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ABSTRACT

We use the results of a high-resolution N-body simulation to investigate the role of the
environment on the formation and evolution of galaxy-sized haloes. Starting from a set of
constrained initial conditions, we have produced a final configuration hosting a double cluster
in one octant and a large void extending over two octants of the simulation box. In this paper
we concentrate on gravitationally bound galaxy-sized haloes extracted from these two regions
and from a third region hosting a single, relaxed cluster without substructure. Exploiting the
high mass resolution of our simulation (mpoay = 2.1X 10° "' Mp), we construct halo
samples probing more than two decades in mass, starting from a rather small mass threshold:
5% 102~ Mo = M. We present results for two statistics: the relationship between one-
dimensional velocity dispersion o, and mass M and the probability distribution of the spin
parameter P(A), and for three different group finders. The o,—M, relationship is well
reproduced by the truncated isothermal sphere (TIS) model introduced by Shapiro et al.,
although the slope is different from the original prediction. A series of o,—M|, relationships
for different values of the anisotropy parameter 3, obtained using the theoretical predictions
by Lokas & Mamon for Navarro et al. density profiles, are found to be only marginally
consistent with the data. Using some properties of the equilibrium TIS models, we construct
subsamples of fiducial equilibrium TIS haloes from each of the three subregions, and we
study their properties. For these haloes, we do find an environmental dependence of their
properties, in particular of the spin parameter distribution P(A). We study the TIS model in
more detail, and we find new relationships between the truncation radius and other structural
parameters. No gravitationally bound halo is found having a radius larger than the critical
value for gravithermal instability for TIS haloes (r, = 34.2r(, where r is the core radius of
the TIS solution). We do, however, find a dependence of this relationship on the environment,
like for the P(A) statistics. These facts hint at a possible role of tidal fields in determining the
statistical properties of haloes.

Key words: methods: N-body simulations — galaxies: formation — galaxies: haloes — large-
scale structure of Universe.

hierarchical clustering paradigm for the assembly of gravitation-

1 INTRODUCTION

One of the distinguishing features of any scenario for the formation
of the large-scale structure of the Universe within the cold dark
matter (CDM) cosmological model is represented by the

FTE-mail: van@sunct.ct.astro.it
* Affiliated to: Theoretical Astrophysics Centre, Copenhagen, Denmark.

© 2002 RAS

ally bound structures (White 1996, 1997). In its simplest form, the
idea of hierarchical clustering implies that the growth of haloes
proceeds by accretion of smaller units from the surrounding
environment, either by infall (Gunn & Gott 1972) or by a series of
‘merging’ events (White & Rees 1978), whereby the subunits are
accreted in a discontinuous way, or (more likely) by a combination
of the two. In the first case the typical halo profiles evolve
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adiabatically, while in the merging scenario each merging ‘event’
will induce some transients in the characteristic properties which in
turn will induce some evolution in the typical profiles, after the
subunits have been accreted and destroyed. In either case, one
expects that relaxation processes should drive the evolution
towards a quasi-equilibrium state on a dynamical time-scale, a
state characterized by relationships among global quantities related
to the halo, like its mass, density, velocity dispersion o, and
possibly others. Recently considerable attention has been devoted
to the study of one of these relationships: the radial dependence of
the (spherically averaged) density, also known as the density
profile. Unfortunately the density profile is a very difficult tool to
use when trying to characterize the statistical properties of halo
populations, because the predictions of different models of halo
formation differ only in the behaviour in the central parts, where
the statistics are typically poor. Less attention has been paid to
another global quantity, namely the velocity dispersion, and to its
relationship with other global quantities, like the mass. The
velocity dispersion enters the second-order Jeans equation, while
the density profile is described by the zeroth-order Jeans equation
(Binney & Tremaine 1987). For this reason it contains different
physical information from the density profile. Recently Bryan &
Norman (1998) have looked at the o,— M relationship for clusters,
and they find a good agreement with the standard, singular
isothermal sphere model as far as the slope of the relationship is
concerned. Also Knebe & Miiller (1999) looked at this
relationship, using a different code. Halo equilibrium models
make predictions about the o,—M, relationship, but these are
difficult to compare with observations, because some of the
involved quantities (e.g. the velocity dispersion itself) are not
directly deducible from observations. They can, however, be
studied with N-body simulations, and one of the purposes of this
paper will be to show that the o,—M, relationship can be used to
discriminate among different halo equilibrium models.

A second problem that we will study concerns the dependence of
halo properties on the environment within which they form. In both
the hierarchical clustering scenarios mentioned above one could
imagine that the properties of the haloes do depend on the
environment. For instance, the dynamics of the infall process could
be affected by the average overdensity of the environment within
which the halo grows (Gunn 1977), or by its shear (Buchert,
Kerscher & Sicka 1999; Takada & Futamase 1999). Also typical
quantities related to the merging, like the frequency of merging
events, could intuitively be affected by the average density of the
environment, at least for galaxy-sized haloes forming within
clusters. High-resolution N-body simulations (e.g. Moore et al.
1999) show that most of the galaxies lying in the central (i.e.
virialized) parts of clusters do not easily reach a velocity larger
than the escape velocity, so they are bound to the cluster for the
largest part of their evolutionary history, and consequently form in
an overdense environment. It would then be interesting to try to
understand whether there are systematic differences between
haloes forming in clusters and in voids.

Some of these issues have been recently discussed in the
literature. Lemson & Kauffmann (1999) have analysed the
dependence of various statistical properties, including the spin
probability distribution, on the environment, and found no
evidence for any dependence apart from the extent of the mass
spectrum. They divide their haloes into groups according to the
overdensity of the environment within which they are found, and
show that the scatter diagrams between different quantities are
indistinguishable among the different groups. In the present study,

we follow a different strategy. We study a simulation obtained from
a constrained set of initial conditions, in order to get a few clusters
(and, in particular, a double cluster) and a large void within the
same simulation box. We then extract our haloes from three
spatially disjoint regions: one containing a double cluster, a second
one containing a single cluster, and a third one containing the void.
This is in some sense complementary to the procedure which
Lemson & Kauffmann seem to have followed, because our haloes
are grouped according to the spatial distribution, rather than
according to the overdensity, so they are grouped according to the
environment within which they form.

