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Abstract 

Combustion or gasification of high-moisture content biomass is associated with a number of 

drawbacks, such as operational instabilities and lowered total efficiency. The present work 

proposes an integrated dryer and conveyor belt for woody biofuels with steam as the heat 

transfer medium. The use of low-temperature steam is favorable from a heat management 

point of view, but also helps to minimize the risk of fire, self-ignition and dust explosions. 

Furthermore, the presented dryer design represents an efficient combination of fuel transport, 

drying equipment and fuel feeding system. 

The proposed design is developed from a macroscopic energy and mass balance model that 

uses results from computational fluid dynamics (CFD) fuel bed modeling and experiments as 

its input. This CFD simulation setup can be further used to optimize the design with respect to 

bed height, steam injection temperatures and fuel type. The macroscopic model can be used to 

investigate the integration of the dryer within a larger biomass plant. Such a case study is also 

presented, where the dryer is tailored for integration within an indirect steam gasification 

system. It is found that the exergy efficiency of this dryer is 52.9%, which is considerably 

higher than those of other dryers using air or steam, making the proposed drying technology a 

very competitive choice for operation with indirect steam gasification units.  
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1 Introduction 

The use of biomass for energy production is becoming increasingly popular due to the fact 

that biomass is generally regarded as a CO2-neutral fuel. Wood represents a major source of 

biomass energy, and woody biofuels are particularly interesting in countries with large forest 

resources. An important difference between biofuels and most conventional fossil fuels is that 

the former have significantly higher and more varied moisture content.  

In gasification, fuel drying is required to avoid the combustion of support fuel or product gas, 

to sustain the process. If the heat demand for drying can be reduced, more fuel can be gasified 

and the efficiency of the process is increased. Furthermore, biofuel with large fluctuations in 

the moisture contents causes problems with regard to the stable operation of the gasifier. 

Therefore in gasification systems, the fuel is usually dried to a moisture content below 15% 

on wet basis (w.b.) [1]. Combustion of biofuels with high moisture content is possible, but 

associated with several drawbacks. First of all, the latent heat that has to be supplied in the 

combustor to evaporate the water cannot be utilized for power generation, since the 

temperature at which it can be recovered is too low (i.e. around 100ºC at atmospheric 

pressure). Furthermore, a boiler that is operated with high-moisture fuel must have larger 

dimensions for the same thermal output. In addition to operational instabilities, the additional 

heat sink provided by the moisture increases the risk for harmful emissions. Woody biofuels 

can have initial moisture contents as high as 50-65% w.b. [2, 3]. The typical heating values of 

dry biomass fuels are around 15-22 MJ/kg dry ash-free (daf) [4]. Low-temperature drying 

(below the boiling point of water) can reduce the moisture content down to 10-15% w.b. [1]. 

The focus of the current work is on the design of a combined high-temperature dryer and 

conveyor belt for woody biofuels. More specifically, the aim is to explore the potential of 

high-temperature drying for large-scale processes in regions where the use of biomass has a 

high economic value, thus allowing for a higher level of complexity and larger investments. 
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The overall purpose of this paper is thus to present a general design of an integrated dryer and 

conveyor belt, and calculations that support the chosen detailed dryer design. The paper 

includes a case study for the integration of the proposed drying system in a steam gasification 

plant, which represents the situation where the use of the proposed dryer is most 

advantageous, showing a high potential in terms of energy and exergy efficiency. The process 

of biomass drying and the proposed dryer are first described in Section 2. The modeling 

underlying the numerical simulations of the dryer performance is introduced in Section 3, and 

the results of these simulations are presented and discussed in Section 4. The case study for 

the integration of the dryer within an indirect steam gasification plant, is presented in Section 

5. The paper finally concludes with a summary of the findings and a final evaluation of the 

dryer belt design. 

 

2 Biomass drying  

Woody biomass at the point of delivery is usually in the form of chips or chunks with the 

largest dimension in the range of 10-80 mm [5], and a moisture content between 50-60 % 

depending on the season and the type of wood. If a biomass has a lower heating value (LHV) 

of 19 MJ/kg and a moisture content of 50% w.b., the heat demand for the complete 

evaporation and heating of the moisture up to a gasification temperature of 900°C is about 

22% of the LHV of the fuel. However, if the biomass is pre-dried to 10% w.b. moisture, the 

heat demand is only 2.5 % of the fuel LHV. During gasification this heat is provided by 

combustion of the fuel or product gas. By reducing the moisture content, a higher fraction of 

the biomass can be gasified and the total efficiency of the process is increased. Drying is also 

beneficial for decreasing the dimensions of the gasifier and the ancillary equipment.  
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In power generation plants, the drying of the fuel increases the efficiency of the thermal 

conversion of the biomass. Fuels with low moisture contents can also minimize other 

combustion control problems caused by fluctuations in the fuel properties [1]. 

Nevertheless, biomass drying is an intense process that requires a substantial input of energy, 

which influences the total efficiency of the process if valuable heat is used. It is therefore 

advantageous to use waste heat at low temperature, and to integrate the drying system within 

the heat exchanger network of the biomass plant. Sources of heat include heat exchanger 

exhaust, turbine exhaust, flue gases from combustion of by-products [1], or process steam at 

low temperature. Depending on the combination of the heat source and the technology 

employed, the drying can either be accomplished directly by heat sources such as flue gas, 

back-pressure steam or extraction steam [2], or via an intermediate drying medium (air or 

steam). 

In addition to improving the efficiency of the process, the drying system should minimize the 

risk of fire and explosion, reduce the emissions of pollutants and ensure a homogeneous fuel 

feeding. A fire or explosion in the dryer can arise from the ignition of volatile organic 

compounds (VOC) released during the drying.  Thermal degradation of the biomass starts 

above 100°C and becomes significant above 120-130°C depending on the type of biomass [6]. 

The risk of fire is, however, increased during an unintended stop of the dryer when VOCs can 

accumulate. The main measure to ensure a safe and reliable operation of the dryer is to 

maintain a sufficient inert atmosphere by continuous monitoring of the oxygen level and to 

install emergency safety equipment [6], especially in air and flue gas dryers. Superheated 

steam dyers require lower safety measures because they eliminate the risk of fire and 

explosion by guaranteeing an oxygen-free atmosphere around the biomass [5]. 

Where it is possible to maintain a low-oxygen environment in the dryer, the drying 

temperature can be raised to 200°C or above [4], which reduces the drying time and the size 
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of the equipment. However, such a high temperature could produce a significant release of 

VOCs, which translates into an energy loss and causes environmental problems. 

Several different types of biomass dryers are available, the most common are: rotary dryers 

[7][8], fluidized bed dryers (including flash dryers and superheated steam dryers) [4] and belt 

dryers [4].  

Belt dryer is the typology better suited to exploit low-temperature heat (130°C or lower), 

limiting the risk of fire, harmful emissions and in some case allowing heat recovery from the 

dryer. Biomass is disposed on a permeable belt (e.g. a perforated conveyor or filter 

mesh/mat), and transported along the dryer while the drying medium is blown by fans through 

the belt and the biomass bed. The height of the biomass bed is typically between 2 cm and 30 

cm, depending on the type of biomass. Due to the low temperature used, these dryers have 

long retention times and consequently require large installations. Typical temperatures of the 

drying medium are between 60°C and 200°C. They are safe to operate, minimizing the risk of 

fire and explosion, and produce low emissions of VOCs. This type of dryer is suitable to 

recover waste heat, reduce the emissions of pollutants and minimize fire hazards. It is now 

used in many applications (e.g. sawdust drying in pellet production).  

2.1  Proposed drying system 

The proposed drying system is intended mainly for gasification, but can be applied to biomass 

combustors as well. The dryer process design is based on the concept of a conventional belt 

dryer and the operation of the dryer is continuous. Known advantages of belt dryers include 

low operation temperature, low gaseous emissions, low fire hazards, high robustness with 

regard to varying fuel properties and high potential for heat recovery [4].  

