
Astron. Astrophys. 324, 523–533 (1997) ASTRONOMY
AND

ASTROPHYSICS

Dynamical effects of softening in N -body simulations
of disc galaxies

Method and first applications

Alessandro B. Romeo

Onsala Space Observatory, Chalmers University of Technology, S-43992 Onsala, Sweden (romeo@oso.chalmers.se)

Received 18 November 1996 / Accepted 16 December 1996

Abstract. Two questions that naturally arise in N -body simu-

lations of stellar systems are:

1. How can we compare experiments that employ different

types of softened gravity?

2. Given a particular type of softened gravity, which choices

of the softening length optimize the faithfulness of the ex-

periments to the Newtonian dynamics?

We devise a method for exploring the dynamical effects of soft-

ening, which provides detailed answers in the case of 2-D simu-

lations of disc galaxies and also solves important aspects of the

3-D problem. In the present paper we focus on two applications

that reveal the dynamical differences between the most repre-

sentative types of softened gravity, including certain anisotropic

alternatives. Our method is potentially important not only for

testing but also for developing new ideas about softening. In-

deed, it opens a direct route to the discovery of optimal types

of softened gravity for given dynamical requirements, and thus

to the accomplishment of a physically consistent modelling.
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1. Introduction

In N -body simulations of stellar systems the gravitational in-

teraction is modified for curing the Newtonian divergence at

short distances. Basically, such modifications are introduced

through a soft cut-off: the softening length s. However, the

precise form in which they are implemented can vary. Since

gravity plays a fundamental role in these systems and the gravi-

tational interaction is modified precisely where it becomes sin-

gular, the dynamical effects of softening should be well under-

stood when designing experiments and interpreting their results.

This dynamical problem has recently stimulated considerable

interest (e.g., Hernquist & Barnes 1990; Hernquist & Ostriker

1992; Kandrup et al. 1992; Pfenniger 1993; Pfenniger & Friedli

1993; Gurzadyan & Pfenniger 1994; Romeo 1994, hereafter Pa-

per I; Byrd 1995; Gerber 1996; Merritt 1996; Weinberg 1996;

Sommer-Larsen et al. 1997; Theis 1997; see also Goodman et

al. 1993; Farouki & Salpeter 1994). For extensive overviews see

the above-mentioned Pfenniger & Friedli (1993), Gurzadyan &

Pfenniger (1994) and Paper I.

In Paper I we have investigated the stability problem in the

case of 2-D models with Plummer softening, which are com-

monly employed in simulations of disc galaxies. The basic mes-

sage is that the effect of softening becomes strongly artificial

for s >∼ λ/2π, λ being the typical radial wavelength, which

means half an order of magnitude below the expected value.

The major results are summarized in the form of a criterion

of approximate physical consistency for s and a stability crite-

rion for the Toomre parameter. (Other important aspects of the

stability problem have been considered by Byrd 1995.)

In the present paper we carry out five extensions, as is dis-

cussed below.

1. We generalize the stability analysis of Paper I to an arbitrary

isotropic form of softening. This is a natural extension since

types of softened gravity different from the standard Plum-

mer softening are becoming more and more commonly em-

ployed (e.g., Combes et al. 1990; Palouš et al. 1993; Shlos-

man & Noguchi 1993). In particular, the alternatives pro-

posed by Hernquist & Katz (1989) and Pfenniger & Friedli

(1993) reflect an interesting idea, viz. that softening should

be as localized as possible since there is no clear reason for

modifying the gravitational interaction at long distances,

and it is tempting to explore its dynamical consequences.

From a more general point of view, this and the following

extensions provide the tools for comparing experiments that

employ different types of softened gravity.

2. We investigate the implications of our stability analysis

for the classical relaxation problem (Rybicki 1972; White
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1988). Relaxation and stability1 are intimately related in

self-gravitating systems, and even simple treatments reveal

their strong coupling through random motions. On the other

hand, the contribution of velocity dispersion to the relax-

ation time has been understood only in part and, because of

that, the classical argument favouring the choice of large val-

ues of s is wrong. We revise this argument and conclude that

neither small nor large values of s are convenient. Surpris-

ingly, there exists an intermediate choice of s that optimizes

the ‘dynamical resolution’ of the model, i.e. its faithfulness

in simulating the dynamics of 3-D discs with Newtonian

gravity, especially in situations near to the stability thresh-

old. We identify the optimal characteristics, and show how

to evaluate them for a given type of softened gravity. In

addition to investigating this aspect of the relaxation prob-

lem, we explain how effectively softening reduces noise on

various scales.

3. We complete the examination of 2-D models with isotropic

softening by investigating the equilibrium problem for an

axisymmetric state with epicyclic motions. In particular,

we explain how significantly the circular speed and related

quantities deviate from their Newtonian behaviours at vari-

ous distances from the centre.

