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Abstract

Background: The ever-increasing amount of software in cars today combined
with high market competition demands fast adoption of new software solutions
in car development projects. One challenge in enabling such a fast adoption
is to develop the architecture and models of the automotive software systems
in a structured and controlled way.

Objective: The main objective of this thesis was to enable the fast utiliza-
tion of new architectural features in automotive software models. This was
achieved by developing methods and tools to analyze the evolution of the
domain-specific meta-models that are used to define the language of software
models and their features. In particular, we wanted to identify the underlying
changes caused by meta-model evolution related to a specific set of architec-
tural features and assess their impact on both the architectural models and
modeling tools used by different roles (e.g., the Original Equipment Manufac-
turers, OEMs, and their suppliers) in the development process.

Method: We achieved our objective by conducting an action research project
in close collaboration with the Volvo Car Group (Volvo Cars) and the consor-
tium of the AUTOSAR standard, which aims to standardize the architecture
of automotive software systems. This collaboration facilitates fast feedback
from experts in the field on the problems, ideas and methods we developed in
the course of this research, thereby enabling the validation of the research re-
sults and proposed methods in on-going development projects, i.e., their direct
application in the industry.

Results: We identified the most suitable software measures for measuring the
evolution of both the automotive software models and meta-models. The calcu-
lation and presentation of the measurement results were done with the support
of two, newly-developed tools. We also developed a method for the automated
identification of an optimal set of new architectural features that should be
adopted in development projects to facilitate the decision-making process con-
cerning the selection of which of these new features would be adopted.

Conclusion: We applied the developed methods and tools to the architectural
models and meta-models used at Volvo Cars and concluded that they provide
valuable input for the decision-making process concerning which new versions
of the standardized meta-model should be used in different projects. We also
concluded that these methods and tools can facilitate the assessment of the
impact of adopting new architectural features on the different roles involved
in the development process.
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Chapter 1

Introduction

The use of software in cars dates from the end of the 1970s and the start
of the 1980s when microcomputer applications began to be used for engine
control [1]. Today, software plays an important role in almost every function
of a modern car. Automotive functionalities, such as adaptive cruise control,
the lane departure warning system and automated parking support, depend
primarily on the use of software. The analysis of Charette [2] suggests that it
takes more than 100 million lines of code to put a premium car on the road
today, which is more code than some passenger airplanes require to operate
their avionics and on-board support systems. The trend of increasing amounts
of software in modern cars is expected to continue [3] due to new, future
functionalities, including autonomous drive and car-to-car communication.

In order to stay competitive, car manufacturers (Original Equipment Man-
ufacturers, OEMs) must constantly incorporate new automotive functionalities
in their car models. This requires fast software innovation cycles in the car
development projects, which in turn require changes in the software used in
the actual cars (the automotive software). The automotive software is at a
high abstraction level described by the software architectural model; the lat-
ter usually must be updated to support the addition of new car functionalities
and enable changes in the automotive software. These updates represent the
evolution of the automotive software architecture and its model.

The automotive architectural model is comprised of a set of predefined ar-
chitectural features that represent its building blocks. These features are de-
scribed by domain-specific meta-models, the availability of which determines
the technology that can be used in the cars themselves, for example, the use
of Ethernet as a communication medium between distributed parts of the au-
tomotive software system. As the automotive software technology evolves, so
do the domain-specific meta-models in order to support the new architectural
features, which are then used to model different architectural components of
the system. This means that the models and the domain-specific meta-models
evolve in parallel with each other.

This thesis addresses the problem of cost-efficient management of the do-
main specific meta-model evolution in car development projects. Our main
objective is to facilitate the decision-making process concerning which of the
new architectural features will be used in future cars in order to support the
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2 CHAPTER 1. INTRODUCTION

modeling of new functionalities. We achieved this objective by developing
tools and methods to automate the analysis of meta-model changes caused by
specific architectural features.

The proposed methods are based on a number of software measures that we
defined to evaluate the evolution of the architectural models and meta-models.
These measures can quantify the changes between different meta-model ver-
sions for a set of new architectural features. The measurement results can also
be used to visualize the evolution of both the architectural models and meta-
models with respect to a number of properties, such as size, complexity and
coupling. We used these results to assess the impact of different architectural
features on the modeling tools used by various roles (e.g., the OEMs and their
suppliers) involved in the automotive software development process.

We applied the proposed methods and tools to the evolution of the AU-
Tomotive Open System Architecture (AUTOSAR) meta-model [4] and the
architectural models developed at Volvo Cars. The AUTOSAR meta-model is
a standardized meta-model used to define the language for the architectural
models of the automotive domain and is fundamental to the development of
automotive modeling tools. We showed that the methods can be used to facil-
itate the decisions regarding which new releases of the AUTOSAR standard
or subsets of its new features will be adopted in on-going or future car devel-
opment projects.

This chapter is structured as follows: Section 1.1 describes the role of mod-
els and meta-models in software development; Section 1.2 describes the auto-
motive modeling environment and the role of AUTOSAR in this environment;
Section 1.3 describes both the importance and use of software measurement in
this thesis; Section 1.4 defines our research questions and describes the contri-
bution and impact on industry of each paper included in this thesis; Section
1.5 describes the methodology we employed to analyze the data and obtain
the results; finally, Section 1.6 summarizes our future research plans.

Chapters 2-6 present the individual papers included in this thesis. Each
paper is independent and represents one study that addressed one or several,
smaller research questions.

1.1 Modeling and meta-modeling

Modeling plays an important role in the development of large software
systems because it can reduce their complexity by raising the abstraction level.
This abstraction level is achieved by specifying what the system does rather
than how it does this [5]. Models and meta-models are the two most important
concepts involved in any modeling environment. Based on the definitions
of Bézivian et al. [6], a model represents a simplified representation of a
software system that has been created for a specific purpose, whilst a meta-
model represents the model specification using a specific modeling language.

The word ”meta” indicates that something was done twice, in this case the
modeling; for example, the meta-model represents ”a model of the model” and
the meta-meta-model represents ”a model of the meta-model”. Applying this
logic several times creates a meta-modeling hierarchy, which is also referred to
as the meta-pyramid [7] and is generally accepted to consist of four layers:
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1. The M3 layer: a meta-meta-model that defines the modeling concepts

2. The M2 layer: a meta-model that defines the language specifications

3. The M1 layer: a model that defines the instance specifications

4. The M0 layer: an object that defines the system instances

These layers are connected by the instantiation mechanism, i.e., each layer
represents an instance of the layer above; for example, M0 is an instance of
M1, except for the top layer M3, which is considered to be an instance of itself.
Generally, one element is an instance of another element if the instantiating
element defines the characteristics of that instance element, and the instance
element defines the specific details of these characteristics. For example, an
instantiating element may specify that a Signal has a data-type and an instance
of this Signal may define an integer data-type.

A model is an instance of the meta-model, whilst a meta-model is an in-
stance of the meta-meta-model. According to the strict meta-modeling prin-
ciple [8], all model elements on one layer of a meta-modeling hierarchy are
instances of the model elements of the layer above except for the top layer.
No other relationships that cross the boundaries of different layers are possi-
ble. The instanceOf relationship, however, is not transitive; for example, the
M1 model element will only receive characteristics from the M2 meta-model
elements and not from the M3 meta-meta-model elements [9].

The meta-modeling hierarchy described above is also accepted by the Ob-
ject Management Group (OMG) [10] which is considered a de facto standard
for meta-modeling (see Figure 1.1).

