
Astron. Astrophys. 335, 922–928 (1998) ASTRONOMY
AND

ASTROPHYSICS

Modelling gravity in N -body simulations of disc galaxies.
Optimal types of softening for given dynamical requirements

Alessandro B. Romeo

Onsala Space Observatory, Chalmers University of Technology, S-43992 Onsala, Sweden (romeo@oso.chalmers.se)

Received 6 March 1998 / Accepted 21 April 1998

Abstract. Modelling gravity is a fundamental problem that
must be tackled inN -body simulations of stellar systems, and
satisfactory solutions require a deep understanding of the dy-
namical effects of softening. In a previous paper (Romeo 1997),
we have devised a method for exploring such effects, and we
have focused on two applications that reveal the dynamical dif-
ferences between the most representative types of softened grav-
ity. In the present paper we show that our method can be applied
in another, more fruitful, way: for developing new ideas about
softening. Indeed, it opens adirect route to the discovery of opti-
mal types of softened gravity for given dynamical requirements,
and thus to the accomplishment of a physically consistent mod-
elling of disc galaxies, even in the presence of a cold interstellar
gaseous component and in situations that demand anisotropic
resolution.
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1. Introduction

N -body simulations of disc galaxies rely on the use of soft-
ening. This artifice removes the short-range singularity of the
gravitational interaction, which is dynamically unimportant and
computationally troublesome, whereas it leaves the long-range
behaviour of gravity unchanged. But softening is also a critical
factor in simulations. It controls their quality and can affect their
result on scales much larger than the softening length. Its dy-
namical effects are further exacerbated in the presence of a cold
interstellar gaseous component and in situations that demand
anisotropic resolution. Thus softening poses a dynamical prob-
lem of special concern, which should be probed carefully and
in detail (e.g., Hernquist & Barnes 1990; Pfenniger & Friedli
1993; Romeo 1994, hereafter Paper I; Romeo 1997, hereafter
Paper II1; and references therein).

In Paper I, we have investigated how faithful simulations are.
In particular, we have concluded that the standard way of intro-
ducing softening in the presence of stars and cold interstellar

1 Sections and equations of that paper are denoted by the prefix II.

gas is definitely unsatisfactory in several regimes of astrophys-
ical interest. It is so because important small-scale instabilities
of the gaseous component, e.g. those peculiar to star-formation
processes, are suppressed just as unphysical noise of the stellar
component. Faithfulness requires an appropriate introduction
of two softening lengths, one for each component, and also a
rigorous specification of the star-gas gravitational interaction.

In Paper II, we have devised a method for exploring the dy-
namical effects of softening. As a major result, we have shown
how to choose the softening length for optimizing the faithful-
ness of simulations to the Newtonian dynamics. Then we have
focused on two applications that reveal the dynamical differ-
ences between the most representative types of softened gravity.
In particular, we have concluded that it is desirable to improve
the current way of introducing anisotropic softening. We need a
clearer decoupling of the resolution parallel and perpendicular
to the plane, and also more natural planar and vertical softening
lengths.

In the present paper, which completes our planned research
work about softening, we propose aninnovative solution to the
problem. The understanding of galactic and extragalactic astro-
physics is at a crucial stage. Unsolved problems are viewed in
new perspectives, which promise major revisions of knowledge
(see, e.g., Blitz & Teuben 1996; Block & Greenberg 1996).
Recent investigations suggest, for instance, a more enigmatic
interplay between stellar disc and bulge/halo (e.g., Lequeux et
al. 1995), a clearer relation between cold gas and dark matter in
spiral galaxies (e.g., Pfenniger et al. 1994; Pfenniger & Combes
1994; Combes & Pfenniger 1997), and a closer connection be-
tween the fractal structures of the interstellar medium and of the
universe (e.g., de Vega et al. 1996, 1998). The implications are
clear: modelling gravity inN -body simulations of disc galaxies
should offer a flexible interface with such a progress. Our solu-
tion is to optimize the fidelity of simulations to given dynamical
requirements. How do we apply this idea in practice?

