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ABSTRACT
Gravitational instabilities play an important role in galaxy evolution and in shaping the inter-
stellar medium (ISM). The ISM is observed to be highly turbulent, meaning that observables
like the gas surface density and velocity dispersion depend on the size of the region over
which they are measured. In this work, we investigate, using simulations of Milky Way-like
disc galaxies with a resolution of ∼9 pc, the nature of turbulence in the ISM and how this
affects the gravitational stability of galaxies. By accounting for the measured average turbu-
lent scalings of the density and velocity fields in the stability analysis, we can more robustly
characterize the average level of stability of the galaxies as a function of scale, and in a
straightforward manner identify scales prone to fragmentation. Furthermore, we find that the
stability of a disc with feedback-driven turbulence can be well described by a ‘Toomre-like’
Q stability criterion on all scales, whereas the classical Q can formally lose its meaning on
small scales if violent disc instabilities occur in models lacking pressure support from stellar
feedback.

Key words: instabilities – turbulence – ISM: general – ISM: kinematics and dynamics – ISM:
structure – galaxies: ISM.

1 IN T RO D U C T I O N

Today, over three decades after the pioneering work by Larson
(1981), observations and simulations of the interstellar medium
(ISM) are revealing its turbulent nature with higher and higher fi-
delity (see review by e.g. Elmegreen & Scalo 2004; Mac Low &
Klessen 2004). Turbulence is not only thought to play an important
role in controlling star formation in molecular clouds (McKee &
Ostriker 2007; Padoan & Nordlund 2011; Federrath & Klessen
2012), but also on galactic scales (Renaud et al. 2013) and in
shaping the ISM (Stanimirovic et al. 1999; Elmegreen, Kim &
Staveley-Smith 2001; Bournaud et al. 2010). The importance of
galactic-scale turbulence has in the past decade also been revealed
in the early Universe; in gas-rich high-redshift galaxies, the ob-
served levels of gas turbulence are much higher than in the local
Universe (Shapiro et al. 2008; Förster Schreiber et al. 2009; Swin-
bank et al. 2011), explaining the observed ubiquity of supermassive
star-forming clumps (Agertz, Teyssier & Moore 2009b; Bournaud
& Elmegreen 2009; Dekel, Sari & Ceverino 2009; Elmegreen et al.
2009; Genzel et al. 2011).

One of many fundamental aspects of ISM turbulence is the exis-
tence of scaling relations between observables, such as the column
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density (�), the 1D velocity dispersion (σ ), and the size of the
region (�) over which such quantities are measured:

� ∝ �a, σ ∝ �b. (1)

The values of exponents a and b depend on which ISM component
and the range of scales that are considered. In this work, we focus
mainly on the cold neutral gas; neutral hydrogen (H I), and molecular
gas, dominated by molecular hydrogen (H2, observed via the tracer
molecule CO), which is known to be supersonically turbulent and
plays an important role in the gravitational instability of galactic
discs (e.g. Lin & Shu 1966; Jog & Solomon 1984; Bertin & Romeo
1988).

In molecular gas, the scaling exponents are a ≈ 0 and b ≈ 1
2 ,

up to scales of several 100 pc.1 This pair of exponents are often
referred to as ‘Larson’s scaling laws’ after the discovery by Larson
(1981, see also Solomon et al. 1987). In fact, both Galactic and
extragalactic Giant Molecular Clouds (GMCs) are fairly well de-
scribed by Larson’s scaling laws, although with large uncertainties
(e.g. Bolatto et al. 2008; Heyer et al. 2009; Hughes et al. 2010;
Kauffmann et al. 2010; Lombardi, Lada & Alves 2010; Roman-
Duval et al. 2010; Sánchez et al. 2010; Ballesteros-Paredes et al.

1 Note that a = 0 is expected for isolated clouds in gravitational equilibrium,
as the cloud mass M ∝ �σ 2 together with σ ∝ �0.5 gives � ∼ M/�2 = con-
stant.
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2011; Beaumont et al. 2012), as well as in the dense star-forming
clumps in high-redshift galaxies (Swinbank et al. 2011).

Simulations of GMCs forming in galactic discs have recently
started producing scaling relations compatible with Larson’s rela-
tions (e.g. Hopkins, Quataert & Murray 2012; Dobbs 2015), but
see Fujimoto et al. (2014) for models predicting steeper relations
(�(�), σ (�) ∝ �). State-of-the-art numerical simulations of super-
sonic turbulence suggest a ∼ 1

2 and b ∼ 1
2 (Fleck 1996; Kowal &

Lazarian 2007; Kritsuk et al. 2007; Schmidt, Federrath & Klessen
2008; Price & Federrath 2010; Kritsuk, Lee & Norman 2013). Other
recent numerical work suggest that the scaling exponent a may
be significantly affected by the nature of the turbulence forcing
(Federrath et al. 2010), magnetic fields, and self-gravity (Collins
et al. 2012).

In H I, the scaling exponents are a ∼ 1
3 and b ∼ 1

3 up to sev-
eral kpc (Roy, Peedikakkandy & Chengalur 2008), although, as
for molecular gas, with large uncertainties (Kim et al. 2007). Ob-
served power spectra of H I intensity fluctuations in nearby galaxies
are compatible with a Kolmogorov scaling for both σ and � (e.g.
Stanimirovic et al. 1999; Lazarian & Pogosyan 2000; Elmegreen
et al. 2001; Begum, Chengalur & Bhardwaj 2006; Bournaud et al.
2010; Zhang, Hunter & Elmegreen 2012; Dutta et al. 2013), with
similar results for other ISM components on large scales (e.g. dust
and CO in M33; Combes et al. 2012). Furthermore, H I power spectra
are often found to be shallower on large scales, with a break around
� ∼ the disc scaleheight, possibly indicating a transition from 3D
turbulence on small scales to 2D turbulence on large (Dutta et al.
2008, 2009; Block et al. 2010; Bournaud et al. 2010).