Very recently Gardner (2000) presented a study of the spin
probability distribution for six different cosmological models and
environments. He finds a difference between the distributions of
haloes resulting from recent mergers and haloes that did not
experience mergers, almost independently of the environment
within which they form. This could have significant consequences
for the construction of merger histories, and, ultimately for the
semi-analytical modelling of galaxies. Similar results have been
recently obtained by Vitvitska et al. (2001).

The plan of the paper is as follows. In Section 2 we describe the
numerical setup of the simulations and the algorithm adopted to
identify haloes. In Section 3 we describe the halo equilibrium
models with which we compare the results of our simulation, and
in Section 4 we show the results of this comparison and discuss
their physical interpretation. Finally, in the conclusions we
summarize our results and suggest some directions for future
studies.

In the following we will always assume a () = 1 standard CDM
model, with a Hubble constant Hy = 100 h1kms~! Mpcfl, and
h = 0.5. All lengths, unless explicitly stated, are assumed to be
comoving.

2 SIMULATIONS

The simulation from which the data have been extracted has been
performed using FLY (Becciani et al. 1997, 1998), a parallel,
collisionless treecode optimized for shared memory and/or
clustered computing systems. FLY deals with periodic boundary
conditions using a standard Ewald summation technique
(Hernquist, Bouchet & Suto 1991). The algorithm adopted is the
octal-tree algorithm of Barnes and Hut (Barnes & Hut 1986), with
some modifications (‘grouping’ of cells belonging to the lists of
nearby particles: Barnes 1987) during the phase of tree walking.
These changes have a negligible impact on the overall numerical
accuracy, as shown elsewhere (Becciani, Antonuccio-Delogu &
Gambera 2000), but they have a strong positive impact on parallel
performance and scaling.

We have performed two simulations starting from the same
initial conditions. In both cases the underlying cosmological model
is a standard CDM (SCDM) model, with Qg = 1, oy = 0.9. The
main reason for this choice lies in the fact that the specific
prediction for the o,—M, statistics that we consider in the next
sections was done for this particular cosmological model. We plan
to extend our work to other cosmological models in future.

Each simulation used 256° particles, and the box size was
50h~'Mpc, so that the mass of each particle is Mpary =
2.07x10° h =" Mg. The simulations were designed to study the
evolution of a Coma-like cluster, and for this purpose constrained
initial conditions were prepared, changing only the softening
length, which was fixed to € = 10 and 5k ~ ' kpc, respectively. As
far as the results presented in this paper are concerned, there are no
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Figure 1. Snapshot of the simulation box at the end of the simulation. The scale of grey corresponds to density in logarithmic units. The large void is clearly

seen in projection extending over the lower left octant.

Table 1. Properties of the analysed regions.

Region X y z L Number of haloes
DOUBLE 15 12.5 75 10 827
SINGLE 12 —-18 4 10 786
VOID -10 —10. —10. 20 609

All lengths are in & ' Mpc. From left to right, columns are as
follows: label of the region, x, y, and z coordinates of its centre, size
of the region, total number of haloes found.

differences among these two simulations, so for the rest of this
paper we will concentrate only on the simulation with the largest
softening length, which we designate in the following as 16ML_1.

Constrained initial conditions were prepared using the
implementation of the constrained random field algorithm of
Hoffman & Ribak (1991) by van de Weygaert & Bertschinger
(1996). We took the same initial conditions as adopted in one of the
simulations from the catalogue of van Kampen & Katgert (1997).
More specifically, we constrained the initial conditions to have a
peak at the centre of the simulation box, with height 3.040,
Gaussian smoothed at a scale of 64 'Mpc, and a —20 void
centred at (15, 0, —10). The final configuration is shown in Fig. 1.
In order to study the environmental dependence of the properties of
galaxy-sized halo populations, we selected three regions within the

© 2002 RAS, MNRAS 332, 7-20

computational box, which we call DOUBLE, SINGLE and VOID.
All the three are cubical with centres and sizes as specified in
Table 1. The DOUBLE region hosts a double cluster, with two
large parts in the act of merging by the end of the simulation (see
Fig. 2). The SINGLE region hosts a more relaxed cluster without
any apparent substructure. Finally, we have included in the analysis
a significantly underdense region, the VOID, which is more
extended than the former two, so as to contain enough haloes to
allow reasonable statistics.

2.1 Finding haloes

Various methods have been devised to extract haloes from the
outputs of N-body simulations. Some of these methods make use
only of particle positions, like the standard friends-of-friends
(hereafter FOF) and the various versions of the adaptive FOF, while
others take into account also particle velocities (e.g. SKID:
Governato et al. 1997) and/or environmental properties like local
densities (like HOP: Eisenstein & Hut 1998). Most of the results
we will present later have been obtained using SKID because it
selects gravitationally bound groups of particles. In short, SKID
first builds catalogues of groups using a standard FOF algorithm,
selecting only particles lying within regions with density larger
than a critical value 8. It then computes the escape velocity of
each particle and discards those particles having an rms velocity
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Figure 2. The region of the DOUBLE cluster.

larger than the escape velocity. This ‘pruning’ procedure should
then leave only those particles that are actually bound to the group,
discarding those ‘background’ particles that find themselves by
accident at a given time within it. The initial linking length of the
FOF phase determines the approximate size of the groups that we
are considering. We assumed a linking length of 1004 ~'kpc,
corresponding to the typical size of a galaxy-sized object at the
present epoch. The softening length for the calculation of the
gravitational potential was assumed to be the same as in the
simulation, and the critical density &.; was set equal to
178/(1 4 z), the value for non-linear collapse in the Gunn & Gott
collapse model, so that only particles from genuinely non-linearly
collapsed shells should be included.

