal spiral structure.
In particular, the fact that the stability level is no longer
actively controlled by ) has serious dynamical implications,
whose discussion is postponed to Sect. 4.

The results of this comparative stability analysis can be sum-
marized in the form of a prescription for choosing meaningful
values of s:

PHYSICAL CONSISTENCY <+

€ Zﬂsttar

5T <), (17)
where the ‘safety’ threshold is

2
e~ —. (18)

We mention in advance that this criterion of approximate phys-
ical consistency is indeed more general and applicable in stan-
dard regimes of astrophysical interest, when both the stellar and
gaseous components are present.

3.2.2. Two-component case

When both the components are present, each component has its
natural softening length Agr and hgas < hgear. If the softening
length is ideally set to hgar, small-scale perturbations of the
gaseous component will be over-weakened. On the other hand,
if we ideally set the softening length to hg,s we will over-estimate
the responsiveness of the stellar component. So, apparently, we
cannot obtain realistic responses of both the components at zero
vertical velocity dispersions. Fortunately, that is not always true
and, indeed, no significant physical inconsistencies arise from
this second source of dissimilarity in rather general situations,
as is explained below.

Figure 4 shows the stabilizing effects of artificial soften-
ing and physical thickness in standard star-dominated regimes
(represented by the case A) and peculiar gas-dominated regimes
(represented by the case B). These and other regimes of astro-
physical interest have been identified in Paper I, as a result of a
thorough inspection of the ({3, ) plane (see in particular Fig. 4),
and have further been examined in Paper II. (The terminology
adopted in the present paper is slightly different.)

o In standard star-dominated regimes (roughly corresponding
to theregion 1 < '/2 < 1, < 1 or the region 81/2 5 1,
a 5 50), the stability properties are analogous to those of
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Fig. 4. Marginal stability curves of two-component two-dimensional N-body models (left) and real galactic discs (right) in standard
star-dominated regimes (top) and peculiar gas-dominated regimes (bottom), where X is the radial wavelength of the perturbation scaled in
terms of the stellar Toomre wavelength and Q. is the stellar Toomre parameter. In addition, « is the surface-density ratio, 3 is the pla-
nar-temperature ratio, 7 is the softening parameter, §sar and &g are the stellar and gaseous temperature anisotropies, respectively. The stability
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SOFTENING: Stabilizing Effect

} Two—Component Case a=.2, f=.1
I A: Standard Regimes —_1n=0

B —_n=.05
: —_— N=.15
o — N=.R5
i — 7)=.35

N

SOFTENING: Stabilizing Effect

THICKNESS: Stabilizing Effect

T T T T T T T T T T T T

T T L RN B T T T T T

Two—Component Case a=.2, f=.1

A: Standard Regimes —_— 6am,=0, 68”=
— Oga=-10, 6“ul
— 6',_"-.25, 6g“
— a0
—— 6 "1, 6(!8—

THICKNESS: Stabilizing Effect

-  Two—Component Case «=.13, f=.01
T B: Peculiar Regimes — _n=0

_— — n=.05

L —_—n=.15

r — 7=.25

i —— 7=.35

0 0.5 1
X

T T T T T T T T T T T T

Two—Component Case a=.13, g=.01

B: Peculiar Regimes ____

and instability regions are shown in the two-dimensional case with Newtonian gravity
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purely stellar discs. In particular, the typical radial wave-
length is practically the same. In addition, the natural upper
bound of the stellar characteristic scale height is appreciably
larger, but still significantly smaller than the critical value
of the softening length. This means that the second source
of dissimilarity has no significant direct consequences in
such regimes, and approximate physical consistency can be
ensured by following the same prescription given in the one-
component case.

e In peculiar regimes [roughly corresponding to the region
B2 <51, 585 a5 B/? (star-dominated) or the region
B2 5L, B2 S a S L (gas-dominated)], the responses
of the two components decouple and peak at two typical
radial wavelengths, roughly one half the stellar and gaseous
Toomre wavelengths; and the instabilities which first ap-
pear, as Qg drops below the stability threshold, are those
of the dominant component. All gaseous dynamical instabil-
ities are artificially suppressed by softening, except for pro-
hibitively small values of 7, and such peculiar regimes are