While the turbulent nature of the ISM is well established, it is
rarely accounted for in theoretical works when evaluating the grav-
itational stability of galactic discs. Instead, σ and � are associated
with smoothed quantities on galactic scales (∼ kiloparsecs; but see
Elmegreen 1996; Begelman & Shlosman 2009; Hopkins 2012). A
few analytical studies investigating the effect of ISM turbulence on
gravitational stability have been carried out. Romeo et al. (2010)
explored a range of values for a and b and showed that turbu-
lence has an important effect on the gravitational instability of the
disc; it excites a rich variety of stability regimes, several of which
have no classical counterpart. Follow-up studies by Hoffmann &
Romeo (2012) and (Romeo & Falstad 2013, see also Shadmehri &
Khajenabi 2012) extended this framework to turbulent multicompo-
nent (gas+stars) discs and applied it to the The HI Nearby Galaxy
Survey (THINGS) galaxy sample (Walter et al. 2008). Their anal-
ysis showed that H2 plays a significant role in disc (in)stability by
dynamically decoupling and dominating the onset for gravitational
instability even at distances as large as half the optical radius.

The goal of this work is to in greater details explore the interplay
between gas turbulence and disc stability by extending previous
work in a number of ways.

(i) We perform numerical simulations of a Milky Way-like galaxy
with a resolution of ∼9 pc, where we model the same galaxy in two
markedly different ways: (1) without any stellar feedback, lead-
ing to rapid gas fragmentation into a population of star-forming
GMCs, and (2) with efficient stellar feedback which acts to disperse
the GMCs, drives interstellar turbulence, and regulates the rate of
star formation. These two models show two extremes of galaxy
evolution, and are useful platforms on which to understand, and
characterize, the role of turbulence in realistic disc galaxies.

(ii) We apply a classical stability analysis on kpc-scales to both
models and demonstrate how it fails to qualitatively separate the
two systems, despite the dramatically different ISM morphology.

We show that the this is in agreement with observations of nearby
spiral galaxies.

(iii) By accounting for the scale-dependent nature of � and σ in
a multicomponent stability analysis, we demonstrate how we can
more robustly characterize the disc stability and dynamical state of
the galaxies.

The rest of the paper is organized as follows. The classical frame-
work for understanding the stability of two-component thick discs
is outlined in Sections 2.1 and 2.2. In Section 2.3, we describe the
numerical hydro+N-body method used for the galaxy simulations.
In Section 3.1, we perform a classical analysis followed by an ac-
counting of turbulent scaling relations in Section 3.2. In Section 3.3,
we discuss our results in a more general context of observed, and
theoretically predicted, ISM scaling relations and what this means
for understanding disc galaxies. Finally, we discuss and conclude
our results in Section 4.

2 M E T H O D

2.1 Stability diagnostics

Consider a gas disc of scaleheight h, and perturb it with axisym-
metric waves of frequency ω and wavenumber k. The response of
the disc is described by the dispersion relation

ω2 = κ2 − 2πG� k

1 + kh
+ σ 2 k2 , (2)

where κ is the epicyclic frequency, � is the surface density at
equilibrium, and σ is the sound speed (Romeo 1992, 1994, see
also Vandervoort 1970). The three terms on the right-hand side of
equation (2) represent the contributions of rotation, self-gravity, and
pressure. For kh � 1, equation (1) reduces to the usual dispersion
relation for an infinitesimally thin gas disc (for a derivation, see e.g.
Binney & Tremaine 2008). Such a disc is unstable if and only if
ω2 < 0, which is equivalent to Q < 1, where Q is defined by

Q = κσ

πG�
. (3)

This quantity was first derived by Toomre (1964) for a thin disc of
stars (where σ → σ R, i.e. the stellar radial velocity dispersion, and
the denominator has π replaced by 3.36), and we hence refer to it
as Toomre’s Q. From now on, we denote equation (3) for stars and
gas as Q� and Qg, respectively. For kh � 1, one recovers the case
of Jeans instability with rotation, since �/h ≈ 2ρ. In other words,
scales comparable to h mark the transition from 2D to 3D stability.

Much work has gone into characterizing gravitational instabilities
in multicomponent systems (Bertin & Romeo 1988; Romeo 1992,
1994; Elmegreen 1995; Jog 1996; Rafikov 2001). Such systems are
always more unstable than each component considered separately,
and the interplay between the different components depends on the
ratio between their velocity dispersions and their surface densities.
Romeo & Wiegert (2011) introduced a simple and accurate ap-
proximation for the two-component Q parameter, which takes into
account the stabilizing effect of disc thickness and predicts whether
the local stability level is dominated by stars or gas. Romeo &
Falstad (2013) generalized this approximation to discs made of sev-
eral stellar and/or gaseous components, and to the whole range of
velocity dispersion anisotropies observed in galactic discs. In the
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two-component case, the Q stability parameter is given by

1

Qthick
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

W

T�Q�

+ 1

TgQg
if T�Q� ≥ TgQg ,

1

T�Q�

+ W

TgQg
if TgQg ≥ T�Q� ;

(4)

W = 2σ�σg

σ 2
� + σ 2

g

. (5)

T ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 + 0.6

(
σz

σR

)2

for 0 � σz/σR � 0.5 ,

0.8 + 0.7

(
σz

σR

)
for 0.5 � σz/σR � 1 .

