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Abstract
Electro-optic modulators (EOMs) are components which convert electric signals to
optical ones. They are needed, e.g., at the transmitter end of fiber-optic communi-
cation systems and in time-stretch analog-to-digital converters. The development
of new EOM designs to handle electric signals with higher frequencies is driven by
the demand for ever-increasing bandwidths in telecommunications. As the process
of building prototypes is time-consuming and expensive, it is highly desirable to
increase the use of numerical simulations in the design process.

The topic of this thesis is numerical methods for simulation of high-speed
EOMs. Two main challenges arise in this context: first, the device is optically
very large; a wave propagation problem must be solved over tens of thousands of
wavelengths. Second, due to the high frequencies of the modulating signal, the
problem must be solved in time domain, rather than in frequency domain, as is
otherwise common for waveguiding problems. A suitable method for this type
of problem is the time-domain beam-propagation method (TD-BPM), which is
particularly efficient for propagation over long distances, occurring mainly along
a specified direction. If further the geometry varies slowly along that direction,
a simplified formulation, called the paraxial TD-BPM, has previously been em-
ployed. Based on an analysis of the equations, and comparison to the related
analysis of (linear) optical fibers, a modified paraxial formulation is suggested in
the current work. We show that the modification, while adding neither complex-
ity nor computational effort to the method, increases its accuracy significantly,
especially for short pulses.

The TD-BPM has previously been discretized using finite differences. In this
work we derive a weak formulation and a novel discretization based on tensor
product finite elements. By using finite elements, discontinuities in material pa-
rameters at material interfaces can be represented in an exact manner, which is
not possible with finite differences. Furthermore, non-uniform meshes with higher
resolution where the data varies rapidly can be readily used with finite elements,
and function spaces can be chosen flexibly. Full-vector and scalar versions of the
weak and discrete formulations are derived.

Numerical results are presented for the scalar TD-BPM. The implementation
is validated against analytic data for the case of pulse propagation in a straight
waveguide. In addition, the results are compared to those of the finite-difference
time-domain method, and the TD-BPM is shown to have higher accuracy for
short pulses (pulse widths 10 – 50 fs), when the modified paraxial approximation,
suggested in this work, is employed. Finally, as a proof-of-concept case, the method
is applied to an electro-optic modulator with simplified geometry but realistic
modulating signal.

Keywords: time-domain beam-propagation method, finite element method, ten-
sor products, computational electromagnetics, photonics, electro-optic modulators
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Chapter 1

Introduction

1.1 Project background

This work has been done at Fraunhofer-Chalmers Research Centre for Industrial
Mathematics (FCC) as a part of the project “MaVo1 OptoScope – Optische Tech-
nologien für die ultraschnelle Elektronik“ (hereafter referred to as “the OptoScope
project”), which is a joint effort of FCC and three Fraunhofer institutes in Ger-
many, Fraunhofer Institute for Physical Measurement Techniques, Fraunhofer In-
stitute for Applied Solid State Physics, and Fraunhofer Institute for Industrial
Mathematics. The aim of the project is to develop measuring equipment – a signal
generator and an oscilloscope – for non-periodic, high-frequency electrical signals
with bandwidths up to 1THz. Such equipment, which is the enabling technology
for developing high-frequency electric devices, is currently not commercially avail-
able; at the outset of the OptoScope project in April 2012, the fastest available
oscilloscopes measured non-periodic signals with bandwidths up to 33GHz.

The strategy used to realize the THz oscilloscope is a time-stretch system [1],
performing the following steps:

1. convert the high-frequency electric signal to an optical signal using an electro-
optic modulator (EOM),

2. stretch the optical signal in time by propagation through a dispersive fiber,

3. convert the (time-stretched) signal back to the electric regime using a fast
photodiode,

4. measure the signal with a conventional oscilloscope.

The time-stretch setup is shown schematically in Figure 1.1, with some additional
steps. The EOM in step 1 takes as input the electric signal, denoted in the figure

1MaVo stands for “Marktorientierte strategische Vorlaufforschung”, a type of projects funded
by Fraunhofer-Gesellschaft.

1
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2 1. Introduction

Figure 1.1: Schematic illustration of optical time-stretch system. Courtesy of Stefan
Weber.

by “RF: ON”2, and an optical pulse, which is amplitude modulated in the EOM
by the electric signal. Step 2 corresponds to “Group Velocity Dispersion D2” in
the figure, and steps 3 and 4 are summarized in the box “PD + Scope”. The figure
also shows how the optical input to the EOM is generated: a broadband laser is
used to generate an ultra-short optical pulse. Before entering the EOM the pulse
is propagated through a dispersive fiber, which stretches it in time.

The EOM is a critical component of the system, and as EOMs capable of
handling modulation frequencies up to 1THz are not yet commercially available,
the successful manufacturing of such a device has been one of the main aims and
challenges of the OptoScope project. The role of FCC in the project has been to
develop tools for the numerical simulation of EOMs. On the one hand, a model
was needed to represent the EOM in system simulations, for optimization of the
overall system performance. On the other hand, detailed simulations of the EOM
were required, for optimization on the device level. Additionally, the latter model,
using less assumptions, might be used to validate the former one. The present
work concentrates on the detailed EOM simulations.

1.1.1 Electro-optic modulators
In this section, a very brief introduction to electro-optic modulators (EOMs) is
given. The interested reader is referred to [2, 3] for more on this subject.

Optical waveguides

Before considering EOMs, we introduce one of their underlying structures: optical
waveguides. Optical waveguides are guiding structures along which optical waves,
i.e., electromagnetic waves in the visible or near-infrared frequency range, can
propagate. Several types of optical waveguides exist; the most well-known is prob-
ably the optical fiber. The type of optical waveguides used in EOMs are planar
dielectric waveguides, which consist of a core, in which the guided light is mainly
confined, and a cladding surrounding the core. The core and cladding materials

2For historical reasons the electric signal is sometimes referred to as the radio frequency (RF)
signal. In our application the frequencies may be well above radio frequencies.
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are both dielectrics, characterized by the core having a higher refractive index
than the cladding. A variety of designs of planar dielectric waveguides have been
developed for different purposes, see, e.g., [2]. Figure 1.2 illustrates three different
designs, which are of interest in this work: a rectangular guide, a rib guide and, a
slab guide. The slab guide extends, theoretically, infinitely in the transverse hori-

cladding 

core 

Figure 1.2: Schematic illustration of planar dielectric waveguides. Left: rectangular,
center: rib, right: slab.

zontal direction. Since it confines light only in the vertical direction, it is not very
useful in applications, however it is an important tool in the theoretical analysis
of dielectric waveguides, as we will see later. The rib and immersed guides have
both been suggested for use in the EOM developed in the OptoScope project.

In dielectric waveguides, light is confined in the core due to the refractive index
difference between core and cladding. A different type of optical waveguide is the
metallic (also called closed) waveguide, which consists of a dielectric core, enclosed
by a metallic wall guiding the light. Such waveguides are not used in EOMs, but
are, like the dielectric slab guide, interesting from a theoretical perspective.

A dielectric waveguide is characterized by the relative refractive index difference
between core and cladding, defined as [4]

∆ =
n2

1 − n2
0

2n2
1

≈ n1 − n0

n1
,

where n1 and n0 are the core and cladding refractive indices, respectively. Common
waveguide materials have refractive indices above 1 (vacuum) and below 4 or 5.
Typical values of ∆ range between one and a few percent, but extremely high-
index contrast waveguides with ∆ in the range 10–40% also exist. Various core and
cladding materials have been considered for the EOM in the OptoScope project,
all with low contrasts, even below one percent.

Phase and amplitude modulation

The purpose of EOMs is to transfer the information carried by an electric signal to
an optical one. There are several types of optical modulators, but here we consider
only modulators based on the linear electro-optic (EO) effect, or Pockels effect.
An EO material, i.e., a material exhibiting the EO effect, responds to an applied
electric field by a slight shift in its refractive index. This in turn shifts the phase
velocity of an optical wave propagating through the material. Based on this, a
phase modulator can be constructed as schematically illustrated in Figure 1.3(a).
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Electrodes are places on both sides of an optical waveguide, whose core is an EO
material. One of the electrodes is grounded. A voltage applied to the other (“hot”)
electrode induces an electric field over the waveguide core, modulating its refractive
index, which in turn modulates the phase of the optical field propagating through
the waveguide. Note that the input of an EOM is thus twofold: a non-modulated,
i.e., not (yet) information-carrying, optical pulse is fed into the optical waveguide,
and an information-carrying electric signal is applied to the hot electrode. The
output of interest is the modulated optical pulse. Amplitude modulation can

optical waveguide electrodes 

(a) Phase modulator

optical waveguide 

electrodes 

(b) Amplitude modulator

Figure 1.3: Schematic illustration of modulators.

be achieved by using a Mach-Zehnder (MZ) interferometer structure, illustrated
in Figure 1.3(b). Here the initial optical pulse splits equally between the two
waveguide “arms”, one of which is modulated by the electric signal. At the output
end of the structure, the two pulses are recombined and interfere – constructively
in the absence of modulation or destructively in the presence of modulation due to
the phase difference between the non-modulated and the phase modulated pulse.
Hence the recombined pulse is amplitude modulated. Alternatively, the electric
field can be applied in opposite directions to the two MZ interferometer arms,
resulting in the same phase shift at half the voltage. Such modulators are called
push-pull modulators.

For slow electric signals, the time it takes the signal to propagate along the
electrode is negligible compared to the time scale of the signal’s temporal varia-
tions. Hence the voltage can at each instant be seen as constant along the device.
Broadband modulators, however, like the one aimed at in the OptoScope project,
treat electric signals with such fast temporal variations, that the traveling time of
the signal along the electrode must be taken into account. One important design
challenge of these so-called traveling-wave (TW) EOMs is to match the velocities
of the co-propagating optical and electric signals.

Further design challenges are low electric and optical losses, and impedance
matching of the electrodes, while competing design goals include increased band-
width, decreased drive voltage and decreased device size. Concerning the latter,
it should be noted, that the MZ interferometer geometry in Figure 1.3(b) is not
according to scale. The distance between the arms is some tens or hundreds of
micrometers, while their length is up to two centimeters. Also, the input/output
regions are shorter than indicated, compared to the arms, and extend over maxi-
mally a few millimeters. The splitting and recombination of the waveguide arms
may consist of Y junctions, as indicated in Figure 1.3(b), but may also be more
complicated couplers, such as multimode interference couplers [2].
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Electro-optic effect

The linear electro-optic effect, or Pockels effect, as described above, is the phe-
nomenon by which the refractive index of a dielectric medium is slightly shifted in
response to an applied electric field. The response time of the effect is very short,
such that the response can be considered immediate (although, for modulation in
the THz frequency range this approximation approaches its limit of validity for
certain materials). We call the amount by which the refractive index changes due
to the electro-optic effect, the refractive index shift, and denote it3 by δn. It is
anisotropic in general, however, the simple formula [3, Chapter 4]

δn = −1

2
n3rE

is highly accurate for many modulators, as long as the correct components are
chosen for E and r. Here n is the refractive index of the medium without modula-
tion, r is the electro-optic coefficient, a parameter quantifying the strength of the
electro-optic effect in the material, and E is the modulating electric field. Hence
δn is proportional to E, which is proportional to the modulating voltage. EOMs
are typically operated at voltages producing a shift of order 10−4, i.e., orders of
magnitude smaller than the index contrast ∆.

We note here again, that only the waveguide core exhibits the EO effect. Fur-
ther, due to the electrode configuration, see Section 1.1.2, the modulating electric
field can be regarded as constant over the core cross section (which, by convention,
lies in the x− y plane). Hence we can write the spatial and temporal dependence
of the shift in the EOM as

δn(x, y, z; t) = −1

2
n3

coreχcore(x, y, z)rE(z; t), (1.1)

where E is the modulating electric field, traveling along the electrodes, and χcore

is the characteristic function of the modulated core at z.
In the mathematical analysis it is often more natural to express the shift in

terms of permittivity, denoted by ε. In lossless media ε = n2, and for the shift we
have

ε+ δε = (n+ δn)2 ≈ n2 + 2nδn.

Hence the shift in permittivity is given by δε ≈ 2ncoreδn.

Materials The most common material used for EOMs based on the linear electro-
optic effect is lithium niobate (LiNbO3), which has a relatively weak electro-optic
effect (n3r = 306 pm/V) compared to some other inorganic crystal materials, but
has several advantages in terms of technology. It is, e.g., insensitive to changes in
temperature, and waveguides can be fabricated by well established methods. In
the OptoScope project, however, electro-optic polymers, which are an emerging

3In the literature, the shift is often denoted ∆n. We prefer to use δn, to avoid confusion with
∆, the relative index difference between core and cladding in a waveguide.
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class of electro-optic materials, are used for the modulator. Polymers with n3r up
to 1600pm/V have been reported, and even though the fabrication technology is
not as mature as for LiNbO3, the materials are promising.

1.1.2 Electric signal propagation
Simulation of EOMs can be divided into two major sub-problems: (1) propagation
of the modulating electric field, guided by the electrodes, and (2) propagation of
the optical field guided by the optical waveguide, under influence of the modulating
signal. The one-way coupling between the two problems is given by the refractive
index shift due to modulation, according to (1.1), where E is the solution to prob-
lem (1), and δε is part of the data of problem (2). While proper EOM simulation
requires consideration of both parts, this work is restricted to the optical problem,
(2), and assumes δε = δε(x, y, z; t) to be given. For completeness we indicate in
this section one approach to solve problem (1).