4. We consider 3-D models with isotropic softening and exam-

ine two limiting cases: discs and the simple, yet instructive,

Jeans problem. An extension to 3D has been encouraged by

Friedli (1994) and Junqueira & Combes (1996, see the inter-

esting remarks in Sect. 2.2). Real stellar systems have several

gravitationally interacting components. Both N -body sim-

ulations and theoretical works are forced to use simplified

models, which do not necessarily provide faithful represen-

tations of the complexity of such systems. Our motivation is

to understand the basic differences between the dynamical

effects of softening in 3D and 2D, in the presence of a single

stellar component (3-D vs. 2-D discs and Jeans problem vs.

discs). In particular, we point up the strong modifications

introduced by a homogeneous geometry and the absence of

rotation.

5. We complete the examination of 3-D models by discussing

the basic dynamical effects of softening anisotropy. The

idea underlying this extension is that softening should be

anisotropic in simulations of stellar systems where signifi-

cantly higher spatial resolution is required along a certain

direction, such as in disc galaxies. The alternative family of

softening recently proposed by Pfenniger & Friedli (1993)

reflects such an important idea, and it is tempting to explore

the dynamical relations between its members. (An analo-

gous idea has been discussed in the context of smoothed

particle hydrodynamics by Shapiro et al. 1994, 1996 and

Fulbright et al. 1995; Hernquist, private communication, has

remarked that in models with anisotropic smoothing there

1 In this and similar contexts, ‘stability’ should be understood in the

general sense of ‘stability properties’; it is not implied that the system

is stable. The same applies to the use of ‘relaxation’ and ‘equilibrium’.

may be a significant tendency for angular momentum not to

be conserved.)

These extensions all together form a method for exploring the

dynamical effects of softening in N -body simulations of stellar

systems. Our method is described in Sect. 2, and is structured

as in the previous discussion. The two applications mentioned

in the same context are shown in Sect. 3 (see also Appendix

A). The conclusions of this paper are drawn in Sect. 4, where

we present our contribution in a more general perspective and

motivate future applications.

2. Method

2.1. 2-D models with isotropic softening

2.1.1. Stability

In 2-D discs with isotropic softened gravity, a given surface-

density perturbation Σ1(R, t) induces a potential perturbation

Φ1(R, t) = −G

∫

ϕs(|R−R′|) Σ1(R′, t) d2R′ , (1)

where −Gmϕs(R) is the point-mass potential, which depends

on the softening length s [ϕs(R) is also known as the soften-

ing kernel]. In analysing the Poisson equation (1), we adopt the

lowest-order WKBJ approach, as in Paper I, but with a differ-

ent albeit asymptotically equivalent spectral representation. In

simple terms, the new feature consists in considering perturba-

tions with a radial dependence g1(R) = g̃1 J0(kR) rather than

g1(R) = ĝ1 eikR, where k is the radial wavenumber and Jν de-

notes the Bessel function of the first kind and order ν (see, e.g.,

Abramowitz & Stegun 1972). The Bessel-Hankel representa-

tion is more convenient than the Fourier representation because

it allows factorizing the convolution in the Poisson equation

directly, without any assumption on the form of ϕs(R):

Φ̃1 = −2πG H0[ϕs(R)](k) Σ̃1 , (2)

where Hν denotes the Hankel transform of order ν (see, e.g.,

Sneddon 1972; Bracewell 1986):

Hν[g(R)](k) =

∫ ∞

0

g(R) Jν(kR)R dR . (3)

The reduction factor. Equation (2) admits of a simple interpre-

tation: the potential perturbation induced by a given surface-

density perturbation is weakened by a factor

S ≡
H0[ϕs(R)](k)

H0[ϕN(R)](k)
, (4)

−GmϕN(R) being the Newtonian point-mass potential. Cor-

respondingly, the contribution of self-gravity to the dispersion

relation is weakened through a reduction of the active unper-

turbed surface density by the same factor. Thus, S provides

complete information about the effect of isotropic softening on

the stability of 2-D discs, and its evaluation is the starting-point
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of our method. There are two complementary routes to S . One

is to calculate it analytically from:

S (|k|s) = |k| H0[ϕs(R)](k) (5)

(use, e.g., the comprehensive table of integrals by Gradshteyn

& Ryzhik 1994). This equation follows directly from Eq. (4),

being ϕN(R) = 1/R and H0[1/R](k) = 1/|k|. The other is to

compute it numerically from:

S (|k|s) = 1 − H1

[

1

R2
− fs(R)

]

(|k|) , (6)

−Gm2fs(R) being the point-mass force (use, e.g., the exten-

sive and well-documented NAG library; for algorithms of fast

Hankel transform see, e.g., Gueron 1994; van Veldhuizen et al.

1994). This equation is more convenient than the original Eq. (5)

because the slow decay of the oscillatory integrand as R → ∞
is speeded up. Such an improvement is obtained with simple

tricks, viz. integrating by parts and singling out the Newtonian

behaviour of fs(R) at long distances.