The drying system, depicted in Figure 1, consists of two consecutive belt dryers with a 

possibility of intermediate storage. The first stage uses a conventional belt dryer that employs 

low-temperature heat sources (below 100°C) and air as the drying medium. Drying can 
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typically be extended from an initial 50% to 10-20% moisture in the fuel by using only waste 

heat from the rest of the plant.  A following drying stage at a higher temperature (120-150°C) 

can reduce the moisture content down to a few percent. In this work, a belt dryer using steam 

as the drying medium is proposed for this drying stage. Steam allows a higher drying 

temperature virtually without any risk of fire and, furthermore, it allows discharging the fuel 

directly into the charge hopper of the feeding system, maintaining the biomass in a steam 

atmosphere. This is especially intended for production of nitrogen-free gas, since the fuel is 

introduced into the reactor without the contamination that would occur if flue gases were used 

as the purge gas in the sealing device (e.g. lock hoppers or rotary valves) [1].  

There are three major motivations to why the proposed dryer design is very competitive: 

1) Minimization of the risk of self-ignition or dust explosions 

Typically, interim storage of woody biofuels takes place below the fiber saturation point, i.e. 

at a moisture content of approximately 18-20% w.b. [3]. Higher moisture contents may allow 

bacterial growth with subsequent production of inflammable gases. In addition, microbial 

activity such as fungal growth is known to cause a slow heat development that may 

subsequently accelerate further heat release, which could lead to self-ignition [9], [10]. 

Microfungi can also cause allergic reactions in people handling the biofuel [9]. Moisture 

contents significantly lower than 18% w.b. are known to increase the risk for dust explosions, 

as dust clouds may be ignited if oxygen is present [3]. The risk of explosion or ignition 

increases with temperature, and biofuel devolatilization begins at relatively low temperatures. 

The proposed dryer and conveyor belt design utilizes pure steam between 120°C and 150ºC as 

the heat transfer medium. The risk of spontaneous ignition is efficiently counteracted, since 

the steam atmosphere contains virtually no oxygen. 

2) Efficient combination of the fuel transport, drying equipment and fuel feeding 

system 
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Because of the fire hazard associated with the storage of biofuel, the particles must be stored 

well away (50-300 m) from the gasifier. A long conveyer belt is thus needed to transport the 

particles to the combustor. With the proposed dryer design, this distance is efficiently utilized, 

as the transportation time is used to decrease the moisture content of the particles. 

Furthermore the biomass is pre-heated and delivered to the feeding system in a steam 

atmosphere, avoiding nitrogen contaminations.  

3) Efficient heat management 

As the drying of the biofuel represents a significant part of the combustor system energy 

utilization, efficient energy management is of utmost importance. Low-pressure steam is 

readily available in combustion plants and represents a suitable choice from the heat 

management perspective. The steam can, for example, be generated from a combination of 

low-grade heat available in hot cooling water and flue gases [4]. 

The proposed design of the integrated steam dryer and conveyor belt is illustrated in Figure 2. 

The biomass is transported on a mechanical belt along the drying unit, while superheated 

steam is injected from above, drying the particles by supplying the energy needed for water 

evaporation. Furthermore, the steam will help remove part of the dust formed in the handling 

of the biomass, and this dust will be collected on the belt as the steam passes through it. In 

this respect, the belt acts as a filter for the dust particles. The dust can then be scraped off 

from the belt at the end of the conveyor section. 

The steam that has passed through the bed is led via a three-way valve to a fan and a heat 

exchanger. The valve is regulated to remove the flow of moisture evaporated, and maintain 

the mass balance of the steam within the dryer. The fan and the steam heat exchangers are 

designed to restore the steam flow pressure and temperature to the injection conditions. 
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Air or flue gases can be used to purge the biomass into the dryer; they are evacuated at the 

beginning of the belt together with some steam. Therefore some water is fed in to maintain the 

steam balance in the first part of the dryer where any moisture is evaporated.  

As the biofuel storage site and the combustor are typically separated by long distances, the 

conveyor belt as depicted in Figure 2 would necessarily also be long. However, an alternate, 

module-based design could be conceived, in which the total length of the conveyor belt is 

split into smaller sections. This variation of the original design has several advantages: 1) the 

injection temperature of the steam can easily be varied along the dryer; 2) the packing of the 

bed of biofuel can be adjusted, by varying the height and velocity of the different belt 

sections; 3) additional locations for dust removal are introduced. 

2.2 Potential for integration within an indirect steam gasification system 

Although the proposed belt dryer offers the possibility of heat integration through indirect 

heating and recirculation of the drying medium, the enthalpy stored in the evaporated 

moisture leaving the dryer cannot be recovered by any other means than condensation. If the 

dryer is integrated with a plant using steam in processes directly involving the biomass, the 

moisture evaporated can be then re-used without condensing and the potential for heat 

recovery is significantly increased. The integration of the steam belt dryer within a biomass 

gasification plant, using steam as the gasification agent, has been investigated further in a case 

study, since it introduces additional advantages and can be beneficial for the whole process. 

In indirect gasification, pre-heating of the streams entering the gasifier (fuel and 

gasification/fluidization steam) is beneficial for the heat balance of the gasifier-combustor 

system. Reducing the heat demand of the gasifier can increase the yield of product gas since 

less fuel needs to be burnt in the combustor.  Shifting of fuel drying and pre-heating outside 

of the gasifier also enables low-temperature heat to be used instead of high-temperature heat 

from fuel combustion. The temperature in the last part of the dryer can be raised to pre-heat 
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the fuel to 105ºC – 140ºC. However, the highest temperature in the biomass bed should not be 

higher than 200°C [11] in order to avoid significant devolatilization of the biomass. 

Furthermore, the moisture evaporated along the dryer is recycled to the gasifier and used as a 

gasification agent, reintroducing the moisture into the mass balance of the system and 

reducing the steam consumption. In a steam dryer, the moisture content can be lowered from 

20% w.b. to around 2% w.b., leading to a ratio between the removed moisture and the dry 

biomass of around 0.23. The steam-to-fuel (dry ash free) ratio for gasification and fluidization 

in a bubbling bed reactor is in the range of 0.5 – 1 [12]. Therefore, a significant part of the 

gasification steam can be substituted using the moisture, which contains some fraction of 

volatiles components as well. 

Indirect gasification technology has the advantage of producing nitrogen-free gas by using 

steam as gasification agent. At current state of the art, the biomass is purged in the gasifier by 

using carbon dioxide, if available, or flue gas, allowing a small fraction of nitrogen in the 

product. Both carbon dioxide and flue gas introduce contaminations into the product gas and 

these have to be removed later in the fuel synthesis process, which is expensive. Therefore, 

for this type of gasifier, the optimal choice for biomass pre-heating and purging is steam. By 

combining the dryer and feeding system, it is possible to achieve efficient drying in an inert 

atmosphere, pre-heat the biomass and part of the gasification steam, and purge the fuel 

without contamination. 

   

3  Modeling 

Macroscopic modeling of the dryer based only on global heat and mass balance cannot be 

accurate, because the correct combination of the steam flow and the steam temperature cannot 

be found a priori, without considering the fluid dynamics in the dryer. A multi-scale 

modeling approach is used instead to evaluate the viability of the proposed dryer design. On 
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the macroscale, the entire dryer is simulated using macroscopic heat and mass balances. 

Information about the drying process for a two-dimensional cut of the steam flow through the 

packed bed of wood particles is obtained from computational fluid dynamics (CFD) 

simulations. In these CFD simulations, the evolution of the drying front inside an individual 

particle is modeled using a particle submodel. The results from the CFD simulations are used 

in the macroscopic description of the dryer to enhance the numerical predictions of the 

capacity of the dryer. 

The minimum temperature of the steam leaving the belt must be limited to avoid steam 

condensation. Here, the minimum steam temperature allowed along the dryer is 105°C. 

Furthermore, the highest temperature inside the biomass particle should be monitored to 

control the release of volatiles. To maintain the steam and the biomass temperatures within an 

appropriate range, the biomass bed height and the steam injection temperature are varied 

along the dryer.  