The transmission line used to guide the electric signal along the EOM arms
is made up by a grounded electrode below the dielectrics (cladding and core)
and a top electrode to which the modulating voltage is applied. This type of
transmission line is known as a microstrip line, or stripline, and its cross section is
illustrated in Figure 1.4. The transmission line is homogeneous in the longitudinal

cladding 

core 

grounded 
electrode 

top electrode 

Figure 1.4: Cross section view of modulator arm.

direction, and – unlike the optical waveguide – time-independent. Hence, the
propagation of the electric signal along the stripline can be computed in frequency
domain, and transformed back to time domain by the fast Fourier transform.
The frequency-dependent propagation characteristics of the transmission line can
be computed approximately, using a finite element formulation of a quasi-TEM4

approximation [5]. Here Poisson’s equation,

∇ · (ε∇Φ) = 0,

is solved for the scalar potential with homogeneous Dirichlet conditions on the
ground plate and inhomogeneous Dirichlet conditions, corresponding to a normal-
ized applied voltage, on the top electrode. Once this problem is solved, the intrinsic
impedance η can be computed from the solution, and the electric and magnetic
fields are given by

E = −∇Φ, H = −1

η
E× ẑ,

4TEM stands for transverse electromagnetic, meaning that both the electric and the magnetic
fields have only transverse, and no longitudinal, components.
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where the propagation direction of the transmission line is assumed to be aligned
with the z axis. From the fields, the attenuation constants due to dielectric and
conductor losses can be computed.

The main propagation characteristics to be anticipated are then attenuation
along the transmission line, due to frequency-dependent losses, and possibly a
velocity mismatch as compared to the group velocity of the optical signal.

1.2 Technical problem statement
The problem considered in this thesis is the numerical simulation of optical pulse
propagation through traveling-wave electro-optic modulators (TW-EOMs). The
pulses of interest are generated by letting ultra-short Gaussian pulses (pulse width
∼100 fs), with center wavelength λ0 = 1.55µm, propagate through 1 km of disper-
sive fiber with group velocity dispersion parameter β2 ≈ 50 (ps)2/km, such that
the pulse width is stretched to a few hundred picoseconds. Based on the data given
here, more specific characteristics of the stretched pulses are computed in Section
2.2.2, where pulse propagation and dispersion in optical fibers are discussed.

The electric input signal to the EOM, co-propagating with the optical pulse,
may have a duration up to some tens of picoseconds and bandwidth up to 1THz.
The resulting high-frequency time-dependence of permittivity poses a numerical
challenge, since it requires time domain analysis of the waveguide structure, rather
than frequency domain analysis by, e.g., the well established beam-propagation
method.

Typical geometries and materials used for TW-EOMs have been discussed in
Section 1.1.1. In summary, the materials are dielectrics with slightly higher re-
fractive index in the core layer than in the cladding layers, and in the active core,
an electro-optic material is used, which responds to the modulating electric sig-
nal by a shift in its refractive index. This shift is orders of magnitude smaller
than the index difference between core and cladding. Typical dimensions of the
EOM are some tens of micrometers in the transverse directions, and one or a few
centimeters in the longitudinal direction. The device is thus optically very large,
tens of thousands of wavelengths long, which poses another numerical challenge
concerning discretization of the spatial domain. As a rule of thumb when using,
e.g., finite elements, wave problems should be resolved by at least ten elements per
wavelength. Resolving the full device in space and time is thus computationally
very expensive.

1.3 Scope
As stated above, EOM simulation can be divided into two major sub-problems,
the electric propagation problem, and the optical propagation problem. These are
coupled by the refractive index shift, δε, due to modulation, which is computed
from the solution to the former problem, and provides data for the latter. This
work is restricted to the optical propagation problem, and δε = δε(x, y, z; t) is
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assumed given. Its dependence on time and transverse space is assumed to be
separable at any z, as given by (1.1).

There are two main approaches for the optical propagation problem in an
EOM: one in which the problem is subdivided into partial problems, accounting
for different aspects of the full problem, and the other in which the full problem, in
time and space, is considered at once. In the introduction to Chapter 3, these two
approaches are more thoroughly described and compared. The aim of this work has
been to follow the full-problem approach, and to develop a method tailored to be
efficient and accurate for the specific application described in the previous section.
More specifically, a time-domain beam-propagation method has been investigated,
as an alternative to the standard finite-difference time-domain method, and a finite
element-based version of it has been developed and implemented.

Once the propagation of the optical pulse in the EOM, under influence of
a modulating signal, has been computed, characteristic parameters of the EOM
can be obtained from the optical field data in a post-processing step. This is
important when using simulations for design optimization, however, a discussion
of such optimization is beyond the scope of this work, and post-processing will be
done only for the purpose of validating the numerical results.

Two assumptions are made concerning the dielectric materials. First, we as-
sume that non-linear effects are negligible over the length of the device. At low
optical intensities, used for input pulses to the EOM, this assumption does not
impose a serious restriction. Second, we consider only non-dispersive materials,
i.e., materials in which the refractive index is independent of frequency, over the
spectrum of the optical pulse. Considering the broad bandwidth of the pulse,
this might be a more severe limitation. For better prediction of a real device’s
performance, a more realistic material model may be needed.

A final comment: the current text is written for mathematicians; it introduces
the technical application – the EOM – and concepts from electromagnetic field
theory starting from a basic level, but assumes some familiarity with mathematical
concepts, especially those forming the basis of the finite element method. The
relative emphasis on fundamentals, regarding application and mathematics, may
well have been reversed, had the same work been written for (and by) electrical
engineers.
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Chapter 2

Theory

2.1 Mathematical problem statement

2.1.1 Derivation of wave equations

Maxwell’s equations Optical waves are electromagnetic waves with frequencies
in the visible or near-infrared spectrum. The most general mathematical model
describing electromagnetic fields, and their dynamic interaction with media, is
given by Maxwell’s equations [6]

∇×E = −∂tB, (2.1a)
∇×H = ∂tD + J, (2.1b)
∇ ·D = ρ, (2.1c)
∇ ·B = 0, (2.1d)

where E is the electric field, H the magnetic field, D the electric flux density
and B the magnetic flux density. Further, J is the current density and ρ is the
charge density. In source-free media, such as dielectrics used in optical waveguide
structures, J = 0 and ρ = 0. The constitutive relation for the magnetic field and
magnetic flux density is

B = µ0µH, (2.2)

where µ0 ≈ 1.257 × 10−6 H/m is the permeability of free space, and µ is the
dimensionless relative permeability. The media of interest here are nonmagnetic
with µ = 1, however, we keep µ in the equations for generality.

We assume that the optical intensity is low enough, such that nonlinear effects
are negligible over the length of the device (see [7] for a discussion of nonlinear
length, i.e., the length scale over which nonlinear effects become important). Then
the constitutive relation for the electric field and electric flux density is given by

D = ε0εE, (2.3)

9
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where ε0 ≈ 8.854 × 10−12 F/m is the permittivity of free space, and ε is the
dimensionless relative permittivity. In anisotropic media ε is a tensor and in
isotropic media it reduces to a scalar value. As stated in Section 1.3, we limit
the discussion to non-dispersive media, i.e., media in which the permittivity is
independent of frequency. Dispersive materials can be modeled in time domain by
using the recursive convolution approach [8]. Materials used in optical waveguides
are often specified in terms of their refractive index, n, which, in the isotropic case,
relates to the relative permittivity as ε = n2 [7].

Vector wave equations The vector wave equation for the electric field is de-
rived from Maxwell’s equations and the constitutive equations, by taking the curl
of (2.1a) and using (2.1b), (2.2), and (2.3) to express the right hand side in E and
eliminate H. We get

∇× (µ−1∇×E) = − 1

c2
∂2
t (εE), (2.4)

where c = 1/
√
ε0µ0 = 299792458 m/s is the speed of light in free space.

In many electromagnetic applications, material properties are time indepen-
dent, in particular, ε can be moved out of the time derivative. In an EOM,
however, the permittivity is a function of time, due to the modulating signal, and
it is shown in Section 2.1.2, that the approximation ∂t(εE) = ε∂tE is not valid for
the highest modulation frequencies of interest in the OptoScope project. For the
EOM application we therefore keep the vector wave equation in the form stated
above, rather than the more common form with right hand side − ε

c2 ∂
2
tE.

Under assumption of time-independent permittivity, a similar wave equation
for the magnetic field,

∇× (ε−1∇×H) = − µ
c2
∂2
tH,

is derived by taking the curl of (2.1b) and using (2.1a) and the constitutive rela-
tions. However, here it is less clear how the corresponding wave equation should
be formulated in the case of time-dependent ε. In the following we therefore re-
strict the discussion to the electric field formulation when considering EOMs with
time-varying modulation.

Scalar wave equations For the derivation of the scalar wave equation we use
(2.1c), with ρ = 0, in the form

0 = ∇ · (εE) = ∇ε ·E + ε∇ ·E.

Using this and the vector identity

∇× (µ−1∇×) = −∇ · (µ−1∇) +∇(µ−1∇ · ),

which holds for scalar permeability, we can write the left hand side of (2.4) as

∇× (µ−1∇×E) = −(∇ · (µ−1∇))E−∇(µ−1ε−1(∇ε) ·E).
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The scalar approximation, which is valid when the spatial dependence of ε is weak,
amounts to neglecting the second term of the right hand side. The scalar wave
equation is then

∇ · (µ−1∇E) =
1

c2
∂2
t (εE), (2.5)

which holds for each of the three electric field components. Optical fields propa-
gating in rectangular dielectric waveguides are polarized mainly along one of the
transverse axes, and it is natural to solve the scalar wave equation for the cor-
responding dominating field component. The scalar approximation is typically
used for waveguide analysis when the index contrast between core and cladding is
small [4].

Helmholtz’s equations In the case of time-harmonic electromagnetic fields we
write

E(x, y, z; t) = re(E(x, y, z)ejωt),

and analogously for the magnetic field, where ω is the angular frequency. The
quantities E(x, y, z) and H(x, y, z) are complex-valued, and referred to as phasors
in electromagnetics. Inserting this into the wave equations is equivalent to substi-
tuting the differential operator 1

c2 ∂
2
t by multiplication with −k2

0, where k0 = ω/c
is the wavenumber. This results in Helmholtz’s equations for the corresponding
phasor, e.g., the vector and scalar Helmholtz’s equations for the electric field are,
respectively

∇× (µ−1∇×E) = εk2
0E,

and
∇ · (µ−1∇E) = −εk2

0E.

Due to the time-varying material properties in an EOM, resulting from the
modulating signal, the analysis of such a device must be performed in the time
domain. The numerical methods presented in Chapter 3 are therefore in most cases
based on the wave equations. Yet, the propagation of optical waves in waveguides,
in the absence of modulation, can be analyzed well in the frequency domain,
using Helmholtz’s equations, which form a basis for the mode analysis described
in Section 2.2.1, as well as the beam-propagation method (BPM), described in
Section 3.1.1.

2.1.2 Time-dependent permittivity

At any given point inside the active core of an EOM, the permittivity can be
written

ε(t) = εc + δε(t),

where εc is the constant permittivity of the core in the absence of modulation, and
δε is the time-dependent shift due to modulation. The shift δε is proportional to
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the voltage of the modulating signal, as described in Section 1.1.1. We then get,
for the right hand side of the wave equation,

∂2
t (ε(t)E) = εc∂

2
tE + ∂2

t (δε(t)E),

where the first term in the right hand side governs the guiding of light in the waveg-
uide when no modulating voltage is applied. The second term governs modulation,
and is, in any realistic case, several orders of magnitude smaller in magnitude than
the first term. The desired phase-modulating effect is obtained from this tiny shift
by accumulation over the optically very long interaction distance, on the order of
tens of thousands of wavelengths.

Having said this, we are now not interested in the absolute magnitude of the
second term of the right hand side, nor in its magnitude relative to the first term.
Rather we want to investigate whether or not the approximation

∂2
t (δεE) ≈ δε∂2

tE (2.6)

is valid in our application, i.e., we consider the relative magnitudes of the terms
that result from applying the product rule to the derivative on the left. We there-
fore write, at a given spatial point

δε(t) = δmax
ε f(t),

E(t) = E0A(t)ejω0t,

where δmax
ε and E0 are scaling factors, f is the normalized information-carrying

modulating signal, and A is the normalized envelope of the optical pulse. We are
then interested in the relative magnitudes of the terms in the right hand side of
the expression

∂2
t [f(t)A(t)ejω0t]

= ∂2
t [f(t)]A(t)ejω0t + 2∂t[f(t)]∂t[A(t)ejω0t] + f(t)∂2

t [A(t)ejω0t]. (2.7)

We consider modulating signals with frequency components up to 1THz (=1/ps).
For the comparison we can thus take f(t) = sin(ωRFt), with ωRF = 2πfRF ≤
2π/ps, and have

|∂tf | ∼ ωRF,

|∂2
t f | ∼ ω2

RF.

