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Energy Management in Production: A novel 

Method to Develop Key Performance 

Indicators for Improving Energy Efficiency 

Measuring energy efficiency performance of equipments, processes and factories is the first 

step to effective energy management in production. Thus, enabled energy-related information 

allows the assessment of the progress of manufacturing companies toward their energy 

efficiency goals.  In that respect, the study addresses this challenge where current industrial 

approaches lack the means and appropriate performance indicators to compare energy-use 

profiles of machines and processes, and for the comparison of their energy efficiency 

performance to that of competitors’. Focusing on this challenge, the main objective of the 

paper is to present a method which supports manufacturing companies in the development of 

energy-based performance indicators. For this purpose, we provide a 7-step method to 

develop production-tailored and energy-related key performance indicators (e-KPIs). These 

indicators allow the interpretation of cause-effect relationships and therefore support 

companies in their operative decision-making process. Consequently, the proposed method 

supports the identification of weaknesses and areas for energy efficiency improvements 

related to the management of production and operations. The study therefore aims to 

strengthen the theoretical base necessary to support energy-based decision making in 

manufacturing industries. 

Keywords: Energy Management, Key Performance Indicators, Sustainable Manufacturing, 

Cleaner Production,  Energy Efficiency, KPI Method  
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1. Introduction 

The revolution in industry has come along from pure cost to quality and productivity 

efficiencies and is in the transition towards environmental performance efficiency (Wang et 

al., 2014; Garetti and Taisch, 2012; Hon, 2005). Closely related to significant improvements 

in environmental and economic terms, the energy efficiency topic has become important as a 

field that concerns businesses worldwide, going beyond traditional energy-intensive 

industries such as the steel, cement, and chemical industries (Palm and Thollander, 2010; 

Ang, 2006). Over the last few years, policies and private households have also been stirred up 

by energy efficiency topics due to emergent media coverage and drivers such as climate 

change, scarcity of resources and rising energy prices (Xu et al., 2014; Karali et al., 2014; 

Thollander et al., 2013). 

Energy efficiency, in the theme of sustainable corporate behavior, is seen as a lever for global 

competitiveness in the future (Moreno et al., 2014; Drake and Spinler, 2013; Friedler, 2010). 

Manufacturing accounts for 37% of primary energy use worldwide (IEA, 2013), and for 40% 

of electricity consumption in Europe (European Environment Agency 2010). Accordingly, 

policymakers and industry are beginning to prioritize the topic on their agenda (Rudberg et 

al., 2013), examples include the development of the ISO 50001 Energy Management 

Standard and the Europe 2020 Strategy that aims at achieving 20 percent reduction in overall 

energy use by 2020 compared to the 2005 baseline (European Commission, 2010).  

Consequently, avoiding energy waste through energy-aware and optimized production is of 

utmost importance to cope with increased global competitiveness and adverse environmental 

impacts. Improving firms’ technological and business processes as well as structures and 

infrastructures have become crucial in order to adequately address these challenges (Kong et 

al., 2013; Cagno and Trianni, 2013; Saidur and Mekhilef, 2010). Guided by this paradigm 

shift, it becomes essential to adopt a continuous improvement process for using energy 

resources more efficiently. 

Energy-related information allows the assessment of optimization and improvement potential 

of energy efficiency measures. Hence it becomes important to provide knowledge that 

highlights the overall state of the factory and its performance regarding energy consumption. 

In this regard, performance indicators serve as a measure to decide whether a system is 

working as it is designed for and helps define progress towards a pre-set target. This enables 

better monitoring and control of energy consumption which is of utmost important both for 

current and future enterprises to improve energy efficiency in production (May et al., 2013a). 
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While absolute values and aggregated measures like energy consumption per year or per 

product or similar measures provide an overview on the status quo, it fails to provide 

decision-making support, transparency and clear identification of action items. Decision-

makers in production require tailored energy-related Key Performance Indicators (e-KPIs) in 

order to (i) identify firm-specific energy drivers in their production system, (ii) make the 

energy behavior profile of the production system transparent, (iii) recognize cause-effect-

relationships, (iv) prepare actions for improvement measures, and (v) communicate status 

quo adequately with other inter- and intra-functional areas. Thus, the main objective of the 

study is to present a method which supports companies independently from the sector or 

product to develop firm-tailored energy-related KPIs. 

The proposed e-KPI method serves as a successful example on how to transfer scientific and 

research knowledge into industrial value. First, it serves as a practical guide for companies to 

identify and integrate their most important e-KPIs in the steering and reporting system. 

Second, the method is developed based on the current state-of-the-art in the field of energy-

efficient production engineering by backing each step of the procedure with scientifically 

valid formulas, diagrams and approaches. 

The rest of the paper is structured as follows: The next section provides a theoretical 

background on energy efficiency in production engineering, then goes on to describe derived 

gaps and industry needs, and answers how we address these issues. Then, we present the 

research methodology which incorporates empirical and axiomatic approaches to support 

validity of results. The following section describes the e-KPI method, while the subsequent 

sections explain the inclusion in the corporate decision- making process. Finally, we end the 

paper by highlighting important findings and research limitations, and conclude by providing 

an outlook for future research. 
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2. Literature Review 

Performance indicators play a significant role in evaluating the efficiency and effectiveness 

of manufacturing systems for a target performance area (e.g. cost, sustainability, energy 

efficiency). In the last decade, efforts in the academia and industry shifted towards achieving 

energy efficiency in manufacturing. In this context, many scholars discussed energy 

efficiency measures, standards, labelling regulations, metrics and performance measurement 

on national and policy level [e.g. (Shi, 2014); (Xu et al., 2014); (Soundararajan et al., 2014); 

(Song et al., 2014); (Trianni et al., 2014); (Honma and Hu, 2014); (Wang et al., 2012); 

(Thollander et al., 2005)]. On a more disaggregated level, studies focused on modelling 

energy consumption [e.g. (Dietmair et al., 2011) and (Dietmair and Verl, 2009)], and a varied 

set of approaches have been developed for improving energy efficiency performances in 

production from machine tool to plant (i.e. an array of machine tools and processes) level. 

For instance, Hu et al. (2012), He et al. (2012) and Devoldere et al. (2007) focused on 

improving energy efficiency on machine tool level.  

There is a similar situation for manufacturing at production system and factory level where 

several heterogeneous solutions have been offered regarding energy consumption and 

efficiency [e.g. (Zhu et al. 2014); (Kong et al., 2013); (Tucker and Ward, 2012); (Sun et al., 

2012); (Kissock and Eger, 2008)]. Other recent studies proposed techniques and tools for 

energy management [e.g. (Dobes, 2013), (Giacone and Manco, 2012), (Giacone et al., 2008) 

and (Mouzon et al., 2007)]. Monitoring and control approaches as a part of energy 

management were addressed in several articles [e.g. Cruycke, 2008)], aiming at the 

development of appropriate methods for improving energy performances in manufacturing.  

The US Environmental Protection Agency introduced the ENERGY STAR industry program, 

promoting indicators as an effective lever to measure energy-based performances (US EPA, 

2003). Later, Boyd et al. (2008) described the importance of these indicators for 

benchmarking plant energy consumption. Feng and Joung (2011) proposed a sustainable 

manufacturing measurement infrastructure and Tanaka (2008) explored different ways to 

measure energy efficiency performance.  Additionally, Aguirre et al. (2011) proposed metrics 

called ‘energy-production signatures’ for diagnosis of energy inefficiencies and 

benchmarking of energy-related performances of manufacturing plants. Later, Zhou et al. 

(2012) developed an approach for monitoring energy efficiency trends over time in a country 

and  for comparing the economy-wide energy efficiency performance among countries.  
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Based on an analysis of relevant literature and industry, Bunse et al. (2011) highlighted the 

importance of energy-related production performance indicators as a key need of the 

manufacturing industry for identifying inefficiencies within a plant’s energy consumption, 

particularly placing emphasis on the improvement potential at the machine tool level. In this 

context, Vikhorev et al. (2013) provided a decision support framework for the monitoring and 

management of energy consumption in a factory, focusing on the energy used by productive 

resources. However, that particular paper by Vikhorev et al. (2013)  focused solely on the 

energy aspects and thus lacked a consideration of synergies and trade-offs with other 

production performance indicators. In another recent study, Aramcharoen and Mativenga 

(2014) identified critical energy states for machining components to support energy 

consumption analysis of machines and work pieces.  