1. We impose the requirements in the wavenumber space since
this is the natural dynamical domain of gravity, as Pfenniger
& Friedli (1993) have previously emphasized.

2. We identify the softening length with the characteristic dy-
namical scale length.
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3. Then we invert part of the method of Paper II, and the result
is the optimal type of softened gravity that satisfies those
dynamical requirements.

Our application covers both 2-D and 3-D modelling. The basic
cases are extended to more complex situations through recipes
for implementing star-gas and anisotropic softening, which have
already been motivated (cf. discussions of Papers I and II). Last
but not least, each description is complemented by an example
that leaves room for creativity.

The present paper is organized as follows. The application
is shown in Sects. 2 and 3 (see also Appendix A), and pro-
ceeds as in the previous discussion. Comments on related works
concerning softening are made in Sect. 4. The conclusions and
perspectives are drawn in Sect. 5, where we present our three
papers about softening in a more unified view and emphasize
their potentially strong impact on galactic dynamics.

2. 2-D modelling

2.1. Inverting part of the method of Paper II

The method of Paper II allows determining the dynamical re-
sponse of the model to a given type of softened gravity. The
basic quantity that describes this response is the reduction fac-
tor S(|k|s) defined in Eq. (II-4), wherek has the meaning of a
radial wavenumber ands is the softening length. In a few words,
this is the factor by which softening reduces the dynamical con-
tribution of self-gravity. The behaviour ofS(|k|s) provides the
following information:

• At small |k|s, it shows how significantly the stability and
collective relaxation properties are affected on large scales.
Specifically, a comparison with the reduction factor of 3-
D discs with Newtonian gravity reveals how well softening
mimics the effects of thickness, as far as density waves are
concerned.

• At large |k|s, it shows how effectively noise is suppressed
on small scales.

• It also contains less direct information about how signifi-
cantly the equilibrium properties are affected.

The reduction factorS(|k|s) is related to the point-mass po-
tential −Gmϕs(R) and force−Gm2fs(R) through integral
transforms. These transforms can easily be inverted, and the
inversion formulae that relateϕs(R) andfs(R) to S(|k|s) are:

ϕs(R) = H0

[

1

k
S(|k|s)

]

(R) , (1)

fs(R) = H1[S(|k|s)](R) , (2)

whereHν denotes the Hankel transform of orderν:

Hν [g(k)](R) =

∫ ∞

0

g(k) Jν(kR) k dk , (3)

and Jν denotes the Bessel function of the first kind and or-
derν (for mathematical and numerical references see Sect. II-
2.1.1; in particular, for a swift numerical computation of Hankel

transforms use, e.g., the NAG library). Inverting this part of the
method has a direct practical importance and, indeed, is the
trick behind the present application: it allows imposingarbi-
trary dynamical requirements in the form of a reduction factor
and identifying the optimal type of softened gravity that satis-
fies such requirements. In addition, the rest of the method allows
testing the precise dynamical performance of the modelling.

Here is an example: we want to find a type of softened gravity
that mimics the effects of thickness very well and, at the same
time, suppresses noise very effectively. This is illustrated in
Fig. 1a and in the following discussion. A reduction factor that
conforms with the dynamical requirements specified above is:

S(|k|s) =
1

1 + |k|s
· e−(|k|s/π)5 . (4)

The first function is the reduction factor of 3-D discs with New-
tonian gravity and characteristic scale heights (Shu 1968; Van-
dervoort 1970; Romeo 1992). The second function acts as a
low-pass filter with rather sharp cut-off at radial wavelengths
λ ≈ 2s. The benefits of filtering in spectral domain are well
known in the context of digital image processing (see, e.g., Jain
1989; Press et al. 1992; see also Vetterling et al. 1992). In our
case the dynamical resolution, i.e. the faithfulness in simulat-
ing the Newtonian dynamics, is substantially higher than in the
standard Plummer softening. Indeed, it can be further improved
by choosing sharper filters, at the cost of noticeable oscillations
in the gravitational interaction. To some extent, their prefer-
ence is a matter of taste. On the other hand, too sharp filters
make the typical radial wavelength and possibly other dynami-
cal properties hypersensitive to the location of the cut-off, which
is unphysical. Thus, they should not be used.