Further, a light source with wavelength λ0 = 1.55µm is used, so that the carrier
frequency is ω0 = 2πc/λ0 ≈ 2π · 190/ps. The fastest variations in A will be due
to the modulating signal at the center of the pulse, and due to chirp (explained in
Section 2.2.2) in the tails of the pulse. As these are clearly slower than the carrier
frequency, we get

|∂t[Aejω0t]| ∼ ω0,

|∂2
t [Aejω0t]| ∼ ω2

0 .
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The orders of magnitude of the three terms in the right hand side of (2.7) are
then, respectively, ω2

RF, ωRFω0, and ω2
0 , and the relative error caused by the

approximation (2.6) is approximately 2ωRF/ω0. This is a negligible error for low
modulating frequencies, but reaches the appreciable level of 2/190 ≈ 1% at the
highest frequencies (1THz) considered in the OptoScope project. For the EOM
simulations we should thus not use the approximation (2.6).

2.1.3 Boundary conditions and initial values

Boundary conditions The following continuity conditions must be satisfied at
the interface between two media, indexed 1 and 2 [9]:

n× (E1 −E2) = 0, n× (H1 −H2) = Js,
n · (D1 −D2) = ρs, n · (B1 −B2) = 0,

(2.8)

where n is the unit normal vector of the interface pointing into medium 2, and
ρs and Js are surface charge density and surface current density, respectively, at
the interface. These conditions are of interest in the EOM context at the interface
between core and cladding materials of the optical waveguide, where ρs and Js are
zero. For the electric field, the conditions imply that the component tangential
to the interface is continuous, while the normal component has a discontinuity,
proportional in size to the refractive index difference ∆.

In closed waveguides, the domain in which Maxwell’s equations govern light
propagation is bounded by a physical boundary: the metallic wall of the guide.
An idealized metallic wall is represented by a perfect electric conductor1 (PEC),
which cannot sustain internal fields. The conditions (2.8) then reduce to the PEC
boundary conditions

n×E = 0, n×H = Js,
n ·D = ρs, n ·B = 0.

(2.9)

Open dielectric waveguides have no physical boundary. If no radiation or scat-
tering of the optical field into the cladding is expected, the domain may be trun-
cated in the transverse directions at a distance from the core, large enough for the
field to decay to a negligible magnitude before reaching it. Then homogeneous
Dirichlet or Neumann conditions can be used at the artificial boundary without
influencing the field. However, if scattered waves reach such a boundary, they
are reflected back into the domain. To avoid this, absorbing boundary conditions
(ABCs) must be used, i.e., boundary conditions absorbing waves which reach the
boundary. ABCs are also needed to truncate the domain in the longitudinal direc-
tion of the waveguide (chosen, by convention, to be aligned with the z axis). The
most common type of ABCs used for optical waveguides are perfectly matched lay-
ers (PMLs), first introduced by Berenger [11] for the finite-difference time-domain
method. They are discussed in the context of waveguide analysis by the finite

1Real metals are imperfect conductors, and may be modeled more correctly by impedance
boundary conditions [10], a type of Robin boundary conditions. Such conditions are beyond the
scope of this work.
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element method in [12]. The idea is to introduce a layer near the truncating
boundary with material parameters artificially modified to be absorbing. Waves
thus decay as they travel through the layer, and PEC conditions may be used at
the truncating boundary, placed outside the absorbing layer, without reflections
reaching back into the domain in a non-physical way.

Initial conditions The problem is driven by an initial condition; the initial
optical field fed into the waveguide. The characteristics of a typical input pulse
for the EOM considered in the OptoScope project are given in the example at
the end of Section 2.2.2. Physically, it is only meaningful to describe the initial
value as given in all of the spatial domain at t = t0. Mathematically, the roles of
t and z may be interchanged, in which case the initial condition is given at z = z0

over the (Cartesian product of the) temporal and transverse spatial domains, and
boundary conditions are specified for the boundary of this product domain.

2.2 Propagation in straight optical waveguides
The governing wave equation, including time-dependent permittivity due to mod-
ulation, in combination with boundary conditions and initial conditions, specify
the mathematical formulation of the optical EOM simulation problem, stated tech-
nically in Section 1.2. Before considering the full problem of optical pulse propa-
gation in an EOM, however, we discuss in this section two related problems: the
waveguide mode problem, concerning optical beam propagation in straight waveg-
uides, and pulse propagation in optical fibers. Both problems are exemplified by
special cases, in which analytic solutions exist.

2.2.1 Propagating modes

Mode analysis is in itself a large topic. Here we will only touch upon the very
basics, to gain an idea about how light propagates through optical waveguides.

Optical waveguides support a discrete set of propagating modes. These are
solutions to Maxwell’s equations, with harmonic time-dependence and variation
in the direction of propagation (to which the z axis is, by convention, aligned)
given by a propagation constant γ = α+ jβ. The electric field can then be written

E(x, y, z; t) = re
(
E0(x, y)ejωt−γz

)
,

where ω is the angular frequency, and E0 is the mode shape, depending only on
the transverse coordinates, x and y. This is equivalent to saying that the phasor
solving Helmholtz’s equation, derived in Section 2.1.1, can be written

E(x, y, z) = E0(x, y)e−γz.

The mode problem is derived by using this assumption in Helmholtz’s equation
for the electric field, or an analogous one for the magnetic field. For given ω, the



“main” — 2015/3/23 — 15:37 — page 15 — #23

2.2. Propagation in straight optical waveguides 15

resulting mode problem is an eigenproblem, solved for eigenvectors, i.e., transverse
mode shapes E0(x, y), and eigenvalues, from which the corresponding propagation
constants γ of the modes are computed. The geometry of the waveguide is given
by the transverse dependence of ε, and by appropriately chosen boundary condi-
tions. In general, the mode problem cannot be solved analytically, but approximate
methods must be used. In some special cases, however, analytic expressions can
be found. Next we discuss two such cases, first a metallic, rectangular waveguide,
and then a dielectric slab waveguide. We use these examples on the one hand to
gain a feeling for the concept of modes, and on the other hand to introduce some
terminology frequently encountered in waveguide analysis, such as effective index
and cutoff frequency. For easier notation we drop the superscript, and write E for
E0. In most cases we assume lossless materials, which results in α = 0. When
there is no risk of ambiguity, we then use the term propagation constant to refer
to β, rather than to γ = jβ.

Metallic rectangular waveguide Consider a rectangular waveguide, consist-
ing of a lossless, homogeneous dielectric core, enclosed by a perfectly (electrically)
conducting wall. We denote the waveguide width (along x) by a, and the height
(along y) by b. It can be shown that in such a waveguide, two types of modes
exist: transverse magnetic (TM) modes having Hz = 0, and transverse electric
(TE) modes with Ez = 0 [6]. The mode problem reduces to a scalar problem,

∆⊥φ+ h2φ = 0, (2.10)

where ∆⊥ = ∂2
x + ∂2

y , h2 = k2 + γ2, and k = k0
√
εµ is constant since the core is

homogeneous. The equation is solved for φ = Ez in the TM case and for φ = Hz

in the TE case.
The PEC boundary conditions (2.9) reduce to homogeneous Dirichlet condi-

tions for Ez and homogeneous Neumann conditions for Hz, leading to different
eigenvectors in the two cases. The eigenvalues are equal in both cases, and turn
out to be

h2
mn =

(mπ
a

)2

+
(nπ
b

)2

, (2.11)

where for TM modes, m = 1, 2, 3, . . ., and n = 1, 2, 3, . . ., while for TE modes
either m or n, but not both, may also be 0. The mode shapes, or eigenvectors, are

Ez(x, y) = E0 sin
(mπ
a
x
)

sin
(nπ
b
y
)
,

Hz(x, y) = H0 cos
(mπ
a
x
)

cos
(nπ
b
y
)

for TM and TE modes, respectively. The remaining components can be computed
from Ez and Hz. The lowest order TM and TE modes are shown in Figures 2.1
and 2.2, respectively.

Since the medium is lossless, we have γ = jβ, where β is real. On the other
hand, the propagation constant of the (m,n) mode is given by

γ = jβ = j
√
k2 − h2

mn.
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Figure 2.1: Contours of Ez component of transverse magnetic (TMmn) modes over
waveguide cross section. The rows (top to bottom) correspond to m = 1, 2, and the
columns (left to right) correspond to n = 1, 2, 3.
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Figure 2.2: Contours of Hz component of transverse electric (TEmn) modes over waveg-
uide cross section. The rows (top to bottom) correspond to m = 0, 1, and the columns
(left to right) correspond to n = 0, 1, 2.

Hence, the mode only exists for k ≥ (kc)mn := hmn, where hmn is given by (2.11),
and kc is called the cutoff wavenumber of the mode. The cutoff condition may
be expressed equivalently in terms of the cutoff frequency ωc = ckc, or the cutoff
wavelength λc = 2π/kc. For a rectangular metallic waveguide with a > b, the
mode with the lowest cutoff frequency is the TE10 mode, which is therefore called
the dominant mode of the waveguide. At frequencies between the cutoff frequency
of the dominant mode and that of the mode with the next lowest cutoff frequency
a waveguide is said to operate as a single-mode waveguide, since it only supports
the dominant mode.

Dielectric slab waveguide Our second example is a dielectric slab waveguide,
consisting of a dielectric core layer with refractive index n1, sandwiched between
two dielectric cladding layers with refractive index n0 < n1. For simplicity we
assume µ = 1. The slab extends infinitely (theoretically) in the y direction, so
that light is confined only in the x direction. Such a guide is not very useful from
a practical viewpoint, but interesting for theoretical purposes, since it allows for
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quasi-analytical computation of mode shapes in a dielectric waveguide, which is
not possible for dielectric rectangular or rib waveguides.

In the mode problem, any derivative with respect to y vanishes, and it turns
out that as in the rectangular metallic waveguide, two sets of modes, TM and
TE, exist. Here, however, not only Hz vanishes in the TM case, but also Ey and
Hx. Similarly, the TE modes have Ez = Hy = Ex = 0. The mode problem again
reduces to the scalar equation (2.10), which is now one-dimensional, with φ = φ(x)
and ∆⊥ reduced to ∂2

x. In the TM case, the problem is solved for φ = Hy, from
which the non-vanishing components Ex and Ez can be computed, and the TE
mode problem is solved for φ = Ey, from which Hx and Hz are computed.

We restrict the following discussion to TE modes. For a slab with core width
2a, centered at x = 0, the TE mode shapes are given by [4]

Ey(x) =

 E1e
αxx x < −a

E0 cos(hxx− φ) |x| ≤ a
E2e

−αxx x > a.

We see that the modes are confined inside the core, and decay exponentially in
the cladding. The phase offset is φ = mπ

2 . The amplitude E0 corresponds to the
optical intensity, while E1 and E2 are chosen such that Ey is continuous at the
interfaces between core and cladding. The discrete set of modes is numbered by
m = 0, 1, 2, . . ., and mode parameters hx,m and αx,m are found, for each m, by
solving {

w = u tan(u− mπ
2 )

u2 + w2 = v2,

called the dispersion equations, for u = ahx and w = aαx, given the normalized
frequency v = k0a

√
n2

1 − n2
0. These are nonlinear equations, and a numerical

method must be used to solve the system, hence we say that the mode solutions
are computed quasi-analytically. As for the rectangular metallic waveguide, we
can then compute the propagation constant

βm =
√
k2 − h2

x,m,

where k = k0n1.
The dimensionless quantity neff = β/k0 is called the effective index of the mode,

and satisfies n0 ≤ neff < n1 for propagating modes, where the first inequality is
the cutoff condition for a slab waveguide mode. In Figure 2.3 the first three modes
are shown for frequencies just above their respective cutoff frequencies. Note how
– unlike modes in a metallic waveguide – the mode shapes depend on frequency,
so that at higher frequencies, the modes are more well-confined inside the core.
The confinement also increases with increasing refractive index difference between
core and cladding.

2.2.2 Pulse propagation and dispersion
We now make a short digression into the analysis of pulse propagation in optical
fibers. This has two purposes: First, the lessons learned from such analysis serve as



“main” — 2015/3/23 — 15:37 — page 18 — #26

18 2. Theory

−a a
0

0.2

0.4

0.6

0.8

1

x

E
y
 [
a
.u

.]

 

 

TE
0

−a a
−1

−0.5

0

0.5

1

x

 

 

TE
0

TE
1

−a a
−1

−0.5

0

0.5

1

x

 

 

TE
0

TE
1

TE
2

Figure 2.3: The first three TE modes of a slab waveguide. Frequencies are just above
cutoff of TE0 (left), just above cutoff of TE1 (center) and just above cutoff of TE2 (right).
Interfaces between core and cladding are indicated by dotted lines in the left plot.

inspiration to the formulation of the moving-time time-domain beam-propagation
method (TD-BPM), which is the numerical method mainly considered in this work.
Second, it provides some background on the generation of chirped pulses, discussed
at the end of the section, which is the type of pulses used as optical input to the
EOMs considered in the OptoScope project.

The basic assumption made in the analysis of pulse propagation in fibers is
that the transverse variables (x and y) can be separated from the longitudinal
variable (z) and time, i.e., that the electric field can be represented by

E(x, y, z; t) = re
(
E0(x, y)A(z, t)ej(ω0t−β0z)

)
, (2.12)

where ω0 is the carrier, or central, frequency of the pulse, β0 is the propagation
constant at ω0, and A(z, t), known as the “slowly varying pulse envelope”, describes
the shape of the pulse, as it propagates along the fiber. Inserting this Ansatz into
the wave equation leads to two coupled equations, the mode equation for E0 and
a pulse propagation equation for A.