Following a suggestion by the anonymous referee, we have
also adopted two more halo finders to check the robustness of
the results: an adaptive FOF method devised by van Kampen &
Katgert (1997) and a modified version of SKID which should
avoid the problems posed by the original version. This particular
adaptive FOF halo finder selects only those haloes that are
virialized, by specifically testing for virialization. Concerning the
second method, we have modified SKID only in that part which
generates the input group list which is subsequently ‘pruned’ of
the non-gravitationally bound particles: in place of a standard
FOF (as in the original version of SKID) we have adopted HOP
(Eisenstein & Hut 1998) as input group finder. As we will see
later, some of the relationships that we find do depend on
the group finder adopted, but those relationships holding for the
equilibrium truncated isothermal sphere haloes are not affected
by this. All the results that we present in the following are for
the final redshift of the simulation, z = 0.0047, unless otherwise
stated.

3 HALO EQUILIBRIUM MODELS

The internal properties of haloes formed by gravitational collapse
can be described by looking at correlations among different
physical quantities. The density profile has often been used to study
the properties of relaxed, virialized haloes, particularly since the
finding by Navarro, Frenk & White (1996) that this profile has a
universal character when expressed in dimensionless units.
However, the density profile can be reliably determined only for
haloes having enough particles in each shell to minimize the
statistical fluctuations. For instance, Navarro, Frenk & White
(1997) considered only eight haloes extracted from a low-
resolution simulation and re-simulated with a higher mass
resolution.

Typical N-body simulations on cluster scales tend to produce a
large amount of haloes, the density profile of which cannot be
reliably determined, because each of them contains on average
fewer than 10° particles. For this reason we have chosen to study
relationships involving global halo properties. This choice is not
free from potential problems: systematic biases can be introduced
by the particular group finder adopted. Consider for instance SKID,
which works by stripping out gravitationally unbound particles
from haloes built using FOF: the group catalogues so produced
tend to be more biased towards less massive haloes than catalogues
produced using FOF. We have therefore decided to adopt three
different group finders, in order to be able to understand the role of
these systematic factors. We have also considered two different
statistics to characterize the properties of dark matter haloes, and
particularly their equilibrium properties at the end of the
simulation: the internal one-dimensional velocity dispersion—
mass relationship (o, — My) and the spin probability distribution
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P(A). Theoretical predictions concerning both of them are available
in the literature. In particular, we will compare the results from our
N-body simulations with four models: the standard uniform
isothermal sphere (SUS) model (see e.g. Padmanabhan 1993, ch. 8,
for a detailed treatment), the truncated isothermal sphere (TIS)
model recently introduced by Shapiro, Iliev & Raga (1999), the
‘peak-patch’ (PP) Monte Carlo model by (Bond & Myers (1996a),
and a model derived from the Navarro et al. (1996, 1997) (hereafter
NFW) density profiles. The first two models predict a o,—M,
relationship given by

7o = erMY5 (14 zen)? B kms ™, ()

where the subscript f = SUS or TIS, while for the PP model the
relation is given in Bond & Myers (1996b):

0y = cppM (1 + zeo)? P kms ™. )

In the equations above M, is the mass in units of 102 Mg and z.qp
is the collapse redshift. The coefficients for these cases are given by

csus,Tis,pp = (71.286, 104.69, 117.60) 3)

respectively. We restrict our attention to these four models because
the physical ingredients that enter in their formulation are very
different, and encompass a sufficiently wide range among all the
possible non-linear collapse and virialization mechanisms. This
wide choice reflects our generally poor level of understanding of
the non-linear physics of gravitational collapse, and of its
dependence on the local environment and on other properties
like the merging history of the substructures.

The SUS model is based on the spherical non-linear collapse
model (Gunn & Gott 1972). In this model the collapse towards
a singularity of a spherically symmetric shell of matter in a
cosmological background is halted when its radius reaches a value
of half the maximum expansion radius. The velocity dispersion is
then fixed by imposing the condition of energy conservation, which
must hold in the case of collisionless dark matter such as that
envisaged here. The TIS model also considers the highly idealized
case of a spherically symmetric configuration, but assumes that the
final, relaxed system is described by an isothermal, isotropic
distribution function and that the density profile is truncated at
a finite radius. Shapiro et al. (1999) have shown that this
configuration could arise from a top-hat collapse of an isolated
spherical density perturbation if, as shown by Bertschinger (1985),
the dimensionless region of shell crossing almost coincides with
the region bounded by the outer shock in an ideal gas accretion
collapse with the same mass (in an ) = 1 CDM model). The
truncation radius is then assumed to coincide with the region of
shell crossing, and this allows them to specify the model
completely.

The PP model introduced by Bond & Myers (1996a) is more
general than the SUS model, in that it includes a more realistic
collapse model where deviations from spherical symmetry are
taken into account. The density perturbation is approximated as an
axisymmetric homogeneous spheroid. Coupling between the
deformation tensor and the external and internal torques is
consistently taken into account up to a few first orders, and Monte
Carlo realizations are used to build up catalogues of haloes. These
have been compared with the N-body simulations of Couchman
(1991) in order to normalize the statistics properly. Note that
equation (2) is a best-fitting relationship and holds for a range of
halo mass (2.5 X 10* = M, = 5 X 10" M) much larger than that
considered here. None the less, we include it in our comparison

© 2002 RAS, MNRAS 332, 7-20

because the physical model on which it is based is significantly
different from the other models we consider.

Finally, we have considered a model for the o,—M, statistics
consistent with the NFW density profile, which was recently
derived by Lokas & Mamon (2001) by solving the second-order
Jeans equation:

o dd

--= 4)

1d
N 0—2 28—-L
pdr(p 2B r dr’

where B=1— olg(r)/of(r) quantifies the anisotropy of the
velocity dispersion. For an NFW density profile we have
pleigle) 1

pNFw (1) = prEw(s) = #m, )

In(1 + cs)
C s
s

- GV o)

Dnpw(s) = (6)
where we have defined ryr and My g as the virialization radius and
mass, respectively, s = r/ryir, ¢ = c(M,z) is the concentration
parameter and g(c) = 1/[In(1 4+ ¢) — ¢/(1 + ¢]. Equation 4 can be
solved by quadrature, and the solution finite in the limit » — o0 is

2
V—g (s, B = constant) = g(c)(1 + cs)*s' 28

®Ts2873In(1 + ¢s cs?P2
[

1+ cs)2 (1+cs)’

Note that we have always chosen as critical threshold for our group
finders the virialization overdensity (6 = &y = 178), so the
quantities ryigr and Myr are the actual radius and mass found by
the group finders for each halo.