Figure 1.1: The Meta-Object Facility (MOF) layers

The Meta-Object Facility (MOF) [11] resides at the top of the hierarchy.
This is a meta-meta-model that defines the general modeling concepts used by
meta-models on the M2 layer. A frequently used meta-model on the M2 layer
is UML (Unified Modeling Language). The actual UML models reside on the
M1 layer and their actual execution at run-time resides on the M0 layer.
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The M3 and the M2 layers represent language specifications. Four impor-
tant concepts of one language specification can be distinguished, namely the
abstract syntax, concrete syntax, static semantics (their well-formedness) and
dynamic semantics (also refereed to as semantics). The abstract syntax de-
scribes the structural essence of the language, for example, a general concept
used for all purposes. The concrete syntax renders the abstract concepts for
a specific purpose (e.g., using graphical notation) and there can be more than
one concrete syntax for an abstract syntax. The static semantics impose a set
of constraints on the abstract syntax in order to apply the abstract concepts.
Finally, the dynamic semantics give meaning to the syntax notation of the
language. A meta-modeling environment must at least specify the abstract
syntax, but can also specify the concrete syntax and the static and dynamic
semantics [12].

Two different types of meta-models, namely the linguistic and ontological
meta-models, can be distinguished based on the two forms of the instanceOf
relationship described earlier [5]. The primary purpose of the linguistic meta-
models is to define a language (the abstract syntax) for the specification of
models instantiating this meta-model. The primary purpose of the ontological
meta-models is to define the meaning of the models. The ontological meta-
models can be used as domain-specific language definitions instantiating a
linguistic meta-model to provide both the syntax and static semantics for one
modeling environment (please refer to the description of the domain-specific
meta-models below).

These two forms of the instanceOf relationship are also responsible for the
meta-modeling property known as dual classification [13], where the instances
on the M0 layer are both ontological instances of the M1 classes (which in
turn are instances of the M2 Class) and linguistic instances of the M2 Ob-
ject. Therefore, the illustration of the meta-modeling layer hierarchy shown
in Figure 1.1 breaks the strict schema principle as the M0 instances directly
instantiate (linguistically) the M2 Object, i.e., the M1 layer is omitted.

One way of solving this problem is to consider the strict meta-modelling
principle for only one of the two forms of instanceOf relationships, i.e. either
ontological (from the system modelers perspective) or linguistic (from the tool
implementers and language designers perspectives). In terms of the linguistic
approach, ontological modeling can, to some extent, be achieved using stereo-
types [14, 15]. Another approach would be to represent the linguistic and
the ontological instantiations using two dimensions, where the ontological in-
stantiation is depicted horizontally and the linguistic instantiation is depicted
vertically; an example is shown in Figure 1.2.

The O0 and O1 vertical layers represent the ontological layers, while the
L0, L1 and L2 horizontal layers represent the linguistic layers. We can see
that the User Object on the linguistic layer L1 and the ontological layer O0 is
both a linguistic instance of the generic Object on the L2 and an ontological
instance of the concrete User Class on the O1 layer. Moreover, the actual
Runtime object on the linguistic layer L0 only occurs on the ontological layer
O0 ; thus, we can only form a mental picture of it on the O1 layer.

Finally, not all modelers interpret the relationship between the models and
the meta-models in this way, as demonstrated by Kühne [16], because it de-
pends on the exact interpretation of the word ”meta”. So far, we have referred
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Class

User Class

Object

User

Object
L1

L0

L2

O1 O0

linguistic

<<instanceOf>>
linguistic

<<instanceOf>>

linguistic

<<instanceOf>>

ontological

<<instanceOf>>

ontological

<<instanceOf>>

ontological

<<instanceOf>>

linguistic

<<instanceOf>>

Mental

concept
Runtime

Figure 1.2: A two-dimensional representation of the layers [5, 13]

to a meta-model as ”a model of the model using the instanceOf relationship”;
for example, the executing code is an instance of the UML class diagram.
We can, however, also define a model of the model using the representedBy
relationship, where both models reside on the same meta-modeling layer; for
example, a UML class diagram is a model of the source code. Figure 1.3 shows
an example of the instanceOf and the representedBy relationships.

UML Class 

Diagram

Source 

code
M1

M0

<<representedBy>>

Executing

Code

<<instanceOf>><<instanceOf>>

Figure 1.3: The representedBy and instanceOf relationships

Generally it is agreed that the relationship between the models and the
meta-models is based on the instanceOf relationship, whilst the representedBy
relationship indicates the model-to-model transformation.

1.1.1 Domain-specific meta-models

Meta-modelling plays an important role in the development of the de-
scription languages suitable for modeling of specific domains [17], including
automotive, telecommunications and avionics. A domain-specific model rep-
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resents an abstract representation of the system of a particular domain, whilst
a domain-specific meta-model defines the syntax and the semantics of the
domain-specific models instantiating this meta-model [18]. Several domain-
specific meta-models may focus on specifying different subject areas [19], such
as data, work-flows and tasks.

The syntax of one domain-specific meta-model includes both the abstract
and concrete syntaxes, which define the language constructs, and the entities
and their relationships within the abstract syntax, respectively. The semantics,
however, include only static semantics (e.g., each signal needs to have a data-
type), which can be achieved by specifying different constraints, such as the
range of the relationships and OCL (Object Constraint Language) constraints
[20], to ensure their well-formedness. On the other hand, dynamic semantics
(e.g., all signals must meet their timing requirements) cannot be specified
in the domain-specific meta-model; usually they are achieved by providing
supporting specifications in a natural language. In the case of UML-based,
domain-specific meta-models, UML profiles with the defined stereotypes and
tag definitions can also be a powerful mechanism of customizing the concrete
syntax and static semantics of the UML meta-model for a specific domain.

Any one, domain-specific modeling environment may contain an arbitrary
number of layers; in practice, there can be more than the four layers described
in Figure 1.1. These layers must evolve to support the addition of new system
functionalities, and the evolution of one layer may require the evolution of some
or all of the other layers [21]. For example, in order to express new modeling
solutions on the M1 layer, the M2 layer must evolve in order to describe how
to model these new solutions. Similarly, evolution of the M2 layer may require
evolution of existing models of the M1 layer in order to maintain conformity
between the M1 and M2 layers.

The challenge of parallel evolution of both the models and meta-models
of one domain-specific modeling environment, therefore, must be addressed
by system modelers and meta-modelers, although this combined model-meta-
model evolution can be automated to a certain extent [22], for example, the
automated re-factoring of existing M1 models in order to conform to a new
M2 meta-model [23].

1.1.2 Domain-specific modeling tools

System modelers of one domain-specific modeling environment usually rely
on software modeling tools to create and update the models and generate
code based on these models. Since the development of large software systems
often involves many roles potentially using different modeling tools in the
development process, a smooth exchange of models between these roles can
be somewhat challenging. Nevertheless, a smooth exchange can be enabled by
defining and gaining consensus from all roles for a domain-specific meta-model,
which is then fundamental to the development of all tools used in a specific
modeling environment. This is based on the assumption that if two modeling
tools adopt the same model structure defined by the meta-model, they can
exchange a number of software models that comply with this meta-model [24].

Since the modeling tools are based on a commonly-accepted meta-model,
its evolution may significantly impact all the tools in a specific modeling en-
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vironment. Such tools tend to be developed based on their own meta-models
(e.g., to support graphical representations) so evolution of the domain-specific
meta-models direct impacts the importers and exporters of the compliant mod-
els, as well as the meta-models used by these tools. The parallel evolution of
both the domain-specific and tool-specific meta-models, therefore, is another
problem that must be addressed by tool suppliers in the development of large
software systems.

1.1.3 Architectural models and features

Software architecture represents a set of design decisions made about a
system. A model that captures some or all of these design decisions can be
regarded as the architectural model [25]. An architectural model defines a
number of architectural components responsible for the execution of different
system functionalities.