The review of the pertinent literature reveals that both academia and industry still lack 

approaches and tools to better understand the energy consumption behavior and inefficiencies 

of machine tools, particularly with a focus on synergies and trade-offs with other production 

management decisions (e.g. quality, maintenance, production planning, etc.).  

This study is built upon the research gaps derived in May et al. (2013a) which carried out a 

comprehensive review of the literature on energy-related key performance indicators and 

May et al. (2013b) which analyzed the industrial needs toward energy efficient 

manufacturing. Thus, based on insights from the aforementioned two previous studies of the 

authors, Table 1 highlights the research gaps and industrial needs addressed in this study. The 

table also explains how these gaps are addressed in the research work, thus presenting 

progress beyond the published literature on KPIs for energy efficiency.
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Table 1. The research gaps and industrial needs addressed in the study 1 

Gap description 

(adapted from May 

et al. 2013a) 

Industry Need 

(adapted from May et al. 

2013b) 

Degree of 

GAP 

Satisfaction 

How the study addresses the gap 

GAP 1 

Only few of the state-

of-the-art energy-

related indicators are 

suitable for energy 

management 

applications within a 

manufacturing plant 

More direct focus for 

supporting energy 

management at plant level: 

Energy-related KPIs at 

machine, process and plant 

level 

 

Decisive 

Contribution 

Development of energy-related KPIs at  

machine level. Application of the method is 

currently dedicated to machine tools and 

machining centers. The method can be 

extended to more aggregate levels 

GAP 2 

Benchmarking of 

energy efficiency 

between 

manufacturing plants 

is difficult and not 

always applicable 

Benchmarking-oriented plant 

level KPIs which can compare 

energy efficiency of different 

plants and processes that are 

similar in terms of features of 

production 

 

Marginal  

Contribution 

The analysis of the cause-effect relationship 

between energy consumption and 

manufacturing system shows the existence of 

a large number of variables that affect energy 

consumption. The proposed e-KPIs offer 

ample possibilities for use in benchmarking 

applications considering the different 

variables of energy consumption  

GAP 3 

Indicators do not 

report any 

information about 

how energy is used in 

a manufacturing plant 

Technological 

monitoring limits 

exist 

Energy-related KPIs which 

identify inefficiencies at plant 

level 

 

Decisive 

Contribution 

The purpose, with which the energy-related 

KPIs are developed, is to provide an analysis 

tool that can be easily used by management to 

identify inefficiencies and areas for 

improvement with the aim of continuous 

improvement 

Using real time, high granular 

information of energy 

consumption through smart 

sensors 

 

Decisive 

Contribution 

The developed method is aimed at utilizing 

the full potential of energy measurement and 

monitoring technologies 

GAP 4 

Few guidelines are 

available on selection 

and use of energy-

related KPIs 

Support on design, 

definition and use of energy-

related KPIs 

 

Modest 

Contribution 

The cross-view method is detailed step-by-

step that could help manufacturing companies 

develop and use firm-tailored e-KPIs 

GAP 5 

Energy management 

decision support tools 

through KPIs are not 

well developed 

Energy-related continuous 

improvement performance 

 

Modest 

Contribution 

The e-KPI management phase demonstrates 

how the method and system of indicators are 

designed for the energy management in order 

to effectively use the information potential 

offered by the indicators 

Methods for understanding 

cause-effect relationships 

between production 

management and energy-

related performance 

 

Decisive 

Contribution 

The cause-effect relationships represent the 

core phase of the method, and develop a panel 

of variables that affect energy consumption. 

The related clustering is represented by the 

Ishikawa diagram, in which these variables 

are associated with different energy states of 

the machine tool through the cause-effect 

linkages 
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3. Research Methodology 

The development of methodologies and approaches which are specifically designed to 

support decision-making processes can suffer from a mutual relationship of academic and 

practical stringency: (i) the approach is scientifically rigid, but difficult to apply in practice 

(the practice gap) or (ii) the approach is applicable in practice but scientifically not 

underpinned (the research gap). To overcome these two major methodological drawbacks, we 

employed a pragmatist research view with the inclusion of both empirical and axiomatic 

measures. The axiomatic approach is based on the traditional conceptual modelling 

(Meredith, 1993), and incorporates methods that have the potential to support e-KPI 

definition and implementation. The empirical part consists of semi-structured interviews to 

better understand the problems related to industry and to receive a continuous feedback about 

the research progress. Through the employment of conceptual modelling in combination with 

empirical semi-structured interviews, we have installed a valid mechanism to cope with the 

research and practice gap and support the validity of the developed method. 

Semi-structured interviews with industry  have been carried out to gather information besides 

those obtainable from literature and to support development of the e-KPI method. The 

interview was composed of 14 wide-ranging questions in an attempt to cover the major 

energy areas of interest for the discussion, and aims at defining: 

 initial formulation of manufacturing and energy states; 

 cause and effect links between these manufacturing and energy states; 

 projected future developments for the application of the e-KPI method. 

The case companies and interviewees are described in Table 2: 

Table 2. Description of companies and interviewees 

Company Description Interviewees Company Size 

Company 

A 

One of the global leading 

manufacturer of harvesting 

machinery, engines and 

agricultural machinery 

Production Manager of 

Engine & Machinery 

Mechanical Operations 

Production Facility in 

Bergamo, Italy 

Employees: more 

than 3500 

Revenue: app. €1.2 

billion (in 2013) 

http://en.wikipedia.org/wiki/Euro
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Company 

B 

German multinational         

engineering & electronics 

conglomerate company 

1. Sustainable Production 

Engineer                            

2. Corporate Technology 

Researcher 

Munich Headquarters, 

Germany 

Employees:        

app. 400000 across 

190 countries 

Revenue: app. €75 

billion (in 2013) 

Company 

C 

Multinational                       

semiconductor chip maker 

corporation which develops 

advanced integrated digital 

technology products and 

primarily integrated circuits 

1. Energy Manager 

2. Production Engineer 

Production Facility in 

Leixlip, Ireland 

Employees: app. 

100000 world-wide 

(in 2013) 

Revenue: app. €50 

billion (in 2014) 

Company 

D 

Global supplier of industrial 

automation systems and 

services mainly for the 

automotive manufacturing 

sector 

1. Head of Advanced 

Engineering 

2. Plant Manager 

Production Facility in 

Torino, Italy 

Employees: app. 

14500 (in 2013) 

Revenue: app. €1.7 

billion (in 2013) 

Company 

E 

Italian Machine Tool 

Industry 
Director General 

Association with 

over 200 associate 

member companies 

The interview is divided into four parts, each of which contains a set of open-ended 

questions: 

The first part - Business context - aims at ascertaining the existence of an effective alignment 

between the information obtained from the selected company and the information necessary. 

Through a series of questions, a check is performed on the compatibility of the company's 

profile with the profile of companies for which the method can potentially be applied. 

http://en.wikipedia.org/wiki/Multinational_corporation
http://en.wikipedia.org/wiki/Conglomerate_(company)
http://en.wikipedia.org/wiki/Euro
http://en.wikipedia.org/wiki/Multinational_corporation
http://en.wikipedia.org/wiki/Semiconductor
http://en.wikipedia.org/wiki/Euro
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Moreover, by virtue of this introductory check, the quality and accuracy of the information 

obtained from the interview is ensured. 

Second part - Industrial Scenario - proposes a series of questions to investigate the state of the 

art regarding energy-related performance indicators in production and to acquire information 

beyond those available in the literature.  

The third part - Design Method - aims at evaluating the design of the method considered in 

terms of scope, comprehensiveness of the elements analyzed, consistency and continuity 

between the logical steps and stages of the method. 

The fourth part - Implementation of the Method - concerns the possible structure and drivers 

for actual use of the e-KPI method. This last part focused on the strengths and weaknesses 

(both technological and managerial) and expected benefits of the implementation of the 

proposed method. 