In order to make use of equation (7) we have yet to specify the
dependence of the concentration parameter on the mass at the final
redshift: ¢ = c¢(M,z = 0). We adopt the relationship provided by
Bullock et al. (2001), by running their code CVIR for the relevant
cosmological model. In the mass range in which we are interested
(5x10"° =M/Mp =5%x10%) we find a power-law fit:
c(M,z = 0) = 472.063 x M ~0127+001 " FEinally, in order to make
a proper comparison with the quantity computed by the group
finder, we evaluate the mass-averaged velocity dispersion:

2 = 41 [402 New ($)p(s)s > ds
v M) ’

®

where we have defined

02,NFW:"%+0%:(2_B)‘73

.
and

1
M) = 411J p(s)s? ds.
0

4 STATISTICAL PROPERTIES
4.1 The o,—M, relation

In Fig. 3 we show plots of the final o,,— M|, relationship for galaxy-
sized haloes in the DOUBLE, SINGLE and VOID regions,
respectively, obtained using SKID. The most striking difference is
probably the different character of haloes in the VOID region when
compared with the clustered regions. Haloes in VOID have a much
smaller dispersion around the mean than haloes in the clustered
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Figure 3. One-dimensional velocity dispersion versus mass for haloes
extracted from the three regions. The three fitting curves correspond to the
three cases considered in the text: truncated isothermal sphere (continuous
line), Bond & Myers (1996b) (dotted line), and standard uniform sphere
(dashed line). Note the larger mass extent for haloes in the VOID. In all the
cases, the slope is larger than predicted by models, although within clusters
the statistical uncertainty is large.
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Figure 4. One-dimensional velocity dispersion versus mass for the
DOUBLE cluster region; haloes selected using the adaptive FOF and
modified SKID with HOP input group finders. The same parameters as
adopted for SKID in Fig. 3 are adopted. The best-fitting power law for the
plot in the upper figure has a slope a = 0.039 = 0.05. The symbols for the
fitting lines are as in Fig. 3.

regions, and the distribution is almost symmetric with respect to
the best-fitting approximation. Haloes in the DOUBLE region have
a larger dispersion and they do show an asymmetry in the
distribution around the best-fitting solution, i.e. an excess of low-
mass haloes at low o,. The latter point is useful to understand the
potential systematic effects introduced by a particular group finder.

T TTT T T Illllll T T
- DOUBLE
102
- B
[}
0 L
£
& 10°F
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102 E
_IIIII| 1 1 IIIIII| 1 IT

101t 1012
Mgroup (MO)
Figure 5. The o,—M, relationship for three models based on the NFW
density profile. Continuous line: 8 = 0, slope of the ryjr—Myr relation
given by a = @yean. Dotted line: B = 0.5, @ = ayyean. Dashed line: g =0,
= Qpean — Aa (i.e. the 1o limit).

In Fig. 4 we show the o,—M relationship for the DOUBLE region
obtained by using the two other group finders mentioned above. As
is evident, the excess of low-mass haloes is only an artefact
introduced by SKID, which makes use of an FOF algorithm to
build up an input list of groups. The main results of the next
sections, however, do not depend on the particular group finder
adopted, because we will select subsamples of haloes which can be
regarded as equilibrium TIS haloes, and for them the slope of the
o,—M, relationship is independent of the particular group finder
initially adopted.

A more important difference is evident from a comparison
between clustered and void regions. Haloes in VOID have a larger
mass extent (a property already noted by Lemson & Kauffmann
1999) and also the slope of the o,—M, relation seems to be larger
than for the other two cases.

In Fig. 5 we show a comparison with some theoretical predictions
for NFW density profiles. In order to apply equations (6) and (7) we
have still to specify a relationship between the virial radius and the
corresponding mass, which enters into equation (6). In Fig. 6 we can
see that there is a clear relationship between the truncation radius ¢
and the mass, but we have to find a relationship between r, and M.
We do this by fitting a power-law relationship to the data obtained
from the simulations (Fig. 7), which shows that the slope depends
significantly on the environment. As is evident from Fig. 5, none of
the models fits the data adequately. Note that there is only a slight
difference between isotropic (8 = 0) and anisotropic (8= 0.5)
models. Only if we allow for an unrealistically low value of the
slope of the ryir—Myr relationship do we get a limited agreement
for the DOUBLE cluster, but not for the other two regions.

The slopes of the o,—M, relationship for different regions and
using different group finders seem to be consistent with each other,
within the errors (Table 2). None of the theoretical models that we
are considering, however, seems to offer a good fit for all the cases.
The TIS model seems to give a good fit for the DOUBLE region
and for the SKID group finder, but when we use the modified SKID
group finder, which produces a sample over a more extended mass
interval, we see that the original TIS model does not offer a good fit
(Fig. 4).
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Figure 6. The truncation parameter {; as a function of group mass.
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Figure 7. The relationship between truncation radius and mass. Data are
fitted using a power-law relationship: r¢ = ¢M ®. Least-squares fit values
aré:  CsSINGLE — 1.0789 X 1071, QSINGLE — 0.2637 £ 01335, CyoID —
27989 X 1073, ayomp = 0.3816 = 0.0789;  cpoupLe = 7.3451 X 1072,
QDOUBLE — 0.2791 = 0.1193.

Note that the rms uncertainty of o, in Figs 3-5 is less than
30kms ™ l, a value much lower than that found by Knebe & Miiller
(1999) in their simulations (see their fig. 3). We believe that this is a
consequence of the larger mass and force resolution of our
simulation, and also of the use of a larger dynamic range than
adopted by previous authors.

Generally speaking, a power law seems to offer a good fit for all
three regions (although with different ranges for the three regions),
but in order to determine the slope one must probably go a step
further in modelling the physical state of these haloes. In the next
section we will explore in more detail the properties of TIS haloes,
and we will focus our attention on their statistical properties.