The effective scale height. Once S (|k|s) has been evaluated,

the second step is to analyse its behaviour at small |k|s since sta-

bility is basically a large-scale property. In order to understand

the general features of this behaviour, we can equivalently start

from Eq. (5) or (6) and use techniques of asymptotic expan-

sion of integrals (see, e.g., Bender & Orszag 1978). In Eq. (5),

we should first single out the Newtonian 1/R -dependence of

ϕs(R) at long distances, and then expand J0(kR). In Eq. (6), we

can directly expand J1(|k|R). The result is that S ∼ 1 − |k|h,

where in each case

h =

∫ ∞

0

[1 −Rϕs(R)] dR =
1

2

∫ ∞

0

[1 −R2fs(R)] dR . (7)

This quantity is positive in types of softened gravity of practi-

cal interest, and has an important dynamical meaning. In fact, a

comparison with the reduction factor of 3-D discs with Newto-

nian gravity (Shu 1968; Vandervoort 1970; Romeo 1992) shows

that softening mimics thickness on large scales and h has the ef-

fect of a scale height, as far as density waves are concerned (for

bending waves see Masset & Tagger 1996). As an alternative to

Eq. (7), h can be evaluated from the conversion factor

h

s
= −S

′(|k|s = 0) . (8)

Characteristics. The third and last step is to extract detailed

information concerning the stability properties. This part of the

method has been described in Paper I and can be generalized

without special difficulties. So in the following discussion we

briefly introduce the basic concepts and point out the major

results of the stability analysis. We adopt the basic fluid de-

scription with the following scaling and parametrization:

λ̄ ≡
λ

λT

, where λT =
2π

kT

≡
4π2GΣ

κ2
, (9)

Q ≡
cκ

πGΣ
(Safronov-Toomre parameter) , (10)

η ≡ skT (softening parameter) , (11)

ζ ≡ hkT (effective thickness parameter) , (12)

where λ is the radial wavelength of the perturbation, λT is the

Toomre wavelength, Σ is the unperturbed surface density, κ
is the epicyclic frequency and c is the planar sound speed. The

stability properties are described by the marginal stability curve,

i.e. the dispersion relation for marginally stable perturbations

viewed as a curve in the (λ̄, Q2) plane for a given η:

Q2 + 4λ̄
[

λ̄− S (η/λ̄)
]

= 0 . (13)

In particular, the stability level is measured by the effective

parameter

Qeff =
Q

Q̄(η)
, (14)

where the threshold Q̄(η) corresponds to the square root of the

global maximum of the marginal curve, and the typical radial

wavelength corresponds to the location λ̄max(η) of this maxi-

mum. The values of η and the related quantities that characterize

the stability properties are presented below.

• The conversion factor ζ/η = −S ′(η/λ̄ = 0), now ex-

pressed in dimensionless form, has already been discussed

(cf. the effective scale height).

• The safety threshold for approximate physical consistency

is ηsafe = 1
5

(ζ/η)−1. For η <∼ ηsafe, i.e. ζ <∼
1
5
, softening

mimics the effect of thickness. In particular, Q̄ ≈ 1 − 2ζ
and λ̄max ' 1

2
. For η >∼ ηsafe, softening causes artificial

stabilization and a moderate degree of ‘blueshift’.

• The critical value ηcrit is such that Q̄(ηcrit) = 0. For η ≥ ηcrit,

the fundamental meaning of velocity dispersion becomes

obscure because the stability level is no longer actively con-

trolled byQeff . This fact has serious dynamical implications:

it artificially precludes the possibility of simulating regimes

of normal spiral structure, which require fine-tuned choices

of the stability level.

• The critical radial wavelength is λ̄crit = λ̄max(ηcrit). Its devi-

ation from λ̄max(0) = 1
2

indicates the sensitivity of λ̄max(η)

for η < ηcrit.

2.1.2. Relaxation vs. stability

Let us investigate the implications of our stability analysis for

the classical relaxation problem (Rybicki 1972; White 1988;

see also Hockney & Eastwood 1988). We first sketch the basic

ideas. The Rybicki-White relaxation time tRW is proportional to

the softening length s, the cube of velocity dispersion σ and the

number of computer particlesN . In turn, σ is proportional to the

Safronov-Toomre parameterQ. So it seems that large values of s
are convenient, since they result in a long tRW for givenQ andN .

The idea underlying this argument is that a given Q corresponds

to a constant stability level as s varies. But it is not so. In fact,
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Fig. 1. The relaxation level τ (η) = η Q̄3(η) of 2-D discs with Plummer

softened gravity, where η is the softening parameter and Q̄(η) is the

stability threshold. The contribution of Q̄ to the η-dependence of τ has

major dynamical implications, as is pointed up in Sect. 2.1.2

the stability threshold Q̄ depends on s and the level is measured

by the effective parameter Qeff = Q/Q̄. Thus large values of s
are not convenient at all, because they correspond to a low Q̄
and result in a short tRW for given Qeff and N . Furthermore, if

tRW is short for both small and large values of s, there must exist

an intermediate choice of s that maximizes tRW. Does it satisfy

the criterion of approximate physical consistency? The answer

is: Yes, it does. The identification of the optimal characteristics

of 2-D discs with isotropic softened gravity is the focal point of

our method.