The dryer is divided in two sections. In the first section the biomass is heated to around 

100°C, with minimal moisture evaporation. To prevent steam condensation in the first 

section, the steam injection temperature is higher than in the rest of the dryer and steam flow 

per kg of biomass is increased by lowering the height of the biomass on the belt. Most of the 

moisture is evaporated in the second section of the dryer, where the bed height and the steam 

injection temperature are adjusted to limit the temperature of the dry biomass to reduce the 

VOC emissions. This approach is applied both in the macroscopic model and in the CFD 

simulation. Steam diffusion along the belt is neglected and the steam mass balance is 

calculated independently in the two sections. 

3.1  Thermodynamics of moisture desorption 

Moisture in wood exists in two basic forms: liquid free water in the wood cavities and bound 

water sorbed within the wood cell walls. In studies of wood drying, it is necessary to take into 
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account the thermodynamic effects associated with the desorption of the bound moisture. 

When the wood and the surrounding atmosphere are in equilibrium, the relative humidity 

within the wood cells and the surroundings are the same. In a desorption process, free water is 

first evaporated until the wood reaches the fiber saturation point, then any additional moisture 

is desorbed from the fibers. The sorption isotherm curves describe the relation between the 

moisture content and the activity of the wood (ratio of partial pressure to vapor saturation 

pressure) at equilibrium for a given temperature. There exist many expressions of the sorption 

isotherm curves in the literature that descend from different sorption theories (e.g. the Dent 

equation, the BET equation and the Hailwood-Horrobin equation [13]) and that make use of 

numerical constants dependent on the type of wood and the sorption temperature. However, 

these equations are usually evaluated in the range between 20°C and 70°C. Due to the higher 

temperature range in this work, average sorption curves from experimental data up to 100C 

have been used instead (Appendix C, Figure C.2). These curves are derived from the USDA 

forest service database and are representative of several types of wood [14]. Sorbed water has 

lower vapor pressure than free water, therefore the enthalpy, entropy and Gibbs free energy of 

sorbed water are lower than those of water in liquid form [13]. The enthalpy 𝐻𝑠 of the sorbed 

water is lower than 𝐻𝑤 (saturated liquid water) by the differential term ∆𝐻𝑠, corresponding to 

the heat of sorption that should be provided, in addition to the evaporation heat for the phase 

change of the sorbed water. 

𝐻𝑠 = 𝐻𝑤 − ∆𝐻𝑠      (1) 

∆𝐻𝑠 is a strong function of the moisture content of the wood and is zero at the fiber saturation 

point. The heat of sorption can be expressed through the Clausius–Clapeyron equation [13]: 

∆𝐻𝑠 ≅ 𝑅𝑇2 ∙ (d𝑙𝑛(𝑎𝑤) d(𝑇)⁄ )      (2) 

Where R is the gas constant and aw is the activity of the wood. As shown from the sorption 

isotherm curves (in Appendix C), aw is more dependent on the moisture content than on the 
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temperature, and the same is valid for the heat of sorption. Therefore, if two sorption 

isotherms are known, ∆Hs can be estimated (assuming it to be constant between the two 

temperatures) by:  

∆𝐻𝑠 ≅ 𝑅𝑇1𝑇2 ∙ 𝑙𝑛(𝑎𝑤2 𝑎𝑤1⁄ ) (𝑇2 − 𝑇1)⁄     (3) 

The entropy of the sorbed water is given by [13]: 

𝑆𝑠 = 𝑆𝑤 −
∆𝐻𝑠

𝑇⁄ +
∆𝐺𝑠

𝑇⁄ = 𝑆𝑤 − ∆𝑆𝑠    (4) 

The decrease of free energy associated with the sorption of water by a hygroscopic material is 

given by: 

∆𝐺𝑠 = −𝑅𝑇𝑙𝑛(𝑎𝑤)     (5) 

Enthalpy and entropy of sorbed water are strictly dependent on the activity, which is directly 

linked to the moisture content, of the wood. The enthalpy, 𝐻𝑠, and entropy, 𝑆𝑠, of sorbed 

water decreases with the decreasing moisture content, for all temperatures, and are 

significantly lower than those of free water at low moisture contents [13]. The preceding 

relations are used to account for the heat of sorption in the current work. 

3.2  Macroscopic framework 

The macroscopic heat and mass balances are formulated and solved using the commercial 

process modeling software Aspen Plus V8.2. Biomass can be modeled in Aspen Plus as a 

non-conventional component specifying ultimate and proximate analysis, including the 

moisture content. This approach introduces an error in the calculation of the enthalpy, due to 

the difference in the specific heat capacity of coal and biomass. In this work, the heat load of 

the dryer is calculated from the CFD results, where the specific heat capacity of dry wood is 

temperature dependent and is represented by an empirical correlation from the literature [10] 

based on data collected up to 450 K:  

𝐶𝑝,𝑤𝑜𝑜𝑑 [𝐽 𝑘𝑔𝐾⁄ ] = 4.206 ∙ 𝑇(𝐾) − 37.7    (6) 
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The moist wood has a greater specific heat capacity than what would be expected from a 

simple law of mixtures, due to the energy absorbed in the wood-water bounds [15]. Here, this 

effect is taken into account via a correction term, A: 

𝐶𝑝,𝑚𝑜𝑖𝑠𝑡 [𝐽 𝑘𝑔𝐾⁄ ] =
𝐶𝑝,𝑤𝑜𝑜𝑑+4190∙𝑌𝑚𝑜𝑖𝑠𝑡 (1−𝑌𝑚𝑜𝑖𝑠𝑡)⁄

1+𝑌𝑚𝑜𝑖𝑠𝑡 (1−𝑌𝑚𝑜𝑖𝑠𝑡)⁄
+ 𝐴    (7) 

𝐴 = (23.55 ∙ 𝑇 − 1320 ∙ 𝑌𝑚𝑜𝑖𝑠𝑡 − 6191) ∙ 𝑌𝑚𝑜𝑖𝑠𝑡  (8) 

In Equations (7) [10], and (8) [15], Ymoist is the moisture content of the moist wood on wet 

basis. 

The necessary inputs to the macroscopic mass and heat balances include the temperature 

history of the biomass particles and the steam, as well as the evolution of the particle moisture 

content with time. These inputs are obtained from the CFD calculations. The results from the 

Aspen Plus model can then be used for the design of the steam heat exchangers and the fans, 

offering a complete assessment of the drying technology.  

The Aspen Plus flow-sheet is reported in Figure 3.  It is divided in two sections, modeled with 

a structure similar to a flow-sheet for coal drying [16], but with the addition of the 

steam/moisture circuit. Heat transfer between the injected steam and the biomass is accounted 

in the block “INT-HE”, while the temperature of the circulated steam is restored in the “HE” 

blocks corresponding to the actual heat exchanging units. 

At the end of the belt, part of the steam is trapped in the rotary valve together with the 

biomass. It has been assumed that 40% of the volume in the rotary valve is occupied by the 

biomass; the resulting steam flow leaving the dryer in this way is about 5% of the moisture 

generated. It is worth noticing that, since the amount of steam used as purge gas is 

considerably lower than the moisture evaporated, in the overall mass balance the biomass is 

purged into the gasifier by the use of its own moisture. The rotary valve is modeled with the 

two blocks “WHEEL-1” and “WHEEL-2”, where part of the injected steam is first separated 

from the main flow and then mixed with the biomass leaving the dryer. 
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The heat load of the two heat exchangers “INT-HE-1” and “INT-HE-2” (simulating the heat 

exchange between the steam and the biomass) and the steam flow passing through them, as 

well as the moisture contents at the outlet of each drying section, are set by the results from 

the CFD simulation. The pressure drops on the steam side of the heat exchangers can be freely 

chosen by the designer to achieve the lowest operating cost, taking into account both 

investment costs and pumping costs. In this investigation, the pressure drop has been 

estimated as a fraction of the system gauge pressure as suggested in [17] for tube and shell 

heat exchangers, placing the steam on the tube side. 

The mass balance in the two sections of the dryer is maintained by a three-way valve 

controlling the amount of steam discharged. This stream is condensate and the heat can be 

recovered in the previous air dryer. 

