Kinetic modeling of H\textsubscript{2}-assisted C\textsubscript{3}H\textsubscript{6} Selective Catalytic Reduction of NO over Silver Alumina catalyst

Muhammad Mufti Azisa,b, Hanna Härelinda and Derek Creasera

aDivision of Chemical Engineering, Department of Chemical and Biological Engineering

bCompetence Centre for Catalysis (KCK)

Chalmers University of Technology, SE-41296, Gothenburg, Sweden

Email: muhammad.azis@chalmers.se

Introduction

\begin{itemize}
 \item Ag/Al\textsubscript{2}O\textsubscript{3} catalyst is a potential catalyst for NO\textsubscript{2} abatement with HC-SCR technology. Further, addition of H\textsubscript{2} has been shown to give better HC-SCR performance on Ag/Al\textsubscript{2}O\textsubscript{3}[1].
 \item The present work aims to set up a global kinetic model to describe mechanistic role of H\textsubscript{2} to promote C\textsubscript{3}H\textsubscript{6}SCR over Ag/Al\textsubscript{2}O\textsubscript{3} catalyst.
\end{itemize}

Experimental methods

\begin{itemize}
 \item Ag/Al\textsubscript{2}O\textsubscript{3} with 2 wt.% Ag loading was prepared by sol-gel freeze dried method. The catalyst powder was washcoated on cordierite monolith.
 \item Activity measurement was conducted in a flow reactor equipped with gas FTIR and MS.
 \item Temperature-programmed reaction and transient experiments were used.
 \item The model aimed to simulate wide range of temperature and inlet feed concentration.
\end{itemize}

Modeling methods

Development of reaction mechanisms:

\begin{itemize}
 \item Experimental data shows NO oxidation and C\textsubscript{3}H\textsubscript{6} SCR are always higher in the presence of H\textsubscript{2} even for high temperature range.
 \item Initial screening of mechanisms suggested that single role of H\textsubscript{2} to remove inhibiting nitrate was insufficient to reproduce wide range of experimental conditions.
 \item Key point in reaction mechanism: H\textsubscript{2} is proposed to have dual role to remove inhibiting nitrate and simultaneously form more active reduced sites, S\textsubscript{r}.
\end{itemize}

\begin{equation}
\begin{array}{c}
\text{H}_2(\text{g}) + \text{NO} + \text{H}_2\text{O} \\
\xrightarrow{\text{Al}_2\text{O}_3} \text{S}_\text{r} \quad \text{Oxidized Ag} \\
\text{C}_3\text{H}_6, \text{H}_2, \text{H}_2\text{O} \\
\end{array}
\end{equation}

- Reactor model: single channel model was used to describe mass transfer and reaction kinetic. The model also includes mass transfer of gas components inside washcoat [2].

Results and discussion

A sample of experimental and simulation results:

- The proposed H\textsubscript{2} role reproduced experimental data well for both temperature-programmed and transient experiments. Similarly, model validation under NO, C\textsubscript{3}H\textsubscript{6} oxidation and C\textsubscript{3}H\textsubscript{6} SCR with/without H\textsubscript{2} at 250 and 400\degree C gave good agreement between simulations and transient experiments.
- All reactions on reduced Ag sites (S\textsubscript{r}) are more rapid than on oxidized Ag sites (S\textsubscript{o}) which is indicated by lower activation energies on S\textsubscript{r} than on S\textsubscript{o} for the same reactions.
- Weisz modulie evaluations were made for H\textsubscript{2}-assisted C\textsubscript{3}H\textsubscript{6} SCR and C\textsubscript{3}H\textsubscript{6} SCR indicated that larger fraction of experimental data was free from mass transport resistance.

Conclusions

- A global kinetic model for H\textsubscript{2}-assisted C\textsubscript{3}H\textsubscript{6} SCR has been developed to effectively capture a wide range of feed concentrations and temperature.
- The model proposes dual role of H\textsubscript{2} to eliminate nitrate as well as to form a reduced sites, S\textsubscript{r} NO oxidation, H\textsubscript{2} oxidation as well as C\textsubscript{3}H\textsubscript{6} SCR reactions are more rapid on the reduced sites, S\textsubscript{r}.
- A larger fraction of experimental data was free from the influence of mass transport resistance.

References

Acknowledgements

The financial support by the Swedish Research Council is gratefully acknowledged. This work was performed within the Competence Centre for Catalysis, which is hosted by Chalmers University of Technology and financially supported by the Swedish Energy Agency and the member companies AB Volvo, ECAPS AB, Haldor Topsøe A/S, Scania CV AB, Volvo Car Corporation AB and Wärtsilä Finland Oy.