Combining the empirical and axiomatic approach, the proposed e-KPI method is presented in 

the next section.  
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4. e-KPI Method 

Current efficiency or effectiveness indicators of equipment are time-based (e.g. OEE). 

However, to fully assess the energy-related efficiency or effectiveness of an equipment, the  

time-based view alone is not sufficient (May et al. 2013a). It is necessary to create energy-

related key performance indicators (e-KPI). Furthermore, current energy performance 

indicators are calculated through aggregate measures of energy consumption (e.g. 

kWh/month or kWh/part). This approach lacks a thorough consideration of cause-effect 

relationships between manufacturing states (i.e. causes of energy inefficiencies of the 

productive resource), machine configurations and energy consumption. Hence, detailed 

performance analysis and the identification of real energy consumer is complicated. 

In this section, we develop a method to define and use energy-related KPIs which allows the 

interpretation of cause-effect relationships and therefore support companies in the operative 

decision-making process. The method is designed for the work-unit (i.e. machine) level of a 

manufacturing facility which is selected based on its major contribution to energy 

consumption and energy efficiency improvement potential as emphasized by Gutowski et al. 

(2006), Huang (2008) and May et al. (2013a).  

The proposed e-KPI method connects manufacturing states (power consumption variables, 

measured in [t]) to energy states (power requirement [W]) through cause-effect relationships. 

These consumptions are represented in energy diagrams, enabling definition of the energy-

related KPIs. e-KPI refers to an indicator made up of energy consumption data and 

production data gathered from shop floor in discrete or continuous time, and highlights 

efficiency levels for different operations of energy-consuming productive resources. 

Following this, energy diagrams are built by using a time-based approach for developing 

performance indicators, and resulting e-KPIs represent energy alter-ego of time-based 

efficiency indicators. 

Finally, e-KPI management mechanism, from a continuous improvement point of view, aims 

at recording developed indicators in a template to identify variables of energy consumption 

which mostly have shown energy inefficiencies through analysis of e-KPI values. Next, an 

action plan is created to reduce the entity of these variables for reducing both the amount of 

time spent and energy consumed with respect to any specific power requirement under 

scrutiny. 
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The e-KPI method comprises the following steps as shown in Figure 1: 

 Definition of the reference production system; 

 Identification of different power requirements of the productive resource; 

 Analysis of manufacturing states as causes of energy inefficiencies of the productive 

resource; 

 Linking drivers (time view) with the appropriate power requirements (energy view); 

 Building a hierarchical framework of machines’ energy consumption; 

 Development of e-KPIs; 

 e-KPI design and management. 

 

Figure 1. Steps of the e-KPI method 
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4.1. Step 1 - Definition of the Reference Production System 

The first step in the KPI development method is to define the resources. In this step, a 

reference production system is selected for applying the e-KPI method. Defining the 

reference productive system means specifying: 

1. Discrete manufacturing industry which we refer to (e.g. electrical, mechanical, automotive, 

robotics, etc.) 

2. Transformation process or production resource within the plant (e.g. milling, molding, 

painting, etc.) 

3. Specifications of the manufacturing system based on the following dimensions: 

a. Typology: unit production; batch production; continuous production 

b. Market dimension: single job orders; repetitive job orders; production based on 

forecasts (MTS) 

c. Layout: job shop; cell; assembly line: fixed, cell, line 

d. Automation Degree: automatic transfer line; numerical control; flexible 

manufacturing system; flexible manufacturing cells; flexible manufacturing line 

4.2. Step 2 - Identification of different power requirements of the 

productive resource 

The energy view of the resource is obtained by analyzing its electrical power requirement 

[W] for which time length (and thus the energy consumption associated with it) can be 

potentially affected by decisions taken for the management of the resource or the production 

system as a whole. These power requirements in the method represent the energy states. The 

improvement of energy performance of the resource through monitoring and analysis is 

enabled exclusively by managerial levers (e.g. by an improved production scheduling).  

The term energy view refers to power requirements of the resource selected in step 1 for 

differing energy states. At this stage, it is therefore necessary to identify all possible energy 

states in which the resource can be during the operation and which can be changed by 

management levers. 

The energy states  considered in this study have been derived from different sources such as 

the Association of Italian Manufacturers of Machine Tools, Robots & Automation (UCIMU) 

and literature (Mouzon et al., 2007; Calvanese et al., 2013). The energy states considered are 

thus identified as off, ramp-down, stand-by, maintenance, idle, set up, ramp-up and 

processing as described in the table 3 below. 
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Table 3. Energy States 

Energy State Description Power  

Off Machine tool is off: no power is required Constant 

Ramp-down Energy is consumed for machine shut-down Variable 

Stand-by 

Machine has most of the components switched-off, and 

machine is not ready to process parts. Only some components 

require power in order to reduce activation time 

Constant 

Maintenance 
Machine is being repaired with some specific actions that 

require power 
Constant 

Idle 
Machine is not processing any parts, and this is the base load of 

machine to keep components ready to process parts 
Constant 

Set-up Energy is consumed to change the tool Variable 

Ramp-up Energy is consumed to start machine Variable 

Processing Machine is processing parts Variable 

4.3. Step 3 - Analysis of manufacturing states as causes of energy 

inefficiencies of the productive resource 

The time view of the resource involves determining all temporal or manufacturing states 

which can be observed during operation. Manufacturing states define a condition of 

inefficiency, i.e. the loss or waste that impacts on energy consumption of the resource itself. 

For this reason, manufacturing states are defined as affecting variables of energy 

consumption. The variables of energy consumption are special states of the system expressed 

as time intervals, where variables of energy consumption is a synonym for manufacturing 

states to emphasize the impact on energy consumption. 

For a comprehensive definition of the variables of energy consumption, it is essential to have 

a good knowledge and understanding of the functioning of the resource within the production 

system. Since the literature itself provides valid overview of factors and drivers that affect 

energy consumption and overall environmental performance, the Ishikawa diagram is used in 

this discussion to represent the cause and effect relationships. 

Definition of the energy affecting states of the production resource according to the 

productivity-based time view is inspired by Morvay & Gvozdenac (2008). The identified 

manufacturing states are listed in Table 4, including their description and corresponding 

intervention mechanisms that show how to reduce the impact of that manufacturing state: 
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Table 4. Manufacturing states and intervention mechanisms 1 

Manufacturing State Description Magnitude recorded (in T) Intervention mechanisms 

Blocking & Starvation (B&S) for 

Production Scheduling 

Idling due to management reasons, relevant 

to production planning (Operation Loading 

and sequencing). 

Tbsps 

Time in blocking & starvation 

for production scheduling 

● quality of the loading and dispatching rules 

● size of the buffer system 

● throughput 

● cycle times of the pieces of the product mix 

Waiting Tool 

(missing tool in tool buffer) 

Idling caused by the expectation of a 

missing tool in the buffer of the machine 

tool 

Twttm 

Time in waiting tool for tool 

management 

(usually estimated) 

● Sizing tool buffer on the machine (primary 

storage) and warehouse 

● handling system for tools (automatic or 

manual), tool management 

Daily Starting 

If the company works on 1 or 2 shifts per 

day, the machines are restarted daily. If the 

company works in 3 shifts with 5 working 

days, it is rebooted after the weekend 

Trampup * Nst 

Ramp-up time for number of 

starts 

Shifts of the plant 

Starting post Holidays Start of the machine after the holidays 

Nsph * Trampup 

Number of post-holiday starts 

times ramp-up time 

Calendar 

Set-up Tool change 

Tsu 

Set-up time: it is the tool 

change time chip-to-chip 

(ISO10701-9) 

● product mix 

● systems for the optimization of the number of 

tool changes 

Missing Orders (MO) 
The inactivity of the machine for expected 

Missing Orders 

Tmo 

Time of missing orders 

 

● customer demand and order frequency 

● Master Production Schedule (MPS) 

Missing Materials (MM) 
The inactivity of the machine for expected 

Missing Materials 

Tmm 

Time of missing materials 

● reliability of the upstream provider (internal or 

external) 

● procedures and criteria of choice of supplier 

by the Purchasing 

Test & Sampling 
The machine processes for testing and 

sampling 

Tts 

Time for test & sampling. 