3.3  CFD framework 

CFD simulations are performed in two dimensions using the commercial CFD software 

ANSYS Fluent 13.0 with a particle submodel (described in Section 3.4) supplying source 

terms to the Eulerian momentum, heat and mass balance equations. The computational 

domain represents a cut through the dryer, perpendicular to the main transport direction, and 

is illustrated in Figure 4. The particle submodel is active in the biomass bed region. The 

pressure drop from the steam inflow to the steam outflow is specified as a boundary 

condition, and symmetry boundary conditions are used along the vertical sides. The pressure 

drop over the biomass bed is determined from source terms in the momentum balance 

equations in this region [18]. The pressure drop over the dryer belt is tuned by manually 

adjusting a source term in the same equations in this region. 

The CFD simulation is advanced in time while the biomass temperature and moisture content 

plus the steam outflow temperature are being monitored. The bed height in the first section of 

the dryer is 0.1 m. The first section ends and the second section commences when the 



15 

 

temperature of the hottest dry biomass reaches 105C. The biomass bed is then redistributed 

onto another belt, so that the bed height changes to 0.2 m. These bed heights can be 

considered typical for conveyor dryers [4]. A number of variables need to be mapped from the 

0.1 m solution to the initial state of a 0.2 m bed for continued drying at a lower steam 

temperature. The profiles of these variables through the bed are exported from the solution at 

a point in time just before the switch. These profiles are then extended to cover a bed of twice 

the height and prescribed as the initial condition for the remainder of the simulation. The 

steam injection temperature is set to 120°C at the domain inlet at the time of the switch. In 

reality, the height of the cover above the conveyor belt determines the injection point for the 

steam flow. In the present analysis, however, the steam inflow boundary condition is placed at 

a lower vertical position, where it is reasonable to assume a constant pressure profile. 

3.4  Biomass particle drying model 

Drying of the biomass particle is modeled using a two-layer sharp interface model, in which it 

is assumed that the heat transferred to the particle is conducted from the particle surface to a 

drying front where the drying takes place [19]. The drying front moves with time further into 

the particle, until the drying is complete and all water has been evaporated. 

In the model, the particle is defined as containing two layers of a certain mass of moist wood 

(mmoist) and of dry wood (mdry). The mass fractions of the two respective layers always add up 

to unity. Furthermore, the moist and the dry wood are assigned individual temperatures (Tmoist) 

and (Tdry). The evolution of the mass and temperature of each layer can then be determined 

from the following heat and mass balances: 

𝑑𝑇𝑑𝑟𝑦

𝑑𝑡
=

𝛼𝑑𝑟𝑦

𝑉𝑑𝑟𝑦
(𝐴𝑠

𝑑𝑇

𝑑𝑟
|

𝑠
− 𝐴𝑖

𝑑𝑇

𝑑𝑟
|

𝑑𝑟𝑦→𝑖
)     (9) 

𝑑𝑇𝑚𝑜𝑖𝑠𝑡

𝑑𝑡
=

𝛼𝑚𝑜𝑖𝑠𝑡

𝑉𝑚𝑜𝑖𝑠𝑡
(1 − 𝐹𝑖)𝐴𝑖

𝑑𝑇

𝑑𝑟
|

𝑖→𝑚𝑜𝑖𝑠𝑡
     (10) 

𝑑𝑚𝑑𝑟𝑦

𝑑𝑡
= 𝑅𝑑𝑟𝑦𝑖𝑛𝑔 𝑌𝑚,𝑑𝑏⁄       (11) 
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𝑑𝑚𝑚𝑜𝑖𝑠𝑡

𝑑𝑡
= −𝑅𝑑𝑟𝑦𝑖𝑛𝑔 𝑌𝑚⁄       (12) 

Here, dry is the thermal diffusivity of the dry wood layer, As is the particle surface area and Ai 

is the surface area of the interface at which the drying front is currently located. Vdry and Vmoist 

are the volumes of the dry wood and the moist wood respectively, Rdrying is the rate of drying, 

and Ym and Ym,db are the fuel moisture fractions on wet and dry basis respectively.  

Assuming the particles are of spherical shape, the surface areas are given by: 

𝐴𝑠 = 4𝜋𝑟𝑝
2       (13) 

𝐴𝑖 = 4𝜋𝑟𝑑𝑟𝑦𝑖𝑛𝑔
2       (14) 

Here, rp is the particle radius and rdrying is the current position of the drying front. The radial 

positions of the center of mass of the moist and the dry wood layers are denoted as rmoist and 

rdry, respectively. 

The temperature gradients in the vicinity of the surface and the drying front are calculated 

based on the assumption that the temperature field resembles the steady-state conduction 

profile in a spherical shell: 

𝒅𝑻

𝒅𝒓
|

𝒔
=

𝑻𝒑−𝑻𝒅𝒓𝒚

𝒓𝒑(
𝒓𝒑

𝒓𝒅𝒓𝒚
−𝟏)

      (15) 

𝒅𝑻

𝒅𝒓
|

𝒅𝒓𝒚→𝒊
=

𝑻𝒅𝒓𝒚𝒊𝒏𝒈−𝑻𝒅𝒓𝒚

𝒓𝒅𝒓𝒚𝒊𝒏𝒈(
𝒓𝒅𝒓𝒚𝒊𝒏𝒈

𝒓𝒅𝒓𝒚
−𝟏)

     (16) 

𝒅𝑻

𝒅𝒓
|

𝒊→𝒎𝒐𝒊𝒔𝒕
=

𝑻𝒅𝒓𝒚𝒊𝒏𝒈−𝑻𝒎𝒐𝒊𝒔𝒕

𝒓𝒅𝒓𝒚𝒊𝒏𝒈(
𝒓𝒅𝒓𝒚𝒊𝒏𝒈

𝒓𝒎𝒐𝒊𝒔𝒕
−𝟏)

     (17) 

There are several different methods available of determining the drying rate [26]. During low-

temperature drying, a significant portion of the moisture may leave the particle at 

temperatures below the boiling point. Such effects cannot be captured by thermal models, in 

which the drying is modeled as taking place at a constant temperature. In the current work, we 

therefore use the modified thermal model of Ström and Thunman [19], where some 
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evaporation is allowed also during the heat-up phase. The function Fi is an empirical function 

on the interval [0,1] that determines the portion of the heat transferred to the drying front used 

in the evaporation of water (the rest is used to heat the moist wood): 

𝑭𝒊 =
𝟏𝟎

(𝟖.𝟎𝟕𝟏𝟑𝟏−𝟏𝟕𝟑𝟎.𝟔𝟑 (𝑻𝒅𝒓𝒚𝒊𝒏𝒈−𝟑𝟗.𝟕𝟐𝟒)⁄ )

𝟕𝟔𝟎
    (18) 

The rate of drying is obtained from: 

𝑹𝒅𝒓𝒚𝒊𝒏𝒈 =
𝑭𝒊𝒌𝒅𝒓𝒚𝑨𝒊

𝒅𝑻

𝒅𝒓
|
𝒅𝒓𝒚→𝒊

∆𝑯𝒗𝒂𝒑,𝑯𝟐𝑶(𝑻𝒅𝒓𝒚𝒊𝒏𝒈)
    (19) 

Here, Hvap,H2O(Tdrying) is the heat of evaporation of water, including the heat of sorption, at 

the temperature of the drying front, and kdry is the thermal conductivity of the dry wood.  

Further discussion about this modeling approach is presented in Section 3.6. 

In order to close the set of equations, expressions for the temperature of the particle surface 

(Tp) and the temperature of the drying front (Tdrying) are needed. These are obtained from heat 

balances over the particle surface and the drying front, which are derived based on the 

assumption that no heat is accumulated at these boundaries: 

𝒉𝑨𝒔(𝑻𝒈 − 𝑻𝒑) − 𝒌𝒅𝒓𝒚𝑨𝒔
𝒅𝑻

𝒅𝒓
|

𝒔
= 𝟎    (20) 

𝒌𝒅𝒓𝒚𝑨𝒊
𝒅𝑻

𝒅𝒓
|

𝒅𝒓𝒚→𝒊
−𝒌𝒎𝒐𝒊𝒔𝒕𝑨𝒊

𝒅𝑻

𝒅𝒓
|

𝒊→𝒎𝒐𝒊𝒔𝒕
= 𝟎   (31) 

In addition, the temperature of the drying front is not allowed to exceed 105C. 