The mode equation is solved in frequency domain for E0(x, y) and β(ω), as
described in Section 2.2.1. Strictly speaking, the mode shape E0 is also a function
of ω, however, in the Ansatz this dependence is implicitly assumed to be negligible.
This assumption, which is standard in optical fiber analysis, is shown in [13] to
be valid for pulses as short as a few optical carrier cycles. The dependence of the
propagation constant β on ω, on the contrary, cannot be neglected, but may rather
have a strong impact on the propagation of pulses in fibers. This dependence is
known as dispersion2. Since the exact form of the dependence is, in general, not
known, a Taylor expansion about the carrier frequency ω0,

β(ω) = β0 + β1(ω − ω0) + 1
2β2(ω − ω0)2 + . . . ,

2Dispersion has two sources: waveguide dispersion, due to geometry, and material dispersion,
due to frequency dependence of the material’s refractive index. Dispersion can therefore exist
even when non-dispersive materials are considered.
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where βm = β(m)(ω0), m = 0, 1, . . ., is used. Terms of third and higher order can
often be neglected if the optical field is quasi-monochromatic, i.e., if the spectral
width is much smaller than the carrier frequency.

Under the same assumption of a quasi-monochromatic optical field, the pulse
envelope A is slowly varying with respect to z, and ∂2

zA can be neglected in the
pulse propagation equation. The following equation is derived (see [7] for details)

∂zA = −β1∂tA−
jβ2

2
∂2
tA+ j∆βA.

The first term in the right hand side accounts for the propagation of the pulse
envelope along z with the group velocity vg = 1

β1
, and the third term includes

nonlinear effects and fiber losses. The second term accounts for so called group
velocity dispersion, which has three effects on the pulse: it broadens the pulse in
time, it reduces the peak amplitude, and it adds chirp to the pulse, i.e., dependence
of frequency on time.

It is customary to make the change of variables τ = t−z/vg, which is discussed
thoroughly in Section 3.2, in the context of the moving-time TD-BPM. The pulse
propagation equation for optical fibers is then expressed as

∂zA = −jβ2

2
∂2
τA+ j∆βA.

in a time frame moving with the group velocity. If fiber losses can be neglected,
this equation is referred to as the nonlinear Schrödinger equation. When nonlinear
effects are also negligible, the equation reduces to the linear Schrödinger equation

∂zA = −jβ2

2
∂2
τA. (2.13)

Propagation of Gaussian pulses in lossless linear dispersive fibers The
linear Schrödinger equation (2.13), governing propagation of pulses in lossless lin-
ear dispersive fibers, can be solved analytically for Gaussian initial pulses,

A(0, τ) = exp

(
− τ2

2τ2
0

)
.

Here τ0 is the half-width at 1/e-intensity point3. The solution is then [7]

A(z, τ) =
τ0

(τ2
0 − jβ2z)1/2

exp

(
− τ2

2(τ2
0 − jβ2z)

)
= a(z) exp

(
− (1 + jC(z))

2

τ2

τ2
1 (z)

)
, (2.14)

3Another common measure of pulse width is the full width at half maximum τFWHM =
2
√

ln 2τ0.
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where from the latter formulation it is clear that the shape of the propagated pulse
is still Gaussian, with a z-dependent half-width τ1(z) and complex amplitude a(z).
Introducing the dispersion length LD = τ2

0 /|β2|, we can write

τ1(z) = τ0
√

1 + (z/LD)2.

We see that LD is the distance at which the pulse has broadened by a factor
√

2.
At fixed z, the instantaneous frequency of E is the time derivative of the phase,

given by (2.12) and (2.14) as

ω(τ) = ∂τ

(
ω0τ −

Cτ2

2τ2
1

+ constant

)
= ω0 −

Cτ

τ2
1

. (2.15)

The frequency thus depends linearly on τ , or, expressed in different terms, the
pulse is linearly chirped. The chirp rate, i.e., the rate of change of frequency with
time, is proportional to C(z) = sgn(β2) z

LD
.

Example: Generation of EOM input pulse An optical input pulse to the
EOM considered in the OptoScope project is generated by propagating an initially
unchirped Gaussian pulse with τ0 = 80 fs and carrier wavelength λ0 = 1.55µm
(corresponding to ω0 = 2πc/λ0 ≈ 1200 (ps)−1), through 1 km of dispersive fiber
with group velocity dispersion parameter β2 ≈50 (ps)2/km. Then we have, ap-
proximately, LD = 0.13 m, and at the end of the fiber, i.e., at z = 1 km,

C = z/LD = 7800,

τ1 = 7800τ0 = 620 ps

(note the very high stretch factor), which are thus the characteristics of the input
pulse to the EOM. The normalized envelope of the pulse, before and after dis-
persion, is illustrated in Figure 2.4. The real part of the chirped pulse is shown,
although, due to the high chirp rate, the oscillations are not visible. The white
line segments inside the pulse are merely graphical artefacts. The inset shows the
oscillations at the center of the pulse. Note that the oscillations are due to chirp
only; the carrier frequency ω0 has been factored out in (2.12).

The dispersive fiber in this example corresponds to the “Group Velocity Dis-
persion D1” box in Figure 1.1. The pulses before and after that box represent the
pulses in Figure 2.4, and we can now appreciate that the horizontal, rather than
vertical, spread of the color spectrum after dispersion illustrates chirp.

To see to what extent the chirp affects the instantaneous frequency in this
example, we rewrite (2.15) as

ω(τ) = ω0 −
C

τ1

τ

τ1
= ω0 −

1

τ0

τ

τ1
≈
(

1200− 12
τ

τ1

)
(ps)−1.

Hence, at τ = ±τ1, the instantaneous frequency is changed away from ω0 by about
∓1%.
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Figure 2.4: Pulse envelopes with normalized amplitude. The real part of the chirped
pulse is shown, and the inset shows the center part of the pulse.
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Chapter 3

Methods

EOM modeling has two main parts: propagation of the electric (modulating) sig-
nal along the electrodes, and propagation of the optical (modulated) pulse along
the dielectric waveguide. As previously stated, this work is limited to the opti-
cal propagation problem, where we assume that the refractive index is a known
function of space and time, due to modulation. In the previous chapter we dis-
cussed analytic solutions to some problems encountered in the analysis of optical
waveguides. In most practical applications, however, no analytic solutions are
available, and numerical methods must be used. Such methods are the subject of
this chapter.

A basic optical model of TW-EOMs is given by considering propagation of the
pulses only in the two arms. The amplitude-modulated output of the EOM is then
computed by simply adding the output of the two arms, with and without phase-
modulation, or with phase-modulation of opposite signs, in the case of push-pull
modulators. In this approach the optical problem is restricted to propagation in
straight waveguides, and separation of variables may be used. Similar to optical
fiber analysis, described in Section 2.2.2, the problem splits into a mode problem
for the propagation constant and the x- and y-dependent mode shape, and a
propagation problem for the z- and t-dependent pulse envelope. The mode problem
must, in general, be solved numerically, using, e.g., the finite element method [9].
The propagation problem under modulation is seen as a perturbation to mode
propagation. Then a local phase shift, proportional to the refractive index shift,
δn, can be computed and accumulated along z, to find the total phase shift at the
end of the arm, [14–16].

This model describes an (optically) ideal modulator, which would, in the ab-
sence of a modulating signal, leave the input pulse unchanged. However, in any
real device, the output pulse is damped due to optical losses (not to be confused
with damping of the electric signal along the electrodes, which is also a concern in
TW-EOM design), such as losses in couplers and waveguide bends. An enhanced
model is therefore sometimes used, in which damping is accounted for by multi-
plying the output pulse by a constant damping factor. The damping is computed

23
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in frequency domain, at the carrier frequency, using different methods for different
types of losses. Bend losses have, e.g., been treated using the beam-propagation
method (BPM) [17], and conductor losses, i.e., losses due to the optical field reach-
ing into the electrode, which is an imperfect conductor, have been computed using
a mode solver and perturbation method [18]. In [19], losses specific for EOM struc-
tures are considered, e.g., losses due to mode mismatch between the input/output
region of the EOM, and the active region, where the presence of electrodes along
the waveguide modify the mode shape.

Based on simplifying assumptions, an approach of the described type thus
subdivides the optical propagation problem, extending over space and time, into
several sub-problems, extending over fewer dimensions; the mode problem is solved
over x and y, the modulated propagation problem over z and t, and the damping
problems over x, y and sometimes z. The major benefit of such an approach
is clearly its computational efficiency, compared to resolving the full problem in
space and time. Further, it allows for design optimization of individual parts of
the EOM in a modular manner. On the other hand, it requires knowledge about
different methods for the different sub-problems. A more severe drawback is the
simplifications employed. Justifying them requires a priori knowledge about the
relative importance of various effects, which may pose a problem when considering
new designs.

In this work, the following alternative is considered: a method resolving the full
problem in space and time. Such methods discretize and solve the wave equations
in a more direct way, but are computationally intense. However, with the ever-
growing computational power and memory storage of computers, the problem sizes,
generated by the very large size of the device compared to the optical wavelength,
are about to go from unthinkable to realistic. Still, general purpose methods,
such as the finite-difference time-domain (FDTD) method, are too expensive, and
methods more adapted to the problem at hand are needed, such as the time-domain
beam-propagation method (TD-BPM). Several versions of the TD-BPM exist. In
Section 3.1.2 one version, which we refer to as the slow-wave TD-BPM, is briefly
described, along with the FDTD method. Our main interest, however, is in the
version we call themoving-time TD-BPM, to which most of this chapter is devoted.
Its derivation is based on the works by Masoudi et al. [20, 21], but a different
paraxial approximation is suggested, which is shown to increase the accuracy of
the method without adding to the computational cost. Further, while Masoudi
et al. use finite differences for the discretization, we present here a discretization
based on tensor-product finite elements.

Before considering space- and time-resolving methods, we introduce the BPM
in Section 3.1.1, since it is a standard tool in optical waveguide analysis, and, in
addition, forms the basis of the TD-BPMs.
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3.1 Preliminaries

3.1.1 BPM
The beam propagation method (BPM) is a well established frequency-domain
method used in optical and acoustical wave propagation when there is an assumed
propagation direction, taken to be along the positive z axis, and a specified fre-
quency. In the scalar case, the following Ansatz is used:

E(x, y, z; t) = re
(
ψ(x, y, z)ej(ωt−k0npz)

)
, (3.1)

where k0 = ω/c, and np is a method parameter to be chosen appropriately. The
phase index is a natural choice, if known. Otherwise the refractive index of the
cladding may be used. Inserting this Ansatz into the scalar wave equation (2.5)
and dividing by the common phase factor yields the BPM equation

∂2
zψ − 2jk0np∂zψ = −k2

0(n2 − n2
p)ψ −∆⊥ψ, (3.2)

where ∆⊥ = ∂2
x + ∂2

y is the transverse Laplacian. The equation is discretized in
the transverse direction using, e.g., finite differences, and an initial field given at
z = z0 is propagated along z using an explicit or implicit scheme.

The geometry of the problem is prescribed by the spatial dependence of the
refractive index n. In free space n = 1, and if np is chosen to be 1 as well, the
first term of the right hand side vanishes. We thus see that the second term
governs propagation in free space. In a lossless waveguide, homogeneous along z,
the envelope of a propagating mode is theoretically constant along z. If the mode
shape is taken as initial field and the effective index of the mode is chosen for np,
then any variation of ψ along z is due to numerical (discretization or rounding)
errors. If the geometry varies slowly along z, ψ can be assumed to do so too, and
the ∂2

zψ term can be neglected, which is known as the paraxial approximation.
Many versions of the BPM exist, including paraxial and non-paraxial versions,

scalar and vectorial versions, and versions based on finite differences and finite
elements for discretization in the transverse direction. For an account of several
of these BPMs, see [22, Chapter 2] and references therein.

3.1.2 Space- and time-resolving methods
For electromagnetic simulations in time domain with resolution in all spatial di-
mensions, the finite-difference time-domain method (FDTD) [23] is a standard
tool. The wave equation is discretized with finite differences, and the field is
propagated in time by an explicit time-stepping scheme. The method is simple
to implement, flexible and very efficient for problems with spatial dimensions on
the scale of the wavelength [24]. However, because of the explicit time-stepping,
a small time step must be chosen to satisfy the Courant-Friedrichs-Lewy (CFL)
stability condition. Hence, for three-dimensional optical devices with long inter-
action distances compared to the wavelength, such as EOMs, the FDTD method
becomes very expensive in terms of computer resources.
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As an alternative to the FDTD method, several different time-domain beam-
propagation methods (TD-BPMs) have been developed for the propagation of
pulses in optical devices. The most wide-spread of these, referred to here as the
slow-wave TD-BPM, was developed originally in [25–27]. It uses the Ansatz

E(x, y, z; t) = re
(
ψ(x, y, z; t)ejω0t

)
(3.3)

in the wave equation, and employs the slowly varying envelope approximation
(SVEA),

|∂2
t ψ| � ω0|∂tψ|, (3.4)

in the resulting TD-BPM equation, so that the second order time derivative may be
dropped. The SVEA is valid for temporally broad pulses, or, equivalently, pulses
with narrow spectral bandwidth. The early slow-wave TD-BPMs are discretized
by finite differences, while in an alternative version finite elements are used for the
spatial discretization [28, 29]. To avoid the restriction of the SVEA, broadband
TD-BPMs have been developed, which include the second order time derivative
by using Padé approximants [28,30].