(6)

The thin-disc limit, Qthin, can be recovered by setting σ z/σ R = 0
and hence T = 1. As for the single-component case, the criterion
for instability is Qthick < 1 and Qthin < 1.

2.2 Accounting for turbulent scalings

As discussed in Section 1, observations and theory have revealed
that the ISM is highly turbulent, and many properties of the ISM
depend on the physical scale on which they are measured. As argued
by Romeo, Burkert & Agertz (2010), turbulence can be accounted
for in the stability diagnostics by generalizing the dispersion relation
in equation (2) to account for scale dependences of the velocity
dispersion σ and surface density �, i.e.

ω2 = κ2 − 2πG�(k) k + σ 2(k) k2, (7)

where �(k) and σ (k) are the mass column density and the 1D
velocity dispersion (accounting both for the thermal and turbulent
component) measured over a region of size � = 2π/k. Observations
and theoretical studies (see e.g. Larson 1981; Elmegreen & Scalo
2004; Kritsuk et al. 2007; McKee & Ostriker 2007; Romeo et al.
2010) indicate a power-law behaviour in these quantities, motivating
the following parametrization:

�(k) = �0

(
k

k0

)−a

, σ (k) = σ0

(
k

k0

)−b

. (8)

If the disc has volume density ρ and scaleheight h, then � ≈ 2ρ� for
� � h and � ≈ 2ρh for � � h. The range � � h corresponds to the
case of 3D turbulence (relevant for GMCs and H I on small scales),
whereas the range � � h corresponds to the case of 2D turbulence
(relevant for H I on large scales). The quantity �0 = 2π/k0 is the
typical scale at which � and σ are observed and quantities like
the Toomre parameter Q is computed, so that Q0 = κσ 0/πG�0.
For example, at an angular resolution of 6 arcsec achieved for the
THINGS galaxy sample (Walter et al. 2008), analysis is carried out
on the spatial smoothing scale �0∼0.5 − 1 kpc (Leroy et al. 2008).

As we are interested in understanding the influence of turbulence
on a two-component disc (gas and stars), we need to analyse the joint
dispersion relation which can then be expressed in the following
form (e.g. Jog & Solomon 1984; Hoffmann & Romeo 2012):(
ω2 − M2

1

) (
ω2 − M2

2

) = (P2
1 − M2

1

) (P2
2 − M2

2

)
, (9)

where the (turbulent) dispersion relation for each component i has
the usual form

M2
i ≡ κ2 − 2ππG�i(k) k + σ 2

i (k) k2, (10)

and

P2
i ≡ κ2 + σ 2

i (k) k2, (11)

with i =gas, star.2 Note thatM2
i (k) is the one-component dispersion

relation for potential–density waves, while P2
i (k) describes sound

waves modified by rotation and turbulence. Furthermore, the right-
hand side of equation (9) measures the strength of the gravitational
coupling between the two components, as M2

i (k) − P2
i (k) is the

self-gravity term of component i. Equation (9) is quadratic in ω2,
with two real roots:

ω2
± = 1

2

[
M2

1 + M2
2 ±

√



]
, (12)


 = (M2
1 − M2

2

)2 + 4
(P2

1 − M2
1

) (P2
2 − M2

2

)
. (13)

This means that the dispersion relation has two branches that do not
cross, ω2

+(k) �= ω2
−(k), except possibly as k → 0 or k →∞. We focus

only on ω2
−(k) in this work, as this branch is the only one which can

represent gravitational instability (ω2
+(k) is manifestly ≥0). Note

that ω2
−(k) is always smaller than each component individually.

In Sections 3.2 and 3.3, we use the above framework, together
with numerical simulations, to demonstrate how turbulence affects
the shape of the dispersion relation, and hence the condition for
local gravitational instability (ω2 < 0).

2.3 Numerical technique

In order to carry out hydro+N-body simulations of galactic discs,
we use the adaptive mesh refinement (AMR) code RAMSES (Teyssier
2002). The fluid dynamics of the baryons is calculated using a
second-order unsplit Godunov method, while the collisionless dy-
namics of stellar and dark matter particles is evolved using the
particle-mesh technique (Hockney & Eastwood 1981), with gravi-
tational accelerations computed from the gravitational potential on
the mesh. The gravitational potential is calculated by solving the
Poisson equation using the multigrid method (Guillet & Teyssier
2011) for all refinement levels. The equation of state of the fluid is
that of an ideal monoatomic gas with an adiabatic index γ = 5/3.

The code achieves high resolution in high-density regions using
AMR, where the refinement strategy is based on a quasi-Lagrangian
approach in which the number of collisionless particles per cell is
kept approximately constant. This allows the local force softening
to closely match the local mean interparticle separation, which sup-
press discreteness effects (e.g. Romeo et al. 2008). An analogous
refinement criterion is also used for the gas.