The corrected Rybicki-White relaxation time. Originally, tRW

was derived by adopting a simple two-body treatment, and

assuming that fs(R) is of the type: fs(R) = 0 for R ≤ s,

fs(R) = 1/R2 for R > s. A generalization of tRW to an arbi-

trary isotropic fs(R) is easy to derive and useful for comparing

the effects of different types of softened gravity. The resulting

tRW is equal to the original one multiplied by a correction factor

C , which is one of the relaxation characteristics. Referring to

the introductory discussion, we express tRW in a form that splits

the various contributions:

tRW = C · τ (η)Q3
eff N

(

2π3G2
Σ

3

κ5Md

)

, (15)

C s =

{
∫ ∞

0

[bfs(b)]2 db

}−1

, (16)

τ (η) = η Q̄3(η) , (17)

where τ (η) measures the ‘relaxation level’ as η varies, Md is the

disc mass and b is the impact parameter. In addition, the original

unspecified σ is interpreted as the radial velocity dispersion c
(different specifications would only modify the proportionality

factor).

Optimal characteristics. We now identify the values of η and

the related quantities that optimize the relaxation and stability

properties. Fig. 1 shows the behaviour of τ (η) in the case of

Plummer softening, but the following discussion is general.

• The optimal relaxation level τop and the optimal choice ηop

are such that τop = τ (ηop) = max {τ (η)}. The simple analyt-

ical approximation ηop ≈ 1
8

(ζ/η)−1 shows that ηop < ηsafe.

• In 3-D discs with Newtonian gravity, the temperature

anisotropy corresponding to the stability threshold for the

optimal value ζop ≈ 1
8

would be δop ≈ 2
5
, which means a re-

alistic vertical-to-radial velocity dispersion ratio cz/c ≈ 0.6
[cf. Paper I, Eq. (16) and Fig. 3].

• The values ηop1 and ηop2 such that, e.g., τ (ηop1) = τ (ηop2) =
1
2
τop specify a range of convenient choices of η, ηop1

<∼ η <∼
ηop2, and complete the information concerning the optimal

characteristics. The suggested definition is natural and es-

pecially meaningful because it turns out that ηop2 ∼ ηsafe.

What about the reduction factor? A delicate aspect of the re-

laxation problem that has not been considered in the previous

discussion concerns the effects of collective interactions be-

tween particles and self-consistent fluctuations on the dynam-

ical evolution of the system (e.g., Romeo 1990 and references

therein; Weinberg 1993; Zhang 1996). A thorough treatment of

collective effects would demand titanic efforts even in simpler

models (cf. Weinberg 1993). On the other hand, useful informa-

tion is already contained in S (|k|s) since the diffusion prop-

erties are determined by the dispersion relation. In particular,

the behaviour of S (|k|s) at large |k|s (S � 1) shows how

effectively softening suppresses small-scale fluctuations, which

represent an important source of noise in 2-D models (cf. White

1988; Schroeder & Comins 1989).

2.1.3. Equilibrium

The reduction factor. The equilibrium problem for an axisym-

metric state with epicyclic motions can be solved by using the

technique of Hankel transforms, which has already been in-

troduced in the stability analysis. The basic idea is to H0-

transform the Poisson equation twice: once for factorizing the

convolution of ϕs(R) and Σ(R), and the other time for recov-

ering Φ(R) [or, in the inverse problem, Σ(R)] from its trans-

form. This is a natural generalization of the approach adopted

by Toomre (1963) in the case with Newtonian gravity, where the

Poisson equation can be expressed in differential form (see also

Binney & Tremaine 1987). It follows that complete information

about the effect of isotropic softening on the equilibrium of 2-D

discs is already contained in S (|k|s), which in this context has

the meaning of a reduction factor for the transformed surface

density.
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The relative quadratic deviations. The formulae for the angu-

lar speed Ω(R) and κ(R) are of particular interest since these

quantities also determine the stability and relaxation properties:

Ω
2(R) =

2πG

R
H1

[

Σ̃(k) S (|k|s)
]

(R) , (18)

κ2(R) = 2πG H0

[

k Σ̃(k) S (|k|s)
]

(R)

+
4πG

R
H1

[

Σ̃(k) S (|k|s)
]

(R) , (19)

Σ̃(k) being an abbreviation for H0[Σ(R)](k). The relative

quadratic deviations of Ω(R) and κ(R) from their Newtonian

behaviours

εg(R) =

∣

∣g2(R) − g2
N(R)

∣

∣

g2
N(R)

(g = Ω, κ) (20)

depend on the model of mass distribution and on s/Rd, Rd

being the disc scale length. In order to estimate the magni-

tude of these deviations, we can set S ∼ 1 − |k|h and

find that εg = O(h/Rd) � 1, which is strictly valid for

R � h [the approximate formula for the circular speed is:

v2
c (R) ≈ v2

cN(R) + 2πGRΣ
′(R)h]. More important are the de-

viations that result near the centre. They imply a change in the

number and/or location of the inner Lindblad resonances, for

a given pattern speed, together with larger natural scales for

λ, c, s, h and tRW. The contribution of a massive bulge to the

rotation curve makes the system more robust against such mod-

ifications, but in certain respects this modelling is unclear and

we are not yet in a position to draw quantitative conclusions (cf.