The described TD-BPMs have been successfully applied to many optical struc-
tures and devices, typically with dimensions comparable to the optical wavelength.
However, like the FDTD method, these methods are less suited for propagation
over long distances, since all spatial dimensions must be resolved in each time step,
leading to high computational costs for long devices.

3.2 Moving-time TD-BPM

As described in Section 2.2.2, a time window moving with the pulse as it prop-
agates is a standard, necessary tool in optical fiber analysis. In that context,
propagation distances are on the order of kilometers. To handle structures which
are much shorter than long-haul optical fibers, yet very long compared to the op-
tical wavelength, such as EOMs, Masoudi et al. introduce a similar moving time
window in the context of TD-BPM [20]. We refer to their method as the moving-
time TD-BPM. In Section 3.2.1, a detailed derivation of the scalar version is given,
and some features of the method are discussed. In addition, we suggest a different
paraxial approximation than the one used by Masoudi et al. Our formulation is
derived by introducing the moving time window before neglecting second order
derivatives involving the propagation direction, while Masoudi et al. do the same
procedures in the opposite order. The new formulation requires no additional com-
putational effort, yet it is shown in Chapter 4 to drastically increase the accuracy
of the method, especially for short pulses. In Section 3.2.2, a more general formu-
lation is derived, including both the scalar and the vector versions. The weak form
of this general equation is given in Section 3.2.3. Based on the weak form, the
equation is discretized in the transverse directions and time using tensor product
finite elements. The solution is stepped forward along z using an implicit scheme,
the midpoint method. These discretizations are described in Section 3.2.4.
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3.2.1 Derivation of the scalar equation

In a series of papers Masoudi et al. have developed a version of TD-BPM with
a moving time window following the pulse with the group velocity [20, 21, 31–33].
Their derivation is based on an Ansatz similar to the BPM Ansatz (3.1),

E(x, y, z; t) = re
(
ψ(x, y, z; t)ej(ω0t−k0npz)

)
, (3.5)

with the difference that here ψ varies not only with space but also with time, to
allow for pulse shapes and, more importantly in our case, time-dependent modu-
lation. This Ansatz differs from the one used for the slow-wave TD-BPM, (3.3), in
that it factors out not only the time oscillations ejω0t, but also oscillations along
the assumed propagation direction z. Then, for temporally broad pulses, not only
the SVEA (3.4) holds, but also the approximation

|∂2
zψ| � k0np|∂zψ|, (3.6)

if the geometry varies slowly along z, and np is appropriately chosen. This corre-
sponds to the paraxial approximation in the case of BPM.

Inserting (3.5) into the scalar wave equation (2.5), and dividing by the common
phase factor, yields

∂2
zψ − 2jk0np∂zψ =

n2

c2
∂2
t ψ + 2jk0

n2

c
∂tψ − k2

0(n2 − n2
p)ψ −∆⊥ψ, (3.7)

where we have assumed for simplicity that µ = 1, and that ε = n2 is independent
of time; the general case will be treated in the next section. We see that the
TD-BPM equation (3.7) is the BPM equation (3.2), with two additional terms for
the first and second time derivatives of ψ. Like the BPM equation, the (moving-
time) TD-BPM equation is propagated in z, while treating time as an additional
“transverse” variable.

Next the moving time window is introduced by replacing the ordinary time
variable by a moving time variable, τ , moving with the group velocity, vg, of the
pulse. The same change of variables is standard in the analysis of optical fibers,
as mentioned in Section 2.2.2. We state it here as{

ζ = z
τ = t− ngz/c,

(3.8)

where we prefer to use the group index ng = c/vg, rather than the group velocity,
for better readability. By the chain rule we have

∂z = ∂τ
∂τ

∂z
+ ∂ζ

∂ζ

∂z
= ∂ζ −

ng

c
∂τ ,

∂t = ∂τ
∂τ

∂t
+ ∂ζ

∂ζ

∂t
= ∂τ ,
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and for the second order derivatives

∂2
z = ∂2

ζ −
2ng

c
∂τ∂ζ +

n2
g

c2
∂2
τ ,

∂2
t = ∂2

τ .

In the new variables, the moving-time TD-BPM equation then reads

∂2
ζψ −

2ng

c
∂τ∂ζψ − 2jk0np∂ζψ

=
n2 − n2

g

c2
∂2
τψ + 2jk0

n2 − ngnp

c
∂τψ − k2

0(n2 − n2
p)ψ −∆⊥ψ, (3.9)

where the difference compared to (3.7) lies in the three added terms involving the
factor ng.

An advantage of the moving-time TD-BPM, compared to the slow-wave TD-
BPM, is related to the size of the computational domain to be discretized. With
the latter method, the full length of the device must be resolved for each discrete
time step from 0 to the total travel time, T . On the contrary, with the former
method, only the moving time window Iτ = [−Mτ0,Mτ0] needs to be resolved
at each discrete ζ step along the device. Here τ0 is the temporal half-width of
the pulse (see Section 2.2.2), and M is a moderate number of pulse widths chosen
large enough to let the pulse vanish (numerically) before reaching the time-window
edges. This makes the moving-time TD-BPM particularly efficient for propagation
of short pulses over long distances, i.e., when T � τ0.

The change of coordinates is illustrated graphically in Figure 3.1. Arbitrary
length and time units are used, and the group velocity is normalized, vg =
1 l.u./t.u. In the left part of the figure, the old and new coordinate axes, (z, t)
and (ζ, τ), are shown, along with contour lines of the magnitude of a Gaussian
pulse, propagating in a straight waveguide. The pulse propagation is given by
(2.14), with τ0 = 0.1 t.u. and β2 = 0.005 t.u.2/l.u., implying LD = 2 l.u. The
geometrical interpretation of partial derivative with respect to ζ, ∂ζ , is the rate of
change when ζ increases, while τ is kept constant, i.e., the directional derivative
along the vector v, perpendicular to the τ axis, indicated in the right part of the
figure. Analogously, ∂τ is the directional derivative along u.

Paraxial approximation In the BPM, the paraxial approximation (3.6) holds
whenever the waveguide varies slowly with z. However, as is clear from Figure 3.1,
when the pulse envelope varies rapidly with time, it also varies rapidly with z due
to propagation, and (3.6) does not hold, even for straight waveguides. The change
from ordinary to moving time frame separates these dependencies in an eligible
way; the pulse shape is taken into account by τ derivatives, while only changes
to the shape, as the pulse propagates along the line z = vgt, are captured by ζ
derivatives. Still, for short pulses ∂ζψ is indirectly influenced by the pulse shape
through the dependence of LD on τ0. In time domain it would, in the author’s
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Figure 3.1: Illustration of change of coordinates with arbitrary length units (l.u.) and
time units (t.u.). Left: Coordinate axes for (z, t) and (ζ, τ) with vg = 1 l.u./t.u., and
contour lines of the amplitude of a Gaussian pulse propagating according to (2.14) (τ0 =
0.1 t.u., LD = 2 l.u.). Right: u and v are parallel to z = 0 and z = vgt, and represent,
respectively, the directions along which ∂τ and ∂ζ measure rate of change.

opinion, be more appropriate to refer to

|∂2
ζψ| � k0np|∂ζψ|

as the paraxial approximation, as it holds for waveguides varying slowly with
z, with less sensitivity to the pulse shape than (3.6). The corresponding paraxial
moving-time TD-BPM equation is obtained from (3.9) by neglecting only the term
∂2
ζψ.
In [20, 21], Masoudi et al. present what they call the paraxial version of the

moving-time TD-BPM, in which they neglect the entire term

∂2
zψ = ∂2

ζψ −
2ng

c
∂τ∂ζψ +

n2
g

c2
∂2
τψ. (3.10)

Considering the comments just made, it is thus not surprising that their method
shows good accuracy for pulses with width ≥ 100ps, but fails to do so for shorter
pulses. It should be noted, that neglecting the term n2

g

c2 ∂
2
τψ cannot be motivated

by the pulse traveling approximately along the z axis. What is more, there is no
computational gain in neglecting it, since it represents merely a modification of
the coefficient of the ∂2

τψ term; the term is still present in the simplified equation.
For waveguides varying slowly with z then, the first term in the right hand side

of (3.10) may be neglected, whereas the third term should be kept. It is less clear
how to handle the second term. It does add to the complexity of the equation,
and complicates the stability analysis. It can be argued that the term is in general
smaller in magnitude than the term 2jk0np∂ζψ, but whether or not it is negligible
depends on the data, such as pulse shape, in the specific case. In the current
work we implement a simplified paraxial moving-time TD-BPM equation, which
neglects the first and second term of (3.10). The equation then reads

2jk0np∂ζψ = −
n2 − n2

g

c2
∂2
τψ− 2jk0

n2 − ngnp

c
∂τψ+ k2

0(n2−n2
p)ψ+ ∆⊥ψ. (3.11)
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In Section 4.1 a comparison is made between this version and the paraxial version
of Masoudi et al. in the case of propagation in a straight slab waveguide. As
expected, the results show clearly the superiority of the version presented here,
while, as pointed out, there is no difference in computational cost between the two
methods. Equation (3.11) has in fact been implemented previously, and results are
reported, and compared to the results by Masoudi et al., in [34]. There, however,
no comment is made on the difference in formulation between the two equations,
but rather the improved results are attributed to the use of finite elements instead
of finite differences for discretization. In view of the discussion above, this seems
to be an erroneous conclusion.

In two later papers [31,32], Masoudi develops a non-paraxial version of the TD-
BPM, based on Padé approximants for the inclusion of the ∂2

ζψ term. However,
the terms including ∂τ∂ζψ and ∂2

τψ are still neglected. The non-paraxial method
shows surprisingly improved results, compared to the paraxial version, in view of
the still lacking terms.

In the context of EOM simulation, the width of the optical pulse is of the same
order of magnitude as the total time it takes the peak to travel through the device.
Hence, the moving time window to be resolved is not smaller than the time interval
used in the fixed time frame. Rather, the gain of using a moving time frame is
related to the time-dependent modulation, which varies very rapidly with time,
compared to the pulse width. As for short pulses, described above, these rapid
pulse shape variations contribute to ∂2

t , ∂2
z , and ∂2

τ , but not to ∂2
ζ , such that the

paraxial approximation may be used in the moving time frame, but not in the
fixed time frame.

3.2.2 Abstract formulation
We now derive the TD-BPM in a more abstract way, including both the scalar
and vector versions. In order to be able to use the Ansatz (3.5) we split the
spatial derivative in the (electric) wave equation into its longitudinal and transverse
components in the following way

−∇ · (µ−1∇φ)
∇× (µ−1∇× φ)

}
= (−Q1∂

2
z +Q2∂z +Q3)φ (3.12)

where Q1 is a scaling factor, and Q2 and Q3 are transverse differential opera-
tors, specified below for the scalar and vector case, respectively. The relative
permeability µ is unity in our applications, however, it is included here since the
formulation of perfectly matches layers (PMLs) is based on an artificial choice of
space-dependent permittivity and permeability near the boundary of the compu-
tational domain. The dependence is in the transverse directions, so ∂zµ = 0, which
is used in the derivation of the Q operators. In the scalar case, then,

Q1 = µ−1,

Q2 = 0,

Q3 = −∇⊥ · (µ−1∇⊥),
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where ∇⊥ = (∂x, ∂y, 0), which is derived in a straightforward manner by writing
∇ = ∇⊥ + ẑ∂z, and expanding the product in (3.12). Similarly, the curl operator
for the vector equation can be written in matrix form, and split into a sum of two
terms, for the transverse and longitudinal partial derivatives, respectively. We use
the notation

∇× =

 0 −∂z ∂y
∂z 0 −∂x
−∂y ∂x 0

 = R⊥ + Jz∂z,

where

R⊥ = ∇⊥× =

 0 0 ∂y
0 0 −∂x
−∂y ∂x 0

 and Jz =

0 −1 0
1 0 0
0 0 0

 .
By expanding the product ∇ × (µ−1∇×) = (R⊥ + Jz∂z)(µ

−1(R⊥ + Jz∂z)), the
operators for the vector case are found to be

Q1 = −Jzµ−1Jz,

Q2 = R⊥(µ−1Jz · ) + Jzµ
−1R⊥ · = ∇⊥ × (µ−1Jz · ) + Jzµ

−1∇⊥ × · ,
Q3 = R⊥(µ−1R⊥ · ) = ∇⊥ × (µ−1∇⊥ × · ).

We can now write the electric scalar and vector wave equations in a unified
way,

(−Q1∂
2
z +Q2∂z +Q3)φ = −Q4

1

c2
∂2
t φ,

where Q4 = ε(x, y, z), and we assume for the moment that ε is constant with
respect to time. The unknown φ represents the electric field, or one of its compo-
nents.

We recall the moving-time TD-BPM Ansatz (3.5), with E substituted by φ,

φ(x, y, z; t) = re
(
ψ(x, y, z; t)ej(ω0t−k0npz)

)
.

The Ansatz is inserted in the wave equation to derive the TD-BPM equation. This
can be done conveniently in terms of the operators

R1 = jk0np, (3.13)

R2 =
1

c
∂t + jk0.