Based on these definitions, the possibility of utilizing the architectural com-
ponents and their interactions in a specific way to achieve certain semantics
can be considered to be an architectural feature, for example, the possibility
of transmitting system signals between different parts of the distributed sys-
tem via an Ethernet cable. The architectural models and their features are
expressed using a general modeling language, which has a dual classification
in both the linguistic and ontological layers. For example, in order to model
the transmission of concrete signals via a concrete Ethernet cable, a domain-
specific meta-model must define the ”signal” and ”Ethernet” components and
their connection, i.e. how the signals are transmitted via the Ethernet.

1.2 Automotive software development

The development of automotive electrical systems (software and hardware)
relies on the use of different models [26] and is usually based on the V-model
process shown in Figure 1.4.

VCC Process Description II

Verify

Functionality

Verify

Architecture

Verify

System

Verify

Component

Design

Functionality

Design

Architecture

Design

Component

Design

System

Create Solution

(HW and SW)

Iteration

OEMs

Suppliers

Figure 1.4: The development of automotive electrical systems
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The left side of the V-model determines the design of the electrical system,
whilst the right side is responsible for system verification. The first step in the
development process is to define a model for a number of vehicle functionalities,
such as an early collision warning. The system architects then define a general,
architectural model of the system by creating a topology of the Electronic
Control Units (ECUs) connected via electronic buses and allocating the vehicle
functionalities onto these ECUs. The architectural models are refined in the
system design step, where a number of software (and hardware) components
controlling the execution of vehicle functionalities are modeled and allocated
onto different ECUs. These steps and their verification matches on the right
side of the ”V” are usually done by the OEMs. In this thesis, we focus on the
architectural and system models, i.e., on their specific design steps.

The design, implementation and verification of both the software and hard-
ware for one ECU are usually done by the suppliers who are organized into
different tiers according to their responsibilities, such as implementation of the
software components and the middleware software and hardware delivery. The
development process based on the aforementioned V-model is usually iterative
and consists of several iterations where new vehicle functionalities are added
and the architecture and system designs are updated accordingly.

The AUTOSAR standard was introduced in 2003 as a joint partnership of
the OEMs and their suppliers in order to facilitate the development of auto-
motive electrical systems based on the V-model. Today, AUTOSAR consists
of more than 150 global partners [4] and, therefore, is considered to be a de
facto standard for automotive software system development. Thus, it is hardly
feasible these days for OEMs to develop automotive electrical systems that are
not based on the AUTOSAR standard because fewer suppliers are available,
which significantly increases development costs.

The AUTOSAR standard defines the following main objectives:

1. Increased re-use of architectural components developed by the automo-
tive software suppliers in different car projects (within one or multiple
OEMs). This allows cheaper software components to be used with higher
quality (as these components are tested in several car projects).

2. Standardization of the middleware and hardware layers, which enables
software designers and implementers to focus more on the design and
implementation of complex vehicle functionalities.

3. Standardization of the exchange format for the architectural models,
which enables a smooth model exchange between a number of software
modeling tools developed by different tool suppliers.

These AUTOSAR objectives are achieved using three-layer ECU architec-
ture. The top layer (Application software) defines the software components
and their exchange points and is closely associated with the architecture sys-
tem design steps of the V-model. The middle layer (Run-time environment)
controls communication between different software components abstracting the
fact that they may be allocated to different ECUs. If they are allocated to
different ECUs, transmission of the respective signals on the electronic buses
is done by the bottom layer (Basic software), which is generally responsible
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for ”basic” ECU functionalities, such as communication with the hardware,
buses, memory and diagnostic services.

Both the Run-time environment and Basic Software layers are completely
standardized by AUTOSAR, such that AUTOSAR provides detailed specifi-
cations for all architectural components of these layers. This standardization,
together with the clear distinction between the Application software, Run-
time environment and Basic software layers, allow the system designers and
implementers to specifically focus on the development of vehicle functionalities
without being distracted by middleware and hardware design. The application
software and basic software architectural components are developed often by
different suppliers who specialize in either one of these areas, referred to as
Tier 1 and Tier 2 suppliers, respectively.

In order to standardize the exchange format for the architectural models
of the Application software layer between the OEMs and the Tier 1 and 2
suppliers, AUTOSAR defines a domain-specific meta-model that specifies the
language for these models. Based on the AUTOSAR meta-model, the modeling
tools of OEMs and suppliers can exchange the architectural models efficiently,
thereby minimizing any tool interoperability issues.

1.2.1 AUTOSAR modeling environment

The AUTOSAR modeling environment consists of five layers, the names of
which are taken from the AUTOSAR Generic Structure specification [27]:

1. The ARM4: MOF 2.0, e.g., the MOF Class

2. The ARM3: UML and AUTOSAR UML profile, e.g., the UML Class

3. The ARM2: Meta-model, e.g., the SoftwareComponent

4. The ARM1: Models, e.g., the WindShieldWiper

5. The ARM0: Objects, e.g., the WindShieldWiper in the ECU memory

The AUTOSAR modeling environment defines five meta-layers in an at-
tempt to incorporate both the linguistic and ontological instanceOf relation-
ships that are of importance to the tool suppliers and the system designers,
respectively. This means that subsequently the strict meta-modeling principle
is not achieved. To solve this problem, we characterized the AUTOSAR meta-
modeling hierarchy using the two-dimensional representation shown in Figure
1.5 and represent the linguistic instantiation (corresponding to the MOF lay-
ers) vertically and the ontological layers horizontally.

The ARM2 and ARM1 layers represent the ontological layers O1 and
O0, respectively, and both reside on the same linguistic layer L1 (MOF layer
M1 ). The ARM4 and ARM3 layers represent the linguistic layers L3 and
L2 (MOF layers M3 and M2 ), respectively. The ARM0 layer corresponds to
the linguistic layer L0 (MOF layer M0 ) and resides on the ontological layer
O0 because it represents the execution of the concrete object in an ECU. This
representation conforms to the strict meta-modeling principle as the instanceOf
relationships never cross the boundaries of more than two layers.

The ARM4 and ARM3 layers define the abstract syntax, while the ARM2
layer (referred to as the AUTOSAR meta-model) defines the concrete UML
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Figure 1.5: The AUTOSAR meta-model layers

syntax and the static semantics of the AUTOSAR models residing on the M1
layer. The AUTOSAR meta-model also uses the AUTOSAR UML profile
from the ARM3 layer, which specifies the used stereotypes and tags. All
other constraints and dynamic semantics are defined in the natural language
specifications that support the AUTOSAR meta-model.

1.2.2 AUTOSAR meta-model

The AUTOSAR meta-model (ARM2 layer) is divided into a number of
top-level packages, referred to as ”templates”. Each template is standardized
and defines how to model one specific part of the automotive electrical system.
For example, the SoftwareComponentTemplate defines how to model software
components and their communication, whilst the SystemTemplate defines how
to model ECUs (i.e., the allocation of software components onto the ECUs,
ECU connections using electronic buses, etc.) and their communication (i.e.,
the signals exchanged on the electronic buses).

Based on the AUTOSAR templates residing on the ARM2 layer, the OEMs
and their suppliers can create proprietary models on the ARM1 layer instan-
tiating these templates for different parts of the automotive system. This is
true for all models except for those instantiating the ECUCDefinitionTemplate.
The latter models contain a definition of the ECU Basic software configuration
parameters and are standardized by AUTOSAR. In order words, AUTOSAR
provides the standardized ARM1 models for the configuration parameters of
all Basic software modules. The actual values of these parameters are defined
in the models instantiating the ECUCDescriptionTemplate and they reference
their corresponding definitions (see the example shown in Figure 1.6).