Total processing time of test 

pieces and samples 

● requested by the Planning 

Machine’s 

Microstoppages 
Microstoppages 

Tmicro 

Total time lost for 

microstoppages of the 

machine 

● age and wear of machine 

● quality of preventive maintenance plans 

● multiple factors 
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Manufacturing State Description Magnitude recorded (in T) Intervention mechanisms 

Corrective Maintenance: Total/Partial 

Failures in Down 

Time in corrective maintenance in which 

the machine remains in Down state 

Tdown 

Composed by: Delay time 

(management) + diagnosis 

time + delay time (logistics) 

Nspf*Trampup 

Number starting post failure  

● quality of preventive maintenance plans 

● manpower training: 

timeliness of the operators in recognizing and 

reporting faults 

● maintenance training: 

timeliness of the maintenance team to arrive on 

the scene 

Corrective Maintenance: Total/Partial 

Failures in Maintenance 

Time in Corrective maintenance during 

which the machine remains in state of 

Maintenance 

Tmaint 

Composed by: Time for 

technical repair + Time to 

return in service 

● entity of the fault 

● training maintenance: prompt repair of the 

maintenance team 

Planned Maintenance 

Time in planned maintenance during which 

the machine remains in state of 

Maintenance 

TTRp 

Repair time for preventive 

interventions 

● maintenance training: for rapid adjustments 

Waiting Tool for tool breakdown or 

regeneration 

The tool breakage involves waiting for the 

machine, as well as its regeneration, in case 

there is not another copy of the tool on the 

machine 

Twtbr 

Time in waiting tool for 

breakdown or regeneration 

● tool wear 

● regeneration frequency of the tool 

● sizing tool buffer on the machine (primary 

storage) and warehouse 

● handling system for tools (automatic or 

manual), tool management 

● depth of cut, work performed on special 

materials 

Blocking & Starvation due to failures of 

manufacturing system 

If the operating stations are not sufficiently 

decoupled, faults in other elements of the 

system (e.g. machines upstream and 

downstream) may involve expectations of 

the machine. 

Tbssf 

blocking & starvation time for 

system’s failures 

● age and wear of machines and components of 

the production system 

● size of the buffer system 

● intervention mechanisms related to corrective 

maintenance 

Rejected in start up Waste during the start up 
Qrs 

Pieces discarded in start-up 

● age and wear of machine 

● tolerances required in the finished parts 

Rejected/ Reworked in normal production 
Waste and recycling systems during normal 

production. 

Qrej, Qr 

Amount of waste / recycling 

during production 

● age and wear of machine 

● quality Management 

Workers’ Stoppages (during production 

or in shift change) 

Workers’ stoppages which involve 

expectations for the machine 

Tsw 

Time of workers’ stoppages 
● labor productivity 

Strikes 
Strikes and trade union causes during 

business hours 

Tstrike 

Time for strikes 

● socio-economic problems 

● salary, occupational safety 
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The variables affecting energy consumption of a machine tool are identified and represented in five 

clusters (i.e. production management, quality, manpower, maintenance, and external causes). Each 

cluster relates to a univocal responsibility and the Ishikawa diagram is used during this step to 

identify the relationships between different manufacturing states and energy consumption. The 

manufacturing system variables affecting energy consumption are thus identified as illustrated in 

the diagram below:  

Energy 

Consumption

Maintenance

Manpower Quality

External Causes

Production 

Management

Worker’s 

stoppages

Strikes

Blocking & 

Stravation

Corrective 

Maintenance

Planned 

Maintenance

Waiting Tool

Machines Micro-

Stoppages

Starting post-

holidays

Missing 

Materials

Missing Orders

Test & 

Sampling

Rejected/

Reworked in 

production

Rejected in 

Start-up

Blocking & 

Starvation
Waiting 

Tool

Daily 

Starting

Setup

 Figure 2. Relationships between manufacturing states and energy consumption 

4.4. Step 4 - Linking manufacturing states with energy states 

One of the most critical point of the e-KPI method is the linking process between 

manufacturing/time view (causes) and energy view (effects), because it depends strongly on: 

 Resource/process selected; 

 Dimensions of previously defined manufacturing system, particularly the layout and automation 

degree; 

 The understanding of system behavior (what variables impact on energy consumption); 

 The hypothesis done in order to simplify the application of the method; 

 The availability of data. 

After identifying the manufacturing states and the energy states for the productive resource, we 

proceed to establish the links between them. Each link represents the specific impact that a 

manufacturing state has on a given energy state. 
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The links between identified manufacturing states and energy states have been established by 

utilizing prior knowledge and by conducting semi-structured interviews with the industrial partners. 

This knowledge serves to develop energy-related KPIs. 

Figure 3 illustrates the cross view diagram. The links in the diagram were first developed 

independently and then refined upon discussions with the case companies. Further information for 

designing these cross links is provided below: 

1 . Each manufacturing status box is marked by the colour relative to the cluster it belongs to (see 

figure 3); 

2 . Since the e-KPIs are indicators of energy consumption resulting from the cross-linking, the Off 

state is not considered in the analysis since corresponding energy consumption for this state is equal 

to zero; 

3. Since the maximum power of the ramp down is very low (before decreasing toward zero power), 

it is not considered in the cross-linking; 

4. To increase the readability of the diagram through a lower number of status box, blocking & 

starvation was put in a group together with the state of waiting tool, both for the cluster of 

production management and for that of maintenance, since their links with the energy states are 

identical. These groups appear as ‘idling production management’ and ‘idling maintenance’ in the 

cross-link diagram; 

5. Strikes have been neglected and are ideally embedded in the workers' stoppages; 

6. Missing orders and missing materials have been grouped together in the same box as their 

corresponding energy states are identical. 
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Figure 3. Cross-links between manufacturing states and energy states
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4.5. Step 5 - Building a hierarchical framework of machine’s energy 

consumption 

The energy diagram illustrates energy consumption associated with each manufacturing state. It is 

an aggregation of the time intervals [T] that the machine has spent in a certain energy state [W]. 

The total energy consumption of a machine in a certain time period T is the integral of power 

function up to the time T. 

There are high power requirements with lower occurrence in time (e.g. processing), as well as lower 

power requirements with greater occurrence in time (e.g. idle). The existence of these circumstances 

is clearly dependent on what happens to the machine and to production system within which it 

operates.  

Energy diagrams also provide the percentage contribution of different power requirements on total 

energy consumption. In the literature, approaches of this type have been used to evaluate, for 

instance, a high consumption rate of the machine in idle state compared to that of processing 

(Gutowski et al., 2006). Other examples include development of indicators with an approach to 

calculate the contribution of each energy state on the total energy consumption in order to assess the 

appropriateness of different production scenarios in terms of energy saving (Cannata et al., 2010). 

The development of the KPIs following this approach provides decision support for energy 

management if the goal is to design a decision support tool solely based on KPIs. However, without 

determining cross-links, it would not be possible to contextualize the reasons for a higher idle 

consumption of a process compared to the previous period. It is therefore necessary to design an 

appropriate Energy Diagram to support the development process of these e-KPIs.  

The e-KPIs are designed to represent the value-adding electrical energy consumption input for the 

selected productive resource that is used for the production of saleable output. Moreover, these 

KPIs show the amount of energy wasted by operations, procedures and management, related with 

operating the production system. In this way, the e-KPIs clearly highlight and help prioritize the 

potential areas for improving energy efficiency. 

The proposed framework and steps have been considered in deriving energy-related KPIs. The 

identified e-KPIs can be used in order to diagnose energy consumption trends, address 

responsibilities of energy consumption and monitor effectiveness of action plans through time. This 

facilitates the continuous improvement of energy-related performances in a manufacturing plant.  

Therefore, we need to represent energy consumption in a framework that allows us to build KPIs 

quantifying different impacts of variables. A Russian doll representation is suitable for this purpose. 

The structure of the histogram depends on the links between time view and energy view. Small 
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rectangles are variables and the arrows link the related energy consumption to each of the variables 

(these links depend on specific case). Figure 4 below shows the Energy Diagram developed for this 

purpose. 