The differential operators ∂z and 1
c∂t acting on φ relate to operators acting on ψ

in the following way

∂zφ = re (ρ(∂z −R1)ψ) (3.14)
1

c
∂tφ = re (ρR2ψ) ,
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where ρ = ej(ω0t−k0npz). We can then write the TD-BPM equation for the envelope
ψ as

−Q1∂
2
zψ + [2Q1R1 +Q2]∂zψ = [Q1R2

1 +Q2R1 −Q3 −Q4R2
2]ψ. (3.15)

The final step in the derivation of the moving-time TD-BPM equation is to
perform the change of variables (3.8) to the moving time frame. As in the previous
section, this is done by substituting ∂τ for ∂t and ∂ζ − ng

c ∂τ for ∂z. However,
from (3.14) it follows that we can equivalently write the TD-BPM equation in the
moving time variables by substituting ∂τ for ∂t, ∂ζ for ∂z, and

R1 = jk0np +
ng

c
∂τ (3.16)

for R1 in (3.15). The distinction between fixed and moving time frame can then
be made by the choice between (3.13) and (3.16), rather than by the names of the
time and longitudinal space variables. In the following we use the variable names
z and τ , for easier comparison to literature, when there is no risk of ambiguity.

In summary, (3.15) thus represents the scalar or vector TD-BPM equation,
depending on the choice of the Q operators, and is given in an absolute or moving
time frame, depending on the choice of R1. Further the paraxial approximation is
obtained by omitting the first term and the standard BPM equation is obtained
by omitting the time dependence of ψ, in which case the R operators reduce to
scalar multiplication factors. The simplified paraxial equation, without the ∂τ∂ζ
term, is obtained by using, for R1, (3.13) in the left hand side of (3.15) and (3.16)
in the right hand side.

Time-dependent (modulated) permittivity

As discussed in Section 2.1.2, the modulation in an EOM appears as a modification
to the right hand side of the wave equation,

− 1

c2
∂2
t (εE) = −εc

c2
∂2
tE −

1

c2
∂2
t (δεE),

where εc = εc(x, y, z) is the unmodulated permittivity, constant with respect to
time, and δε = δε(x, y, z; t) is the time-dependent shift due to modulation. Since
(3.15) is the TD-BPM equation for time-independent permittivity we now let
Q4 = εc, and add a new term to the TD-BPM equation to represent the shift δε.

The shift is zero outside the active waveguide core, i.e., the part of the core
placed between the electrodes guiding the electric signal. Inside the active core δε
is assumed to be constant with respect to the transverse directions. It can then
be factorized, at given z, as

δε = δmax
ε χcore(x, y, z)f(z; t),

where δmax
ε is the maximal shift, χcore is the indicator function of the active core

(1 inside the active core, 0 otherwise), and f is the normalized co-propagating
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modulating signal. The modified TD-BPM equation is

−Q1∂
2
zψ+[2Q1R1+Q2]∂zψ = [Q1R2

1+Q2R1−Q3−Q4R2
2]ψ−Q5R2

2(fψ), (3.17)

where Q5 = δmax
ε χcore.

Chirped initial pulse

Consider the input pulse to the EOM, specified in Section 2.2.2 and illustrated
in Figure 2.4(b). It is clear that factoring out the carrier frequency, ω0, greatly
reduces the number of grid points needed to resolve the time dependence of the
pulse. However, resolving the chirped pulse still requires a grid which is orders of
magnitude finer than for a non-chirped pulse with the same temporal width. One
remedy may be to modify the Ansatz (3.5) such as to factor out also the temporal
variations due to chirp, as given by the analytically computed propagation of
chirped Gaussian pulses in straight waveguides (see, e.g., [7]). This corresponds
to a modification of the TD-BPM equation: a linear time dependence is added
to the constant terms of the operators R1 and R2. The resulting equation is not
investigated in this work. For pulses as broad as the EOM input pulse, the effect
of the initial chirp on propagation characteristics is expected to be negligible, and
the EOM initial data is treated by factoring out the chirp of the input pulse, while
neglecting the corresponding modifications of the TD-BPM equation.

3.2.3 Weak formulation

Before stating the weak formulation of (3.17), we need to specify test and trial
spaces over the domain Ω⊥ × Iτ , where Ω⊥ is the cross section of the waveguide,
truncated by suitable boundary conditions at an artificial boundary Γ⊥ at some
distance from the core. The interval Iτ = [τmin, τmax] for the moving time variable
is chosen large enough to cover the non-negligible part of the pulse, such that
homogeneous Dirichlet boundary conditions can be used at Ω⊥ × {τmin, τmax},
without affecting the solution notably.

For the vector equation we take as test and trial spaces

W = {w ∈ [L2(Ω⊥ × Iτ )]3 : w( · , τ) ∈ V, ∀τ ∈ Iτ and w(x⊥, · ) ∈ U , ∀x⊥ ∈ Ω⊥},

where for the time dependence it is natural to choose

U = U(Iτ ) = [H1
0 (Iτ )]3.

For the transverse space dependence a simple approach would be to use

V = V(Ω⊥) = [H1(Ω⊥)]3.

However, by the continuity condition at an interface between two media (2.8), we
know that the component of E tangential to the interface is continuous, while the
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normal component is discontinuous. Under such conditions it is more natural to
search for solutions in [35]

H(curl) = {u ∈ [L2(K)]3 : ∇× u ∈ [L2(K)]3},

with K ⊂ R3. On the other hand, the domain is in our case restricted to Ω⊥×{z}
for given z, over which it does not seem natural to consider the three-dimensional
curl operator. Further, since we assume the waveguide to be slowly varying with
respect to z, the normal vector to the interface between core and cladding is at
any point almost normal to z, such that Ez is “almost continuous”, by which we
mean that it has no, or only small, discontinuities. We can then choose a mixed
formulation, with stricter continuity conditions on the longitudinal component,
than on the transverse ones:

V = H(curl)(Ω⊥)×H1(Ω⊥),

where H(curl)(Ω⊥) is a two-dimensional space defined based on a two-dimensional
curl operator [36]. This space is a standard choice for finite element formulations of
the vector mode problem [9,37], which is solved over Ω⊥, and where the continuity
condition for Ez is fulfilled exactly. It is also frequently used in finite element
vector-BPM [38,39], which further motivates its use in the current context.

If PEC conditions are specified on some part of the boundary, say Γ1
⊥ × Iτ ,

these are imposed explicitly by choosing (for test and trial spaces)

V = {u ∈ H(curl)(Ω⊥)×H1(Ω⊥) : u× n = 0 on Γ1
⊥ × Iτ}. (3.18)

The scalar wave equation is valid for waveguide analysis when the refractive
index contrast is small. Then the discontinuity in the normal component of E at
the interface is also small, and all components of E are “approximately continuous”.
For the scalar equation we thus choose

W = {w ∈ L2(Ω⊥ × Iτ ) : w( · , τ) ∈ V, ∀τ ∈ Iτ and w(x⊥, · ) ∈ U , ∀x⊥ ∈ Ω⊥},

with U = H1
0 (Iτ ), and V = H1(Ω⊥) for homogeneous Neumann boundary condi-

tions at Γ⊥ × Iτ , or V = H1
0 (Ω⊥) for homogeneous Dirichlet conditions.

We are now ready to state the weak formulation of (3.17), assuming homo-
geneous Dirichlet conditions at Ω⊥ × {τmin, τmax}. At Γ⊥ × Iτ we assume PEC
conditions in the vector case and homogeneous Dirichlet or Neumann conditions,
with V appropriately chosen, in the scalar case. Note that since we search for
complex-valued ψ, the spaces specified above should be taken over C. The weak
form is: Find ψ ∈ W such that

azz(∂
2
zψ, χ) + az(∂zψ, χ) + a(ψ, χ) = 0, ∀χ ∈ W, z > 0, (3.19)

where azz, az and a are sesquilinear forms acting on W × W, defined in the
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following. We let ( · , · ) denote the L2(Ω⊥ × Iτ ) scalar product. Then

azz( · , · ) = (−Q1 · , · ),
az( · , · ) = ([2Q1R1 +Q2] · , · ),
a( · , · ) = (Q1R1 · ,R1 · )− (Q2R1 · , · ) + (µ−1D⊥ · , D⊥ · )

− (Q4R2 · ,R2 · )− (Q5R2(f · ),R2 · ),

where D⊥ represents the transverse gradient, ∇⊥, in the scalar case, and the
“transverse curl”, ∇⊥×, in the vector case. We have integrated by parts over Ω⊥
to get

(Q3 · , · ) = (µ−1D⊥ · , D⊥ · ). (3.20)

In the scalar case this is standard, and requires no comment. Boundary terms
vanish because of the homogeneous (Dirichlet or Neumann) boundary conditions.
The integration by parts for the vector case is performed in detail.

Consider the vector identity

(∇× b) ·a = b · (∇× a)−∇ · (a× b). (3.21)

Substituting ∇⊥ for ∇ amounts to disregarding any derivative with respect to z.
Hence, by linearity, the same identity must hold for ∇⊥. The desired integration
by parts follows by integrating the identity over Ω⊥ and applying Green’s theorem,
a two-dimensional version of the divergence theorem, to the last term:∫

Ω⊥

(∇⊥ × b) ·a dxdy =

∫
Ω⊥

(b · (∇⊥ × a)−∇⊥ · (a× b)) dxdy

=

∫
Ω⊥

b · (∇⊥ × a) dxdy −
∫

Γ⊥

(a× b) ·nds,

where n is a unit vector normal to the boundary Γ⊥. Note that because of the
asymmetry of the identity (3.21), the integration by parts does not induce a change
of sign, as in the scalar case. With b = µ−1∇⊥ × ψ and a = χ we get

(∇⊥×(µ−1∇⊥×ψ), χ) = (µ−1∇⊥×ψ,∇⊥×χ)−
∫
Iτ

∫
Γ⊥

(χ×(µ−1∇⊥×ψ)) ·n dsdτ.

By the PEC conditions the test function, χ, is parallel to n on Γ⊥. But then
χ× (µ−1∇⊥ × ψ) is orthogonal to n, and the integral over Γ⊥ vanishes. We have
thereby shown (3.20) in the vector case.

The use of homogeneous Dirichlet or Neumann, or PEC boundary conditions
in the derivation is not as restrictive as it may seem. Perfectly matched layers
(PMLs), used to avoid reflections from the boundary, correspond to an artificial
modification of the material parameters in a layer adjacent to the boundary, but
does not impose an actual boundary condition. Boundary conditions must still be
chosen for the artificial boundary, but due to the absorbing layer, the solution is
not very sensitive to the choice, and homogeneous Dirichlet or Neumann, or PEC
conditions may be used.
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For the derivation of the weak form (3.19) it was further used that

(R· , · ) = −( · ,R· ),

for R = R1,R2. This follows from integration by parts over Iτ , and by noting
that the coefficient of the differential term in R is real, while the constant term is
purely imaginary. Boundary terms due to integration by parts vanish because of
the homogeneous Dirichlet conditions at Ω⊥ × {τmin, τmax}.

For the purpose of tensor product finite element discretization, derived in Sec-
tion 3.2.4, we also note here that for separable functions in W, i.e., for elementary
tensors in the tensor product space V ⊗ U ⊆ W, the sesquilinear forms can be
separated as follows

azz( · , · ) = −(Q1 · , · )⊥( · , · )τ ,
az( · , · ) = 2(Q1 · , · )⊥(R1 · , · )τ + (Q2 · , · )⊥( · , · )τ ,
a( · , · ) = (Q1 · , · )⊥(R1 · ,R1 · )τ − (Q2 · , · )⊥(R1 · , · )τ , (3.22)

+ (µ−1D⊥ · , D⊥ · )⊥( · , · )τ ,
− (Q4 · , · )⊥(R2 · ,R2 · )τ − (Q5 · , · )⊥(R2(f · ),R2 · )τ ,

where ( · , · )⊥ and ( · , · )τ denote the L2 scalar products over Ω⊥ and Iτ respec-
tively.

Stability analysis

We consider stability in a simplified case: the scalar paraxial case with constant
permeability, µ = 1, homogeneous Dirichlet boundary conditions and no modu-
lation of the refractive index. Here we mean by the paraxial approximation that
both the ∂2

ζψ and the ∂τ∂ζψ terms can be neglected. The weak formulation (3.19)
then reduces to

az(∂zψ, χ) + a(ψ, χ) = 0, ∀χ ∈ H1
0 (Ω⊥ × Iτ ), z > 0,

where

az( · , · ) = 2jk0np( · , · ),
a( · , · ) = (R1 · ,R1 · ) + (∇⊥ · ,∇⊥ · )− (εR2 · ,R2 · ).

We want to show stability in the sense that ‖ψ(z)‖2 ≤ ‖ψ0‖2, z > 0, where ψ0

is the field at z = 0. Since

∂z‖ψ‖2 = 2 re(∂zψ,ψ) =
1

k0np
im(az(∂zψ,ψ)) = − 1

k0np
im(a(ψ,ψ))

it suffices to show that im(a(ψ,ψ)) ≥ 0. With the current formulation of the
problem this is immediately clear, since

a(ψ,ψ) = ‖R1ψ‖2 + ‖∇⊥ψ‖2 −
∫

Ω⊥

ε‖R2ψ(x, y; · )‖2τ dΩ⊥,
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where, for real-valued ε, all terms are real, and hence im(a(ψ,ψ)) = 0. In this
simplified case the equation is thus not only stable, but also energy conserving.