On the smallest granularity, standardized models of the ECUCDefinition-
Template are divided into a number of packages, where each package contains



1.2. AUTOMOTIVE SOFTWARE DEVELOPMENT 11

the configuration parameters of one Basic software module. On the highest
granularity, these models are divided into different logical packages, including
ECU communication, diagnostics, memory access and IO access. Moreover,
in papers B, D and E of this thesis, we have analyzed the evolution of the
standardized models of the ECUCDefinitionTemplate, together with the evo-
lution of the meta-model templates, and focused on the logical packages of
ECU communication (the role of ECU communication configurators) and di-
agnostics (the role of Diagnostic configurators).

The values of certain configuration parameters from the ECUCDescription-
Template models can be automatically derived from models of other templates,
such as the SoftwareComponentTemplate or SystemTemplate. This process is
called ”upstream mapping” and is referred to as this in the thesis papers. The
role of Upstream mapping tool developers defined in Paper B, for example, is
to implement tool support for the automatic derivation of parameter values of
the ECUCDescriptionTemplate models from the SoftwareComponentTemplate
and SystemTemplate models.

A simplified example of different AUTOSAR templates (ARM2 ) and their
models (ARM1 ) is shown in Figure 1.6. The gray color represents the elements
standardized by AUTOSAR, whilst the light blue color represents proprietary
elements modeled by different OEMs.
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GenericStructureTemplate

ECUCDescriptionTemplateECUCParameterDefTemplate
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Figure 1.6: An example of the AUTOSAR templates and their models

On the ARM2 layer, we can see the elements of the five templates. The
ECUCDefinitionTemplate specifies the modeling of the definition of ECU pa-
rameters and containers of these parameters with an example of the integer
parameter. The ECUCDescriptionTemplate specifies the modeling of the con-
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tainer and parameter values. The SoftwareComponentTemplate and the Sys-
temTemplate specify a simplified modeling of the signal transmission by the
software components. Finally, all elements of the templates shown are inher-
ited from a common element in the GenericStructureTemplate (Identifiable),
which provides both a name and unique identifier (UUID) for these elements.

The standardized model of the ECUConfigurationDescription can be seen
on the ARM1 layer, which shows the ECUSignal container with the Init-
Value integer parameter. These two elements both have a tagged value with
the name UM, denoting Upstream Mapping. The UM tagged value for the
ECUSignal container refers to the SystemSignal from the SystemTemplate.
The UM tagged value for the InitValue parameter refers to the initValue at-
tribute of the SystemSignal. This implies that for every SystemSignal instance
in the SystemArchitecture model, one container instance in the ECUConfigu-
rationValues will be created with an integer parameter instance. The value of
this parameter instance will be equal to the initValue attribute of that System-
Signal instance (0 in our example). This derivation of the ECU configuration
parameter values from the system architectural models can be automated using
modeling tool support.

1.2.3 AUTOSAR models

Managing the evolution of the AUTOSAR meta-model is essential in en-
abling the incorporation of new features in automotive architectural models
and thus in car development projects. This is because these models must be
fully compliant with the AUTOSAR meta-model to ensure a smooth model
exchange between a number of roles in the development process. Thus, they
are also referred to as the AUTOSAR models. In order to update the AU-
TOSAR models with new architectural features, all roles (e.g. the OEMs and
their suppliers) must update their modeling tools according to new versions of
the AUTOSAR meta-model.

The AUTOSAR models are structural models and they should not be con-
fused with behavioral models that are used to describe concrete ECU func-
tionalities, for example, auto-braking when a pedestrian is detected on the
vehicle’s trajectory. These behavioral models are usually developed in Matlab
Simulink tool from which the actual source code (C code) can be generated.
Certain parts of the ECU source code related to the functionality of the middle-
ware layer, Run-time environment and the configuration of the Basic Software
modules (referred to as the aforementioned ”upstream mapping” process) can
also be generated from the AUTOSAR models.

The AUTOSAR models are expressed using Extensible Markup Language
(XML) and are validated by the AUTOSAR XML schema generated from the
AUTOSAR meta-model. This process is referred to as the XML Meta-data
Interchange (XMI) and is a standardized process for data exchange between
different roles in the development process created by OMG [28].

1.3 Software measurement

Measurement in software engineering plays an essential role not only to
assessing a variety of software system quality attributes, such as reliability,



1.3. SOFTWARE MEASUREMENT 13

maintainability and efficiency [29], but also to estimating the implementation
cost and effort to support different features. According to the measurement
theory [30], measurement is a process in which numbers (or symbols) from the
mathematical world are assigned to different entities from the empirical world
to describe the entities according to defined rules. A measure represents a
variable to which a value is assigned as a result of the measurement [31]. In
the papers of this thesis, we also refer to measures as metrics [32].

The measurement theory describes how to construct measures (metrics)
and formalize their mapping from the empirical to the mathematical world,
i.e., empirical relations between entities are mapped to mathematical relations
so that they can be analyzed. For example, if two software systems (A and
B) are related by the empirical relation ”more complex than”, we can de-
fine a measure of their complexity (c), where measurement results are related
by the mathematical relation ”>”. The mapping between the empirical and
mathematical relations, therefore, is defined as:

c(A) > c(B) => A more complex than B (1.1)

Measurement results can be represented on different scales and different
relations between the results are possible depending on the scale [30]:

• Nominal scale - only a relation of equivalence possible (A = B)

• Ordinal scale - a nominal relation + greater/smaller than (A > B)

• Interval scale - an ordinal relation + difference computation (A − B)

• Ratio scale - an interval relation + ratio computation (A / B)

• Absolute scale - like ratio, but counts the number of items

In order to structure the software measures according to their objectives,
the Goal Question Metric (GQM) approach proposed by Basili et al. can be
used [33]. The GQM defines the measurement as a mechanism that helps to
answer a variety of questions about the software process and products. It de-
fines the measurement model on three levels: Conceptual (goals), Operational
(questions) and Quantitative level (metrics) as shown in Figure 1.7:

Goal 1

Question Question

Metric Metric Metric

Goal 2

Question Question Question

Metric Metric Metric

Figure 1.7: The Goal Question Metric (GQM) levels [33]

The goal is defined for one object (e.g., a product or process) with respect
to its quality attributes for a specific purpose (e.g., an evaluation) and from
a specific perspective (e.g., that of a system designer). A set of questions for
one goal is used to specify how the goal will be assessed by characterizing the
object to be measured. Finally, the measures represent the quantitative data
associated with every question that enable the question to be answered.
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1.3.1 Measurement process

The ISO/IEC 15939 standard for the measurement process in software
engineering [34] defines the process as a set of activities that are required to
specify: (i) what information is needed for the measurement, (ii) how the
measures are made and measurement results are analyzed, and (iii) how the
results are validated. Additionally, the measurement process specifies how to
build the measurement products, although this area is beyond the scope of
this thesis. A simplified measurement process is shown in Figure 1.8:
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Figure 1.8: Measurement process activities [34]

Activity (1) defines the scope of the measurement and who will execute
it. Activity (2) elaborates on the measurement plan, such as what is to be
measured (i.e., which entities and their quality attributes), what information
is needed (i.e., the reason for the measurement), which measures will be used
and on what scale, and the criteria for evaluating the measurement results.
Activity (3) describes how the data will be collected and analyzed. Finally,
activity (4) describes how the measures and the measurement process will be
evaluated based on the defined criteria of activity (3). This process is defined
as iterative in order to improve both the measures and measurement process
based on the results of the evaluation in activity (4).