 

Figure 4. Energy Diagram 

The first pillar from the left represents the total energy consumed in the theoretical production time 

T (i.e. calendar time). We proceed by climbing down the energy consumption attributed to the 

different states through the manufacturing cross-links, down to the valuable energy consumption, 

i.e. the useful energy associated with the production of saleable parts without defects. 

Each block of the diagram is evaluated in terms of energy from the power requirement resulting 

from the cross-linking process (through the arrows in the figure). The amount of energy 

consumption scaled in the diagram is to be considered qualitative.  

This alter-ego involves the introduction of a change in the way in which the inefficiencies are 

considered in the traditional time-based view. Two types of losses (e.g. lack of orders and set up) of 

equal temporal entity (e.g. both 2 hours a day) do not have the same weight in terms of energy 

efficiency (which should have a perspective of time-based efficiency), since they are associated 
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with a weight which is the relative power requirement. For this reason, it is interesting to analyze 

the inefficiencies from an energy perspective. The effort here is focused on reducing the 

contribution of the manufacturing states with the highest impact on the overall energy consumption 

of the productive resource. 

Using energy diagram, we build KPIs that emphasize contribution of different factors such as the 

Utilization, Availability, Saturation and Yield normally used in time/productivity view (e.g. Grando 

and Turco, 2005) for the calculation of productivity index. These KPIs also emphasize contribution 

of studied clusters (i.e. production management, quality, manpower, maintenance, and external 

causes) so that we can address a particular energy inefficiency to its corresponding univocal actor 

within the manufacturing system. This is a powerful tool for diagnosis of energy inefficiencies, and 

we can also build aggregate KPIs and break them down to emphasize possible trade-offs.  

4.6. Step 6 – Development of e-KPIs 

We now proceed to formulization of the e-KPIs. We introduce the symbols used in the formulas for 

calculating indicators in Appendix A. 

The Lean Energy Indicator shows how efficient the equipment is in terms of energy consumption. It 

represents the ratio of energy consumed for producing saleable products to overall energy 

consumption of the machine. This indicator is thus derived by dividing the value-added energy to 

the energy consumption detected in the theoretical production time: 

𝐿𝑒𝑎𝑛 𝐸𝑛𝑒𝑟𝑔𝑦 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 =  
𝑉𝑎𝑙𝑢𝑎𝑏𝑙𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
=

𝐸0

𝐸6
  (1) 

or: 

𝐿𝑒𝑎𝑛 𝐸𝑛𝑒𝑟𝑔𝑦 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 =  
∑ (𝑃𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑖

𝑛
𝑖=1 × 𝑄𝑔𝑜𝑜𝑑 𝑖 × 𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑖)

𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑖𝑛 𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
  (2) 

The goal here is not to minimize the energy consumption in absolute terms since there is a demand 

of production which must be satisfied, but to use energy more efficiently for production of one 

saleable output. For this reason, we aim at achieving Lean Energy Indicator closer to 1. 

In this way, we can understand the causes of an increase in overall energy consumption (E6) 

compared to that required for producing a single good product (E0). A good way to do this is to 

breakdown this indicator to multiple factors. 

Analyzing the energy diagram from the right, we understand how easy it is to generate a second 

indicator: the indicator 𝐸𝑞𝑢𝑎𝑙𝑖𝑡𝑦 represents the energy that is wasted due to quality problems.  

𝐸𝑞𝑢𝑎𝑙𝑖𝑡𝑦 =  
𝑉𝑎𝑙𝑢𝑎𝑏𝑙𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝑁𝑒𝑡 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐸𝑛𝑒𝑟𝑔𝑦
=  

𝐸0

𝐸1
  (3)      

or: 
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𝐸𝑞𝑢𝑎𝑙𝑖𝑡𝑦 =  
∑ (𝑃𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑖

𝑛
𝑖=1 × 𝑄𝑔𝑜𝑜𝑑 𝑖 × 𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑖)

∑ (𝑃𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑖
𝑛
𝑖=1 × 𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑖) × (𝑄𝑔𝑜𝑜𝑑 𝑖 + 𝑄𝑟𝑠 𝑖 + 𝑄𝑟 𝑖 + 2𝑄𝑟𝑒𝑤 𝑖)

 (4) 

From (4), we see that part of the product mix that consumes more energy, for which 𝑃𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑖 ×

𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑖 value is higher than other pieces, impact more on the total value, and consequently the 

effort must be directed to reduce the waste corresponding to production of this type of pieces. 

For simplicity, we consider the presence of a process which has a binary condition output: good 

piece or discarded piece. 𝑄𝑡𝑜𝑡 𝑖 here represents the total amount produced for each piece "i": 

𝑄𝑡𝑜𝑡 𝑖 = 𝑄𝑔𝑜𝑜𝑑 𝑖 + 𝑄𝑟𝑠 𝑖 + 𝑄𝑟 𝑖  (5) 

Place 𝑄𝑡𝑜𝑡 𝑖 = 𝑄𝑔𝑜𝑜𝑑 𝑖 + 𝑄𝑟𝑠 𝑖 + 𝑄𝑟 𝑖 to (4), then: 

𝐸1 =  ∑(𝑃𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑖

𝑛

𝑖=1

× 𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑖 ×  𝑄𝑡𝑜𝑡 𝑖) 

(with the possibility of having excluded the amount reworked), we build the indicator Energy in 

Saturation (𝐸𝑠𝑎𝑡): 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (𝐸𝑠𝑎𝑡) =  
𝑁𝑒𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐸𝑛𝑒𝑟𝑔𝑦

𝐺𝑟𝑜𝑠𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐸𝑛𝑒𝑟𝑔𝑦 
=  

𝐸1

𝐸2
  (6) 

The unsaturation of the resource, as assessed by the corresponding time-based performance 

indicator, is due to a series of events that slow down production of the resource (in the time 

available), such as minor stops and setups. For this reason, micro stops, adjustments, and setup are 

considered in the calculation of energy consumption. 

𝐸𝑠𝑎𝑡 =  
𝐸1

𝐸1 + 𝑃𝑖𝑑𝑙𝑒(𝑇𝑚𝑖𝑐𝑟𝑜) + 𝑃𝑚𝑎𝑖𝑛𝑡(𝑇𝑇𝑅𝑝) + ∑ 𝑄𝑡𝑜𝑡 𝑖𝑁𝑐𝑡𝑖
𝑛
𝑖=1 (𝑃𝑠𝑒𝑡𝑢𝑝 × 𝑇𝑠𝑢) 

  (7) 

If the value of the indicator approaches to the value "1", the saturation of the equipment is higher 

and the energy loss relative to it is lower (i.e. the impact of the energy losses of micro stops, set-up 

and adjustment). 

One can easily imagine how the process of developing energy-related KPIs through the Energy 

Diagram has recursive nature until getting to the final condition of obtaining an e-KPI that has  the 

total energy consumption in the period (E6) as its denominator. 

The indicator Energy in Availability 𝐸𝑎𝑣𝑎𝑖𝑙. depends on the maintenance time required. It is shown 

in (8) and (9): 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝐸𝑎𝑣𝑎𝑖𝑙.) =  
𝐺𝑟𝑜𝑠𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐸𝑛𝑒𝑟𝑔𝑦

𝑁𝑒𝑡 𝑈𝑠𝑎𝑔𝑒 𝐸𝑛𝑒𝑟𝑔𝑦
=  

𝐸2

𝐸3
  (8) 

Place  𝐸2 =  𝐸1 + 𝑃𝑖𝑑𝑙𝑒(𝑇𝑚𝑖𝑐𝑟𝑜) + 𝑃𝑚𝑎𝑖𝑛𝑡(𝑇𝑇𝑅𝑝) + ∑ 𝑄𝑡𝑜𝑡 𝑖𝑁𝑐𝑡𝑖
𝑛
𝑖=1 𝑇𝑠𝑢 from (7) to (8), then: 

(𝐸𝑎𝑣𝑎𝑖𝑙.) =  
𝐸2

𝐸2 + 𝑃𝑚𝑎𝑖𝑛𝑡𝑇𝑚𝑎𝑖𝑛𝑡 + 𝑃𝑟𝑎𝑚𝑝 𝑢𝑝𝑇𝑟𝑎𝑚𝑝 𝑢𝑝𝑁𝑠𝑝𝑓 + 𝑃𝑖𝑑𝑙𝑒𝑇𝑑𝑜𝑤𝑛
 (9) 
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This indicates a good example to emphasize the difference of the time-based view and the energy-

based view: if the restart time of a machine tool for failure is negligible in terms of its inclusion in 

the indicator of availability, then this does not apply from an energy point of view, given that the 

power ramp-up is a power requirement less than that required for example by machining, but 

definitely not negligible. The effort will therefore be addressed to avoid this kind of total failures, 

and in general, to avoid the occurrence of all manufacturing states for which the power consumption 

is higher. 