Bertin 1996; Bertin & Lin 1996; Junqueira & Combes 1996,

Sect. 2.2).

2.2. 3-D models with isotropic/anisotropic softening

2.2.1. 3D vs. 2D

The dynamics of 3-D discs with isotropic softened gravity is

difficult to investigate because the effects of softening combine

with those of vertical random motion in a complicated form.

Nevertheless, we do in part understand how to benefit from the

additional degree of freedom introduced into such models. A

simple scale argument suggests that we should choose values

of s sufficiently smaller than the Newtonian characteristic scale

height, otherwise softening would significantly affect the verti-

cal structure at equilibrium, i.e. both the mass distribution and

the thickness scale. Likewise, the 2-D stability analysis suggests

that in 3D we should choose s � ssafe, otherwise softening

would significantly interfere with the effect of thickness, as far

as density waves are concerned. Note that choices of s ≥ scrit

have the same consequences as in 2D, since the critical stability

characteristics do not depend on the temperature anisotropy. We

mention that the vertical structure at equilibrium and the stabil-

ity of 3-D discs with Newtonian gravity have been investigated

in previous papers (Romeo 1990, 1992; see also Paper I).

The 3-D Jeans problem with isotropic softened gravity can

be solved by using the technique of Fourier transforms (see,

e.g., Sneddon 1972; Bracewell 1986). In Cartesian coordinates,

this is the natural approach for factorizing the convolution in

the Poisson equation and investigating the dynamical effects of

softening, as Pfenniger & Friedli (1993) have previously em-

phasized. In the following discussion we concentrate on the

reduction factor and compare the Jeans problem with the dy-

namics of discs. The reduction factor for the volume density

can be calculated analytically from:

SJ(|k|s) = |k| Fs[rϕs(r)](|k|) , (21)

where k is the wavevector of the perturbation and Fs denotes

the Fourier sine transform:

Fs[g(r)](|k|) =

∫ ∞

0

g(r) sin(|k|r) dr . (22)

Equation (21) follows from the definition of SJ and the spher-

ical symmetry of ϕs, which allows expressing the 3-D Fourier

exponential transform in terms of Fs. Two alternative equations

that are more convenient for numerical computation can be ob-

tained by first singling out the Newtonian behaviour of ϕs(r)

at long distances, and then integrating by parts (the integrand

can be split in two ways). As regards the magnitude of SJ(|k|s),

SJ = 1−o(|k|s) at small |k|s and SJ � 1 at large |k|s. The sta-

bility properties are weakly affected by softening. In particular,

significant deviations of the marginally stable wavelength λ0

from the Jeans wavelength λJ would occur for values of s com-

parable to λJ. For example, in the case of Plummer softening

this can be shown by using the simple numerical approximation

λ0 ≈ λJ + 3
2
s for 1

6
λJ

<∼ s <∼
2
3
λJ [the analytical formula for

SJ(|k|s) is reported in Appendix A]. Weinberg (1993) has shown

that in analogous models with Newtonian gravity the dominant

source of noise is represented by fluctuations on scales of stabil-

ity interest. This fact and our stability analysis suggest that the

collective relaxation properties are also weakly affected by soft-

ening. Thus, there is a sharp contrast between the Jeans problem

and the dynamics of discs: a flattened geometry strengthens the

effects of softening, and rotation makes them critical for values

of s that are an order of magnitude below λT.

2.2.2. Anisotropy vs. isotropy

The dynamical properties of 3-D discs are roughly decoupled

parallel and perpendicular to the plane, and a satisfactory mod-

elling with isotropic softening may impose significantly dif-

ferent requirements on s. Pfenniger & Friedli (1993) have dis-

cussed an ingenious way of coping with this difficulty, viz. to in-

troduce a further degree of freedom into such models: softening

anisotropy. We assume that the point-mass potential −Gmϕ(r)

is of the form ϕ(r) = ϕ(R, |z|), and depends on the planar and

vertical softening lengths s‖ and s⊥, respectively. The particu-

lar form in which softening anisotropy is implemented defines

s‖ and s⊥, and specifies their meaning in the context of the

dynamical requirements.