One important segment of the planning activity (3) is to ensure that the
measures are clearly defined in order to avoid different interpretations of how
the measurement has been done (see the measurement errors of different imple-
mentations of the commonly known lines of code measure [35]). The measures
will be defined based on the conceptual model, which is used to describe the
entities in the empirical world [36] to ensure that the metrics can satisfy the
required information need.

Software measures are usually defined using either set theory or algebra
expressions. In order to prevent a definition of a measure using one of these
two approaches from becoming too complex, however, alternative approaches
can be taken, such as using pseudo-code snippets. For example, the complexity
(c) of one software component (x) can be defined using algebra as follows:

c(x) =
n∑
i=1

ri(x) ∗
n∑
i=1

ti(x);

ri(x) =

{
1, if x receives sigi

0, otherwise
; ti(x) =

{
1, if x transmits sigi

0, otherwise

where n represents the total number of signals and sigi the signal with
serial-number i. Using set theory, this same result can be achieved by defining
two sets Sin(x) and Sout(x):
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• Sin(x) = {sin1(x), sin2(x), ..., sinα(x)} - a set of signals received by
software component x.

• Sout(x) = {sout1(x), sout2(x), ..., soutβ(x)} - a set signals transmitted
by software component x.

The complexity would then be calculated as follows:

C(x) = |Sin(x)| ∗ |Sout(x)|

Finally, the corresponding pseudo-code could look like this:

i n t Complexity ( Component x )
{

i n t Sin = 0 ;
i n t Sout = 0 ;

f o r each ( S inga l in Rece ivedS inga l s ( x ) )
Sin = Sin + 1 ;

f o r each ( S inga l in TransmittedSinga l s ( x ) )
Sout = Sout + 1 ;

re turn Sin ∗ Sout ;
}

An important part of the measurement process is to validate the defined
software measures. Two different types of validation can be performed [37]: a
theoretical validation to answer ”Are we measuring the right attribute?” and
an empirical validation to answer ”Is the measure useful?”.

The theoretical validation ensures that a measure does not violate the prop-
erties of the measured entity [38]. This can be achieved by assessing whether
the measure satisfies certain theoretical criteria. For example, there must be
at least two entities for which the measure yields a different result, measuring
the same entity twice yields the same results, measuring two entities can yield
the same result, etc. Additionally, Briand et al. [39] classify the measures ac-
cording to five attributes (size, length, complexity, coupling and cohesion) and
define a set of properties required to measure each attribute. These properties
can be used to group measures according to different properties and validate
that they do indeed measure an intended attribute.

The empirical validation ensures that the measurement results are consis-
tent with expected values [38]. This can be achieved by discussing the results
with experts who work with the measured entity to ensure that they are con-
sistent with their expectations (e.g., code complexity should decrease after
re-factoring it). Statistical analysis techniques can also be used to validate the
relationship between two attributes if the measurement goal was to explain
one attribute which, for example, cannot be measured by measuring another
attribute. An example of this is the use of a correlation analysis based on
historical data to validate the link between code complexity and the number
of faults.
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1.3.2 The use of software measurement in this thesis

The results presented in this thesis rely heavily on the use of software
measures and measurement results. The automotive architectural models and
meta-models represent the scope of the measurements, and our main informa-
tion need was to assess their evolution with respect to a number of properties,
including changes, size, complexity and coupling. Since available, off-the-shelf
measures do not use the specific modeling characteristics of the automotive
domain, we defined our own set of measures for this purpose.

The measures are defined following the GQM approach based on the ap-
propriate conceptual models. Since we performed several studies to address
different goals and research questions, we followed the GQM approach be-
cause it helped us to structure the measures in order to address all of the goals
and questions. For example, in Paper B, we defined a measure of meta-model
change in order to analyze the evolution of domain-specific meta-models, whilst
in Paper C, we defined a measure of meta-model size, length, complexity, cou-
pling and cohesion in order to assess the impact of the meta-model evolution
on different roles in the development process.

Clearly defining both the goals and questions for each study also enabled
us to re-use the logic behind certain measures used for measuring different
entities in order to address similar questions and goals about these entities.
For example, the goal of our complexity and coupling measures defined in
Paper A was to monitor the evolution of architectural models and was based
on the research question: What is the trend in the complexity and coupling
evolution of these models? . One of the goals of Paper C was to monitor the
evolution of the same properties for the domain-specific meta-models based on
the research question: What is the impact of meta-model evolution on different
roles in the development process? .

Consequently, we re-used the logic behind our complexity and coupling
measures for software components of the architectural models (the definition
of which was based on the conceptual model presented in Paper A) and rede-
fined the measures so that they would apply to meta-classes of the domain-
specific meta-models (based on the conceptual model presented in Paper C).
In particular, the measures defined in Paper A were based on the interaction
between different software components using signals, whilst those of Paper C
were based on the interaction between different meta-classes using associations.

Some of our measurement results are presented on the ratio scale (e.g.,
model and meta-model complexity) whilst others are shown on the absolute
scale (e.g., the number of meta-model changes). The majority of measures
are defined using either set theory or algebra. We defined the measure of
the complexity and coupling of the architectural models in Paper A using
algebra, and the measure of size, length, complexity, coupling and cohesion of
the meta-models in Paper C using set theory. Data collection was automatic
because we had developed tools to measure the properties of both the models
and meta-models based on the appropriate conceptual model.

The measures used in our studies are validated both theoretically and em-
pirically. The theoretical validation was based on the properties defined by
Briand et al. [39] for the size, length, complexity, coupling or cohesion mea-
sures depending on the classification of the measures. The empirical validation
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was based on applying the measures on project data from Volvo Cars and the
AUTOSAR consortium.

The complexity and coupling measures for monitoring the evolution of the
architectural models were applied to a number of software components and
ECUs from two evolving electrical systems at Volvo Cars. The measurement
results were presented to experts who were able to confirm the results based
on their knowledge about actual system changes. The measure of meta-model
change was applied to a number of AUTOSAR meta-model releases, and the
results of the measurements matched the change documentation of AUTOSAR.
Finally, the measures for monitoring the size, length, complexity, coupling
and cohesion of domain-specific meta-models were applied to a number of
historical releases of the AUTOSAR meta-model and the choice of the most
suitable measures was based on statistical analysis (correlation and principal
component analysis).

A summary of the measures used in our studies is shown in Table 1.1.

Table 1.1: The most important measures used in the studies of this thesis
Measure name Measure goal Defined Used

Complexity metric Monitoring the complexity
evolution of the automo-
tive software systems

Paper A Paper A

Package coupling met-
ric (SW components)

Monitoring the coupling
evolution of the automo-
tive software systems

Paper A Paper A

Number of changes
(including Number of
changed elements and
attributes)

Estimating the effort / cost
of adopting a new meta-
model version / feature
and finding the optimal set
of features to be adopted

Paper B
(textual
descrip-
tion)

Papers
B, D, E

Number of classes and
Number of attributes

Monitoring the size of
meta-model evolution

Paper C Papers
B, C, E

Average depth of in-
heritance

Monitoring the length of
meta-model evolution

Paper C Papers
B, C, E

Fan-in, Fan-out and
Fan-in-out

Monitoring the complexity
of meta-model evolution

Paper C Papers
C, E

Package coupling met-
ric (classes) and Cou-
pling between objects

Monitoring the coupling of
meta-model evolution

Paper C Paper
C, E

Package cohesion met-
ric and Cohesion ration

Monitoring the cohesion of
meta-model evolution

Paper C Papers
C, E

1.4 Research questions and contributions

The main objective of this thesis was to enable faster adoption of new
architectural features in automotive software development projects. Therefore,
we defined the following, key research question:
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Q How can the evolution of architectural models and meta-models related
to a set of new architectural features be managed efficiently?