The star formation, cooling physics, and stellar feedback model
adopted in our simulations is described in detail in Agertz et al.
(2013, identical to the ‘All’ model) and Agertz & Kravtsov (2014),
and we refer the reader to those papers for details. Briefly, several
processes contribute to the stellar feedback budget, as stars inject
energy, momentum, mass, and heavy elements over time via SNII
and SNIa explosions, stellar winds, and radiation pressure into the
surrounding gas. Metals injected by supernovae and stellar winds are
advected as a passive scalar and are incorporated self-consistently
in the cooling and heating routine.

One aspect differs from previous work; at the current numerical
resolution (
x ∼ 9 pc), we are not guaranteed to always resolve the

2 The dispersion relation of an N-component turbulent disc is
∑N

i=1(M2
i −

P2
i )/(ω2 − P2

i ) = 1, as can be inferred from equation 22 of Rafikov (2001).
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cooling radius3 rcool, i.e. the SN bubble radius for which radiative
losses are expected to be important for each discrete SN event, lead-
ing to an underestimation of the impact of SNe feedback. Instead
of remedying this issue by solving two separate energy equations,
one for the thermal energy and one for the feedback energy as in
Agertz & Kravtsov (2014), we adopt the model recently suggested
by Kim & Ostriker (2014, see also Gatto et al. 2014; Martizzi,
Faucher-Giguère & Quataert 2014; Simpson et al. 2014). Here, an
SN explosion resolved by at least three grid cells (rcool ≥ 3
x) is
initialized in the energy conserving phase by injecting the relevant
energy (1051 erg per SN) into the nearest grid cell. If this criterion
is not fulfilled, the SN is initialized in its momentum conserving
phase, i.e. the momentum generated during the energy conserving
Sedov–Taylor phase is injected into to the 26 cells surrounding a
star particle.

Blondin et al. (1998) calculated the transition time from the
energy-conserving phase to the phase of shell formation, at which
the cooling time equals the age of the remnant (tcool = tSN), to be
≈2.9 × 104 E

4/17
51 n

−9/17
0 yr, where n0 is the ambient density and E51

the thermal energy in units of 1051 ergs. At this time, the momentum
of the expanding shell is approximately

pST ≈ 2.6 × 105 E
16/17
51 n

−2/17
0 M� km s−1. (14)

For reasonable values of ambient densities, this is ∼10 times greater
than the initial ejecta momentum. Kim & Ostriker (2014) and
Martizzi et al. (2014) have shown, using detailed simulations of
SNe explosions, that equation (14) holds even for more realistic,
clumpy, environments. We hence use this relation for the injected
momentum per individual SN explosion when the cooling radius is
not resolved.

2.3.1 Simulations

We model the non-linear evolution of an entire Milky Way-like
galactic disc. This setup is now the standardized test for the AGORA

code comparison project (Kim, Abel & Agertz 2014), and is a higher
resolution version of the galaxy analysed in Agertz et al. (2013).
Briefly, following Hernquist (1993) and Springel (2000, see also
Springel, Di Matteo & Hernquist 2005), we create a particle distribu-
tion representing a late type, star-forming spiral galaxy embedded in
an NFW dark matter halo (Navarro, Frenk & White 1996). The dark
matter halo has a concentration parameter c = 10 and virial circular
velocity, measured at the overdensity 200ρcrit, v200 = 150 km s−1,
which translates to a halo virial mass M200 = 1.1 × 1012 M�. The
total baryonic disc mass is Mdisc = 4.5 × 1010 M� with 20 per cent
in gas. The bulge-to-disc mass ratio is B/D = 0.1. We assume ex-
ponential profiles for the stellar and gaseous components and adopt
a disc scalelength rd = 3.4 kpc and scaleheight h = 0.1rd for both.
The bulge mass profile is that of Hernquist (1990) with scalelength
a = 0.1rd. The halo and stellar disc are represented by 106 particles
each, and the bulge consists of 105 particles.

We initialize the gaseous disc analytically on the AMR grid
assuming an exponential profile. The galaxy is embedded in a
hot (T = 106 K), tenuous (n = 10−5 cm−3) gas halo enriched to
Z = 10−2 Z�, while the disc has solar abundance. The minimum
AMR cell size reached in the simulations is 
x = 9 pc.

3 The cooling radius scales as rcool ≈ 30n−0.43
0 (Z/Z� + 0.01)−0.18 pc for

a supernova explosion with energy ESN = 1051 erg (e.g. Cioffi, McKee &
Bertschinger 1988; Thornton et al. 1998; Kim & Ostriker 2014).

We carry out two simulations, one without any stellar feedback,
adopting a local star formation efficiency per free-fall time (see e.g.
Agertz et al. 2013) εff = 1 per cent, and one with stellar feedback
but with εff = 10 per cent. In the former case, the effect of feedback
is implicit in the choice of εff, and in the latter case this is achieved
by efficient stellar feedback. Both simulations therefore have sim-
ilar star formation histories and normalizations of the �SFR–�gas

(Kennicutt—Schmidt) relation (see discussion in Agertz et al. 2013;
Agertz & Kravtsov 2014), but reach this state in different ways.

3 R ESULTS

3.1 Classical stability analysis

The left-hand side of Fig. 1 shows projected gas surface density
maps of the two simulated galactic discs at t = 140 Myr. With-
out stellar feedback, the disc violently fragments into a long-lived
population of massive star-forming GMCs, whereas the clouds are
rapidly dispersed, and reformed, in the feedback regulated case. In
the right-hand panel, we show radial profiles of the classical Toomre
Q for gas and stars, as well as the two-component thin and thick disc
stability parameter, Qthin and Qthick, respectively (see Section 2.1).