The initial conditions are: 

𝒎𝒎𝒐𝒊𝒔𝒕

𝒎𝒅𝒓𝒚+𝒎𝒎𝒐𝒊𝒔𝒕
= 𝟏     (42) 

𝒎𝒅𝒓𝒚

𝒎𝒅𝒓𝒚+𝒎𝒎𝒐𝒊𝒔𝒕
= 𝟎     (53) 
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𝑻𝒅𝒓𝒚 = 𝑻𝒎𝒐𝒊𝒔𝒕 = 𝟐𝟗𝟖𝑲     (64) 

The initial moisture content is 10% (on dry basis) and the initial particle radius is 10 mm. 

Material data is taken for beech wood from the literature [27] [28] [29]. The performance of 

the particle submodel has previously been validated against experimental data in terms of both 

particle mass loss and the internal particle temperature history [19]. The application of this 

class of bed models to the drying process in stationary and moving packed beds are known to 

yield very good agreement with the available experimental data [30] [31] [32], and the 

qualitative behavior of the in-bed temperatures from the present model setup agrees with the 

experimental observations of Lerman and Wennberg [33]. Finally, the chosen spatial and 

temporal resolution for the bed simulations in this work were evaluated and deemed adequate 

in detailed convergence tests. With the resolutions employed (t = 5 ms and x = 2 mm), 

estimates of the integrated deviation from the solution obtained with a finer resolution (an 

order of magnitude smaller time step or halved grid spacing) were as low as 110 and 64 ppm, 

respectively, indicating that the resolutions employed can be trusted to provide numerically 

converged results. Coarser resolutions (an order of magnitude larger time step or doubled grid 

spacing) produced deviations of 0.074% and 17%, respectively. These estimations of the total 

integrated deviation were obtained by explicit calculation of the deviations for one minute of 

real time and then scaling them up to a total time period of 60 minutes. 

3.5 Mass transfer effects 

Since the water evaporates in an environment consisting purely of steam, there is no net mass 

transfer from the drying front to the bulk of the dryer. It would then appear as if the drying 

rate is controlled only by the heat transfer to the drying front. However, the outflow of water 

vapor from the drying front via the particle pore network out to the steam bulk will impede 

the heat transfer to the particle surface and thus affect the rate of drying. To account for this 

effect, the correlation for the particle Nusselt number [20]: 
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𝑵𝒖 = 𝟐 + 𝟏. 𝟏𝑹𝒆𝟎.𝟔𝑷𝒓𝟎.𝟑𝟑    (25) 

is adjusted according to: 

𝒉

𝒉𝟎
=

𝝆𝒈𝒖𝒈𝒄𝒑,𝒈 𝒉𝟎⁄

𝒆𝒙𝒑[𝝆𝒈𝒖𝒈𝒄𝒑,𝒈 𝒉𝟎⁄ ]−𝟏
     (26) 

Where h0 is the convective heat transfer coefficient obtained from equation (25) via the 

Nusselt number, and h obtained from equation (26) is finally used in equation (20). 

3.6  Water evaporation temperature 

In the particle submodel described in Section 3.4, the water is assumed to evaporate from the 

biomass particle at a temperature of 105C or below.  There are two good reasons for 

choosing this approach. 

First, the definition of moisture according to the current Swedish standard is the amount of 

water evaporated after 24 hours at 105C [21]. In other words, any additional – more tightly 

bound – water in the wood matrix that leaves at higher temperatures is by definition not 

included in the moisture content by which the biomass is classified. 

Second, the assumption that the water leaves at temperatures equal to or lower than 105C is 

clearly supported by experimental investigations. The normalized weight loss and temperature 

of 19 samples of wood chips were recorded during temperature-programmed evaporation in a 

thermogravimetric analysis (TGA), (Appendix A, Figure A.1). The wood chip samples are 

first heated to 105C and held at this temperature until the drying is complete (the weight loss 

curve levels off). After this period, the temperature is increased to 160C and held constant 

for an hour. No significant additional weight loss is observed during this time at a higher 

temperature. The conclusion is that the amount of more tightly bound water is insignificant 

compared to the total moisture content of the wood chips. In addition, this experiment proves 

that the devolatilization of the wood chips is slow enough, even at 160ºC, to be neglected in 

the dryer simulations. 
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Finally, it can also be seen in the experimental results that approximately 20% of the initial 

moisture has evaporated before 105C, which further supports the decision to use the 

modified thermal model for the determination of the drying rate (equation (18)). 

4. Standalone dryer design – results and discussion 

CFD simulations were performed with steam temperatures of 120°C and 150°C and biomass 

bed heights of 0.1 m, 0.2 m and 0.3 m. The results showed that high steam temperature 

(150°C) and low bed height (0.1 m) are necessary to avoid steam condensation in the first 

section of the dryer. Most of the drying occurs in the second section, which has a higher 

biomass bed and a lower steam temperature (120°C) instead. 

The bed height can be increased inside the dryer by moving the biomass on a narrower belt or 

onto a belt with a lower speed. In the CFD model, the steam temperature and the bed height 

are switched when the highest surface temperature of the biomass particles reaches 105°C, 

determining the residence time in the section. The temperature profile results, from the CFD 

simulation, are presented in Figure 5, and the temporal evolution of the biomass moisture 

contents is shown in Figure 6. 

The residence time in the first section of the dryer is 393 s, and 2.55 kg of steam at 150°C are 

used per kg of dry biomass. The wood chips leave the first section with a moisture content of 

9.6% w.b. and an average bed temperature of 101°C. The demand for heat in the first section 

is 151 kJ/kg biomass (daf). The results of the complete run are presented in Table 2 for 

different values of the final moisture contents. 

In the particle submodel employed in the CFD simulations, it is assumed that most of the 

moisture evaporates at 105C. In reality, some water will already leave at a lower 

temperature. When the drying temperature is lower than 105C, the driving force for the heat 

transfer is larger than assumed in the present calculations. Consequently, the results presented 

here represent an overestimation of the time needed to dry the wood particles. 
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4.1 Dryer design and heat losses 

The combination of CFD simulation and macroscopic modeling offers a fairly simple tool to 

assess the proposed dryer design. A scale of 100 MW fuel input, corresponding to 5.4 kg/s of 

dry ash-free biomass, is used as a reference for the design and macroscopic modeling. 

The dimensions of the dryer can be estimated from the residence time and the length of the 

conveyor. If the belt width is constant in all sections, the belt speed in each can be considered 

inversely proportional to the bed height, and therefore the belt speed in the first section is 

double than in the second. 

𝒔𝒑𝒆𝒆𝒅 𝒃𝒆𝒍𝒕𝒔𝒆𝒄𝒕.𝟐 =
𝑳𝒕𝒐𝒕

𝝉𝟏
𝒉𝒃𝒆𝒅𝟐
𝒉𝒃𝒆𝒅𝟏

+𝝉𝟐

     (7) 

𝒃𝒆𝒍𝒕 𝒘𝒊𝒅𝒕𝒉 =  
𝒎𝒂𝒔𝒔 𝒇𝒍𝒐𝒘𝒅𝒓𝒚𝒆𝒓

𝒎𝒂𝒔𝒔𝑪𝑭𝑫
∙

𝑽𝑪𝑭𝑫

𝒉𝒃𝒆𝒅𝟐 ∙𝒔𝒑𝒆𝒆𝒅 𝒃𝒆𝒍𝒕𝒔𝒆𝒄𝒕.𝟐
    (8) 

In biomass plants, the length of the conveyor from the fuel storage to the gasifier is usually 

between 50 and 300 m, depending on the logistics of the plant and on safety regulations. Air 

belt dryers have typical belt width values in the range 0.5 m to 2.5 m [22] and a belt speed 

between 2 cm/s and 10 cm/s. 

Heat losses along the dryer are assuming that the dryer is a cylinder in stainless steel of 175 m 

in length and a diameter corresponding to the belt width of 1.65 m, insulated with a layer of 

polyurethane foam with a thickness of 30 cm. The convective heat transfer coefficient with 

the surroundings is assumed to be 7.5 W/m2K and the external temperature is 20ºC. The 

losses are included in the inputs for the macroscopic model, which are presented in Table 4.  