In order to answer our key research question, we divided it into several,
smaller research questions that we addressed in different studies. As a motiva-
tional study, we analyzed the evolution of architectural models of automotive
software systems in order to understand the complexity impact of adding new
car functionalities to the systems. Moreover, our objective for this first step
was to define a set of software measures capable of quantifying the complex-
ity and coupling properties of the architectural models. Thus, we defined the
following research questions:

Q1 How can a change in the complexity and coupling of automotive archi-
tectural models be measured?

Q2 What is the trend in the complexity evolution of architectural models
during the lifetime of one automotive software system?

The results showed that the changes in the models were significant and
a deeper understanding of the source of these changes was required. Our
next step, therefore, was to analyze the changes between different versions
of the automotive domain-specific meta-model, which specifies how different
architectural features are modeled. This analysis was facilitated by defining
the following research questions:

Q3 How can a measure of change between different domain-specific meta-
model versions be defined?

Q4 Can this measure of change be used to monitor the evolution of domain-
specific meta-models?

The results showed that different meta-model changes usually impact the
models and tools developed by different roles in the automotive software de-
velopment process, so the meta-model changes for each role were analyzed
separately. For this reason, we also defined the following research questions:

Q5 What major roles exist in the automotive software development process?

Q6 Which parts of the domain-specific meta-model are relevant for the mod-
eling tools used by these roles?

Q7 Which roles are affected most by the evolution of the domain-specific
meta-model?

The results showed that monitoring only the number of changes may not
suffice for an accurate impact assessment of the new, domain-specific meta-
model versions and their features on different roles. This is because some
changes only affect certain roles, whilst others affect multiple roles. The latter
changes are considered to be more severe, such that monitoring other meta-
model properties, for example, complexity, coupling and cohesion, is also im-
portant. This led us to define the following research questions:
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Q8 Which measures are the most suitable to measure the evolution of domain-
specific meta-models with respect to their size, length, complexity, cou-
pling and cohesion properties?

Q9 How can the results of different software measures be combined in order
to assess the impact of meta-model changes on different roles?

Up until this point, the analysis showed that not all architectural features
from the new domain-specific meta-model versions are relevant for all roles
involved in the development process. This means that a subset of features is
relevant to a subset of roles, such that the roles usually must decide which new
architectural features to adopt in the development projects. Therefore, as it
is also important to analyze the changes in new meta-model versions related
to a subset of their features, we defined the following research questions:

Q10 How can the evolution of domain-specific meta-models with respect to
their different architectural features be quantified?

Q11 How can an optimal set of new architectural features that are to be
adopted in the software development projects be selected efficiently?

We combined the answers to research questions Q1-Q11 in order to answer
our main research question Q. Specifically, we used (i) the identified roles, (ii)
the defined software measures, and (iii) the method for selecting an optimal
set of architectural features that are to be adopted in the development project
in order to perform the role-based analysis of domain-specific meta-model evo-
lution related to its architectural features.

1.4.1 Paper contributions

All research questions (Q1-Q11 ) are addressed in one of the papers of this
thesis. Table 1.2 shows which questions were addressed in which paper.

Table 1.2: Published contributions to this thesis
Paper Addressed research question

Paper A Q1, Q2
Paper B Q3, Q4, Q5, Q6, Q7
Paper C Q8, Q9,
Paper D Q10, Q11

In Paper A, we concluded that the architecture of automotive software
systems is very complex; this complexity is constantly increasing with the
addition of new car functionalities. Therefore, measuring the increase in com-
plexity and coupling of these architectures is an important aspect in reducing
faults and increasing system longevity. The measures proposed in this paper
can be used for this purpose. To automate both the measurement process
and presentation of measurement results, we developed a tool (QTool), which
can be used during the evolution of automotive software systems in order to
indicate when and where a set of architectural changes can be performed to
reduce system complexity.
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In Paper B, we concluded that a role-based analysis of changes between
different domain-specific meta-model versions is valuable in estimating the
effort needed to adopt certain meta-model versions in development projects.
We defined a method that can successfully monitor the evolution of domain-
specific meta-models (i.e., the changes) for different roles in the development
process. We also identified the major roles in the automotive development
process that are most affected by changes in the domain-specific meta-model
used in the automotive industry.

In Paper C, we assessed a number of software measures that are applicable
for measuring the evolution of domain-specific meta-models with respect to five
properties: size, length, complexity, coupling and cohesion. We also showed
how to combine the results of these measures in order to assess the impact
of adopting new version of the domain-specific meta-models on the modelling
tools used by different roles in the development process.

In Paper D, we defined a method (MeFiA - Meta-model Feature Impact
Assessment) that can identify an optimal set of new architectural features
that are to be adopted in the development projects. The method is based
on the impact of these features on domain-specific meta-models used in the
development and feature prioritization. In particular, we identify which meta-
model changes are related to which architectural feature.

In addition to papers A-D, which answer the research questions Q1-Q11,
Paper E has also been included in this thesis. Paper E presents a tool (ARCA)
that can automatically perform the analysis described in papers B, C and D,
thereby answering research questions Q3-Q11. The ARCA tool can be used
to facilitate the evolution of automotive software architectures related to the
adoption of new architectural features, as defined in the main research question
Q. In particular, the tool can assess the impact of meta-model changes on
modeling tools used by different roles. This impact is used in the analysis of
which new meta-model versions or a subset of their features will be adopted
in the development process of different projects.

1.4.2 Industrial contributions

All results presented in this thesis are directly deployed at Volvo Cars by
means of incorporating the two implemented tools QTool and ARCA in the
development process of automotive software systems.

The QTool implements the complexity and coupling measures presented
in Paper A and is primarily used by the automotive Software Architecture
Testers. The tool is used during the evolution of an automotive software system
after the addition of new functionalities in order to analyze their impact on
the complexity and coupling properties of different architectural components
(e.g., sub-systems, ECUs and domains). If the results are unsatisfactory, the
architectural components must be re-designed so as to reduce coupling and
increase the ECU cohesion. This could be done by re-allocating a subset of
the software components (i.e., functionalities) onto other ECUs, which might
immediately result in a reduced number of signals on the electronic buses.

The ARCA tool described in Paper E implements both the measures and
methods that are defined in papers B-D, and is used by Automotive System
Designers. There are three, main situations in which this tool can be used:
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1. To analyze changes between AUTOSAR meta-model releases

The analysis is done by four different teams at Volvo Cars for four main
roles in the AUTOSAR-based software development process. The System Ar-
chitects (i) and System Designers (ii) analyze the impact of the changes on
the Application Software Designers role. The Signal Database Team (iii) an-
alyzes the impact of the changes on the ECU Communication Designers role.
Finally, the AUTOSAR Team (iv) analyzes the impact of the changes on the
ECU Communication Configurators and ECU Diagnostic Configurators roles,
as well as on other parts of the ECU configuration, such as non-volatile mem-
ory and encryption library.

The aim of this analysis is to facilitate the decisions concerning which
new AUTOSAR release will be adopted in the development process as part
of a cost-benefit analysis (Volvo Cars currently uses AUTOSAR release 4.0.3
and is analyzing the impact of switching to one of the 4.1.1-4.2.1 AUTOSAR
releases). The ARCA tool can be used to estimate the effort required to
implement the changes for each analyzed role and will be complemented by an
analysis of the actual need for adopting new AUTOSAR releases.

2. To analyze changes related to specific AUTOSAR features

The analysis is done primarily by the System Architects at Volvo Cars with
support from the System Designers and AUTOSAR Team. It includes the im-
pact assessment of adopting each new AUTOSAR feature on the four main
roles in the AUTOSAR based software development (Application Software De-
signers, ECU Communication Designers, ECU Diagnostic Configurators and
ECU Communication Configurators) and identification of the optimal set of
features to be adopted using the MeFiA method.