We analyze now the indicator 𝐸𝑢𝑠𝑎𝑔𝑒, which assesses the impact of causes at the level of the overall 

system and not strictly at machine level . 

𝐸𝑢𝑠𝑎𝑔𝑒 =  
𝑁𝑒𝑡 𝑈𝑠𝑎𝑔𝑒 𝐸𝑛𝑒𝑟𝑔𝑦

𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 
=  

𝐸3

𝐸5
  (10) 

Place 𝐸3 = 𝐸2 + 𝑃𝑚𝑎𝑖𝑛𝑡𝑇𝑚𝑎𝑖𝑛𝑡 + 𝑃𝑟𝑎𝑚𝑝 𝑢𝑝𝑇𝑟𝑎𝑚𝑝 𝑢𝑝𝑁𝑠𝑝𝑓 + 𝑃𝑖𝑑𝑙𝑒𝑇𝑑𝑜𝑤𝑛 from  (9) to (10), we have: 

𝐸𝑢𝑠𝑎𝑔𝑒 =  
𝐸3

𝐸3 + 𝑃𝑖𝑑𝑙𝑒(𝑇𝑏𝑠𝑝𝑠 + 𝑇𝑤𝑡𝑡𝑚+𝑇𝑏𝑠𝑠𝑓 + 𝑇𝑤𝑡𝑏𝑟 + 𝑇𝑤𝑠) + 𝑃𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑇𝑡𝑠 + 𝑃𝑠𝑡𝑎𝑛𝑑𝑏𝑦(𝑇𝑚𝑜 + 𝑇𝑚𝑚) 
 (11) 

The disuse of a resource is determined by causes related to the management of the production 

system (blocking & starvation), tool management, and processing of samples and test pieces due to 

problems such as the lack of external orders and lack of materials. 

Finally, it is possible to calculate an indicator 𝐸𝑜𝑝𝑒𝑛𝑖𝑛𝑔, assessing the impact of the post-holiday or 

post-shift start-ups of the machine. Consistent with the Energy Diagram in Figure 4, it is calculated 

relative to the energy in time T. 𝐸𝑜𝑝𝑒𝑛𝑖𝑛𝑔 is shown in (12) and (13): 

𝐸𝑜𝑝𝑒𝑛𝑖𝑛𝑔 =  
𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑖𝑛 𝑂𝑝𝑒𝑛𝑖𝑛𝑔 𝑇𝑖𝑚𝑒

𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑖𝑛 𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒
=  

𝐸5

𝐸6
  (12) 

Place From (11): 

𝐸5 = 𝐸3 + 𝑃𝑖𝑑𝑙𝑒(𝑇𝑏𝑠𝑝𝑠 + 𝑇𝑤𝑡𝑡𝑚+𝑇𝑏𝑠𝑠𝑓 + 𝑇𝑤𝑡𝑏𝑟 + 𝑇𝑤𝑠) + 𝑃𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑇𝑡𝑠 +  𝑃𝑠𝑡𝑎𝑛𝑑𝑏𝑦(𝑀𝑂 + 𝑀𝑀), then: 

𝐸𝑜𝑝𝑒𝑛𝑖𝑛𝑔 =  
𝐸5

𝐸5 + 𝑃𝑟𝑎𝑚𝑝𝑢𝑝𝑇𝑟𝑎𝑚𝑝𝑢𝑝 (𝑁𝑠𝑝ℎ + 𝑁𝑠𝑡)
  (13) 

Finally, we can derive Lean Energy Indicator through the contribution of individual indicators 

presented such as 𝐸𝑜𝑝𝑒𝑛𝑖𝑛𝑖𝑔, 𝐸𝑢𝑠𝑎𝑔𝑒,𝐸𝑎𝑣𝑎𝑖𝑙𝑙,𝐸𝑠𝑎𝑡,𝐸𝑞𝑢𝑎𝑙𝑖𝑡𝑦 from (13): 

𝐿𝑒𝑎𝑛 𝐸𝑛𝑒𝑟𝑔𝑦 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟 =  𝐸𝑜𝑝𝑒𝑛𝑖𝑛𝑔 × 𝐸𝑢𝑠𝑎𝑔𝑒 × 𝐸𝑎𝑣𝑎𝑖𝑙 × 𝐸𝑠𝑎𝑡 × 𝐸𝑞𝑢𝑎𝑙𝑖𝑡𝑦 =  
𝐸0

𝐸6
  (14) 

In conclusion, the Lean Energy Indicator highlights how much value-added energy (processing) is 

used for the production of saleable output, in relation to the total energy consumption. The latter can 

be analyzed and interpreted through a decomposition of Lean Energy Indicator in factors such as 

𝐸𝑜𝑝𝑒𝑛𝑖𝑛𝑔, 𝐸𝑢𝑠𝑎𝑔𝑒 , 𝐸𝑎𝑣𝑎𝑖𝑙 , 𝐸𝑠𝑎𝑡 , 𝐸𝑞𝑢𝑎𝑙𝑖𝑡𝑦. 
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The representation that provides (14) is an excellent support to the interpretation of the causes 

behind which the power consumption incurred for the production of a manufacturing output is not 

value-added (i.e. causes of energy inefficiency).  

The value for each of the developed e-KPIs range from 0 to1. Different uses of these e-KPIs are 

studied in detail in the below section 4.7, i.e.  Step 7 – e-KPI design and management.   

4.7. Step 7 - e-KPI Design and Management 

The second macro-step of the method is the implementation phase as highlighted in Figure 5. Once 

designed, the KPIs must be managed. The boxes below illustrate the meanings of design and 

management of the e-KPIs, which are explained in detail in sections 4.7.1 and 4.7.2 respectively. 

 

Figure 5. Design and management of e-KPIs 

4.7.1. e-KPI Design 

To provide a detailed guideline for the use of the designed e-KPIs, it is necessary to keep it in a 

record sheet, filling the attributes listed in the left-hand column of Figure 5. A valid reference time 

horizon for calculation of these indicators is the minimum interval of months which contain a large 

set of energy consumption variables, on which it makes sense to perform an analysis. Regarding the 

frequency of the calculation, it clearly depends on the quality of the monitoring system, as well as 

the management and control requirements. 

4.7.2. e-KPI Management 

Once the KPI system is designed, it must be managed for the purpose for which it has been created 

or to enable the continuous improvement of energy-related performances. This section discusses 

how the implementation of an e-KPI system as well as the implementation of any KPI system 

focused on continuous improvement can be studied from two perspectives: (i) Implementation from 

an information infrastructure point of view; (ii) Implementation of the KPI system from the 

management point of view (i.e. of utmost interest for the case in question). 
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From the information point of view, the implementation of the method can happen in two ways, i.e. 

full implementation and limited implementation. 

a. Full implementation 

The case of full implementation occurs if an advanced energy monitoring system exists in the 

company, and this situation leads to an optimum result that the method is able to make in terms of 

decision making support. The sensors at the machine, line or plant level allow a high quality and 

accuracy of the data that may be provided in real-time or discrete, depending on the level of 

automation in the whole factory. In this type of situation, the final energy consumption would 

automatically be built and disassembled through the e-KPI, knowing the basic information on the 

behavior of the manufacturing system (e.g. failure times, set up times, missing orders, etc.).  

b. Limited implementation 

Since in the case of certain non-automated or poorly automated situations, calculations of the values 

of KPIs can be performed manually through spreadsheets, it is only possible to apply the method 

through energy consumption data (in the period established by the timescale) obtained from a 

measurement campaign or reasonable estimates. In case of limited implementation, measurement 

frequency would be lower than in the case of the full implementation, and the information obtained 

from e-KPI is represented by poor quality of the data.  