We find all Q radial profiles to be almost indistinguishable be-
tween the two models, and note that they are in agreement with
derived values from well-resolved spiral galaxies, see e.g. the de-
tailed analysis by Leroy et al. (2008) of the THINGS galaxies (see
also fig. 5 in Romeo & Wiegert 2011; Romeo & Falstad 2013);
e.g. Qthick ∼ 1.5–3 for r � 2 kpc, i.e. outside the bulge, indicative
of gravitational stability to axisymmetric waves. The similar values
of Q(r), all being significantly larger than unity, arise despite the
morphological states of the discs being markedly different.

Leroy et al. (2008) concluded that the large observed values of Q,
indicative of local stability,4 put doubts on the role of gravitational
instabilities in alone controlling the local star formation efficiency.
However, as we have been alluding to in previous sections, our
analysis is done on a fixed, and rather large, scale (�0 = 0.5 kpc)
chosen to coincide with the spatial resolution of the THINGS survey.
The fact that different indicators of stability fail to separate the
simulated galaxies means that galactic dynamics, on the chosen
smoothing scale, is the same. To probe differences further, we need
to adopt a scale-dependent stability analysis.

3.2 Accounting for turbulent scalings

In this section, we characterize the effect of turbulence on the grav-
itational stability of the simulated discs directly via the dispersion
relation for gas and stars (equation 7), as well as the relation for the
coupled system (ω2

− in equation 12).
We estimate �(�) and σ (�) for gas and stars from the simulations

at different simulation times as follows; assume the disc plane co-
incides with the xy-plane, i.e. the axis of rotation is parallel with
the z-axis. Centred in the mid-plane of the disc (z = 0), we place
cubes in a lattice configuration in the range (x, y) ∈ {−15, 15} kpc,
with a lattice spacing of 
l = 100 pc. Starting from a cube size of
� = 36 pc, we incrementally increase this value by 2
x = 36 pc up
to � = 0.5 kpc, after which we increase the cube sizes in steps of

4 Note that this refers to stability against axisymmetric perturbations and
that stability against non-axisymmetric perturbations is not guaranteed (e.g.
Griv & Gedalin 2012).
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Figure 1. (Left) Projected gas density maps covering a region 36 kpc × 36 kpc in size at t = 140 Myr of the simulation without (top) and with (bottom) stellar
feedback. (Right) Mass-weighted average profiles, computed in radial bins of size 
r = 0.5 kpc of the classical Toomre Q (= σκ/πG�) for gas and stars, the
joint stability parameter Qthin, and the joint parameter accounting for disc thickness Qthick (Romeo & Wiegert 2011; Romeo & Falstad 2013).

50 per cent of the current value up to � ∼ 10 kpc, simply to reduce
the computational cost. On each scale, we compute �i(�) and σ i(�)
for each component (gas and stars) for every cube i. We then define
�(�) and σ (�) to be the averages of all cubes at any given scale, and
consider these quantities to be representative of the typical surface
density and velocity dispersion. We have confirmed that sampling
the discs in different way, e.g. randomly, has a negligible effect on
the results presented below.

From now on, we focus our analysis on the average scale-
dependent characteristics centred in an azimuth defined by 4 kpc <

r < 5 kpc. Furthermore, as the gaseous velocity dispersion is found
not to be isotropic (see also discussion in Agertz et al. 2009a), we
will from here on consider the radial velocity dispersion σ R(�) for
both gas and stars, as this is the relevant component entering the
dispersion relation for non-isotropic velocity ellipsoids. Note also
that the sound speed of the gas cs � σ R in a mass-weighted sense;

the cold ISM is dominated by supersonic motions, and we can in
principle omit cs in the stability analysis.

3.2.1 Density evolution and spatial scaling

Fig. 2 shows the time evolution (t = 60, 100, and 140 Myr) of
�gas(�) and �star(�) for the fragmenting (no feedback) and feed-
back -regulated discs. Both simulations show ‘saturated’ quantities
above � ∼ 1 kpc, above which little variation with scale is found,
confirming the strikingly similar Q(r) values found in Section 3.1.
On smaller scales, the two models evolve differently; without feed-
back at t = 140 Myr (and as well for earlier times, but on scales of
a few 100 pc), the population of bound star-forming clouds, arising
from violent fragmentation, leads to a steeply decreasing �gas(�)
with increasing �, while the feedback regulated case shows a rather
flat �gas(�). Quantified using the power-law relation in equation (8)
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Gravitational stability of turbulent galaxies 2161

Figure 2. The scale dependence of the gas and stellar surface density � in the models adopting no feedback (top) and feedback (bottom) for, from left to right,
t = 60, 100, and 140 Myr.

(� ∝ �a), the clumpy galaxy approaches a ∼ −1 and the feedback-
regulated a ∼ 0 for � � 1 kpc. Significant scatter exists in the data,
owing to the structured nature of the ISM and the fact that we do
not bias the analysis to any specific regions of the disc5 or phases
of the gas, other than the cold ISM.

�star(�) is increasing at scales larger than ∼100 pc. This is due
to the analysis being done in mid-plane-centred cubes, for which
scales � ∼ 1 kpc do not encapsulate all of the (kinematically hot)
stars present in the disc. A similar conclusion may be drawn for
the cold gas in the feedback-regulated simulation, where the small-
scale turbulence, in an average sense, allows for a positive value
of a. Adopting a scale-dependent analysis for both stars and gas
hence automatically accounts for disc thickness, without the need
to adopt an effective surface density �eff = �/(1 + kh), as is done
in equation (2).