No rigorous stability analysis has been carried out for more general versions of
the TD-BPM equation. It is the impression of the author that no severe stability
issues should arise when adding modulated permittivity, because of the perturba-
tive nature of the added term, nor when adding PMLs, since they are constructed
to be absorbing, and thus should not increase the energy of the solution. Inves-
tigating the stability properties of the vector equation, as well as inclusion of the
∂τ∂ζ and ∂2

ζ terms, requires more careful considerations.

3.2.4 Discretization

Semi-discrete finite element formulation

While Masoudi et al. use finite differences to discretize the moving-time TD-BPM
equation in time and transverse space, we formulate here a finite element dis-
cretization. This allows for the use of adaptive meshes, and a flexible choice of
discrete function spaces. Considering the discussion above on function spaces for
the continuous formulation, the latter may be particularly important in the vector
case. Furthermore, the geometry, including refractive index discontinuity at the
interface between core and cladding, can be represented in an exact manner in the
finite element formulation, which is not possible with finite differences.

In a first, straightforward attempt, the entire domain Ω⊥ × Iτ was discretized
using a triangular mesh, and the test and trial spaces were defined (identically)
as the span of first order continuous Galerkin functions on this mesh. Such an
approach has been previously reported in [34], and works well for propagation in
waveguides, as long as the solution varies slowly with τ , e.g., the envelope of a
pulse with width many times the optical carrier period. However, when refractive
index modulation, even with moderate frequency, is added, the solution is blurred
along τ . To see why this happens, it is instructive to consider the scalar, paraxial
TD-BPM equation in the form (3.11). It is clear that for a propagating mode
ψ = E0(x, y) in a straight waveguide, with no time-dependence other than time-
harmonic, the equation reduces to

k2
0(n2 − n2

p)ψ + ∆⊥ψ = 0,

if np is taken to be the effective index of the mode. Since the expression does not
involve derivatives with respect to τ , the same relation must hold, theoretically,
for ψ = g(τ)E0(x, y), for any function g. Consequently, any good discretization
Ah of the operator A := (k2

0(n2 − n2
p) + ∆⊥) should map g(τ)E0(x, y) to zero, or

at least satisfy
Ah(gE0) ≈ gAh(E0), (3.23)

for arbitrary g.
The discretization of A with finite differences immediately satisfies the re-

quirement, as it is performed independently at each grid point along Iτ . However,
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numerical tests of our initial finite element discretization, based on an unstruc-
tured grid over Ω⊥ × Iτ , show that the discrete operator applied to g(τ)E0(x, y)
results in an error term, whose magnitude is proportional to the frequency of g,
see Figure 3.2, thus explaining the blurring of the solution when a time-varying
modulation is added.

Figure 3.2: Discretization error using finite element discretization with unstructured
grid over Ω⊥ × Iτ , showing that Ah does not satisfy (3.23). Left: ψ = gE0, right: Ahψ.
Top: constant g, middle: g(τ) = sin(0.1τ), bottom: g(τ) = sin(τ).

To resolve this issue, we propose to use instead a finite element discretization
based on a tensor product space Wh = Vh ⊗ Uh, where Vh and Uh are discrete
subspaces of V and U , respectively. Such an approach is feasible for the TD-
BPM equation, since the sesquilinear forms appearing in the weak formulation are
separable in the sense of (3.22). Due to this separation of the forms into sums of
products of forms acting on Vh × Vh and Uh × Uh, respectively, the requirement
(3.23) is, as in the case of finite differences, automatically fulfilled.

Tensor product finite elements The finite element formulation of the TD-
BPM equation using tensor spaces follows the same structure as that of the bound-
ary value problem in [40, Chapter 16]. The specific choice of finite element sub-
spaces Vh and Uh of V and U , respectively, is discussed at the end of the sec-
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tion. For now we consider general such spaces, with Vh = Span{φ⊥j }
n⊥
j=1 and

Uh = Span{φτj }
nτ
j=1. Note that although the function spaces are over C, real-

valued basis functions can be chosen. As the total finite element trial and test
space we take the tensor product space Vh ⊗ Uh, with basis functions

φj = φ⊥j⊥ ⊗ φ
τ
jτ , for j = (j⊥, jτ ) ∈ {1, . . . , n⊥} × {1, . . . , nτ}.

The finite element approximation is thus ψh =
∑

k xkφk, with z-dependent,
complex-valued coefficient vector x. Inserting this into the weak form (3.19) results
in the semi-discrete TD-BPM equation:

Azz∂
2
zx + Az∂zx + Ax = 0,

where Azz[j,k] = azz(φk,φj), and analogously for Az and A. Since the basis
functions φj are elementary tensors, i.e., separable functions of (x, y) and τ , the
sesquilinear forms can be written in the factorized form (3.22), and, consequently,
the matrices Azz, Az and A can be written as sums of Kronecker products:

Azz = −Q1 ⊗P1,

Az = 2Q1 ⊗P2 + Q2 ⊗P1,

A = Q1 ⊗P3 −Q2 ⊗P2 + Q3 ⊗P1 −Q4 ⊗P4 −Q5 ⊗P5,

where

Qi[j, k] = (Qiφ⊥k , φ⊥j )⊥, i ∈ {1, . . . , 5}, P3[j, k] = (R1φ
τ
k,R1φ

τ
j )τ ,

P1[j, k] = (φτk, φ
τ
j )τ , P4[j, k] = (R2φ

τ
k,R2φ

τ
j )τ ,

P2[j, k] = (R1φ
τ
k, φ

τ
j )τ , P5[j, k] = (R2(fφτk),R2φ

τ
j )τ .

The matrices Q1, Q4, and Q5 are similar to mass matrices, but the integrands
include variable coefficients (µ−1, εc, and χcore, respectively), while Q3 is similar
to a stiffness matrix, with integrands depending on µ−1. The matrices Pi, i =
1, 2, 3, 4, have integrands with constant coefficients, and can be computed as linear
combinations of the standard mass and stiffness matrices, and the matrix with
elements of type (∂τφ

τ
k, φ

τ
j )τ , whereas the matrix P5, representing the shift due

to modulation, must be computed as a function of the normalized modulation
f = f(z; τ).

We note here again, that the BPM is obtained as a by-product of the TD-BPM,
if the time dependence of ψ is neglected, in which case the P matrices reduce to
scalars. This is convenient from a practical point of view, since it makes it possible
to test the implementation of new features concerning the space discretization, such
as choice of finite element space or boundary conditions, in frequency domain,
before advancing to time domain.

The finite element discretization has been implemented using FEniCS [36],
which offers an automated process for matrix assembly, with high flexibility in
choice of finite element spaces. The scalar case has been implemented with the
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standard first order Lagrange elements (“CG1” in the FEniCS notation) for both
time and transverse space dependence, with Ω⊥ discretized by a triangular mesh.
Initial attempts have also been made to implement the vector equation, with CG1
elements for the temporal dependence (Uh). For the transverse spatial dependence,
V is chosen according to (3.18) for the continuous problem, and the discretization is
based on the two-dimensional H(curl)-conforming Nédélec elements of the first or
second kind for the transverse components, and CG1 elements for the z component.
Here, of course, the triangulation of Ω⊥ must be constructed such that interfaces
between different media (core and cladding) are aligned with interfaces between
triangles.

Perfectly matched layers (PMLs) have been implemented for the scalar case,
based on the formulation in [41], developed there for finite element-based BPM.

Discretization in z

We first discretize the weak form of the paraxial TD-BPM equation (with or
without the mixed derivative term ∂τ∂zψ),

az(∂zψ, χ) + a(z;ψ, χ) = 0, ∀χ ∈ W, z > 0,

with initial condition ψ(x, y, 0; τ) = ψ0(x, y; τ), in the z direction using the mid-
point method. Here we have added one argument to the form a, to indicate that
the form may depend on z. The midpoint method, which is an implicit scheme, is
stated as:

az(ψ
n − ψn−1, χ) + ka(zn−1/2;

1

2
(ψn + ψn−1), χ) = 0, ∀χ ∈ W (3.24)

ψ0 = ψ0

with step size k, grid points zn = nk, and grid point values ψn = ψ|z=zn .
For az( · , · ) = ( · , · ), the midpoint method is unconditionally stable if for all

ψ ∈ W and at all z > 0 it holds that re(a(z;ψ,ψ)) ≥ 0. This is shown by setting
χ = ψn + ψn−1 in (3.24) and considering the real part of the relation, i.e.,

‖ψn‖2 − ‖ψn−1‖2 = − re ka(zn−1/2;
1

2
(ψn + ψn−1), ψn + ψn−1) ≤ 0,

where the inequality holds by assumption. In Section 3.2.3 this property was shown
for the scalar paraxial case without ∂τ∂zψ, with homogeneous Dirichlet boundary
conditions and without modulation, although there the imaginary, rather than the
real part of a was considered, because of the purely imaginary factor appearing in
az( · , · ) = 2jk0np( · , · ).

We now combine the finite element discretization for (x, y) and τ with the
midpoint method discretization in z to write the fully discretized paraxial TD-
BPM equation

(Az +
1

2
kA)x(n) = (Az −

1

2
kA)x(n−1),
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where x(0) is the coefficient vector of the projection of ψ0 on Wh.
As previously mentioned, Padé approximants have been used in several cases to

include second order derivative terms; specifically by Masoudi for a non-paraxial
version of the moving-time TD-BPM [31, 32]. In this work, only the paraxial
equation is considered, and no attempt has been made to include the second order
z derivative term of (3.19).
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Chapter 4

Results

4.1 Pulse broadening in straight slab waveguide
In their early work, Masoudi et al. [20,21] use as a test case a straight, symmetric
slab waveguide. The accuracy of the TD-BPM is measured in terms of pulse
broadening, which can be semi-analytically computed. Here we use that case to
compare the performance of the TD-BPM suggested in this work and the FDTD
method. We use the scalar paraxial TD-BPM formulation (3.11), and also compare
it to the paraxial TD-BPM in [20,21], where the term (

ng

c )2∂2
τψ is neglected.

The considered waveguide has core width 0.5µm, and refractive index n0 = 1.0
in the cladding, and n1 = 1.2 in the core, at λ0 = 1.55µm. The shapes and
propagation constants – and, hence, effective index, group velocity, and β2 – of
guided modes in a dielectric slab waveguide can be computed numerically, by
solving a system of nonlinear equations for two unknowns, as described in Section
2.2.1. In the simulations the waveguide is fed at z = 0 with a pulsed first guided
TE mode

Ey(x, 0, t) = E0(x)A(0, t)ejω0t, (4.1)

where E0(x) is the mode shape and A(0, t) = e−t
2/τ̂2

0 is the Gaussian pulse shape.
The propagation of Gaussian pulses in straight waveguides can be described analyt-
ically, given the mode shape and propagation constant (as a function of frequency),
as discussed in Section 2.2.2. Here we use the half-width at 1/e2 intensity point,
τ̂0, rather than the half-width at 1/e intensity point, τ0, used in Section 2.2.2, for
a direct comparison with the results in [20,21], where the pulse width is expressed
in τ̂0. The two half-widths relate as τ̂0 =

√
2τ0. The pulse broadening is then

given by

τ̂0(z) = τ̂0

√
1 +

(
z
LD

)2

, (4.2)

where the dispersion length is defined as LD = τ̂2
0 /(2|β2|). Figure 4.1 shows the

theoretical pulse broadening for a few different initial pulse widths, as the pulse
propagates a distance of 500µm through the slab waveguide. Note the different

43
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Figure 4.1: Pulse broadening due to dispersion.

scales on the vertical axes; short pulses broaden notably, whereas the longer pulses
are almost unaffected by dispersion.

The computational domain for the TD-BPM simulations is Ω⊥ = [−X,X],
with X = 2.75µm, and Iτ = [−T/2, T/2], with T/2 = 2.5τ̂0. Discretization
is done with uniform meshes, using nx = 110 elements in the x direction, and
nτ = 256 elements in the τ direction. Corresponding mesh sizes are hx = 0.05µm,
and hτ = 0.20, 1.0, 2.0, and 3.0 fs, respectively, for τ̂0 = 10, 50, 100, and 150 fs.
The pulse is propagated from z = 0 to 500µm with step size hz = 1.0µm. FDTD
simulations are performed with OptiFDTD1, over the domain [−X,X] × [0, Z],
with X as above, and Z = 550µm. The initial pulse is specified at an input plane
placed at z = 10µm, and the solution is recorded at “observation points” placed 0,
100, . . . , 500µm from the input plane, along z, and at the center of the waveguide
along x. Default mesh sizes are used: hx = hz = 0.083µm, ht = 0.19 fs. The final
time is chosen such that the peak of the pulse exits the domain with a margin of a
few pulse widths. With these mesh sizes, the simulations times for TD-BPM and
FDTD are about the same.

In a post-processing step, temporal pulse widths are computed from the simu-
lated data. For TD-BPM, the solution ψ is first integrated against the normalized
mode shape E0, to obtain

ψmode(z, τ) =

∫
Ω⊥

ψ(x, z, τ)E0(x) dx,

which is represented in the finite element space Uh(Iτ ), at given z, by a coefficient
vector ψ. The center of mass of the pulse is computed using the first moment of
ψmode, and the pulse width is computed using the second moment. The FDTD
data is treated similarly, by interpolating the point data to a piecewise linear finite
element function on a mesh coinciding with the FDTD grid.