The inclusion of limited implementation and its comparison with the full implementation within the 

e-KPI Management is carried out solely by virtue of a possible argument about the time horizon for 

implementation of method. To apply the method in the short term, a limited implementation could 

be considered while in the medium and long term an application of the method in its optimal mode 

can be suggested based on the industry needs and trends outlined previously. 

From the management point of view, the implementation is the management of the KPI system in 

relation to the purpose for which it is created, or to enable the continuous improvement of the 

energy-based performances. In this sense, it is important to establish a method for performance 

analysis and prioritization of actions. 

After the monitoring and measurement of the performance through the KPIs, the step traditionally 

performed in this context includes: 

- the analysis of the values supplied by the KPIs; 

- their correct interpretation and communication to interested parties; 

- identification of potential areas for improvement; 

- setting objectives and actions for improvement; 

- checking the results through a new measurement and analysis of the e-KPI values after a 

certain time horizon. 
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5. Decision Support Mechanism 

It is now necessary to explain how the structured system design and use of e-KPIs could serve as a 

diagnosis and decision support tool for energy managers and in general for management involved in 

the energy efficiency programs.  

Since the design criteria of the e-KPIs is precisely to enable the decision making, the first analysis 

of the values provided by the KPI as well as the identification of potential areas for improvement, is 

inherent in the way in which the e-KPIs are designed. The e-KPIs are therefore easy to read in terms 

of the identification of the satisfaction degree of energy-related performances and to identify areas 

for intervention and responsible actors. The farthest the e-KPI value is from the ideal value of 1, the 

greater the need for intervention within the area defined by the cluster associated with the indicator. 

In reference to the developed e-KPIs, for example, a low value of 𝐸𝑎𝑣𝑎𝑖𝑙 compared to other 

indicators 𝐸𝑜𝑝𝑒𝑛𝑖𝑛𝑔, 𝐸𝑢𝑠𝑎𝑔𝑒 , 𝐸𝑠𝑎𝑡, 𝐸𝑞𝑢𝑎𝑙𝑖𝑡𝑦 which form the Lean Energy Indicator suggests a need 

for intervention within the engineering of maintenance and/or in the maintenance function, and 

similarly a low value of 𝐸𝑞𝑢𝑎𝑙𝑖𝑡𝑦 suggests a strong impact of quality problems on energy 

inefficiencies. 

By considering 𝐸𝑎𝑣𝑎𝑖𝑙 as an example, the energy consumption at a low value of the defendants are 

represented by high values of the sum 𝑃𝑚𝑎𝑖𝑛𝑡𝑇𝑚𝑎𝑖𝑛𝑡 + 𝑃𝑟𝑎𝑚𝑝 𝑢𝑝𝑇𝑟𝑎𝑚𝑝 𝑢𝑝𝑁𝑠𝑝𝑓 + 𝑃𝑖𝑑𝑙𝑒𝑇𝑑𝑜𝑤𝑛, i.e. the 

denominator of the indicator [see (7)]. 

To understand the extent to which it is possible to act on the e-KPI identified as responsible for the 

deterioration of the performance, a contextualization should be made for the determinants of the 

identified KPI, ideally analyzed utilizing the energy consumption matrix illustrated in Figure 6. 

The matrix includes two dimensions : 

1. The horizontal dimension represents the magnitude of the individual energy consumption 

[i.e. the magnitude of the single power requirement (energy in each instant of time, e.g. 

𝑃𝑟𝑎𝑚𝑝 𝑢𝑝)] 

2. The vertical dimension represents the time in which the single power requirement has been 

observed in the monitoring time T (in reference to the example, it corresponds to 

𝑇𝑟𝑎𝑚𝑝 𝑢𝑝𝑁𝑠𝑝𝑓) 
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Figure 6. Energy consumption matrix for decision support 

The nature of the energy consumption denotes the lever through which to reduce the entity. Figure 6 

shows the directions (through the arrows) for improvement in correspondence with each area. Since 

the focus is on energy management, improvement levers are oriented to reduce energy consumption 

where possible. Technological improvements (e.g. buy machines which spend less energy per unit 

of time) are considered out of scope for the discussion in this section. 

One area of focus is that of the first quadrant: longer times and high power. With regard to the 

fourth quadrant, besides the fact that longer times may also be due to factors that do not directly 

involve inefficiencies, it is still an area within which it is worth investigating to see if longer times 

actually occurred due to a certain state of inefficiency (e.g. if repair times and 𝑇𝑚𝑎𝑖𝑛𝑡 are higher 

than the standard). This information can be found in mainstream systems such as MES, SCADA 

and ERP. In the case of inefficiency, high energy consumption of this type can easily be reduced 

through management levers, the cost of which can be discussed with other actors of the plant. 
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In the example under investigation, it is important to know where consumption that makes up the 

sum 𝑃𝑚𝑎𝑖𝑛𝑡𝑇𝑚𝑎𝑖𝑛𝑡 + 𝑃𝑟𝑎𝑚𝑝 𝑢𝑝𝑇𝑟𝑎𝑚𝑝 𝑢𝑝𝑁𝑠𝑝𝑓 + 𝑃𝑖𝑑𝑙𝑒𝑇𝑑𝑜𝑤𝑛 is going to be placed within the energy 

consumption matrix. The positioning depends on the exact values that each time variable and power 

variable correspond to. Nonetheless, it is good to seize any opportunity to reduce energy 

consumption through management levers, reasonably applicable in the example under 

consideration, since the high consumption may be due to high fault-repair time during which the 

machine is in the maintenance state, or due to high number of reboots and time spent during post-

failures of the machines in a fault state previous to the repair during which the machine stays in idle 

state. 

Therefore, the macro problem is identified through the e-KPI at a lower value, contextualized 

energy consumption is attributed to it, and intervention possibility and areas are evaluated 

accordingly. Next step is to determine how to intervene in order to properly secure objectives and 

action plan for achieving identified improvements. Table 5 shows an example to this point.  

Table 5. Intervention mechanisms related to the example of reduction in the value of 𝑬𝒂𝒗𝒂𝒊𝒍 

Manufacturing 

State 
[t] Intervention mechanisms 

Corrective Maintenance: 

Total/Partial Failures in 

Down 

 

𝑇𝑟𝑎𝑚𝑝 𝑢𝑝𝑁𝑠𝑝𝑓 

𝑇𝑑𝑜𝑤𝑛 

 quality of preventive maintenance plans 

 manpower training: 

timeliness of the operators in recognizing and reporting faults 

 maintenance training: 

timeliness of the maintenance team to arrive on the scene 

Corrective Maintenance: 

Total/Partial Failures in 

Maintenance 

𝑇𝑚𝑎𝑖𝑛𝑡  training maintenance: prompt repair of the maintenance team 

Discharging the opportunity to act on specific energy consumption and on how to act, goals can be 

set at management level to control the length of time of manufacturing states. Based on the nature 

of the intervention mechanisms, the negative contribution of the indicator 𝐸𝑎𝑣𝑎𝑖𝑙 could be through 

an action plan structured as follows: 

- a reconsideration of the frequency intervals in preventive maintenance by engineering; 

- the adoption of a maintenance training program for practitioners, for the early detection of 

faults; 

- the adoption of a training program for the maintenance team. 

The objectives are broken down into tasks and the action plan is released. 

On the basis of the extent of the program provided, it establishes a timeframe within which it is 

expected that the indicator 𝐸𝑎𝑣𝑎𝑖𝑙 provides better performance, closer to the value of 1 in the current 

period. 
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Naturally, due to the way in which the e-KPIs are designed through the Energy Diagram, the value 

of each KPI depends exclusively on the set of variables which forms the indicator, and is not 

dependent in any way on an increase in demand of product, or other factors, which are reasonably 

attributed in a distinct manner to other e-KPIs. 

