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Here, we report on the properties of native and artificial oxide amorphous thin film on a surface of

an amorphous Ni-Nb sample. Careful measurements of local current-voltage characteristics of the

system Ni-Nb / NiNb oxide/Pt, were carried out in contact mode of an atomic force microscope.

Native oxide showed n-type conductivity, while in the artificial one exhibited p-type one. The

shape of current-voltage characteristic curves is unique in both cases and no analogical behavior

is found in the literature. X-ray photoelectron spectroscopy (XPS) measurements were used to

detect chemical composition of the oxide films and the oxidation state of the alloy components.

Detailed analysis of the XPS data revealed that the structure of natural Ni-Nb oxide film consists

of Ni-NbOx top layer and nickel enriched bottom layer which provides n-type conductivity. In

contrast, in the artificial oxide film Nb is oxidized completely to Nb2O5, Ni atoms migrate into

bulk Ni-Nb matrix. Electron depletion layer is formed at the Ni-Nb/Nb2O5 interface providing p-

type conductivity. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4915935]

I. INTRODUCTION

Metallic glasses1 and bulk metallic glasses2,3 are a sub-

ject of significant research interest for material scientists.

For example, Ni-based alloys have high glass-forming abil-

ity and millimeter-size metallic glassy rods were produced

using binary Ni-Nb system alloys.4 Ni-based metallic

glasses have a high thermal stability5,6 and good corrosion

resistance.7 In addition to a relatively large supercooled liq-

uid region8 and high thermal stability of these Ni-based

glassy alloys, they also showed good welding ability.9,10 A

Ni-based glassy alloy also showed a very good plastic form-

ability on heating the supercooled liquid region. Nearly full

density Ni52.5Nb10Zr15Ti15Pt7.5 bulk metallic glassy sample

was produced from the powdered particles by spark plasma

sintering.11

Glassy Ni-Nb thin films have been produced and their

wear resistance,12 as well as the effect of surface oxidation

on their wear behavior,13 optical and magnetic properties,14

were studied. In addition, surface atomic structure of Ni-Nb

bulk metallic glassy samples and their in-situ crystallization

process were studied by scanning tunneling microscopy/

spectroscopy.15,16

Oxidation may induce surface crystallization of the

glassy matrix.17,18 Fine-grained microstructure consisting of

ZrO2 and Cu particles was found at the surface of Zr70Cu30

ribbons stored for a few years at room temperature19 owing

to surface oxidation. Most of Zr-based glassy alloys oxidize

forming crystalline ZrO2 particles on heating.17 However, an

amorphous phase for the oxide overgrowth on its metal sub-

strate can be thermodynamically stable up to a certain criti-

cal thickness.20

On the other hand, an amorphous oxide film was formed

on the surface of Ni-Nb film (native and after artificial oxida-

tion)14 and improved its tribological characteristics.13 As

was demonstrated,21 Ni-Nb oxide films show non-linear cur-

rent-voltage characteristics (CVCs). After annealing at

573 K for 1.8 ks, the oxide film retained its amorphous struc-

ture while at longer annealing at this temperature, nanopar-

ticles of FCC Ni started to precipitate from the glassy Ni-Nb

matrix as it gets depleted in Nb owing to its preferential oxi-

dation forming Nb2O5.14 As pure Nb2O5 is a dielectric mate-

rial with a large bandgap and its suboxide forms can be

semiconductors, it is of technological and academic impor-

tance to study the surface electrical properties of this mate-

rial at metallic glass/oxide/Pt cantilever interface.

II. EXPERIMENTAL PROCEDURE

An ingot of the Ni62Nb38 alloy (alloy composition is

given in nominal atomic percentages) was prepared by arc-

melting the mixtures of Ni and Nb of 99.9 mass% purity in

argon atmosphere. From this ingot, a target for magnetron

sputtering was prepared by mechanical cutting. Thin films

were deposited on Cu substrate by a magnetron sputtering

technique. Deposition speed was 50 nm/min, while the
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resulted film thickness was about 100 nm. The samples were

observed by scanning electron microscopy and the chemical

composition of the sputtered films determined by the energy-

dispersive X-ray analysis was found to be Ni57Nb43, which is

slightly different from the nominal one owing to different sput-

tering rates of Ni and Nb. A part of the samples was later oxi-

dized in-situ in the sputtering chamber at 573 K using dry air.

The phase composition of the samples was examined by

X-ray diffractometry (XRD) using Rigaku Smart lab 9MTP

apparatus with monochromatic CuKa. X-ray photoelectron

spectroscopy (XPS) was carried out using an apparatus

equipped with Scienta MX650 X-ray source of 0.2 kW

power having the AlKa (1486.7 eV) radiation. The samples

were moved to the XPS apparatus right after preparation or

oxidation with short exposure to open air of a few hours.