© 2002 RAS, MNRAS 332, 7-20

Table 2. Least-squares best-fitting parameters for o,

relationship.
Region a Aa co Method
DOUBLE 038 0.08 74.13 SKID
039 0.05 87.74 SKID with HOP input
042 007 7248 AFOF
042 0.03 82.16 TIS selected haloes
SINGLE 0.35 0.04 8028 SKID
037 004 8215 SKID with HOP input
042 0.07 7122 Adaptive FOF
VOID 0.39 0.04 86.81 SKID

040 0.04 89.43
045 0.05 63.12
038 0.02 88.60

SKID with HOP input
Adaptive FOF
TIS selected haloes

a, ¢q are the fitting parameters of a power-law fit of the form
0y = coM$,; Aa is the rms error associated with a.

4.2 Comparison with the TIS model

‘We will now consider the possibility of obtaining a reasonable fit of
the o,—M, relationship by modifying the minimum-energy TIS
model. We will then present here some more features of this model.

Following Shapiro et al. (1999), the TIS solution is obtained by
imposing a finite truncation radius r on an isothermal, spherically
symmetric collisionless equilibrium configuration. Shapiro et al.
define a typical radius:

%

B (41'ero)”2 ’ )

o

where pg is the central density (TIS models are non-singular).
Combining the Poisson and the Jeans equilibrium equations, and
making the hypothesis of isothermality for the distribution
function, they obtain an equation for the dimensionless density
(see Shapiro et al. 1999, equation 29):

d [ ,d(np) 2
- = —pl?, 10
i {é i ] 74 (10)
where we have used the definitions
r
sobf. ol
Po ro

Shapiro et al. have shown that non-singular solutions of equation
(10) form a one-parameter family depending only on ¢ = r/ry.
The total mass is then given by

My = M(r) = r4wp(r)r2 dr = dmporgM(£y), (11)
0

where we have defined a dimensionless total mass:

N 1 (" 2
@) = —J arl <—) :
roJo  po \To
We follow further Shapiro et al. (1999, equation 41) and write the
virial theorem for a collisionless truncated isothermal sphere:

0=2K+W+S,, (12)

where K = Mo(v%)/2 = (3/2)My0? and S, is the surface pressure
term. In the Appendix we show that, after some simple algebra,
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starting from equation (12) one obtains the following relation:

GM() 3M(§t) — ﬁ(&) -
o2 IRTa) (9] (0] 13)

The function W({) is specified in the Appendix.

We have already seen that a power-law fit describes the o,—M,
relationship well. Then from equation (13) we deduce that also the
truncation radius r has a power-law dependence on the total mass:
r oc c({)M}>*. Using the values of a from Table 2 we see that the
slope of this relationship should lie within the range 0.22-0.3, i.e.
it should be quite small. In Fig. 7 we plot r, as a function of M,. The
best-fitting values that we find for the slope are inconsistent with
the predictions from the o,—M relationship.

The right-hand side of equation (13) depends only on the
dimensionless truncation radius ¢, which in the minimum-energy
TIS solution of Shapiro et al. (1999) should be fixed to {; = 29.4.
The function @({) has a singularity at ¢ = 0.97, where the
denominator goes to zero (Fig. 8). However, we are interested in
the region ¢ > 1, where the truncation radius is at least
comparable to the core radius. As is clear from Fig. 8, the function
has a minimum at { = 59.5.

We will look for solutions in the interval 2.91 = § = 59.5.
Within these limits the function ®(¢) is monotonically decreasing
and the solution of equation (13) is certainly unique. Note that the
TIS solution is unstable for {; > 34.2 (Antonov 1962; Lynden-Bell
& Wood 1968; Shapiro et al. 1999), so our choice of the upper limit
will allow us to verify a posteriori this prediction. Equation (13)
can be inverted with respect to {; given the left-hand side, because
for each group all the quantities on the left-hand side are computed
by the group finder. As for the truncation radius r, we adopt the
radius of the groups as computed by SKID, which coincides with
the virial radius ryg.

An interesting feature of the TIS solution, which is evident from
Fig. 8, is that in order to invert equation (13) to find ¢, the value of
the left-hand side must lie within a rather small range of values:
2.75 = GMy/ri02 =< 4.56. As we can see from Fig. 9 for the case of
the DOUBLE region, this is not the case for all the haloes, even for
those haloes closely following the o,—M, relationship. For
instance, out of 827 haloes identified by SKID within the
DOUBLE region, only 382 lie within the region for which equation
(13) can be inverted. For those haloes for which equation (13) can
be inverted, we are able to determine ¢, and to compare it with the
predictions of the minimum-energy TIS model. The results of this
exercise give us some insight into the properties of these haloes. In
Fig. 6 we plot the relationship between ¢; and the mass for haloes in
the VOID and DOUBLE regions (the behaviour of haloes in the
SINGLE region is similar to that of those in DOUBLE). The
difference between halo properties in these two regions is striking.
In the DOUBLE region there is no clear relationship between ¢
and mass, but we also do not find a clustering around the value
i = 29.4, characterizing the minimum-energy TIS solution as
suggested by Shapiro et al. (1999). On the other hand, there seems
to be a relationship between ¢; and mass for haloes in the VOID
region, although with a rather large dispersion, particularly for
haloes having M, < 3x 10" h~! M.

A very interesting property of haloes in Fig. 6 is that we do not
find haloes having ¢ = 34.2, the upper limit for gravothermal
instability for TIS haloes, although our upper limit for the ¢; values
extends up to ¢ = 59.5. We do, however, also find a few haloes
having ¢; < 4.738, the critical value below which the total energy
E =T+ K > 0 and the TIS solution cannot exist (Shapiro et al.

10 77 T

011111111||1|1||1111111|1

100 200 300 400 500

Figure 8. Plot of d(¢,). We start plotting from ¢ = 0.97, where the function
has an absolute maximum. The vertical scale is the same as that adopted in
Fig. 9.
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Figure 9. Measured values of GMU/r[af) versus mass for the region of the
DOUBLE cluster. Groups marked with a star lie within the allowed region
where solutions of equation (13) exist, and the corresponding value of ; can
be found.

1999). It is important to remember that the haloes we find in a
simulation are not spherical and not even ‘ideal’, being a discrete
realization of some equilibrium state, so the above quoted bounds
cannot be taken literally.