Every improvement program has a cost, which is why we ask: how many e-KPIs, for which 

performance has been proved unsatisfactory, can be considered part of a program to improve 

energy-related performances? For example, the decision on whether to consider the analysis of a 

single indicator with the lowest value, or the first two indicators with the lowest values among those 

that makes up the Lean Energy Indicator. 

In this regard, a Pareto analysis applied to the individual energy consumption that composes the e-

KPI is deemed extremely useful in order to optimize energy consumption and costs. Nevertheless, 

since the Pareto chart compares individual causes (e-KPI or individual energy consumption) of the 

total consumption of the period, this instrument should only be used for analysis of the current 

period, and cannot be used to evaluate an increase or a reduction of individual contribution in time. 

Finally, one may wonder what kind of improvement one can expect from a method that enables 

continuous improvement through the modes which are just explicated. At this point, the proposed e-

KPI method enables both direct and indirect improvements: 

- direct improvements on energy-related performances closely related to energy consumption, 

such as thermodynamic KPIs (total energy consumption of the plant) or physical- 

thermodynamic KPIs (e.g. SEC ), etc.; 

- indirect impact on time-based performances since the supporting mechanisms which aim at 

improving energy efficiency might also improve the time effectiveness of a manufacturing 

system. Notwithstanding, it is necessary to take into account that the improvements are 

made for this level of analysis in relation to problems of a single resource, but instead one 

must consider that the sum of local optima is not equal to a global optimum; 

- the indirect improvements on energy-related performances that includes, in addition to 

energy consumption, other variables (e.g. economic and physical KPIs). Despite the 

improvement in energy consumption, high energy prices that outweigh the achieved 

improvement nullify the effect of the proposed action plan; 

- the indirect improvement, more globally, on sustainable manufacturing. 
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6. Discussion and Concluding Remarks 

The e-KPIs enable improved energy-related performances. The clustering of the manufacturing 

states are carried out to foster a continuous improvement loop as the e-KPIs identify weaknesses 

and areas for energy efficiency improvements related to the management of production and 

operations. Thus, an action plan tasked with achieving energy-saving targets is created for relevant 

actors within an organization.  

One limitation of the developed method is the availability of energy-related data. Even if a precise 

calculation of all indicators is performed, problems may occur due to granularity of available data.  

In the current situation, energy monitoring is widely done on factory level, but to really use the 

approach, a finer granularity on machine level is necessary. Widely, the infrastructure for this 

approach might yet be missing in industry, especially in Small and Medium-sized Enterprises 

(SMEs). A real and complete case analysis can only be done in a time frame in which the multi-

level energy measurement and monitoring systems allow energy analysis for different levels of the 

plant, down to machine level. 

However, such limitation could be dealt with by increasing the role and use of advanced IT systems 

in manufacturing environments (May et al. 2013c). For instance, addressing the challenge 

highlighted in the Figure 7 below by May et al. (2012), PLANTCockpit (PLANTCockpit, 2014) 

developed a central monitoring system which is able to access different data sources (e.g. ERP, 

MES, SCADA, Energy Apps, other special-purpose solutions, etc.) in a manufacturing facility in 

order to integrate, process and visualize production data, thus enabling consistent calculation and 

visualization of desired indicators such as e-KPIs developed in this study.  

                     

Figure 7. Sample data sources and KPI components in a manufacturing plant (May et al., 2012) 
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Although it is difficult to directly measure the data required for calculating these e-KPIs in the 

current settings, it is possible to reach the data components of each indicator with the use of new 

generation IT systems such as PLANTCockpit or else, which will lead the industry to be able to 

frequently calculate and visualize the desired indicators such as e-KPIs. 

We proceed now to illustrate a number of key points and findings relating to the proposed method. 

The developed method is proposed to address the research gaps identified in the literature review. It 

aims to support the manufacturing industry in fulfilling the identified industrial needs. Since it 

contributes to a research topic focused on a medium to long term trend and as the contribution is 

made by developing new KPIs to support energy management, technical and economic evaluations 

for the implementation of the method are considered out of scope. The discussion of 

implementation hints in section 4.7.2. is provided for the sole purpose of outlining a possible 

estimate of the time horizon over which the manufacturers could be able to use the designed e-KPIs 

in a structured way. 

During the development of the method, the following important findings emerged: 

 The reference system in which a production machine works strongly influences its energy-

related performances.  

 The presence of a high number of intervention mechanisms related to the manufacturing states 

confirms the wide possibilities of reducing energy consumption by acting on production system 

(or on such variables) rather than on technological levers. 

 The development of e-KPIs through appropriate Energy Diagram allows the KPI values not to be 

affected by changes in market demand, except by a change in the product mix, for which there 

might be an incidence of setup. 

 Not all of the energy inefficiencies are equally important and potential hotspots in terms of 

energy management: the energy consumption matrix is designed including time and power 

dimensions and shows the types of energy consumption on which to pay more attention for 

improving the energy-related performances. 

 The development of the e-KPIs showed that there were negligible time-based performance 

indicators which instead have strong impacts on energy-based performance. Such states are 

positioned on the lower right of the energy consumption matrix: the most representative example 

is the state that corresponds to machine start-up, both due to the needs of shifts and to total 

failure. The occurrence of these states must be avoided as much as possible since these small 

time intervals could have high impacts on energy consumption. 
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Ultimately, we describe as follows opportunities for future development which could further deepen 

the knowledge of the study: 

 The developed tools can be used more widespread for other means. For example, modelling by 

state graph can be used to support discrete event simulation in order to study the energy behavior 

of the resource at different scenarios and to predict energy consumption for instance by 

providing relevant information concerning the best choice of the supply contract or ideal shifts 

for the plant, etc. 

 Other tools might be used for representing the cause-effect relationships, e.g. causal loop 

diagrams. They allow connecting the related elements by cause-effect links, determining the 

signs and possible loop between the different links, and designing equations for each link. 

 One other way is to consider other possibilities for development of methodologies aimed at 

improving energy efficiency. One such method might consider development of e-KPIs on 

different levels (i.e. machine, process, and plant level), and relationships in-between these KPIs. 

Another method could consider effects of different instruments on energy consumption, e.g. 

contribution of different plans (e.g. inventory management, capacity planning, etc.) on the 

energy performance of the plant or the entire supply chain can be studied, using simulation 

environments supported by key performance indicators for the evaluation of different scenarios. 

 Last but not least, e-KPIs could be used in simulation environments to evaluate the effectiveness 

of actions over time. It could also be aimed at achieving improvements of energy performances 

at machine level. However, since production systems represent extremely complex environments 

in which a global optimum is not the sum of local optima, the scope of the discussion should be 

reasonably extended to a line, to a plant, to a portion of the supply chain, etc. in order to 

formulate a comprehensive solution considering the entire value chain.      
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Appendix A 

We introduce below the symbols used in the formulas for calculating indicators in Section 4.6.: 

- i: index of the piece in the product mix 

- n: number of pieces in the product mix 

- 𝑄𝑔𝑜𝑜𝑑 𝑖: Quantity of saleable pieces 

- Qrew: Quantity reworked 

- qr: Quantity discarded 

- qrs: Quantity discarded in startup 

- 𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑖: Processing time 

- 𝑃𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑖: Average processing power 

- NCTi: Number of tool change for each piece "i" 

- Tsu: Setup time 

- Psetup: Average power consumption for tool change 

- Tmicro: Total Time lost due to machine microstoppages 

- Prampup: Power consumption at startup 

- Trampup: Time to start the machine 

- NSpf: Number of starts after failure 

- TTRp: Repair Time of preventive interventions (assumes only adjustments) 

- PMaint: Power consumption during maintenance 

- Tmaint: Maintenance time 

- Tdown: Downtime 

- Pidle: Power consumption at idle 

- Tw: Total Time for workers’ stoppages 

- Tbsps: Time lost due to blocking & starvation for production scheduling 

- Twttm: Waiting time for tool management 

- Tbssf:  Time lost due to blocking & starvation for system's failures 

- Twtbr: Waiting time for breakdown or regeneration 

- Pstandby : Power consumption in standby 

- Tmo: Time lost due to missing orders 

- Tmm: Time lost due to missing materials 

- Nst: Number of starts by shifts 

- NSPH: Number of starts after holidays 
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