Each XPS analysis session was preceded by the recording of

the Au 4f7/2 peak (Binding energy (BE)¼ 84.00 eV) for the

energy calibration purpose. The sample was placed every

time perpendicular to the electron energy analyzer axis. A

XPS spectrum was also obtained from pure Nb sample for

comparison.

Local current-voltage characteristics of Ni-Nb amor-

phous films containing native and artificial oxide were meas-

ured using scanning probe microscope AIST-NT SPM

(model SmartSPM-1000) at ambient conditions. Contact

mode of atomic force microscopy technique was used for

taking topography profiles and series of local CVC’s. Pt

coated conductive cantilevers (Microscience, model N14/Pt)

with a spring constant ranged from 6 to 10 N/m and the can-

tilever tip radius <40 nm were used. The spring constant was

measured for each cantilever using a technique based on

measuring the change in resonant frequency of the funda-

mental mode of vibration.22 For each atomic force micro-

scope (AFM) session, a new cantilever was used.

CVCs were recorded with the voltage sweeping rate of

1 ms/point, while digital feedback has been kept constant

AFM cantilever load during all measurements. For statistical

reproducibility, several hundred CVCs were recorded in tens

regions at different cantilever load values. Almost all CVCs

were reproducible. About 10% of "unusual" CVC, were

recorded, probably, in the regions with some contamination

absorbed on the film surface from the air.

III. RESULTS AND DISCUSSIONS

The structure of the prepared films was studied by X-ray

diffraction and found to be glassy. Figure 1 shows a broad

diffraction peak from 35� to 53� of 2h typical for metallic

glasses. The three sharp peaks belong to FCC Cu from the

substrate. The samples annealed at 573 K for 1.8 ks and less

retained its amorphous structure while, as it was shown ear-

lier,14 the amorphous oxide film continued to grow.

Topography of both native and artificial oxide films rep-

resents a uniformly smooth surface with a surface roughness

(Rq) of 5–10 nm. Local CVC’s in the native and artificial ox-

ide films were found to be different: for native oxide, n-type

conductivity observed starting from voltages �4.5 to

�5.1 V, depending on the value of the load force (Figure

2(a)). The artificial oxide film revealed p-type conductivity

starting from þ4.7 to 4.9 V (Figure 2(b)). For native oxide

film, current increased in conductive region of CVC with

increasing of cantilever load value (see Figure 2(a), inset)

probably due to increasing of the film deformation at increas-

ing load force. As checked by the profile measurement

before and after loading the deformation of the film was elas-

tic and non-destructive. The film "scratching" effect occur-

ring at much higher load forces13 was not detected in both

FIG. 1. XRD patterns of the as-prepared thin film. Three sharp peaks belong

to FCC Cu from the substrate.

FIG. 2. A family of CVCs recorded for different cantilever loads for native

(a) and artificial (b) Ni-Nb oxide films. Load ranges were from 39 to 87 nN

for (a) and from 110 to 160 nN for (b). Insets show dependence of maximum

current in conductive CVC region on applied cantilever load.
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oxides. It is worth mentioning that there was no influence of

the load force on current detected for the artificial oxide film

for loads up to 160 nN (see Figure 2(b), inset). Different load

ranges were used for native and artificial oxides to match the

measured electrical current ranges. As can be seen, the

shapes of CVCs remained unchanged for the whole loads

range.

One can suggest that the observed difference between

the local CVCs recorded on native Ni-Nb oxide layer and

that on the artificially grown oxide should be associated with

the difference in the surface composition of the native and

artificially grown Ni-Nb oxide layers and the oxidation state

of the constituent elements. Thus, we applied XPS analysis

to study the surface composition and oxidation state of the

Ni-Nb oxide layers. The results of XPS analysis are pre-

sented in Table I while the spectra are shown in Figure 3.

The Nb 3d line was chosen for the Ni-Nb glass oxidation

study. Here, a “line” is indicative of a series of the character-

istic peaks. This line may consist of the metallic Nb doublet

and the doublets corresponding to different oxidation states

of Nb. As the oxidation state of Nb can be in the range from

1 to 5, it can be in total up to 12 single peaks constructing

the Nb 3d. The interpretation of the recorded spectra fol-

lowed the following approach. The spin-orbit doublets line

shapes are described by the following relation:

LS2 Eð Þ ¼ 1

1þ a
� LS1 Eð Þ þ aLS1 E� DESOð Þ
� �

; (1)

where E—the photoelectron kinetic energy, LS1(E)—the sin-

gle line shape, a—the ratio between line intensities of spin-

orbit splitting of photoelectron level (a¼ 1/2 for p-orbital

shell and a¼ 2/3 for d-orbital shell), and DESO—the spin-

orbit coupling energy.