The pulse width as a function of propagation distance, computed using the
three different numerical methods, is plotted for initial pulse widths τ̂0 = 10, 50, 100
and 150 fs, together with the theoretical values in Figure 4.2. It is clear that

132-bit OptiFDTD (Version 12), c© Optiwave, distributed as freeware (www.optiwave.com).
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(c) τ̂0 = 100 fs
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Figure 4.2: Simulated pulse width as a function of propagation distance, using FDTD
and paraxial TD-BPM with and without the term (

ng

c
)2∂2

τψ.

TD-BPM without the ∂2
τ term strongly overestimates the broadening, especially

for short pulses (for the shortest pulse, no useful results are obtained with this
method). Including the term improves the results dramatically, and the pulse
broadening is well approximated in all four cases by the newly proposed paraxial
TD-BPM.

The results are summarized in Figure 4.3, in terms of relative pulse width error
at z = 500µm. Note that log-scale is used on the vertical axis. For the TD-BPM
by Masoudi et al., the relative error increases from below 1% for τ̂0 = 150 fs to
about 40% for τ̂0 = 50 fs. As previously noted, no useful results are obtained for
τ̂0 = 10 fs. With FDTD, the error also increases drastically, from about 0.01% to
70%, as τ̂0 decreases from 150 fs to 10 fs. With the new TD-BPM, including the
∂2
τ term, the error is only about 3% for τ̂0 = 10 fs, and below 0.03% in the other

cases. In Figure 4.4 the relative error in pulse width is plotted against propagation
distance. Since the relative errors using the TD-BPM method by Masoudi et al.
can be estimated directly from Figure 4.2, these are excluded in Figure 4.4, to
give a better comparison between the new TD-BPM and the FDTD results. The
FDTD errors clearly accumulate along z for the short pulses. It is not quite clear
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Figure 4.3: Relative error in pulse width at z = 500µm.
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(b) τ̂0 = 50 fs
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(c) τ̂0 = 100 fs

0 100 200 300 400 500
0

1

2

x 10
−4

R
e

la
ti
v
e

 e
rr

o
r

z [micron]

(d) τ̂0 = 150 fs

Figure 4.4: Relative error in pulse width as a function of propagation distance, using
FDTD and the newly proposed paraxial TD-BPM (with the term (

ng

c
)2∂2

τψ). Note that
for τ̂0 = 10 fs, the vertical axis starts at a negative value, for the TD-BPM data to be
distinguishable from the horizontal axis.
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why they fluctuate with z for the longer pulses, however, it may be noted that the
fluctuations are small in magnitude. For σ̂0 = 10 fs, the TD-BPM error does grow
with z, but at such a low rate, compared to the FDTD error, that it appears to
be constant in the figure. For the longer pulses, the TD-BPM data displays an
error even for the known pulse at z = 0. This is because the low resolution of
the pulse, with 256 mesh cells, limits the attainable precision in the post-process
step, in which pulse width is computed. The constant dependence of the error
on z indicates that this projection error, rather than the simulation error from
TD-BPM, dominates the total error for the longer pulses. This assumption is
confirmed by comparing the TD-BPM errors for different resolutions in τ . The
case τ̂0 = 100 fs is shown in Figure 4.5, with nτ = 128, 256, and 512.
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Figure 4.5: Relative error in pulse width as a function of propagation distance, using
the newly proposed TD-BPM with varying resolution in τ . Initial pulse width is 100 fs.

It may be noted that with both FDTD and TD-BPM, the total simulated
time, T , varies with τ̂0. However, while the value of τ̂0 affects T only marginally
for FDTD (assuming the propagation distance is large compared to the pulse
width), for TD-BPM the two values are proportional. Therefore, as the time step
is kept constant for FDTD, the number of time steps also stays approximately
constant. To make a fair comparison, the number of time steps (nτ ) for TD-BPM
is kept constant, at the cost of making the time step (hτ ) larger with growing τ̂0.
This explains why for TD-BPM, the error does not decrease with increasing τ̂0,
as seen in Figure 4.3. Once the threshold is reached, where the projection error,
described above, dominates the error, the total relative error does not decrease
with increasing initial pulse width.

The analytical pulse broadening, (4.2), is based on derivations in [7]. It is not
obvious that the formula is valid for pulses as short as the ones considered here.
However, since the FDTD includes all terms of the wave equation, the consistency
between the analytical values and FDTD results indicate that (4.2) is indeed valid
for the longer pulses. Also for τ̂0 = 10 fs, FDTD results converge to the analytical
prediction as the mesh is refined. However, to reach the same level of accuracy as
with the new TD-BPM, the number of grid points along z (and along t, to keep
stability) must be increased by a factor four, increasing the simulation time by a
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factor 16.

4.2 Electro-optic modulator

As a proof-of-concept case we now consider an EOM with realistic optical input
pulse and modulating signal. The geometry is simplified in that a waveguide with
one-dimensional cross section, i.e., a slab waveguide, is considered, rather than a
rectangular or rib waveguide; more specifically, the cross section and materials are
the same as in the previous section. We consider an EOM with Mach-Zehnder
geometry, in which the center positions of the waveguide cores are located at

x± =


0, z ∈ [0, L1) ∪ [L4, Ltot],
± 1

2Wbend(1− cos(π z−L1

L2−L1
)), z ∈ [L1, L2),

±Wbend, z ∈ [L2, L3),
± 1

2Wbend(1 + cos(π z−L3

L4−L3
)), z ∈ [L3, L4).

Here L1 = Lin, L2 = L1 + Lbend, L3 = L2 + Larm, L4 = L3 + Lbend, and Ltot =
L4 + Lout. The values of the considered EOM are Lin = 10µm, Lbend = 120µm,
Larm = 10000µm, Lout = 30µm, and Wbend = 6µm. The geometry is shown in
Figure 4.6, with Larm scaled down to 200µm, for illustration purposes.
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Figure 4.6: EOM geometry. For illustration purposes, the arm length is scaled down
by a factor of 50. Gray fields indicate PML layers.

The input pulse is defined as in the previous section by (4.1), with τ̂0 = 877 ps
(i.e., τ0 = 620 ps, as specified in Section 2.2.2). For constant modulation, the
accumulated phase shift at the end of the modulated arm is proportional to the
permittivity shift,

∆φ =
Larmk0Cn

2ncore
δε, (4.3)

where Cn can be computed from the mode parameters of the slab waveguide.
For an ideal electric transmission line, with exact velocity match and no electric
damping, the permittivity shift δε is constant with respect to z. Then, in the
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active arm of the EOM, δε(τ) = δmax
ε f(τ), where we choose δmax

ε , based on (4.3),
to be the permittivity shift required for ∆φ = π. A short sequence of Gaussian
pulses is taken as modulating signal,

f(τ) =

3∑
k=1

ak exp

(
− (τ − τk)2

2τ2
RF

)
,

where the amplitudes, ak, are 1.0, 0.5, and 0.2, and the offsets, τk, are −5τRF, 0,
and 5τRF, respectively, for k = 1, 2, 3. The half-width is τRF = 1

0.2πps ≈ 1.59 ps,
corresponding to spectral half-width (at 1/e intensity point) fRF = 0.1 THz. The
signal is shown as an inset in Figure 4.8.

The transverse computational domain is Ω⊥ = [−W,W ], with W = Wbend +
1
2Wcore + Wclad, where Wclad = 6µm is the width of the cladding layer outside
the waveguide arms. PML layers with thickness 1µm are used to truncate Ω⊥,
as indicated by gray fields in Figure 4.6. A homogeneous mesh with mesh size
hx = 0.0125µm is used for Ω⊥. As in the previous section, Iτ = [−2.5τ̂0, 2.5τ̂0],
which is discretized with a fine mesh size hfine

τ = 0.4 ps near τ = 0, where the pulse
is known to vary rapidly with τ due to modulation. The mesh size is gradually
increased to a maximum of 219 ps at the interval edges. A short step size, hz =
1.0µm, is used except in the EOM arms, where, after a smooth transition, a step
size hz = 100µm is used. We note that such large steps would not be realistic for
z-varying modulating signals.

Results are shown in Figure 4.7 as contours of the pulse magnitude over Iτ×Ω⊥
at various propagation distances z along the EOM. The pulse splits equally into the
two arms, and amplitude modulation is observed at the center of the pulse as the
arms recombine. The simulated amplitude modulation can be more clearly viewed
as a function of time by integrating the output field, ψ, against the normalized
mode shape, E0,

ψout(τ) =

∣∣∣∣∫
Ω⊥

ψ(x, Ltot, τ)E0(x) dx

∣∣∣∣ .
The theoretical total time-dependent phase shift in the modulated arm is ∆φ(τ) =
πf(τ). As a reference for the simulated results we use the magnitude of the sum
of two initial pulses, one with and the other without the theoretical phase shift,

ψref(τ) = Cdamp
1
2 |1 + exp(j∆φ(τ))|A(0, τ).

The damping factor Cdamp, due to optical losses in the device, is computed
by solving the corresponding frequency-domain problem with BPM, and setting
Cdamp =

∫
Ω⊥

ψBPM(x, Ltot)E
0(x) dx. The simulated results, ψout(τ), are shown

along with ψref(τ) in Figure 4.8 over the full interval Iτ (left), and zoomed in
around the modulating signal (right). Excellent agreement between the simula-
tion and reference data can be seen.
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(a) z = 0µm (b) z = 40µm

(c) z = 10130µm (d) z = 10210µm

(e) z = 10250µm (f) z = 10280µm

Figure 4.7: Field distributions for the EOM at different propagation distances z. Hor-
izontal axis: τ , vertical axis: x. Difference between two adjacent contour levels is 3dB.
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Figure 4.8: Amplitude modulation. Reference: ψref , simulation: ψout. Left: over all
of Iτ . Right: zoomed in around the modulating signal. The inset shows the modulating
signal f(τ).
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Chapter 5

Conclusion

We have derived weak formulations of the vector and scalar moving-time TD-BPM
equations. Based on these, finite element discretizations have been proposed. We
have shown that a finite element formulation based on a triangular discretization
of the entire domain Ω⊥ × Iτ leads to an erroneous discrete operator for time-
dependent solutions, with an error proportional to the frequency of the solution. To
achieve a discrete operator without such errors, we proposed to use instead tensor-
product finite element spaces. Such a formulation preserves the desired property
of finite differences, to separate operators in space and time, while offering the
advantages of finite elements in terms of flexible meshes and exact representation of
material data at material interfaces. Further, it has been shown, that the accuracy
of the paraxial TD-BPM can be significantly improved by a simple modification of
the coefficient of the second order time derivative term. The scalar paraxial version
has been implemented and validated against analytical data for propagation in
a straight slab waveguide. Finally, the method has been applied to an EOM,
modulated by a realistic, high-frequency signal.

Reference data for the EOM case were computed by adding the output of two
straight arms, one modulated and one non-modulated. The sum was multiplied
by a damping factor, computed from a (frequency-domain) BPM analysis of the
EOM geometry. The excellent agreement between TD-BPM results and these
reference data serves as a mutual validation of the two methods. However, this
also indicates, that the assumptions made in the simpler approach used for the
reference data are indeed valid, and that using a method for full resolution in
space and time, such as the TD-BPM, may not be necessary in this application.
For shorter optical pulses, propagating in z-varying structures, a method for space
and time resolution is, however, required.

The results presented for the straight waveguide show that the TD-BPM ver-
sion developed in this work is accurate and efficient, compared to the FDTD
method, for short pulses propagating over long distances. In the presented case,
the new TD-BPM is 16 times faster than the FDTD method, when computing
pulse propagation over 500µm with the same level of accuracy, for a pulse with

53
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initial width 10 fs. For a device such as the EOM, the propagation distance is
about 2 cm, i.e, 40 times longer than the waveguide in the test case. Assuming
that the same mesh sizes can be used, the simulation time of TD-BPM scales lin-
early with the length of the device; the number of steps increases linearly while the
time per step remains constant, due to the moving time window. For FDTD, how-
ever, the time scales quadratically with device length, since the number of steps
and the time per step both increase linearly. This indicates that the TD-BPM
may be up to 600 times faster than the FDTD method, with the same accuracy,
for ultra-short pulse propagation over 2 cm. We also note that the memory storage
required by FDTD increases linearly with device length, while – again due to the
moving time window – it is constant for the TD-BPM. Finally we remark that
more can be gained from using the new, finite element based TD-BPM, rather
than FDTD, when more complex geometries are considered, since it can handle
more flexible meshes and thereby avoid the staircasing approximations in FDTD.

A natural and interesting extension to the work presented here would be to
consider the non-paraxial TD-BPM. A non-paraxial version based on Padé approx-
imants has been presented by Masoudi et al. However, it neglects the second order
derivatives ∂τ∂ζ and ∂2

τ , coming from the ∂2
z term after change of variables. While

the latter term can be included straightforwardly, the former does complicate the
formulation. It would also be interesting to implement the vector TD-BPM. How-
ever, initial tests indicate that for the vector TD-BPM, as well as when including
the mixed derivative term in the scalar paraxial TD-BPM, stability may be a crit-
ical issue. Hence, both of these cases require extended stability analyses of the
respective equations. Finally, in this work we have considered only non-dispersive
materials. Since ultra-short pulses have broad spectra, it would be relevant to
extend the method to include dispersive material models.
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