At first sight, it may seem curious that only a fraction of all the
haloes (46 per cent in the DOUBLE and 37 per cent in the VOID,
respectively) have values of o, and M, for which equation (13) can
be solved. The obvious interpretation is that only a fraction of
haloes have reached equilibrium, even at the end of the simulation;
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Figure 10. The o,—M, relation for groups in the DOUBLE region for which the truncation radius can be computed by inverting equation (13). The scatter is
less than in the analogous plot for all the groups found by SKID in the DOUBLE region, Fig. 3. The error bar in the lower left part of the plot represents the
uncertainty in the zero-point of the best-fitting curve induced by the scatter in observed values of ;. Note that it is less than the observed scatter.

but it also remains a possibility that these ‘out-of-equilibrium’
haloes relax to an equilibrium state different from any of the three
considered in the present work.

Finally, in Figs 10 and 11 we plot the o,—M, relation of those
haloes for which a ¢ can be found, for the DOUBLE and VOID
regions, respectively. Note that for these haloes the intrinsic
dispersion is even smaller than in Figs 3 and 4. These haloes can be
then regarded as very near to a TIS equilibrium state. Note also that
the coefficient of equation (1) for the TIS solution has been
computed for the minimum-energy TIS solution. In fact, from
equation (98) of Shapiro et al. (1999) we see that this coefficient
would depend on ¢:

~BTe*” )
v 5 a(d) —2
where () = 3M({)/Z3p(0). As we can see from the figures, the

scatter induced by this dependence is very small and less than the
intrinsic Poisson scatter.

H (1 + ze)MG", (14)

4.3 Probability distribution of the spin parameter

The angular momentum distribution is an interesting statistic,
because the halo angular momentum originates from gravitational
interactions between the collapsing region and its environment.
Following Peebles (1971) and Efstathiou & Jones (1979) we will
present results for the distribution of the spin parameter A defined as

B L|E|l/2

A= GM 5?2’

5)

© 2002 RAS, MNRAS 332, 7-20

where L and |E| are the angular momentum and the total energy of
each halo, respectively. The calculation of |E| is not free of
ambiguities, because in order to compute the potential energy W
one should take into account the fact that the halo is not isolated,
i.e. one should also account for the contribution from the
environmental gravitational field, and this is not currently done by
any of the group finders we have adopted. For this reason, we show
in Fig. 12 the spin probability distribution P(A) computed only for
TIS haloes in the three regions, i.e. for those haloes following
equation (13). As we have seen in the preceding paragraphs, these
haloes seem to follow the o,—M, relationship with a much smaller
scatter than haloes selected by any group finder, so we regard them
as our fiducial equilibrium haloes. Combining equations (44) and
(45) from Shapiro et al. (1999) we find that for a TIS halo the total
energy E is connected to the potential W by

2 -«

E=—3a-1

(16)

The potential W for these haloes is then computed exactly, i.e. by
summing the contribution from each particle in the simulation.
Note that the parameter « depends on the dimensionless truncation
radius ¢ which can be evaluated only for TIS haloes.

One immediately notices that P(A) seems to depend on the
environment. It has been shown in recent work that a very good fit
to P(A) is given by a lognormal distribution (Dalcanton, Spergel &
Summers 1997; Mo, Mao & White 1998):

AP(A) =

1 [ In2(AKA))
€X ——

dA. 17
Jomon 27 } a7
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Figure 11. As Fig. 10 for the VOID region. Note that the scale of the axes is the same as in Fig. 10.
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Figure 12. Probability distribution of the spin parameter for the three regions, for TIS haloes. The dashed curves are the best-fitting approximations obtained
using the lognormal distribution adopted by (Mo et al. 1998) (equation 15). Histograms and fitting curves are normalized to unity.
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Mo et al. (1998) suggest that equation (17) with (A) = 0.05, o), =
0.05 provides a good fit to the probability distribution of all haloes,
independently of the environment. What we observe is, on the
other hand, that all three observed distributions seem to be
reasonably well fitted by equation (17), but the values of the fitting
parameters are certainly very different from those mentioned
above. Moreover, for those haloes selected with adaptive FOF, the
distributions all seem to be consistent with each other but not well
fitted by the lognormal model (Fig. 13). The best-fitting values are
presented in Table 3.

This discrepancy may appear puzzling. However, Figs 12 and 13
cannot be compared, for two reasons. First, the total energy E
entering the definition of A was evaluated directly in Fig. 12, while
it was estimated from equation (16) in Fig. 13. The procedure that
we have adopted to extract fiducial TIS haloes does actually
produce a sample which follows the o, —M,, relationship with much
less statistical noise than the parent sample. However, there is an
even stronger factor that makes the comparison doubtful: the total
number of haloes extracted using adaptive FOF is much smaller
than that obtained using SKID. Moreover, the extent in A of the
spin probability distribution is smaller than for SKID, as is evident
from a comparison of the figures. If we take these differences into

Table 3. Fits of P(A) with a lognormal
distribution, for TIS haloes.

Region Median \) T
VOID 0.018 0.018 0.5
DOUBLE 0.018 0.03 0.9
SINGLE 0.051 0.07 14

All (SKID) 0.06 0.07 0.65

account, we do not see any significant difference among the
distributions in the VOID region. For all these reasons, we can
conclude that there is a dependence of the spin probability
distribution P(A) on the environment only for TIS haloes. It would
be interesting to speculate about the physical mechanisms
producing this dependence, and we hope to be able to address
this question in further work.

Before closing this section, we would like to remind the reader
that recent theoretical calculations predict a rather large
distribution in the average values and shape of P(A), with a rather
marked dependence on the overdensity of the peak (Catelan &
Theuns 1996) or on the details of the merging histories (Nagashima
& Gouda 1998; Vitvitska et al. 2001). A direct comparison of our
results with the conditional probability distribution P(A|v) of
Catelan & Theuns (1996) is made difficult by the fact that the
relationship between the linear overdensity » and (for instance) the
final mass of the halo turns out to be quite noisy (Sugerman,
Summers & Kamionkowski 2000, their fig. 10), so it is not possible
to ‘label’ unambiguously each halo with its initial overdensity.
However, one could hope to increase further the number of haloes
by further diminishing the softening length, and we hope to get
better statistics from future simulations which would help us to
address the latter points also.