The complex line shape follows the formula:

LSðEÞ ¼ I0LS2ðEÞ þ
XN

j¼1

IjLS2ðE� DECSjÞ; (2)

where DECS—the chemical shift energy, N—the highest oxi-

dation state, and Ij—the doublet line intensity.

Following this approach, the number of varied parame-

ters can be kept minimal: Ij and LS1(E), which are the equal

for all peaks; both DESO b DECS could be taken from (Ref.

23).

For extracting the Ni-Nb surface oxide thickness, we

consider the original Ni-Nb sample to be uniform and semi-

infinite. We also assume that the oxidation state decreases

towards the sample depth,24 as the oxidation process pro-

ceeds only on the surface side. Following that the uniform

layers can be selected where the oxidation state is constant.

The number of such layers above the metallic Ni-Nb sub-

strate will be equal to the highest oxidation state. We will

number these layers so that its number corresponds to the ox-

idation state j of the oxide in the given layer. This way, j¼ 0

corresponds to the metallic substrate. The approach for

extracting of the oxide layers thicknesses follows the earlier

works.24–26 For bi-layer sample (oxide layer with oxidation

state N and thickness d over the semi-infinite metallic sub-

strate), the thickness d can be expressed as26

d ¼ kN cos h ln
n0k0

nNkN

IN

I0

þ 1

� �
; (3)

where k—inelastic mean free path (IMFP) of the electrons,

h—the angle of incident X-ray towards the perpendicular to

the sample surface, n—concentration of the sample atoms,

and I—peak intensity.

Following the same approach, the layers thicknesses in

the multilayered sample can be expressed as

dj ¼ kj cos h ln
Ij= njkj

� �
Pj�1

k¼1

Ik= nkkkð Þ
þ 1

0
B@

1
CA: (4)

In the relations (3) and (4), inelastic mean free paths, kj,

were calculated following the TPP2M formula.27

The calculation results following the formulas (1)–(4)

for the lines Nb 3d and Ni 2p3/2 are presented in Figure 4

showing the experimental data as points, the calculation

results as solid lines and the doublet lines for different oxida-

tion states as dashed lines. Background due to photoelectrons

multiple inelastic scattering was subtracted following the

Shirley method.28 The Levenberg-Marquardt29 algorithm

was employed for line parameters extraction. The probing in-

formation depth calculated by the formula (3) for the bi-

layer model (I5/I0¼ 100/1) is 15 nm.

Gaussian function provides the best fit for the single line

peak of the elastically scattered photoelectrons. For Nb 3d

line (Figure 4(a)) obtained from the Nb sample, the follow-

ing parameters were calculated:

TABLE I. Standard XPS data results. The content of each element is given

in at. %. Carbon is absorbed at the surface in terms of organic compounds.

Ni-Nb glass

Element Nb (%) Native oxide (%) Artificial oxide (%)

C 41 25 25

O 48 50 61

Nb 11 13 14

Ni … 12 …

FIG. 3. XPS survey spectra: (a) Target: Nb; (b) target: Ni-Nb film on Cu

(native oxide); (c) target: Ni-Nb film on Cu oxidized (artificial oxide).
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(1) Gaussian standard deviation, FWHM, equal to 0.98 eV.

(2) Binding energy for Nb 3d5/2 BE(Nb3d5/2)¼ 202.2 eV.

(3) Spin-orbit coupling energy DESO¼ 2.75 eV.

(4) Chemical shift energy DECS¼ 1.1 eV.

The extracted Nb 3d line parameters are consistent with

those reported in Ref. 23. Further on, those parameters were

kept fixed. For the Ni 2p3/2 (Figure 4(c)), line parameters

(FWHM¼ 1.02 eV, BE(Ni 2p3/2)¼ 852.6 eV, DECS¼ 0.55 eV)

were taken from Ref. 30.

From the XPS data for the sample with the native Ni-Nb

oxide, it was found out that all Nb 3d line peaks were shifted

in respect to the BE(Nb 3d5/2) by the energy DBENb¼ 0.88 eV,

while the Ni 2p3/2 peak was shifted in respect to the BE(Ni
2p3/2) by the energy DBENi¼ 0.28 eV. Such a peak behavior

suggests that in Ni-Nb sample surface, it is Nb, which gets

oxidized first, retaining though its metallic bond with Ni.

Thus, the Ni-NbOx oxide layers form over the Ni-Nb surface.