The results of the heat and mass balance for a 100 MW (fuel input) plant are reported in Table 

5. The heat load of the two heat exchangers is calculated together with the mass flows and the 

electricity consumptions of the fans. 

The heat demand is almost evenly distributed between the two heat exchangers, despite that 

they handle different mass flows of steam.  The low temperature difference of the steam in the 
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second section of the dryer leads to a mass flow considerably larger than in the first section. 

This is strictly dependent on the steam injection temperature used and can be optimized 

further. 

The macroscopic model results agree well with the literature in regard to the heat 

consumption of an air belt dryer [5]: the average value of the proposed design is about 6.57 

MJ/kgH2O, including the pre-heating of the biomass up to 110°C.  

The results of the model do not aim to provide a final design for the dryer, but to assess the 

viability of this technology. Therefore, the calculations are not optimized for the best dryer 

design. However, the results show good agreement with typical values for air belt dryers, and 

the dimensions of the dryer and the belt speed fall into the usual range for this drying 

technology. The proposed dryer/carrier could therefore be designed from the retrofit of an 

existing air belt dryer. The effect of parameters like bed height or steam injection 

temperatures can be investigated further for a specific biomass plant. The proposed modeling 

approach provides a tool for preliminary design of a real dryer, or for assessment of the dryer 

performance in the modeling of a larger process.  

4.2 Additional design considerations 

Emissions have been reported to be low at temperatures below 100C [15], so the operation of 

the dryer as proposed here should produce very low levels of emissions in the condensates. 

The types of emissions that can be expected include biological organisms, organic compounds 

and non-condensable light gases [5]. Because the use of steam as the heat transfer medium 

may cause problems with corrosion, the dryer will have to be manufactured in stainless steel, 

or the internal surface should be extensively coated. It is therefore estimated that the capital 

investment of building the dryer will be significantly (approximately a factor of 1.5-3) higher 

compared to a similar construction in carbon steel [5]. 
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5  Case study: Steam dryer integration within an indirect steam 

gasification system 

Combining the dryer with the feeding system of an indirect steam gasifier, it is possible to 

achieve efficient drying in an inert atmosphere, pre-heating of the biomass and part of the 

gasification steam, and purging of the fuel without contamination. The layout of the 

integration of a steam belt dryer into an indirect gasification plant is depicted in Figure 7.  In 

this case, the initial moisture content of the biomass is 20% w.b., this being the minimum 

value allowed for the interim storage of the biomass.   

Medium pressure (MP) steam at 7 bars and low pressure (LP) steam at 3.6 bars are used to 

provide heat for the dryer, condensing at 165°C and 140°C. The steam condensers can be 

integrated in an existing steam cycle, recovering heat from the flue gases out of the combustor 

and the cooling of the product gas. The hot water out of the condenser can be further used in 

the air dryer or for district heating.  

The dryer is designed in three sections, the first two are analogous to those presented 

previously, while the third section is intended to preheat the biomass to around 130°C and 

remove the remaining moisture. In the last part of the dryer, some volatiles will be released 

and mixed with the steam while a part of them will be recovered in the gasifier together with 

the moisture. Although some odor due to the VOC will possibly be detectable, the 

experiments performed on wood chips (Appendix A, Figure A.1) show that the mass of 

volatiles released at 150°C it still very low, thus this temperature level can be allowed at the 

end of the dryer. Most of the drying occurs in the second section, with steam at 130°C. The 

three-way valve expelling the moisture evaporated from the second section is connected to the 

inlet of the condenser in the third section, so that all moisture removed is mixed and heated to 

155°C. Another three-way valve is placed after the condenser in the third section to retain the 

steam balance of the system by extracting the moisture evaporated, which is then mixed with 
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the rest of the gasification steam.  The combustion of char in the boiler usually leads to high 

emission of carbon monoxide related to the low concentration of water in the flue gases. Part 

of the moist air coming from the air dryer can be used in the combustor to increase the water 

concentration and control carbon monoxide emissions. 5.1 Exergy analysis 

There is no general agreement over the definition for second-law efficiency. However, it is 

often referred to as the ratio of the recovered exergy to the exergy supplied. This definition 

applies well enough to systems intended to produce or consume work, but for a drying system 

the meaning of the exergy recovered from the system is debatable. Instead, the second-law 

efficiency can be better expressed as the ratio of the minimal exergy that must be invested in 

the process to the exergy that is actually used. This provides a measure of the approximation 

to a reversible operation. 

𝜂𝐼𝐼 =  
𝐸𝑥𝑚𝑖𝑛

𝐸𝑥𝑡𝑜𝑡
      (29) 

This definition is equivalent to the first for systems in which is possible to define a reversible 

process, such as a steam cycle for instance, but becomes more relevant for systems in which 

irreversibility is an intrinsic part of the process, as in a dryer. A similar approach has been 

used by Liu et al.[23]. The exergy balance equations for a control volume around the whole 

dryer have been derived (Appendix C). The exergy spend for overtaking the irreversibilities in 

the real process have been calculated from the results of the CFD simulations, while the 

minimum exergy demand has been calculated from a minimum exergy drying process, with a 

constant drying temperature of 100 ºC (described in more detail in Appendix C).  

5.2 Results and discussion 

The same modeling approach used previously has been applied to this case study and the main 

results are provided in this section. Details of calculations regarding the energy and exergy 

efficiency and the complete results are reported in the supplementary work attached to the 

paper (Appendices B and C). Dryer specifications for the final moisture content and 
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temperature of the biomass are set to 1.95% w.b. and 128°C, so that when the remaining 

moisture is evaporated, during the mixing occurring between the belt and the final hopper, the 

temperature of the completely dry biomass will be above 105°C (Appendix B). The results of 

the CFD simulations show how the most of the moisture is evaporated in the second and third 

sections with a moderately low ΔT between the biomass and the steam. In the second section, 

the moisture is reduced from 19% w.b. to 10% w.b., then to less than 2% w.b. in the final part 

of the dryer where the biomass is pre-heated. The whole sets of results from the CFD 

simulation and Aspen model are shown in Figure 8 and in Appendix B (Table B.3). The total 

residence time in the dryer is about 72 minutes. 

The results of the macroscale mass balance and energy balance of the dryer are reported in 

Figure 9. The total heat demand for the 100 MW plant is 4220 kW of which around 1650 kW 

is at 140ºC and 2570 kW at 165ºC. The electricity consumption is 356 kW. However, this 

value is strictly dependent on the pressure losses in the heat exchangers, and therefore on the 

type of heat exchangers used. 

The efficiency of the drying system is high since the only losses are from the evacuation 

stream and the heat losses along the dryer, amounting to 144 kW and 186 kW respectively. 

The energy efficiency of the dryer is calculated through the eq. 30, resulting in 92.8%. 

𝜂𝐼 = 1 −
𝑄𝑙𝑜𝑠𝑠+𝐻𝑒𝑣𝑎𝑐

𝑄1+𝑄2+𝑄3+𝑊1+𝑊2+𝑊3
        (30) 

From the CFD results, it is possible to calculate how the supplied energy is used in the dryer. 

As shown in Figure 10, most is spent on the evaporation of the moisture, which is later 

recovered as gasification steam. 

The exergy analysis for a 100 MW fuel input dryer yields that the minimum exergy demand is 

of 165 (kJ/kg dry biomass) while the exergy spend in the real system is 311 (kJ/kg dry 

biomass), leading to an exergy efficiency of 52.9%. The second-law efficiency of the system 

is considerably higher than those of other dryers using air or steam [23], [24], [25]. This good 
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result is due to the recovery of the evaporated moisture as gasification steam, and to heat 

transfers occurring with a moderately low temperature difference. This analysis enhances the 

importance of continuity between drying and pre-heating equipment and the gasifier. Cooling 

of the wood and condensing of the moisture after drying are not beneficial to the system, since 

the sensible heat cannot be recovered for any useful purpose. With a continuous drying and 

feeding system, heat can be used at a moderately low temperature (below 170ºC), both for 

drying and pre-heating of the streams, to recover the exergy in the evaporated moisture 

without condensing it and to reduce the head demand in the gasifier. 