3.2.2 Velocity dispersion evolution and spatial scaling

Fig. 3 shows the time evolution, t = 60, 100, and 140 Myr,
of σ R,star(�) and σ R,gas(�) for the fragmenting (no feedback)

5 For example, by not enforcing the analysis to be centred only on the dense
cloud population in the fragmented disc, we do not measure a monotonically
increasing �(�) as � → 0.

and feedback-regulated discs. The stars show a roughly scale-
independent value of σR ∼ 30 km s−1 in both disc models. For the
cold gas, we find that the velocity dispersions are, after an initial
transient, quite similar both in magnitude and dependence on scale
regardless of the presence of feedback or not. In both models, and
for t > 60 Myr, σ R,gas(�) ∝ �1/2 on scales � � 300−400 pc in the
feedback model, and � � 100 pc in the model without, in excellent
agreement with the observed Larson-like scaling relevant for GMCs
(see Section 1).

Still at times t > 60 Myr, and on large scales (a few 100 pc � � �
4 kpc), the slope of σ R,gas(�) transitions from b ∼ 1/2, into a flatter
profile, with b ∼ 1/5, in the case without feedback. In the feedback-
regulated galaxy, we measure b ∼ 1/2 up to almost ∼1 kpc, with a
flattening on scales � 1 kpc. The slopes, and the scales over which
the relation is measured in the feedback model, are in excellent
agreement with observations of the Galactic H I line-width–scale
relation. For example, Kim et al. (2007) studied this relation for
individual H I clouds in the Large Magellanic Cloud and found
b ∼ 0.3–0.5 on scales � 0.5 − 1 kpc (down to parsec scales).

We emphasize that both models show values of σ ∼ 10 −
20 km s−1 on large scales, in agreement with both H I and CO
observations in local spiral galaxies (Tamburro et al. 2009; Caldú-
Primo et al. 2013), despite the different nature in ISM turbulence
driving on small scales. In the case of feedback-driven turbulence,
star-forming clouds are rapidly destroyed by internal process and
the gas is dispersed, whereas disordered gas motions are driven
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2162 O. Agertz, A. B. Romeo and K. Grisdale

Figure 3. The scale dependence of the gas and stellar radial velocity dispersion σR in the models adopting no feedback (top) and feedback (bottom) for, from
left to right, t = 60, 100, and 140 Myr.

by gravitational instabilities and galactic shear, leading to clump–
clump interactions (e.g. Jog & Ostriker 1988; Gammie, Ostriker
& Jog 1991; Agertz et al. 2009a; Tasker & Tan 2009) in the case
without feedback.

3.2.3 The dispersion relation

Fig. 4 shows the resulting mass-weighted average dispersion rela-
tions, and the associated scatter, for the two galactic models for
the stars (ω2

stars), cold gas (ω2
gas), and the coupled system (ω2

−).
We remind the reader that the average ω2(�) relations now self-
consistently account for the actual scale-dependent values of σ (�)
and �(�) present in each analysed region of the galaxies.

While featuring an almost identical Q(r) (for t = 140 Myr, Sec-
tion 3.1), when analysed on ∼1 kpc scales, we can here identify
the level of stability on all scales. Both discs are indeed stable or
marginally stable (ω2 ≥ 0) on large scales, and have in fact almost
identical ω2(�) relations for � � 1 kpc.

The fragmented disc without stellar feedback always shows
ω2

gas < 0 and ω2
− < 0 on small scales, as suspected simply via

visual inspection of the top-left panel of Fig. 1. At early times
(t = 60 Myr), when fragmentation has just occurred, the scale of
instability is formally as large as ∼2 kpc, with scales below a few
∼100 pc being the most unstable. At subsequent times, ω2

− < 0
on scales � � 100 − 200 pc, roughly the maximum size of GMCs,
or more correctly GMAs (Giant Molecular Associations) in this

model. This is also the scale at which we measured a transition in
the Larson-like scaling of the gas velocity dispersions, from b ∼ 1/2
into b ∼ 1/5 (Section 3.2.2).

The above conclusions are in stark contrast to the feedback-
regulated case which is, at least on average, stable or marginally
stable on all scales. Note that individual patches of the disc on
small scales can be unstable, leading to star formation, as is evident
for ω2

gas(� � 100 pc) at a �0.5 σ level.
This analysis underscores the necessity to extend a traditional

stability analysis with scale-dependent variables to account for the
typical average velocity and density structures that exists in the
ISM. Furthermore, many classical concepts, such as a well-defined
fastest growing mode for a Toomre unstable (Q < 1) disc, may no
longer exist for the emerging scalings of �(�) and σ (�) introduced
by strong fragmentation, as pointed out by Romeo et al. (2010) and
Romeo & Agertz (2014).

3.3 Mapping out the stability regimes

How do the results in the previous sections connect to observed
turbulent scaling in the ISM and results from high-resolution nu-
merical simulations? Fig. 5 shows the stability map of turbulence
(Romeo et al. 2010), where the axes denote the a and b power-
law exponents for the surface density and the velocity dispersion
(equation 8).
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Figure 4. The instability growth rate, accounting for scale- dependent σ (�) and �(�), for gas (solid lines) and stars (dashed lines) for no feedback (top) and
feedback (bottom). When turbulent scalings are accounted for in the analysis, the feedback simulation is found to be on average stable on all scales, with a
Toomre-like behaviour (see main text), whereas the model lacking feedback is characterized as unstable on small scales (� � a few 100 pc), in accordance
with the fragmented gas morphology with star forming clouds of sizes ∼100 pc.