The aim of this analysis is to facilitate the decisions concerning which new
AUTOSAR features will be supported as part of a cost-benefit analysis (Volvo
Cars currently analyzes the impact of adopting new features from the AU-
TOSAR release 4.2.1 ). The ARCA tool can be used to estimate the effort
needed to implement the changes for the analyzed feature and will be comple-
mented by an analysis of the actual need for adopting this feature.

3. To analyze changes between SVN versions of the AUTOSAR
meta-model during the development of one release

This analysis is done by the AUTOSAR Team at Volvo Cars with the aim
of continuously following-up changes in the AUTOSAR meta-model in order
to have sufficient time to influence their standardization (the tool is currently
used to analyze changes for the AUTOSAR release 4.2.2 ).

For example, if an accepted change in the AUTOSAR meta-model re-
moves one meta-element that is widely used at Volvo Cars, the change will
be discussed again in the AUTOSAR consortium involving representatives
from Volvo Cars before its official release. This is particularly important for
companies that are not AUTOSAR core partners (companies driving the AU-
TOSAR standard) because they tend not to be represented in all AUTOSAR
groups, making it more difficult for them to be aware of all of the changes.
Additionally, core partners have a certain period of time (i.e., a few weeks)
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before the official release to review and block any critical changes. This is not,
however, the case with other AUTOSAR partners, who must invest additional
effort to influence the changes during the implementation phase of one release.
In such a situation, the ARCA tool could be a valuable aid.

As well as the implementation of these thesis results at Volvo Cars, the
ARCA tool functionality related to a comparison of different SVN versions
of the AUTOSAR meta-model for a particular new feature is planned to be
adopted in the daily change management process of AUTOSAR. The idea is
to present the actual changes in the AUTOSAR meta-model in correspond-
ing Bugzilla1 implementation tasks so that the reviewer can confirm that all
changes are really intended. This information will also be used to generate the
change documentation between different AUTOSAR releases and traceability
of the AUTOSAR meta-model changes to the Bugzilla implementation tasks.

1.5 Research methodology

Research methodology describes the systematic process of data collection
and analysis in order to achieve the desired conclusions. The general research
methodology used in the studies of this thesis is action research. Using only
one research method, however, does not usually suffice for the combined work
of experts and researchers [40]. Therefore, we reported each cycle of the action
research as one case study.

In this section, we summarize the theory of the action research and the
case study, demonstrate how we described each action research cycle as one
case study and finally, discuss the validity of our results.

1.5.1 Theory of action research

The term ”action research” was first introduced by Kurt Lewin in 1946 [41]
as a research approach in social sciences intended to improve inter-group rela-
tions. Lewin acknowledged the necessity of the existing scientific approaches
of acquiring general knowledge (e.g., by conducting surveys) and situation spe-
cific knowledge (e.g., by conducting experiments), but questioned their value
if they had no practical use (”Research that produces nothing but books is not
sufficient.”). Therefore, he called for a research type that immediately leads
to social actions in order to help experts deal with the actual problems. One
definition of action research commonly used was designed by Rapoport [42]:

”Action research aims to contribute both to the practical concerns of people
in an immediate problematic situation and to the goals of social science by
joint collaboration within a mutually acceptable ethical framework.”

Therefore, the main aim of action research is to improve the practice and
increase collaboration between the experts and scientists [43]. This is further
elaborated by Susman et al. [44] who define a circle of five steps around an
evolving client system (e.g., a company facing practical problems) that will be
conducted during the action research process, as shown in Figure 1.9.

1A tool used by AUTOSAR for issuing and documenting change requests.
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Figure 1.9: The cyclical process of action research [44]

The diagnosing phase focuses on identifying the practical work problems
faced by the experts from companies involved in the action research project.
The next phase involves the initial planning of actions that must be taken in
order to solve the identified problems. These actions are usually undertaken
by the corporate experts, although action research can also be involved. The
evaluation phase assesses the result of applying the actions at the companies
by analyzing if the identified problems still exist. If not all defined problems
are solved, the entire process is repeated taking into consideration inputs from
the previous phases in re-defining the actions to be taken. The last phase of
the cycle is driven by the action researcher and is concerned with identifying
overall findings that are important for the generalization of the results to create
scientific knowledge applicable to other, similar cases (e.g., at other companies
facing similar problems).

The action researcher does not have to be involved in all five phases. De-
pending on the involvement of the action researcher in different phases, we can
distinguish between the following main types of action research [45]:

• Diagnostic - action researcher is involved in diagnosing the problem

• Empirical - action researcher is involved in evaluating the results

• Participant - action researcher is involved in diagnosing and planning

• Experimental - action researcher is involved in nearly all phases

1.5.2 Theory of case study

A case study is classified as an empirical research method [46] and focuses
on the examination of a real-world situation making it quite suitable for indus-
trial evaluations. Yin [47] defines a case study as an iterative process consisting
of five phases, as shown in Figure Figure 1.10:
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Design
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Collect
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Figure 1.10: The five phases of a case study [47]

Here, we focus on the design, collect and analyze phases. The design phase
consists of the following five components [47]: (i) Research questions, (ii) Study
propositions, (iii) Unit of analysis, (iv) Linking data to prepositions and (v)
Criteria for interpreting the findings.

The design of each study begins with a clear definition of the research
questions. Providing answers to these questions is the main objective of a
case study. In order to understand how to achieve this goal, however, the
scope of the study is defined together with the identification of elements that
are to be examined (the study propositions). Next, the unit of analysis (i.e.,
the ”case”), the elements of which are to be examined, is defined. The data
obtained from this examination are then linked to the propositions in order to
answer the defined research questions using, for example, statistical analysis.
Finally, the criteria for data interpretation are defined in order to indicate
when the obtained results can be considered valid, for example, by defining
the statistical significance if statistical methods are used to analyze data.

The data collection phase can include both qualitative and quantitative
data collection methods [46]. Qualitative data can be obtained by analyzing
documentation, performing observations, conducting interviews, etc. Inter-
views are especially common in analyzing industrial cases because they provide
quick answers to question from experts. They can be formal with a precisely-
defined set of questions, informal relying on a casual discussion with experts
[48] or semi-formal where questions are pre-defined, but can be deviated from
during the interview [49]. Quantitative research represents the analysis of nu-
merical data in order to explain a certain phenomenon [50]; quantitative data
are usually obtained by measurement.

Data can also be analyzed using different methods, such as pattern match-
ing (comparing the empirical pattern with one or several predicted patterns)
and explanation building (e.g., using theoretically proven concepts) [47]. Quan-
titative data can be analyzed using a number of statistical methods, including
correlation analysis and time-series analysis.
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1.5.3 One action research cycle as a Case study

Each action research cycle can be seen as one case study that aims to
answer a set of research questions related to the study context relevant for this
cycle. Understanding this context is crucial for defining the actions that can
solve the identified problems. Additionally, the case study analysis provides
an immediate possibility to evaluate the results of the actions on the chosen
unit of analysis. On the other hand, action research methodology provides
the possibility to collate the results of different case studies into one method
(i.e., a set of actions) that can address the general problem. Action research
also emphasizes the need to discuss how to generalize the proposed method,
thereby raising the level of its scientific significance.