4.4 Density profiles of massive haloes

As we already mentioned in the Introduction, even the most
massive haloes that we find in this simulation using SKID do not
contain enough particles to allow a reliable determination of the
density profile. This is clearly visible from Fig. 14, where we plot
the profiles of the four most massive haloes extracted from the
DOUBLE cluster region. None of these haloes lies in the
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Figure 13. As Fig. 12 but for haloes selected using adaptive FOF. The dashed curve is a lognormal distribution with (A) = 0.5, o, = 0.05.
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Figure 14. Density profiles for the four most massive haloes within the DOUBLE region. The number of particles contained in each halo is shown. Best-fitting
solutions using the minimum-energy TIS solution by Shapiro et al. (1999) are shown.

integrability strip of Fig. 11, so the best-fitting TIS profiles
displayed as continuous curves have been obtained by least-
squares fittings, where we have varied py and ro.

The distinguishing feature of the TIS density profile, when
compared with the universal density profile of Navarro et al. (1996,
1997), is the presence of a central core. Although the minimum-
energy TIS profiles fit the central regions reasonably well, they fall
off too gently at distances larger than a few times the core radius,
and in no case can we find a reasonably good overall agreement. It
would be hazardous to draw any conclusion from this comparison,
in view of the above-mentioned poor resolution. However, a
reasonable explanation for the sharp decline of the density profiles
is tidal stripping, which should be effective at a few times the core
radius.

5 CONCLUSION

The properties of galaxy-sized haloes that we have considered in
this paper seem to be very constraining for halo collapse and
equilibrium models. However, none of the equilibrium models
considered (or the minimum energy TIS model) seems to be able to
give a comprehensive description of our findings. We would now
like to summarize our findings and to point to some controversial
questions that they pose.

First of all, the o,—M, statistic seems to be a sensitive tool to
discriminate among different halo equilibrium models. This
statistic is easy to evaluate, because it relies on global quantities,
and it can then be applied to samples of haloes. In this context, it is
more difficult to discriminate models using statistics like the
density profile, which would require a considerably larger mass

range in order to give reliable results (see for instance Jing & Suto
2000).

Models for the o,—M statistic based on the NFW density profile
seem to be only marginally consistent with simulation data. The
role of the anisotropy parameter in this context does not seem to be
crucial: it is the slope of the radius—mass relationship for these
haloes that seems mostly to affect the normalization of the o,—M,
statistic.

As we have seen, the TIS model seems to offer a very good
quantitative framework to explain the o,—M, statistic, even in the
VOID region where the slope of the relationship is very different
from that predicted by the minimum-energy TIS model of Shapiro
et al. The fact that a model based on the hypothesis that haloes have
a finite extent provides a good description should not come as a
surprise. Haloes forming in clusters experience a complex tidal
field originating from neighbouring haloes and from the large-scale
web in which they are embedded. The tidal radii of the
environments within which they lie, although often larger than
the mean distance, could limit the extent of haloes. A theoretical
treatment of the growth of the angular momentum is complicated
by the fact that the distribution of the torques induced by nearby
haloes depends on clustering (Antonuccio-Delogu & Atrio-
Barandela 1992). However, we believe that it would be difficult
to think that the truncation is a numerical artefact resulting from
the finite mass resolution: were this the case, we should expect the
same relationship between truncation radius r, and mass in all three
regions, but this is clearly not the case.

We have already noted the fact that the truncation radii we find
are always less than the critical value for the onset of gravothermal
instability, { ;, = 34.2. This leads us to think that this instability is
at work in our simulations, but in order to investigate this issue one
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would need simulations with a dynamical range at least 3 orders of
magnitude larger than those used in this simulation.

Concerning the dependence of the distribution of spin
parameters on the environment, we find that haloes selected
using adaptive FOF do not show any dependence on the
environment (the same holds for haloes selected using SKID),
but if we select subsamples of fiducial TIS haloes, we do find a
dependence of the properties of P(A) on the environment. In
particular, this fact seems to be at odds with the recent investigation
by Syer, Mao & Mo (1999), who find that the observed distribution
of the spin parameter for a large homogeneous sample of spirals is
well described by a lognormal distribution with (A) = 0.05 and a
variance o, = (0.36. This result is in contrast also with other work
(Warren et al. 1992; Eisenstein & Loeb 1995). If confirmed by
further investigations, this discrepancy could suggest that there is
probably some systematic trend in the way in which the angular
momentum of the luminous discs is connected with that of the
halo, which is not accounted for by the models of Syer et al.
(1999).

Last, but not least, it is important to stress that Lemson &
Kauffmann (1999) conclude that ‘Only the mass distribution varies
as a function of environment. This variation is well described by a
simple analytic formula based on the conditional Press—Schechter
theory. We find no significant dependence of any other halo
property on environment. ..’. In comparing their results with ours,
we must keep in mind that we have followed a very different
procedure from theirs, because we have prepared a simulation
using constrained initial conditions with the purpose of obtaining a
final configuration containing certain features (i.e. a double cluster
and a void). Although our simulation box is not an ‘average’ region
of the Universe, it is certainly a representative one. We stress again
the fact that all the haloes from underdense regions in our
simulation come from a void, and not from the outer parts of
clusters. Lemson & Kauffmann, on the other hand, seem to take
their haloes from all of the volume and group them according to the
overdensity of their parent regions. We think then that a direct
comparison between the results of these two different investi-
gations would be misleading, given the complementarity of our
approaches.

ACKNOWLEDGMENTS

VA-D is grateful to Professors Paul Shapiro and P. Salucci for
useful comments. Edmund Berstchinger and Rien van de Weygaert
are gratefully acknowledged for providing their constrained
random field code.