 

6 Conclusions 

The present work proposes an integrated dryer and conveyor belt for woody biofuels with 

steam as the heat transfer medium. The design of the dryer is based on macroscopic heat and 

mass balance modeling in Aspen Plus, with detailed information on the drying process of the 

individual biomass particles supplied by computational fluid dynamics (CFD) simulations and 

experimental data to further improve the precision and reliability of the macroscopic model. 

The CFD simulation setup proposed here can be further used to optimize the dryer design, 

with respect to bed height, steam injection temperatures and fuel type. The presented Aspen 

model can be integrated in the modeling of a larger process and used to investigate the 

integration of the drying within a biomass plant. 

Integrating the proposed technology with an indirect steam gasifier, about 0.82 MJ/kg (daf) of 

heat can be shifted out from the gasifier heat demand, by drying and pre-heating of the 

biomass and moisture, starting from 20% w.b. moisture content. Low temperature heat (below 

170ºC) is used in the drying, and the dryer can be easily integrated within a steam cycle 

present in the plant or other heat sources at moderate temperature. Comparing this system to a 

direct feeding of wet biomass into the gasifier, more char will be available for gasification 
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with the proposed design, thus boosting the yield of gas produced. The reutilization of the 

removed moisture as a gasification agent is the key to increasing the energy and exergy 

efficiency of the drying process. Steam guarantees safe inertization and pre-heating of the dry 

fuel, as well as a contaminant-free purging atmosphere. These advantages, in addition to a 

design that can be derived from existing air belt dryers, indicate that the herein proposed 

drying technology presents a very competitive choice for operation with indirect steam 

gasification units. 
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Appendix A 

Results of thermogravimetric analysis of the wood chips 

The normalized weight loss and temperature of 19 samples of wood chips (initial moisture 

content 67.45% on dry basis) were recorded during temperature-programmed evaporation in a 

thermogravimetric analysis (TGA) (cf. Figure A.1). The wood drying experiments in the TGA 

were designed on the base of the procedure for oven dry moisture measurement from the 

Swedish standard SS 187170 [26], that prescribes a drying at 105 C in nitrogen for 24 hours. 

The wood chips were grained to a particle size smaller than 5 mm to feed them in the TGA in 

samples of 1g.  The mass of the samples was compared to that of the wood chips before the 

graining to account for moisture loss during the size reduction step. The wood chip samples 

are first heated to 105C and held at this temperature until the drying is complete (the weight 

loss curve levels off). After this period, the temperature is increased to 160C and held 

constant for an hour. The nitrogen flow in the TGA is 7 lpm, more technical data about the 

unit used can be found at [27]. The evaporation rate during the drying phase at 105 C was 

lower than 0.01 gH2O/min. The average drying time of the 19 samples at was 83.5 min with a 

standard deviation of  6.2 min. 

No significant weight loss is registered after the initial drying at 105C, even when the 

temperature is raised to 160C. Therefore the presence of tighter bound water and the release 

of VOCs in this temperature range are neglected in the calculations.  
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Appendix B 

Details of dryer integration within an indirect steam gasifier 

The layout proposed for the coupling of steam belt dryer with the feeding system of an 

indirect gasifier using steam is explained in Section 5 and depicted in Figure 7. In addition to 

the main advantages related to this integration, some other aspects can be pointed out about 

safety and startup procedures. In case of an unexpected shutdown of the dryer, it is possible to 

have a backflow of hot flammable gases from the gasifier. Emergency sealing devices will be 

present in the feeding system, but in the eventuality that some of the backflow gas reaches the 

dry biomass, a system for flushing the dryer with flue gases should be considered. The flue 

gases can later be evacuated though the evacuation pipe. The flue gases circuit could also be 

used during the startup procedure, instead of steam, and evacuated later in the same way. 

Furthermore, the moist air coming from the air dryer can be used in the combustor, increasing 

the water concentration, which results in lower carbon monoxide emissions. 

One aspect must be pointed out regarding the evaporation of the last moisture left in the 

biomass. Wood chips have a non-spherical shape and wherever two or more particles overlay 

(i.e. come into close contact), a volume with low external surface is created.  The remaining 

moisture is mostly probably located in the core of this volume, which has virtually no surface 

available for evaporation. As soon as the wood chips are mixed, falling into the final hopper, 

the remaining moisture will be evaporated, absorbing heat from the surroundings. When using 

the wood particle as the only heat source for evaporation, the final temperature of the 

completely dry wood can be coupled to the moisture content and temperature of the biomass 

at the end of the belt, by a simple heat balance. 

 

∆𝑻𝒘𝒐𝒐𝒅 =
𝒀𝒇𝒊𝒏𝒂𝒍

𝟏−𝒀𝒇𝒊𝒏𝒂𝒍
∙

∆𝒉𝒆𝒗𝒂𝒑

𝑪𝒑𝒘𝒐𝒐𝒅
      B.1
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Therefore, to pre-heat the completely dry biomass to above 105°C, the temperature at the end 

of the drying belt should be above 128°C and the moisture content below 1.95%. These data 

are used for design specifications of the dryer. 

The methodology outlined in Section 3 is applied to design a dryer integrated within the 

gasification plant. The biomass bed height is varied in the three sections of the dryer to avoid 

steam condensation, reduce the ΔT between the biomass and the steam and pre-heat the 

biomass. In addition, mixing between each section reduces the effect of chip overlaying. The 

general assumptions about the dryer and the gasifier are reported in Table B.1. 

The results from the CFD simulation have been used in the macroscopic model shown in 

Figure B.1. The biomass pre-heating section has been added to the previous model (Figure 3), 

and the moisture recovering circuit has been changed to lead the moisture into the gasifier. 

The power needed for compression of the moisture before injection into the gasifier is not 

taken into account in the dryer energy balance. The moisture evacuated together with the air 

in the first section is condensed and the heat can be recovered in the air dryer. 

The evaporation of the remaining moisture occurs in the hopper and is modeled in the blocks 

“DRYER4” and “FLASH4”, reducing the temperature of the wood. This moisture is assumed 

to be recovered in the steam circuit and is therefore available as gasification steam.  

Heat losses along the dryer are taken in account in the blocks “QLOSS”. For this purpose, the 

dryer has been approximated to a cylinder with the total length of 250 m and an internal 

diameter of 2.2 m (corresponding to the belt width), calculated from the residence time 

obtained in the CFD simulation (Table B.2). The internal walls are made of stainless steel 

with a conductivity of kwall = 16 kW/m∙K and a wall thickness of 5 mm, while the insulation is 

of polyurethane foam (kins = 0.025 kW/m∙K) with a thickness of 35 cm. The convective heat 

transfer coefficient used in the calculation is hconv = 7.5 kW/m2K, and the external temperature 
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is 20ºC. The heat loss calculated is less than 4% of the total heat supplied in the three 

condensers.  

Table B.3 reports the results from the macroscopic energy and mass balance, the residence 

time and the heat losses.  

When comparing these results to those of the standalone dryer, one should consider that here 

the initial moisture content is double that of the previous case, and thus the residence time, the 

heat load and the steam consumption are all increased.  
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Appendix C 

Exergy analysis methodology 

The definition of the second law efficiency as the ratio of the minimal exergy that must be 

invested in the process to the exergy that is actually used, gives a measure of the 

approximation of the process to reversible operation. 

𝜂𝐼𝐼 =  
𝐸𝑥𝑚𝑖𝑛

𝐸𝑥𝑡𝑜𝑡
      C.1 

This definition is particularly relevant for those processes having intrinsic irreversibility, like 

wood drying. The method here applied is similar to that used by Liu et al.[23].  

For a control volume system, the exergy balance can be written as: 

∑ �̇�𝑖𝜓𝑖 − ∑ �̇�𝑒𝜓𝑒 − 𝐸�̇�𝑑𝑒𝑠𝑡𝑟𝑜𝑦𝑒𝑑 = − ∑ (1 −
𝑇0

𝑇𝑘
) 𝑄𝑘 + 𝑊   C.2 

Where 𝜓 is the specific exergy:   

𝝍 = (𝒉 − 𝒉𝟎) − 𝑻𝟎(𝒔 − 𝒔𝟎)    C.3 

and mi and me are the mass flows in and out of the volume, Qk is the heat transferred at the 

temperature Tk and W the mechanical power.  