2.2. Implementing star-gas softening

How do we model gravity in the presence of two components,
such as stars and cold interstellar gas? Let us think in the alter-
native way of finite-sized particles interacting with Newtonian
gravity, as Dyer & Ip (1993) have partly suggested (for an ABC
of finite-sized particles see Appendix A). Then the answer is
simple. Each component turns out to have its own positive re-
duction factorS(|k|s), where nows is the scale length of the
particle mass distribution. So the star-star and gas-gas interac-
tions are as in the one-component case, while the star-gas inter-
action potential−Gmsmgϕs-g(R) and force−Gmsmgfs-g(R)
are determined unequivocally by the inversion formulae:

ϕs-g(R) = H0

[

1

k

√

Ss(|k|ss) · Sg(|k|sg)

]

(R) , (5)

fs-g(R) = H1

[

√

Ss(|k|ss) · Sg(|k|sg)

]

(R) . (6)

Our recipe for implementing star-gas softening has strong ad-
vantages. Indeed, its characteristics arefundamental for mod-
elling the complex roles that such components play in regimes
of astrophysical interest, as we have concluded in Paper I.
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Fig. 1a and b. Examples of 2-D
modelling: a one-component case
(cf. Sect. 2.1),b two-component
case (cf. Sect. 2.2). The abbrevia-
tions N, T and P mean Newtonian
gravity, thickness and Plummer soft-
ening, respectively

As an example, we want to generalize the type of softened
gravity found in the one-component case to the presence of a
young disc stellar population and a cold interstellar gaseous
component with, say,ss : sg = 2 : 1 (see, e.g., Mihalas &
Binney 1981). This is illustrated in Fig. 1b and in the following
discussion. The finite-sized particle implementation of star-gas
softening is consistent with the effects of thickness: there are
two positive reduction factors, one for each component. Again,
the stellar reduction factor is:

Ss(|k|ss) =
1

1 + |k|ss
· e−(|k|ss/π)5 . (7)

Concerning cold interstellar gas, the situation is more com-
plex and uncertain (e.g., Combes & Pfenniger 1996; Elmegreen
1996a, b; Ferrara 1996; Lequeux & Guélin 1996; Pfenniger
1996; Pfenniger et al. 1996). Sharp filters should not be used
because they over-stress adherence to the effects of thickness,
whereas the effects of turbulence and fractality may be more im-
portant. Soft filters are safer in that respect, and our preference

goes to the Gaussian member of the family2. So the gaseous
reduction factor is:

Sg(|k|sg) =
1

1 + |k|sg
· e−(|k|sg/π)2 . (8)

Regardingss as the characteristic scale height of reference, dif-
ferent values ofsg/ss have no influence on the stellar func-
tions, modify the star-gas gravitational interaction moderately
and change the gaseous functions according to simple scaling
laws.

3. 3-D modelling

3.1. Passing from 2D to 3D

In 3-D disc models,S(|k|s) is no longer the true reduction
factor but is still useful for quantifying the dynamical effects of
softening parallel to the plane, which now combine with those
of vertical random motion. Specifically, a comparison with the

2 A simpler, but less instructive, choice would be:Sg(|k|sg) =
e−|k|sg , i.e. the reduction factor for the standard Plummer softening.
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Fig. 2a and b. Examples of 3-D
modelling:a isotropic case (cf. Sect.
3.1), b anisotropic case (cf. Sect.
3.2). The abbreviations N, T and
P mean Newtonian gravity, thick-
ness and Plummer softening, re-
spectively

reduction factor of 3-D discs with Newtonian gravity suggests
how much softening interferes with the effects of thickness, as
far as density waves are concerned. The inversion formulae for
ϕs(r) andfs(r) are as in the 2-D case. This is the simplest way
of passing from 2-D to 3-D modelling. (The generalization to
two components is clear.)