" unfaithfully turned into standard star-dominated regimes.

e In non-peculiar gas-dominated regimes (roughly corre-
sponding to the region 8'/2 < 1,1 < a < 1), theresponses
of the two components are again coupled, and the stability
properties are analogous to those of purely gaseous discs in
the neighbourhood of the typical radial wavelength. Even
though in principle rough physical consistency might be en-
sured (cf. standard star-dominated regimes), in practice the
resulting condition would be prohibitively demanding (cf.
peculiar regimes).

e In the other non-standard regimes of astrophysical inter-
est (8, a < 1), the responses of the two components are
coupled and comparable, but the physical inconsistencies
arising from the second source of dissimilarity are not so
significant as in peculiar regimes, if we set s = Rgtar < Scrit
and choose input values of Qg corresponding to realistic
stability levels.

4. Conclusions

Two questions which naturally arise in N-body simulations of
discs galaxies are:

1. Which choices of the softening length s are physically con-
sistent from the stability point of view?

2. Which choices of the stellar Toomre parameter Qg are
meaningful for a given s?

Our paper aims at clarifying these points in the case of two-
dimensional simulations, when both the stellar and gaseous
components are present.

1. The solution to the first aspect of the stability problem is pro-
vided in the form of a prescription for choosing meaningful
values of s in standard regimes of astrophysical interest [Eqgs.
(17) and (18)]. If we follow such a prescription, the stability
properties are similar to those of real galactic discs, and s
has a natural physical counterpart: the stellar characteristic
scale height hgy. One should be cautious about choosing
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larger values of s, because then artificial softening alters the
stability properties to a significant degree and, even worse,
can affect the results critically by suppressing large-scale
spiral instabilities. Non-standard regimes of astrophysical
interest, in which the role of the gaseous component is par-
ticularly important, cannot be simulated faithfully (see Sect.

3.2.2).

2. The solution to the second aspect of the stability problem
requires two keys.

(a) One key consists in identifying which values of Qe
correspond to stable situations for a given s, and is pro-
vided in our paper [Eq. (10); see also Eq. (11)].

(b) Once the stability threshold Q is known, the other key
consists in identifying which values of the effective sta-
bility parameter Qe = Qgtar/Q correspond to realistic
stability levels. This issue, whose importance has re-
cently been re-emphasized by Bertin et al. (1989a, b)
and Romeo (1990), is still under debate.

Both these keys are also necessary for the correct interpre-

tation of computational results in terms of real phenomena,

but the identification of Q itself is sufficient for comparing
the output values of Qg,r With those predicted by theories
of spiral structure and disc heating.

The comparative stability analysis carried out in our paper pro-
vides a further cautionary message about the choice of s. As s
rises beyond the critical value sq; [Eq. (3)], the stability level
is no longer actively controlled by Q.s. This fact has serious
dynamical implications: it artificially precludes the possibility
of simulating regimes of normal spiral structure, which require
fine-tuned choices of the stability level. Other discussions of
related computational issues have been given by Lin & Bertin
(1985) and Bertin et al. (1989a, b).

When applying the results of our paper to concrete cases,
we should recall that in particle-mesh codes the grid implicitly
contributes to softening the mean inter-particle force (see, e.g.,
Hockney & Eastwood 1981 and in particular Efstathiou et al.
1985). Grid softening is potentially important especially in the
case of polar grids, where the mesh size A increases linearly
with the radius R. The combination of gravity softening and grid
softening results in an effective softening length sesr > s, which
depends on the characteristics of the code and cannot be eval-
uated straightforwardly. In order to minimize the inaccuracy in
the determination of the stability level, it is advisable to choose
A(R) < s throughout the range of astrophysical interest.
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