Following the analysis in Romeo et al. (2010, see also Hoffmann
& Romeo 2012), we have identified, and indicated in the figure,
three regimes of stability.

(i) Regime A: for b < 1
2 (1 + a) and −2 < a < 1, the stability of

the disc is controlled by Q0 = κσ 0/πG�0 (i.e. the Q measured on
the fiducial smoothing scale �0, see Section 2.2): the disc is stable at
all scales if and only if Q0 ≥ Q0, where Q0 depends on a, b, and �0,
and must be derived from equation (7) for a single-component sys-
tem. This is the domain of H I turbulence. Both H I observations and
high-resolution simulations of supersonic turbulence are consistent
with the scaling a ∼ b. In the case when a = b, the ratio σ (�)/�(�)
is a constant and the local stability criterion degenerates into the
classical Toomre case, Q0 ≥ 1, as if the disc was non-turbulent and
infinitesimally thin.

(ii) Regime C: for b > 1
2 (1 + a) and −2 < a < 1, the stability of

the disc is no longer controlled by Q0: the disc is always unstable
on small scales (i.e. as l → 0) and stable on large scales.

(iii) Regime B: for b = 1
2 (1 + a) and −2 < a < 1, the disc is in

a phase of transition between Toomre-like stability (Regime A) and
instability on small scales (Regime C). This is the domain typically
observed for molecular gas in GMCs.

A few well-studied examples from theory/simulations and obser-
vations in the literature are shown in the figure.

(i) (L), (a, b) = ( − 0.1, 0.38): the original scaling relations in
GMCs found by Larson (1981).

(ii) (S), (a, b) = (0, 0.50 ± 0.05): the scaling relations in GMCs
found by Solomon et al. (1987). These values are what is usually
referred to as ‘Larson’s scaling laws’.

(iii) (K), (a, b) = ( 1
3 , 1

2 ): the result of high-resolution simula-
tions of supersonic turbulence (Kritsuk et al. 2013, Kritsuk, private
communication).

(iv) (F), (a, b) = (0.44 ± 0.14, 0.49 ± 0.02): a prediction based on
state-of-the-art simulations of supersonic turbulence with compres-
sive driving (Federrath 2013, Federrath, private communication).
For solenoidal driving, (a, b) = (0.58 ± 0.03, 0.48 ± 0.02).

(v) (E), (a, b) = (−1, 0.5): investigated by Elmegreen (1996)
(vi) (H I): typical range of values derived from observed H I

intensity fluctuations in disc galaxies (Lazarian & Pogosyan 2000;
Kim et al. 2007; Roy et al. 2008).

A number of typical (a, b) pairs measured in the two simulations
are indicated in Fig. 5. In the case of no feedback, leading to strong
fragmentation, the disc features a ∼ −1 to 0, and b ∼ 1/5 − 1/2 on
small/intermediate scales. This puts the disc in regime B and C, with
the latter meaning that the disc is always unstable on small scales.
In fact, by studying the dispersion relations (ω2

gas(�) or ω2
−(�)) in

Fig. 4, no well-defined minimum exists, with the smallest numeri-
cally resolved scale, here of the order of a cell size ∼
x, being the
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Figure 5. The stability map of turbulence, with typical values derived from
observations and numerical simulations, see the main text for a compre-
hensive discussion. The blue, red, and black points indicate the regimes
found in the simulated disc galaxies on both small and large scales. On
large scales (� � 1 kpc), the feedback-regulated disc and the fragmented
disc converge to roughly the same average � and σ , and both well described
by a Toomre-like stability criterion (Regime A, see text). Turbulent scaling
on small scales pushes the fragmented disc into a regime typical observed
for GMCs (Regime B), and a regime where the classical Toomre analysis is
no longer valid (Regime C). The disc with feedback-driven turbulence is, in
a statistical sense, stabilized on small scales, and shows scalings in broad
agreement with H I and CO observations.

fastest growing mode. On large scales, we measure a transition into
Regime A with (a, b) ∼ (0, 0), i.e. the classical Toomre case with a
well-defined average surface density and velocity dispersion.

The feedback-driven simulation shows the same behaviour on
large scales (� � 1 kpc) as the fragmented counterpart, coinciding
with the classical Toomre case. On small scales (� � 1 kpc), the
simulations diverge, as discussed already in Section 3.2.3. Here,
feedback creates an, on average, marginally stable ISM, still in
regime A, with a and b values compatible with observations of the
cold galactic ISM (H I and CO). Using these power-law exponents,
one can define a Q stability parameter from equations (7) or (12)
that quantifies the threshold for instability, in contrast to the case
where the disc fragments due to the lack of stellar feedback support.

4 D I S C U S S I O N A N D C O N C L U S I O N S

Gravitational instabilities are thought to play an important role in
galaxy evolution and star formation. In this work, we have investi-
gated, using numerical simulations of Milky Way-like disc galaxies,
the nature of turbulence in the ISM and how this affects the gravita-
tional stability of galaxies. Clumpy/turbulent discs are dynamically
similar to gas discs with scale-dependent surface densities and ve-
locity dispersions, i.e. �(�) ∼ �a and σ (�) ∼ lb, respectively, where
� is the physical scale. By taking these ‘turbulent’ scaling rela-
tions into account in the disc stability analysis, a wide variety of
non-classical stability properties arise (Romeo et al. 2010).