528 A.B. Romeo: Dynamical effects of softening in N -body simulations of disc galaxies

Fig. 2. The point-mass potential −Gmϕ(r) (top) and the magnitude of the force Gm2|f |(r) (bottom) in isotropic (left) and anisotropic (right)

types of softened gravity. In the isotropic types (discussed in Sect. 3.1) the gravitational interaction depends on the softening length s. In

the anisotropic types (discussed in Sect. 3.2) the gravitational interaction depends on the planar and vertical softening semi-axes s‖ and s⊥,

respectively. The anisotropic behaviour is only shown in the extreme cases (R, |z| = 0) and (R = 0, |z|), and is labelled accordingly

The 3-D Jeans problem shows the basic dynamical effects

of softening anisotropy. The reduction factor may be evaluated

from (cf. 2-D discs with isotropic softened gravity):

SJ(k‖, k⊥) = (k2
‖ + k2

⊥) Fc

[

ϕ̃(k‖; |z|)
]

(k⊥) , (23)

where ϕ̃(k‖; |z|) is an abbreviation for H0[ϕ(R, |z|)](k‖) and

Fc denotes the Fourier cosine transform. This equation fol-

lows from the axial and planar symmetries of ϕ, which allow

expressing the 3-D Fourier exponential transform in terms of

H0 and Fc. Supposing that s‖ > s⊥, then we expect that

SJ(k‖, 0) < SJ(0, k⊥) for k‖ = k⊥, which means that the stabil-

ity and collective relaxation properties are more affected parallel

than perpendicular to the plane of reference.

3. Applications

3.1. Isotropic types of softening

As a first application of our method, we compare the dynami-

cal effects of three isotropic types of softened gravity: Plummer

softening (Aarseth 1963; Miller 1970), cubic-spline softening
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Fig. 3. The reduction factor S (k) of 2-D discs with isotropic (left) and anisotropic (right) types of softened gravity,k being the radial wavenumber

of the perturbation. In addition, s is the softening length, s‖ is the planar softening semi-axis, and the types of softened gravity are abbreviated

as in Fig. 2. Also shown are the ranges in which the contribution of self-gravity to the dispersion relation is stabilizing and destabilizing. (In the

case with Newtonian gravity S = 1)

Table 1. Stability and relaxation characteristics of 2-D discs with isotropic (top) and anisotropic (bottom) types of softened gravity

Softening Parameter Related Quantities

Type of Softened Gravity Abbr. ηop1
a ηop

b ηop2
a ηsafe

c ηcrit
d

C
e τop

f δop
g ζ/ηh λ̄crit

i

Plummer P 0.03 0.12 0.25 0.20 0.37 1.70 0.05 0.39 1.00 0.37

Cubic Spline CS 0.06 0.23 0.44 0.45 0.61 0.99 0.11 0.30 0.44 0.46

Homogeneous Sphere HS 0.07 0.27 0.52 0.53 0.71 0.83 0.12 0.30 0.38 0.47

Homogeneous Oblate Spheroid j HOS 0.18 0.55 0.94 —— 1.21 0.44 0.32 —— 0.04 0.61

Homogeneous Prolate Spheroid j HPS 0.03 0.11 0.24 0.18 0.37 1.73 0.05 0.39 1.13 0.33

a Values corresponding to one half the optimal relaxation level.
b Optimal choice.
c Safety threshold for approximate physical consistency.
d Critical value.
e Correction factor for the Rybicki-White relaxation time.
f Optimal relaxation level.
g Temperature anisotropy corresponding to the stability threshold for the optimal value of the effective thickness parameter.
h Conversion factor, ζ being the effective thickness parameter (below the safety threshold for approximate physical consistency).
i Critical radial wavelength.
j HOS has s⊥/s‖ = 1

10
and HPS has s⊥/s‖ = 3, where s‖ and s⊥ are the planar and vertical softening semi-axes, respectively, and s‖ is

regarded as the softening length of reference.

(Hernquist & Katz 1989) and homogeneous-sphere softening

(Pfenniger & Friedli 1993); hereafter abbreviated to P, CS and

HS, respectively. Each name means that the softened point-mass

potential can be viewed as the Newtonian potential generated by

a spherical mass distribution of that type (but the force is evalu-

ated regarding the test particle as a point mass). In the following

discussion we do not refer to this finite-sized particle interpre-

tation of softening, unless otherwise specified. The behaviours

of these types of softened gravity are shown in Fig. 2 (left).

In P the gravitational interaction is softened mainly at short

distances and the Newtonian behaviour is recovered asymptot-

ically, whereas in CS and HS softening is perfectly localized,

i.e. beyond a certain cut-off distance the gravitational interac-

tion is identically Newtonian. The form in which localization

is implemented differs in the two types. In particular, CS has

a rather soft cut-off at r = 2s, s being the nominal softening

length, whereas HS has a sharper cut-off at r = s. The results

of the dynamical comparison are presented in Fig. 3 (left) and
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Fig. 4. The relative quadratic deviations εΩ(R) (top) and εκ(R) (bottom) of 2-D exponential discs with isotropic (left) and anisotropic (right)

types of softened gravity, where Ω is the angular speed, κ is the epicyclic frequency and the deviations are measured from their Newtonian

behaviours. In addition, Rd is the disc scale length, s is the softening length, s‖ is the planar softening semi-axis, and the types of softened

gravity are abbreviated as in Fig. 2. (In the case with Newtonian gravity εΩ = εκ = 0)

Table 1 (top), which are discussed below, and in Figs. 4 (left)

and 5. Useful analytical formulae are reported in Appendix A.