REFERENCES

Antonov V. A., 1962, Solution of the problem of stability of stellar systems
with Emden’s density law and the spherical distribution of velocities.
Vestnik Leningradskogo Universiteta, Leningrad

Antonuccio-Delogu V., Atrio-Barandela F., 1992, ApJ, 392, 403

Barnes J., 1987, Comput. Phys. Commun., 87, 161

Barnes J., Hut P., 1986, Nat, 324, 446

Becciani U., Ansaloni R., Antonuccio-Delogu V., Erbacci G., Gambera M.,
Pagliaro A., 1997, Comput. Phys. Commun., 106, 105

Becciani U., Antonuccio-Delogu V., Gambera M., Pagliaro A., Ansaloni R.,
Erbacci G., 1998, in Albrecht R., Hook R. N., Bushouse H. A., eds, ASP
Conf. Ser. Vol. 145, Astronomical Data Analysis Software and Systems
VII. Astron. Soc. Pac., San Francisco, p. 7

Becciani U., Antonuccio-Delogu V., Gambera M., 2000, J. Comput. Phys.,
163, 118

© 2002 RAS, MNRAS 332, 7-20

Bertschinger E., 1985, ApJS, 58, 39

Binney J., Tremaine S., 1987, Galactic Dynamics. Princeton Univ. Press,
Princeton, NJ

Bond J. R., Myers S. T., 1996a, ApJS, 103, 1

Bond J. R., Mysers S. T., 1996b, ApJS, 103, 41

Bryan G. L., Norman M. L., 1998, ApJ, 495, 80

Buchert T., Kerscher M., Sicka C., 1999, Phys. Rev. D, 62, 043525-1

Bullock J. S., Kolatt T. S., Sigad Y., Somerville R. S., Kravtsov A. V.,
Klypin A. A., Primack J. R., Dekel A., 2001, MNRAS, 321, 559

Catelan P, Theuns T., 1996, MNRAS, 282, 436

Couchman H. M. P, 1991, ApJ, 368, L23

Dalcanton J. J., Spergel D. N., Summers F. J., 1997, ApJ, 482, 659

Efstathiou G., Jones B. J. T., 1979, MNRAS, 186, 133

Eisenstein D. J., Hut P., 1998, AplJ, 498, 137

Eisenstein D. J., Loeb A., 1995, ApJ, 439, 520

Gardner J., 2000, astro-ph/0006342

Governato F., Moore B., Cen R., Stadel J., Lake G., Quinn T., 1997, New
Astron., 2, 91

Gunn J. E., 1977, ApJ, 218, 592

Gunn J. E., Gott J. R. L., 1972, ApJ, 176, 1

Hernquist L., Bouchet F. R., Suto Y., 1991, ApJS, 75, 231

Hoffman Y., Ribak E., 1991, ApJ, 380, L5

Jing Y. P, Suto Y., 2000, ApJ, 529, L69

Knebe A., Miiller V., 1999, A&A, 341, 1

Lemson G., Kauffmann G., 1999, MNRAS, 302, 111

Fokas E. L., Mamon G. A., 2001, MNRAS, 321, 155

Lynden-Bell D., Wood R., 1968, MNRAS, 138, 495

Mo H. J., Mao S., White S. D. M., 1998, MNRAS, 295, 319

Moore B., Ghigna S., Governato F., Lake G., Quinn T., Stadel J., Tozzi P.,
1999, ApJ, 524, L19

Nagashima M., Gouda N., 1998, MNRAS, 301, 849

Navarro J. E, Frenk C. S., White S. D. M., 1996, ApJ, 462, 563

Navarro J. F,, Frenk C. S., White S. D. M., 1997, ApJ, 490, 493

Padmanabhan T., 1993, Structure formation in the universe. Cambridge
Univ. Press, Cambridge

Peebles P. J. E., 1971, A&A, 11, 377

Shapiro P. R., Iliev I. T., Raga A. C., 1999, MNRAS, 307, 203

Sugerman B., Summers F. J., Kamionkowski M., 2000, MNRAS, 311, 762

Syer D., Mao S., Mo H. J., 1999, MNRAS, 305, 357

Takada M., Futamase T., 1999, Gen. Relativ. Gravitation, 31, 461

van de Weygaert R., Bertschinger E., 1996, MNRAS, 281, 84

van Kampen E., Katgert P., 1997, MNRAS, 289, 327

Vitvitska M., Klypin M., Kravtsov A., Bullock J., Wechsler R., Primack J.,
2001, astro-ph/0105349

Warren M. S., Quinn P. J., Salmon J. K., Zurek W. H., 1992, Ap]J, 399, 405

White S. D. M., 1996, in Lahav O., Terlevich E., Terlevich R. J., eds, Proc.
36th Herstmonceux Conf., Gravitational Dynamics. Cambridge Univ.
Press, New York, p. 121

White S. D. M., 1997, Dahlem Workshop on the Evolution of the Universe,
p. 227

White S. D. M., Rees M. J., 1978, MNRAS, 183, 341

APPENDIX A

We give a full derivation of equation (13). The starting point is the
virial theorem for systems with boundary pressure terms, as given
in equation (41) from Shapiro et al. (1999):

0=2K+W+S,. (A1)

In the above equation, the kinetic energy K can be rewritten in
terms of the one-dimensional velocity dispersion:
Mooy 3

";w =Moo, (A2)

The potential energy term W,

K =

Ty

W= 4ﬂGJ pM(r)rdr = 41TGJ pM(r)rdr, (A3)
0 0
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can be rewritten in terms of global quantities and of the

dimensionless radius ;:

_ GM} L&)
r MAQ)

where we have defined

W =

(A%)

g[
V(&) = L dSLpOM.

Finally, S, is a surface term which arises from the constraint that
the system has a finite radius, and is given by (Shapiro et al.,
equation 43)

S, = —4mripd. (A5)

We are adopting here the same notation as Shapiro et al., so that rg
and p, are the core radius and an external ‘pressure’ term,

respectively. Using equations (34) and (38) from Shapiro et al., the
latter equation can be rewritten in terms of the dimensionless
integrated mass and density:

My

~ Mo sy, A6
Mt(gﬂ)p(g) o (A6)

Sp

Substituting equations (A2), (A4) and (A6) into equation (A1), we
get

_GM3LY(L) Mo

3Moo? = _
0% o M2(%) ML)

AL, (A7)

from which we get the desired equation.

This paper has been typeset from a TEX/IATEX file prepared by the author.
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