In order to quantify the kind of turbulent scaling that develop
in the ISM of disc galaxies, we used numerical simulations of
multicomponent, Milky Way-like, galactic discs. We studied two
markedly different evolutionary scenarios using the same initial
condition: (1) no stellar feedback, leading to complete disc frag-
mentation and (2) efficient stellar feedback leading to driven ISM
turbulence. By accounting for the measured turbulent scalings in
the stability analysis, we could more robustly characterize the level
stability as a function of physical scale. Our key results are summa-
rized below.

(i) Our two different models of galaxy evolution lead to discs with
nearly identical stability properties when quantified on kpc-scales
by the classical Toomre Q for stars and gas separately (Q � 1), as
well as jointly (Qstars+gas > 1, accounting for disc thickness); the
discs are stable at all radii. This notion is in good agreement with ob-
servations of nearby disc galaxies, e.g. THINGS (Leroy et al. 2008)
where all discs, smoothed on kpc scales, featured values of Qgas

and Q� well above unity (see also Romeo & Wiegert 2011), raising
doubts on the role of gravitational instabilities in star formation.

(ii) The two models feature markedly different average �(�) on
scales � < 1 kpc, with a steepening of �(�) into ∼�−1 in the frag-
mented disc and ∼�0−1/3 for the feedback-regulated disc. Less
of a difference was found for σ (�), with a Larson-like scaling
(σ (�) ∼ �1/2; Larson 1981; Solomon et al. 1987) in both models.

(iii) Introducing scale-dependent variables in the multicompo-
nent stability analysis leads to a more robust characterization of the
level of instability. The feedback-driven model is, on average, stable
or marginally stable on all scales, in contrast to the model without
feedback, for which we can clearly identify the scales (� � 100 pc)
where gravitational instability, leading to cloud formation, typi-
cally occurs. Large scales (� � 1 kpc) show almost identical stabil-
ity properties in both models, as the surface density and velocity
dispersion ‘saturate’ into more well-defined, non-turbulent quanti-
ties, explaining the similarity between the markedly different ISM
models when adopting a traditional large-scale stability analysis.

(iv) The disc stabilized by stellar feedback can still be, in a sta-
tistical sense, well described by a Toomre-like Q stability threshold.
This is no longer true for the violently fragmenting disc, which en-
ters a regime where a Q-like parameter loses its meaning and small
scales are asymptotically more and more unstable, and stability can
only occur on large scales (see also Romeo et al. 2010).

Hopkins & Christiansen (2013) investigated gravitational frag-
mentation in turbulent media, arguing that turbulent flows are always
unstable on some scale, given enough time, as a broad spectrum
of stochastic density fluctuations exists that can produce rare, but
gravitationally unstable regions. This notion is compatible with our
results; by defining the typical densities and velocities existing at
some scale in a mass-weighted sense, we are biasing ourselves to-
wards dense regions. This gives us the typical structures, by mass,
that exists in the ISM. However, the scatter in the dispersion relation
for the model with feedback-driven turbulence (Fig. 4) can be sub-
stantial on small scales at any time, due to the wide range of densities
in supersonically turbulent flows (e.g. Padoan, Jones & Nordlund
1997; Mac Low & Klessen 2004; Kritsuk et al. 2007). This means
parts of the disc will be unstable, although the corresponding mass
in that component may not necessarily be dominant.

In this work, we have only considered Milky Way-like galaxies,
with gas fractions typical of z = 0 discs. In high-redshift counter-
parts, with gas fractions several times greater (Tacconi et al. 2010),
turbulence may play an even greater role in shaping the ISM. In-
deed, the observed high levels of turbulence (e.g. Förster Schreiber
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et al. 2009) is thought to be responsible for the highly clumpy mor-
phologies observed (e.g. Agertz et al. 2009b; Dekel et al. 2009;
Elmegreen et al. 2009; Tacconi et al. 2010; Genzel et al. 2011;
Romeo & Agertz 2014). Current astronomical facilities such as
Atacama Large Millimeter/submillimeter Array (ALMA) can re-
solve the scaling properties of galactic turbulence in the cold molec-
ular gas of high-redshift systems, hence revealing the interplay
between gravitational instability and turbulence in more extreme
environments.

It is important to consider the limitations and assumptions be-
hind the analysis presented in this work. The dispersion relation
(equations 2 and 7) is formally only describing stability against
local axisymmetric perturbations, i.e. it assumes that kR � 1. This
is the short-wavelength approximation and is satisfied in our work
as we only carry out our analysis at R = 4 kpc, and with k = 2π/�

this holds on all scales we have considered. However, the assump-
tion of axisymmetry is not true in general, and non-axisymmetric
perturbations are thought to have a greater destabilizing effect, i.e.
discs that are formally stable (Q > 1) can be locally unstable against
such perturbations. Local non-axisymmetric stability criteria are far
more complex than Toomre’s criterion as they depend critically on
how tightly wound the perturbations are, and any such criteria can-
not, in general, be expressed in terms of a single parameter akin to
Toomre’s Q (e.g. Lau & Bertin 1978; Bertin et al. 1989; Jog 1992;
Griv & Gedalin 2012). We leave an analysis accounting for more
general perturbations for future work.

In future work (Grisdale et al. in preparation), we will extend the
analysis presented in this paper to quantify the gravitational stability
for different gas phases, regions of the disc, as a function of local
turbulence driving strength etc., and how this connects to properties
of observed galaxies.
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