The definition of research questions is part of the diagnosing phase of the
action research. The choice of the unit of analysis, the study propositions and
the description of how to obtain the data and link them to the chosen propo-
sitions (e.g., a method definition) are all part of the action planning phase.
The action-taking phase includes the application of the proposed method on
the unit of analysis and data collection. Finally, data evaluation corresponds
to the data analysis phase of the case study with focus on the validation of the
performed actions (e.g., the proposed method). The fact that each new case
study may define new research questions and use different units of analysis
is important for advancing the knowledge between different action research
cycles because the results of one cycle can be used as input for the next cycle.

In the studies included in this thesis, we conducted an experimental action
research project at Volvo Cars where the author of the thesis was the action
researcher working at the company. The general aim of the project was to
develop methods and tools to address the main research question Q, which
was divided into smaller research questions Q1-Q11 as explained in Section
1.4. We conducted four action research cycles, each based on one case study
with the aim of addressing one or several smaller research questions. Each
case study was documented in one of the thesis papers. The first case study
served as a motivational study and the results of the second case study served
as input to the subsequent case studies.

Case study 1 (research questions Q1 and Q2)

The action researcher was part of the Software Architecture Testing Team
at Volvo Cars. The diagnosing phase was performed at the start when the
problem of how to monitor the complexity of the automotive architectural
models was defined. In the planning phase, it was decided that the architec-
tural models used at Volvo Cars would be the unit of analysis. The outcome
of the case study was a method (based on two measures) and a tool for mon-
itoring the complexity of the automotive architectural models. The method
was validated based on its application on two evolving architectures and the
tool was included in the software architecture testing process at Volvo Cars.

Case study 2 (research questions Q3, Q4, Q5, Q6 and Q7)

The action researcher was part of the AUTOSAR Team at Volvo Cars. The
diagnosing phase was performed at the start when the problem of how to mon-
itor the evolution of domain-specific meta-models for different roles involved
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in the development was defined. In the planning phase, it was decided that the
AUTOSAR meta-model would be the unit of analysis. The main outcome of
this case study was a method (based on a measure of change) for monitoring
the evolution of domain-specific meta-models for different roles. The method
was validated based on its application on a number of AUTOSAR meta-model
releases for seven main roles in the automotive software development process.
The roles were identified using semi-structured interviews with a number of
engineers from automotive OEM and software supplier companies.

Case study 3 (research questions Q8 and Q9)

The action researcher was part of the AUTOSAR Team at Volvo Cars.
The diagnosing phase was performed at the start when the problem of which
software measures would be used to assess the impact of changes in domain-
specific meta-models on different roles was defined. In the planning phase, it
was decided that the AUTOSAR meta-model would be the unit of analysis.
The identified roles and defined data model in the Case Study 1 served as
an input to this analysis. The main outcome of Case Study 3 was a method
(based on a combination of measures) for assessing the impact of changes in
domain-specific meta-models on different roles. The method was validated
based on its application to historical releases of the AUTOSAR meta-model.
Correlation and principal component analyses were used to identify the most
suitable measures.

Case study 4 (research questions Q10 and Q11)

The action researcher was part of the AUTOSAR Team at Volvo Cars.
The diagnosing phase was performed at the start where the problem of how
to identify an optimal set of new architectural features to be adopted in the
development projects was defined. In the planning phase, it was decided that
the AUTOSAR features would be the unit of analysis. The identified roles and
defined measure of change in Case Study 1 served as an input to this analysis.
The main outcome of this case study was a method (based on the measure of
change) for identifying an optimal set of architectural features to be adopted
in development projects. The method was validated based on its application
on 14 new features of the AUTOSAR release 4.2.1.

Based on the methods defined in case studies 2, 3 and 4, we developed a tool
presented in Paper E. The tool was included in the process of analyzing the
impact of new AUTOSAR meta-model releases and their features on different
roles involved in software development at Volvo Cars.

Since AUTOSAR and the AUTOSAR meta-model were used as a unit of
analysis in case studies 2, 3 and 4, the action researcher was appointed to be
one of the representatives of Volvo Cars in the AUTOSAR consortium. The
aim was to ensure direct contact between the action researcher and experts
from the AUTSOAR consortium. This in turn enabled fast feedback loops in
the action planning and result evaluation phases by a number of experts in
the field, including OEMs and different types of suppliers.
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1.5.4 Research validity

We followed the principles of Baskerville et al. [51] to increase rigor during
the action research project, with a particular focus on:

• Maintaining collaboration between the action researcher and experts dur-
ing all phases of the action research.

• Promoting iterations of different phases, particularly action planning,
execution and evaluation of the results.

• Ensuring generalization of results in the specifying learning phase.

According to Cook and Campbell [52], four types of validity threats to
empirical studies conducted in the area of software engineering must be con-
sidered. We explain how we addressed each of these in our four case studies
(four action research cycles) below.

Internal validity

Internal validity is concerned with the results of the analysis not being
casual, i.e., the relationship between the measured properties and the out-
come should not be random. The most severe threat to the internal validity
in our studies was related to the measurement process which was performed
by developing two software tools for calculating the measures. In order to en-
sure internal validity, we performed detailed testing of the tools using smaller
examples before employing them for the main measurements.

External validity

External validity concerns generalization of results and is one of the most
prominent threats to action research validity (i.e., the applicability of the re-
sults to other companies facing similar problems) [51]. The reasons for this
involve a deep involvement of both the experts and action researcher in the
working practice of the company undergoing analysis and the evaluation of the
proposed methods by applying them to this specific context.

There were two particular threats to the external validity in our studies.
The first was that the proposed methods and tools would apply only to the
automotive software development process at Volvo Cars and not to other au-
tomotive companies. Therefore, we included several other companies (both
OEMs and suppliers) in the evaluation of the proposed methods and tools.

The second threat was related to the AUTOSAR meta-model that was the
unit of analysis in case studies 2, 3 and 4. The proposed methods and tools
that we applied to the AUTOSAR meta-model should also be applicable to
other domain-specific meta-models. Therefore, we mapped the layers of the
AUTOSAR modelling environment to the layers of MOF that are commonly
accepted layers for modelling in different domains. In addition, we discussed
the steps that must be taken in order to apply the proposed methods to meta-
models of other domains, such as avionics, telecommunications and banking,
in the thesis papers.
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Construct validity

Construct validity concerns the mismatch between the theory and observa-
tions. In our studies, this was related to the ability of the measures to capture
the desired system properties. We ensured this by the theoretical validation
of measures presented in Case Study 1 and because the measures used in Case
Study 3 were based on commonly-used UML measures previously proven in
the scientific world. Finally, the measure of change used in case studies 2 and
4 was defined according to the GQM approach based on the conceptual model,
which ensured that all relevant meta-model changes were captured.

Conclusion validity

Conclusion validity concerns the degree to which the conclusions of the
studies are reasonable. In Case Study 3, this was related to the significance of
the results obtained by the statistical analysis, which was high. In our other
case studies, the conclusions were derived based on applying the methods to
industrial scenarios and comparing the results with the expectations of experts.
The conclusion was that the results could capture the desired properties.

1.6 Future work

Our future work will follow two major directions. Firstly, we plan to apply
the methods and tools proposed in this thesis to the analysis of domain-specific
meta-model evolution on meta-models from other, non-automotive industries.
If these domain-specific meta-models are not available to us, we will apply the
methods to the evolution of the UML meta-model.

Secondly, we plan to extend our analysis of the software model and meta-
model evolution to other artifacts in the automotive development process, such
as system requirements. In particular, we plan to analyze the co-evolution of
the software models, meta-models and requirements in the automotive domain
and answer research questions, such as: ”How can the architectural models
and system requirements be evolved efficiently when adopting new meta-model
versions in automotive development projects?”.

1.7 Personal contribution

The author of this thesis has been the main contributor as regards the
planning and execution of the studies described in the thesis, and writing of
the included publications.
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