Fig. 3 (left) shows that the effective scale heighth varies sig-

nificantly with softening type, but apart from that the stability

properties are analogous on scales larger than 2h. This can be

shown by rescaling k in terms of h−1 and noting that S is sim-

ilar in the three types for |k|h <∼
1
2
. For |k|s >∼ 4, SHS changes

sign and starts to oscillate, in contrast to SP. An analogous be-

haviour occurs in SCS, but is less noticeable. Negative values of

S mean that a given surface-density perturbation is in phase

with the induced potential perturbation and, correspondingly,

that the contribution of self-gravity to the dispersion relation

is stabilizing. However, this feature does not affect the stabil-

ity properties on scales comparable to the inverse of the typical

radial wavenumber, since S changes sign well beyond the crit-

ical point kcritscrit [cf. Table 1 (top)]. The related oscillations of

S mean that in certain ranges of |k|s noise is suppressed more

effectively on larger than smaller scales, and correspond to os-

cillations of the short-wave branch of the dispersion relation.

On the other hand, this feature has not significant consequences

for the relaxation properties, because the corrected optimal re-

laxation level C τop is approximately the same as in P [cf. Table

1 (top)].

Table 1 (top) shows that the stability and relaxation char-

acteristics vary significantly with softening type. The largest

variations occur between HS and P, concern ζ/η and ηsafe, and

are up to a factor of 3. In contrast, the corrected optimal relax-

ation level C τop, δop and λ̄crit remain approximately constant.

The variations between HS and CS are within 20%.

3.2. Anisotropic types of softening

As a second application of our method, we consider an

anisotropic generalization of HS, the family of homogeneous-

ellipsoid softening (Pfenniger & Friedli 1993), and compare the

dynamical effects of two representative spheroidal members:
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Fig. 5. The reduction factor SJ(|k|s) for the 3-D Jeans problem with

isotropic types of softened gravity, wherek is the wavevector of the per-

turbation and s is the softening length. In addition, the types of softened

gravity are abbreviated as in Fig. 2. Also shown are the ranges in which

the contribution of self-gravity to the dispersion relation is stabilizing

and destabilizing. (In the case with Newtonian gravity SJ = 1)

one oblate with s‖ : s⊥ = 10 : 1, s‖ and s⊥ being the pla-

nar and vertical softening semi-axes, and the other prolate with

s‖ : s⊥ = 1 : 3; hereafter abbreviated to HOS and HPS, respec-

tively. Regarding s‖ as the softening length of reference, s⊥/s‖
gives a measure of softening anisotropy. The behaviours of these

types of softened gravity are shown in Fig. 2 (right). Anisotropy

is implemented in a form consistent with the finite-sized particle

interpretation of softening, i.e. through a spheroidal deforma-

tion of the field particle. This mainly corresponds to a spheroidal

transformation of the surface on which the force peaks, but it

also strongly influences the behaviour in the plane. In particu-

lar, the degree of softening localization, the sharpness and mag-

nitude of the force peak differ from those in HS [cf. Fig. 2

(left)], and are higher in HOS than HPS. So a 2-D analysis is

required even though the isotropic case has already been investi-

gated. The results of the dynamical comparison are presented in

Fig. 3 (right) and Table 1 (bottom), which are discussed below,

and in Fig. 4 (right). The major points are then generalized in

the final discussion. Useful analytical formulae are reported in

Appendix A.

Fig. 3 (right) shows that, for |k|s‖ <∼ 2, SHOS is concave,

in contrast to SHPS. The transition behaviour occurs in SHS [cf.

Fig. 3 (left)]. Concavity of S mainly means that softening has

a stronger tendency to cause artificial stabilization for a given

effective scale height h, for we know that the reduction factor

of 3-D discs with Newtonian gravity is convex (cf. Paper I,

Fig. 1). In fact, HOS does not mimic the effect of thickness

for realistically large values of h, since the safety threshold for

approximate physical consistency ssafe and the optimal value

hop are ill-defined [cf. Table 1 (bottom)]. Concavity of S also

means that softening causes a moderate degree of ‘redshift’.

For |k|s‖ >∼ 4, SHOS and SHPS become analogous to SHS, and

analogous conclusions can be drawn concerning the stability

and relaxation properties.

Table 1 (bottom) shows that the stability and relaxation char-

acteristics differ considerably in the two types. The major qual-

itative differences concern ηsafe and δop, and have been pointed

out above [cf. discussion of Fig. 3 (right)]. Excluding ζ/η, which

has a restricted range of applicability in HOS, the largest vari-

ation concerns τop and is beyond half an order of magnitude.

In contrast, note the low sensitivity of the corrected optimal

relaxation level C τop, which remains roughly constant.

Finally, instead of comparing those results with the isotropic

case, let us clarify the dynamical relations between all the

spheroidal members of the family of homogeneous-ellipsoid

softening and the standard type of softened gravity [cf. Table 1

(top)].