Formation of the Ni-NbOx layer causes observed electron con-

ductivity of the native Ni-Nb oxide surface. Figure 4(b)

presents comparison of the experimental data with calcula-

tions following the model presented above. Table II summa-

rizes the oxide layers thicknesses extracted following the

formula (3).

Figure 3(d) shows calculations for the Ni 2p3/2 line.

Following (3), Ni-NbOx layer is 4.2 nm thick, which is consist-

ent with the calculations made for the Nb 3d line (Table II).

From the XPS data for the sample with the artificial Ni-

Nb oxide, it was found out that all Nb 3d line peaks were

shifted in respect to the BE(Nb 3d5/2) by the energy

DBENb¼�0.11 eV. Ni 2p line is almost unresolved. This

result can be interpreted so that Nb from Ni-Nb got com-

pletely oxidized to the highest Nb2O5 oxide, while Ni

migrates down to the Ni-Nb substrate. On the interface

between Nb2O5 oxide and metallic Ni-Nb, the layer with def-

icit of electrons forms causing the observed negative shift of

the Nb 3d line in respect to the BE(Nb3d5/2), which can be

interpreted as the surface shift of the binding energy. If this

surface energy shift DBENb is negative, the d-zone of Ni is

not completely filled, causing p-type of conductivity.

Thickness of the Nb2O5 oxide layer calculated by the for-

mula (3) is 10.5 nm.

Thus, the XPS data analysis showed that for native ox-

ide Ni-Nb Nb atoms oxidized to NbOx states but Ni-Nb

bonds still remain. In an earlier work,14 XPS of the as-cast

FIG. 4. XPS spectra: (a) Target: Nb; line: Nb 3d. (b) Target: Ni-Nb film on Cu (native oxide); line: Nb 3d. (c) Target: Ni-Nb film on Cu (Native oxide); line:

Ni 2p3/2. (d) Target: Ni-Nb film on Cu oxidized (artificial oxide); line: Nb3d. Dotted line: experimental data; solid line: calculation by formula (2); dashed

line: separate calculated peaks.

TABLE II. Oxide layers thicknesses (d) based on the XPS results.

j

Metallic Nb sample Ni-Nb alloy thin film sample

Oxide composition d, nm Oxide composition d, nm

1 Nb2O Ni-Nb2O 0.8

2 NbO 1.6 Ni-NbO 0.3

3 Nb2O3 0.4 Ni-Nb2O3 1.1

4 NbO2 1.2 Ni-NbO2 2.2

5 Nb2O5 3.9 …P
j dj 7.8 4.2
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sample was measured not immediately after preparation but

after some time of exposure to open air and Nb2O5 highest

oxide was formed. Also, at that time the sample was melt

spun ribbon rather than a thin film. Energy shifts on the XPS

spectra of Nb 3d peaks (þ0.88 eV) and Ni 2p peak

(þ0.28 eV) can be explained by presence of the metallic

bond. In the other words, the topmost layer is Nb oxide leav-

ing the Ni-enriched layer underneath. Such a structure dem-

onstrates electron conductivity. In contrast, in the artificial

Ni-Nb oxide layer, Nb is completely oxidized up to its high-

est oxide Nb2O5 and Ni forced to migrate down to the Ni-Nb

substrate. The interface between surface Nb2O5 oxide and

Ni-enriched Ni-Nb substrate gets deficit of electrons. This is

reflected by the negative, �0.11 eV, shift of Nb3d5/2 in

respect to the binding energy. Such surface energy shift

means that the d-zone of metallic Ni is less than half-filled,

causing hole-type of conductivity.

Schematically, the system can be regarded as consisting

of two Schottky barriers (Pt/NiOx and NiOx/NiNb metallic

matrix), separated by the NiNb oxide tunnel barrier. The

lack of conduction at voltages less than 4 V with both polar-

ities is connected with the inability of current flow through

the tunnel barrier. With the increase of the applied voltage

the tunneling barrier is suppressed, allowing the charge car-

riers (electrons in the case of natural oxide and holes in the

case of artificial oxide) to flow through the studied system.

IV. CONCLUSIONS

In conclusion, the effect of turning conductivity nature

from n-type to p-type of the amorphous oxide thin film on

Ni-Nb metallic glass depending on the surface oxidation

state is discovered. The shape of CVC is quite unique and

asymmetrical in relation with Y axis as mirror plane in both

cases. It partly resembles that of a diode starting conducting

at about minus or plus 5 V, respectively, with nearly total ab-

sence of conductivity at lower values and no forward/back-

ward operating region up to about 5 V. The unique shape of

CVC together with possibility of changing conductivity type

by artificial oxidation indicates that this material is a promis-

ing candidate for application in a new generation of modern

electronic devices.
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