Here is an example: we want to find a type of softened gravity
that interferes with the effects of thickness very little and, at the
same time, suppresses noise very effectively. This is illustrated
in Fig. 2a. The pseudo reduction factor is:

S(|k|s) = e−(|k|s/π)3 , (9)

and acts as a low-pass filter with rather soft cut-off atλ ∼ 2s.
The discussion concerning the dynamical resolution and the
action of sharper filters follows the 2-D case closely. On the
other hand, only in 3D can we simulate the evolutionary nature
of thickness, which arises from the vertical random motion and
its subtle coupling with the dynamical properties parallel to the
plane (Romeo 1990, 1992; see also Paper I).

3.2. Implementing anisotropic softening

In order to model gravity in situations that demand anisotropic
resolution, it is convenient to think in the standard way of point
particles interacting with softened gravity, as Zotov & Morozov
(1987) have partly suggested. The softening surface is trans-
formed from a sphere of radiuss into a spheroid of planar and
vertical semi-axess‖ ands⊥, respectively. This means that the
softening length is the distance from the centre to the surface of
the spheroid in the direction of the position vector:

s(R, |z|) =

√

s2
‖R

2 + s2
⊥z2

R2 + z2
. (10)

The resolution turns out to be decoupled parallel and perpendic-
ular to the plane, and to be determined by the natural planar and
vertical softening lengths. These characteristics of our recipe
for implementing anisotropic softening have important advan-
tages, as we have concluded in Paper II. (The generalization to
two components is clear.)

As an example, we want to generalize the type of softened
gravity found in the isotropic case to situations that demand
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moderate anisotropic resolution with, say,s‖ : s⊥ = 2 : 1. This
is illustrated in Fig. 2b. Regardings‖ as the softening length of
reference, different values ofs⊥/s‖ have no influence on the
planar functions and change the gravitational interaction along
the vertical direction according to simple scaling laws.

4. Discussion

Three recent papers concerning softening optimization and con-
ception deserve comment:

• Merritt’s (1996) optimization is performed with respect to
the Newtonian dynamics in the configuration space, and
concerns the softening length. The configuration space does
not permit a clear distinction between large-scale dynami-
cal properties and small-scale noise, and also emphasizes
the equilibrium state as most representative of the whole
dynamics.

• Weinberg’s (1996) optimization is comparable to that of
Merritt (1996) but concerns orthogonal series force com-
putation, i.e. roughly speaking the softening length and the
type of softened gravity.

• Dyer & Ip’s (1993) conception is rigid: softened gravity
must mimic finite-sized particles. But why? Softening is an
artifice: its physical consistency should be scrutinized with
respect to basic dynamical requirements, not with respect to
the inter-particle force alone. An elastic conception is more
useful. Apart from that, Dyer & Ip (1993) have suggested a
softening optimization that is not so different from that of
Merritt (1996).

5. Conclusions and perspectives

The importance of computer simulations in astrophysics is anal-
ogous to that of experiments in other branches of physics. They
also serve as a welcome bridge between theories, often restricted
to idealized situations, and observations, revealing instead the
complexity of nature. Major present objectives are to construct
physically consistentN -body models of disc galaxies and to
simulate their dynamical evolution, especially in regimes of
spiral structure in which a fruitful comparison between theories
and simulations can be made (e.g., Pfenniger & Friedli 1991;
Junqueira & Combes 1996; Zhang 1996; Bottema & Gerritsen
1997; Fuchs & von Linden 1998; von Linden et al. 1998; Zhang
1998a, b). The construction of such models is indeed a diffi-
cult task which has not yet been fully accomplished, and which
should eventually provide clues of vital importance to a number
of open questions posed by both theories and observations.

Our involvement has been threefold. In Paper I, we have
recognized a fundamental problem posed by this research pro-
gramme (for a concrete use of that analysis and for interesting
remarks see, e.g., Junqueira & Combes 1996). In Paper II, we
have devised a method for solving this problem. In the present
paper, we apply this method and solve the problem, thus laying
the foundations of such a plan. Themajor result is that gravity
can be modelled so as to optimize the fidelity of simulations, and

the procedure is practicable. The following conclusions point up
the whys and wherefores:

1. Optimization is performed with respect to arbitrary dynam-
ical requirements and, in specific examples, with respect to
the Newtonian dynamics. This enriches the modelling with
anunprecedented degree of freedom, which has clear episte-
mological motivations (cf. Sect. 1, discussion of the present
paper).