1. A general feature of the spheroidal members is that h is

determined by s⊥ alone: h = 3
8
s⊥. This is not intuitive since

a more natural softening length in the plane is expected to

be s‖.

2. All the oblate members with s⊥/s‖ <∼
3
5

have an ill-defined

ssafe, i.e. ssafe
>∼ scrit, and thus differ fundamentally from P

(cf. HOS).

3. As s⊥/s‖ increases, such a difference becomes progres-

sively less important (cf. HS and HPS). Indeed, the prolate

member with s⊥/s‖ = 8
3
, i.e. h = s‖, turns out to be hardly

distinguishable from P. (Values of s⊥/s‖ >∼ 2–3 are not

employed in simulations.)

4. Conclusions

Modelling gravity is a fundamental problem that must be tack-

led in N -body simulations of stellar systems, and satisfactory

solutions require a deep understanding of the dynamical effects

of softening. This problem has deserved special attention both

in the past (e.g., Miller 1970, 1976) and in more recent times

(e.g., Efstathiou et al. 1985; Hernquist & Katz 1989; Pfenniger

& Friedli 1993). Viewed in this general perspective, our con-

tribution has a threefold practical importance in addition to the

points emphasized in Sect. 1.

1. The two present applications of our method reveal the dy-

namical differences between the most representative types

of softened gravity: the isotropic P, CS and HS (abbreviated

as in Sect. 3.1), and the anisotropic HOS and HPS (abbrevi-

ated as in Sect. 3.2). The major conclusions concerning their

dynamical resolution, i.e. their faithfulness in simulating the

Newtonian dynamics, are summarized below.

(a) As regards the isotropic types, the dynamical resolu-

tion is comparable. This results from the fact that, even

though the spatial resolution and the effectiveness in re-

ducing noise differ significantly in P, CS and HS for the

same nominal softening length s, those differences can

largely be removed by considering a more appropriate

softening length of reference.
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(b) As regards the anisotropic types, the dynamical resolu-

tion is significantly coupled parallel and perpendicular

to the plane. In the plane, it decreases in quality from

HPS to HOS, and the transition occurs in the oblate

members for a softening axial ratio s⊥/s‖ ∼ 3
5

(HPS

is dynamically similar to P). These disadvantages result

from the finite-sized particle implementation of soften-

ing anisotropy. On the other hand, they have less impor-

tance than the advantage of introducing such a degree

of freedom into 3-D simulations of disc galaxies, which

has been emphasized by Pfenniger & Friedli (1993) and

in our method.

(c) Last but not least, when employing these types of soft-

ened gravity in simulations of disc galaxies, we should

recall that the dynamical resolution depends critically

on two quantities: s, or s‖ for a given s⊥/s‖, and the

Safronov-Toomre parameter Q (cf. Paper I). The choice

of s or s‖ should be checked vs. the profiles of the char-

acteristic values sop, ssafe and scrit, which are tabulated in

the applications. The choice of Q should be checked vs.

the profiles of the stability threshold Q̄ and level Qeff ,

which can be evaluated as is explained in the method.

2. Our method can be applied for testing new ideas about soft-

ening. There are two features that encourage such future

applications.

(a) One is the unified approach adopted for investigating

stability, relaxation and equilibrium. As a result, full

information about the dynamical effects of softening is

contained in a single quantity: the reduction factor S .

(b) The other is the modular structure of the method. We

describe step by step how to extract detailed information

concerning the dynamical properties, starting from S

and pointing out the quantities of major interest.

3. But our method can be applied in another, more fruitful, way:

for developing new ideas about softening. Indeed, it opens

a direct route to the discovery of optimal types of softened

gravity for given dynamical requirements, and thus to the

accomplishment of a physically consistent modelling even

in the presence of a cold interstellar gaseous component.

Such a future application will be the objective of a ‘twin’

paper.
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Appendix A: useful analytical formulae for Sect. 3

SP(|k|s) = e−|k|s ; (A1)

(ζ/η)P, CS, HS, HOS, HPS = 1, 31
70
, 3

8
, 3

80
, 9

8
; (A2)

(ηsafe)P, CS, HS, HOS, HPS = 1
5
, 14

31
, 8

15
, —, 8

45
; (A3)

(ηcrit)P = 1
e

; (A4)

(λ̄crit)P = 1
e

; (A5)

(C )P, CS, HS = 16
3π
, 17 325

17 504
, 5

6
; (A6)

SJ P(|k|s) = |k|sK1(|k|s) , (A7)

SJ CS(|k|s) =
sin3(|k|s/2)

(|k|s/2)3
SJ HS(|k|s/2) , (A8)

SJ HS(|k|s) =
3 [sin(|k|s) − |k|s cos(|k|s)]

(|k|s)3
, (A9)

where Kν denotes the modified Bessel function of the second

kind and order ν (see, e.g., Abramowitz & Stegun 1972).
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