2. Optimization is performed in the wavenumber space. This
is theappropriate domain for imposing dynamical require-
ments on the modelling.

3. Optimization concernsboth the softening lengthand the
type of softened gravity.

4. Softening is conceived as adouble artifice. The softened
gravity and finite-sized particle conceptions are equivalent
in the basic cases. Concerning more complex situations, the
latter is particularly useful for implementing star-gas soften-
ing, whereas the former is particularly useful for implement-
ing anisotropic softening. Thus both conceptions contribute
towards the accomplishment of a physically consistent mod-
elling.

Our application is ready for a concrete use. An attractive idea is
to employ a particle-particle code together with MD-GRAPE,
a highly parallelized special-purpose computer for many-body
simulations with an arbitrary central force (Fukushige et al.
1996). We can also employ a classical particle-mesh code. Then
the dynamical effects of the grid are known and factorize as those
of softening (e.g., Bouchet et al. 1985; Efstathiou et al. 1985; for
a review see, e.g., Hockney & Eastwood 1988). So essentially
the application proceeds as in the present paper, but it may be
useful to act directly on the wavenumber space (e.g., Tormen
& Bertschinger 1996). A more complex problem concerns tree
codes, which have hierarchical structure and adaptive resolution
over multiple scales (e.g., Hernquist 1987; for a review see, e.g.,
Pfalzner & Gibbon 1996). The solution to that problem would
need a more advanced analysis (cf. following discussion). Wel-
come suggestions about the choice of the code can come from
cosmological simulations (e.g., Splinter et al. 1998).

Finally, what about the future? Our approach is connected
with the technique of filtering in spectral domain used in the con-
text of digital image processing. This is a rapidly evolving field
with growing applications in science and engineering, which
can promote further substantial advances inN -body modelling
of disc galaxies. For instance, wavelets are ideal for resolving
multi-scale problems in space and/or time, such as those con-
cerning turbulence, bifurcations, fractals and many others (see,
e.g., Kaiser 1994; Holschneider 1995; Bowman & Newell 1998;
for an alternative analysis tool see, e.g., Stutzki et al. 1998).
Speculating further, wavelets might be used for speeding up
simulations through fast solution of linear systems (cf. Press et
al. 1992, pp. 597–599 and 782).

These are the merits of our contribution. We hope that the
trilogy (Papers I–III) and further reflections (Romeo 1998) will
encourageN -body experimenters to model gravity so as to op-
timize the fidelity of their simulations, and that the result will
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be a stronger interdisciplinary connection with theories and ob-
servations.
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Appendix A: ABC of finite-sized particles

Finite-sized particles interacting with Newtonian gravity are
analogous to point particles interacting with softened gravity.
The dynamics of one-component 2-D discs containing such par-
ticles can be investigated by performing an analysis comparable
to that of Sects. II-2.1 and 2.1. In this appendix we report the
formulae useful for Sect. 2.2. Letmµs(R) be the particle mass
distribution of scale lengths. The reduction factor is:

S(|k|s) = {2π H0[µs(R)](k)}2 . (A1)

The inversion formula forµs(R) is:

µs(R) =
1

2π
H0

[

√

S(|k|s)
]

(R) . (A2)

Last and most useful, the inversion formulae for the interaction
potential−Gm2ϕs(R) and force−Gm2fs(R) are:

ϕs(R) = H0

[

1

k
S(|k|s)

]

(R) , (A3)

fs(R) = H1[S(|k|s)](R) . (A4)

(For general references about finite-sized particles see, e.g.,
Vlasov 1961; Rohrlich 1965; Dawson 1983; Hockney & East-
wood 1988; Birdsall & Langdon 1991; in particular, the last
reference contains useful insights in the context ofN -body sim-
ulations of plasmas.)
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