The left term of equation (C.2) is the exergy spent in passing from the initial state to the final 

state and in overtaking all irreversibilities. It is well known that a desorption-sorption cycle 

has hysteresis, and therefore it is not possible, nor useful, to quantify the heat demand for a 

reversible drying process. In this study, the irreversibility due to the heat of desorption is 

therefore included in the minimum exergy demand, Exmin, even though it is not related to any 

reversible process. Since the heat of desorption depends on the temperature and the moisture 

content (which varies with the system temperature as well), a reference drying process for the 

calculation of Exmin has to be defined. 

Since the reference process is to be valid for a steam dryer at atmospheric pressure, the drying 

temperature has been set to 100°C, which is the theoretical minimum drying temperature that 



33 

 

avoids steam condensation. If the approach is applied to an air dryer, the temperature would 

be lower, since it is possible to use low exergy heat below 100ºC. The heat transfer occurs 

without a finite temperature difference between the biomass and the heat source, which 

follows the temperature of the wood along the dryer. The moist wood is heated up to 100°C, 

and the moisture is evaporated along the sorption isotherm at 100°C to the final moisture 

content, then the temperature of the wood and the moisture are raised to the final values of 

128°C and 155°C. Figure C.1 shows the temperature and moisture profiles in this reference 

process. 

The heat of sorption is calculated from the sorption isotherms in Figure C.2 using the equation 

(3). While the temperature of the moist wood is increased, the wood fibers reach the 

saturation point (point 2) and part of the moisture is released as free water. This moisture is 

assumed to be evaporated immediately. The correlation between the wood temperature and 

the fiber saturation point is commonly calculated by [14] : 

𝑋𝑓𝑠𝑝 = 0.3 − 0.001(𝑇 − 20)    C.4 

Where the temperature is in Celsius and 𝑋𝑓𝑠𝑝 is the moisture content at the fiber saturation 

point on dry basis. Figure C.2 (left) shows the evolution of the reference process along the 

sorption isotherm, the heat of sorption ∆𝐻𝑠 and the term 𝑇 ∙ ∆𝑆𝑠 (right).  

The system is pressurized from 1.01325 bar to 1.01625 bar, before the temperature is raised, 

and the dead state is defined as 25°C and 1 atm. 

The minimum exergy demand for one kg of dry wood is: 

𝐸𝑥𝑚𝑖𝑛 = ∫ (𝐶𝑝𝑤𝑜𝑜𝑑(𝑥, 𝑇) − 𝑇0
𝐶𝑝𝑤𝑜𝑜𝑑(𝑥,𝑇)

𝑇
)

4

1
(1 + 𝑥)𝑑𝑇  +   ∫ [∆𝐻𝑒𝑣 + ∆𝐻𝑠(𝑥) −

3

1

𝑇0(∆𝑆𝑒𝑣 + ∆𝑆𝑠(𝑥))]𝑑𝑥  +  [(ℎ5 − ℎ𝑉𝑠𝑎𝑡) − 𝑇0(𝑠5 − 𝑠𝑉𝑠𝑎𝑡)](𝑥3 − 𝑥1)  +   
Δ𝑃

𝜌1
  C.5  

Where cp,wood is heat capacity of the moist wood on wet basis,  ∆𝐻𝑒𝑣 is the enthalpy of 

evaporation of water, ∆𝑆𝑒𝑣 the entropy of evaporation of water, h and s are the specific 

enthalpy and entropy of water, Δ𝑃 the pressure rise in the system and 𝜌1 is the initial density 
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of the moist wood.  The four terms on the right hand side of equation C.5 represent the exergy 

change due to the passage of moist wood from the initial to the final state, the desorption and 

evaporation of water, the superheating of the evaporated moisture and the pressurization of 

the system. 

The energy spent in the real process is calculated from the results of the CFD and Aspen 

simulations.  

𝐸𝑥𝑡𝑜𝑡 = 𝑊𝑡𝑜𝑡 +
(𝑄1+𝑄3)

∆𝐻𝑒𝑣165 𝐶

(𝜓𝑉𝑠𝑎𝑡 − 𝜓𝐿𝑠𝑎𝑡)165 𝐶 +  
𝑄2

∆𝐻𝑒𝑣140 𝐶

(𝜓𝑉𝑠𝑎𝑡 − 𝜓𝐿𝑠𝑎𝑡)140 𝐶 C.6 

𝑊𝑡𝑜𝑡 includes the power of all the fans and takes into account the pressure drops in the heat 

exchangers,  𝑄1, 𝑄2, 𝑄3 are the heat loads exchanged in the three heat exchangers and account 

for the heat losses. The results of the exergy analysis are reported and explained in Section 5. 
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Figure captions 

 

Figure 1 

Illustration of the proposed drying system 

 

Figure 2 

Schematic illustration of the design of the integrated dryer and conveyor belt 

 

Figure 3 

Aspen Plus flow-sheet of the dryer 

 

Figure 4 

Computational domain for the CFD simulations 

 

Figure 5 

CFD simulation results: temperature profiles 

 

Figure 6 

CFD simulation results: average moisture content of the biomass particles as a function of 

time 

 

Figure 7 

Integration of the steam belt dryer in an indirect gasification system operating with steam 

 

Figure 8 
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Temperatures and moisture profiles in the indirect gasifier case study 

 

Figure 9 

Mass and energy balance of the dryer in the indirect gasification case study 

 

Figure 10 

Energy share in the dryer: utilization (left) and supply (right) 

 

Figure A.1 

Normalized weight loss and temperature of 19 samples of wood chips (initial moisture content 

67.45% on dry basis) during thermogravimetric analysis 

 

Figure B.1 

Aspen model of the dryer for integration with an indirect steam gasifier 

 

Figure C.1 

Temperature and moisture profile in the reference drying process 

 

 

Figure C.2 

Sorption isotherms, with the reference drying process (left), and the ∆Hs and T∙∆Ss  terms for 

the sorbed water 
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Table 1 - Overall inputs and biomass composition. 

Steam dryer - overall design parameters  
As received biomass proximate analysis (wood 
chips) 

Initial moisture % 10 Moisture % 50 

Final moisture % 4 Char weight-% 18.4 

Initial temperature °C 25 Volatiles weight-% 81 

Pressure drop over 
biomass bed and belt 

Pa 300 Ash weight-% 0.6 
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Table 2 – CFD simulation results: Residence time, steam and heat load for different final moisture contents. 

 Section 1 Total 

final moisture 
t 

(s) 

Steam 
(kg /kg dry 
biomass) 

Heat 
(kJ/kg dry 
biomass) 

τ 
(s) 

τ 
(min) 

Steam 
(kg /kg dry 
biomass) 

Heat 
(kJ/kg dry 
biomass) 

4% w.b. 393 2.55 151 3180 53 12.6 331 

5% w.b. 393 2.55 151 2670 44.5 10.9 304 

6% w.b. 393 2.55 151 2190 36.5 9.4 277 

7% w.b. 393 2.55 151 1720 29 7.8 250 

Initial moisture 10% w.b. 
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Table 3 – Belt width and belt speed in the two sections of the dryer for different total length of the dryer. Final 

moisture content 4% w.b., section length ratio (section 2/ section 1) = 3.54. 

Total length 
[m] 

Width 
[m] 

Speed B1 
[cm/s] 

Speed B2 
[cm/s] 

100 2.9 5.6 2.8 

150 1.9 8.4 4.2 

200 1.4 11.2 5.6 
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Table 4 – Inputs for macroscopic model. 

Aspen model inputs from CFD simulation 

Moisture content at the 
switch  

% w.b. 9.56 Final moisture content  % w.b. 4 

Biomass average 
temperature at the switch 

°C 101 
Final biomass average 
temperature 

°C 108 

Steam recirculated  section 1 
kg/kg dry 
biomass 

2.55 Steam recirculated section 2 
kg/kg dry 
biomass 

10.01 

Heat load section 1 
kJ/ kg dry 
biomass 

151 Heat load section 2 
kJ/ kg dry 
biomass 

180 

Pressure drop steam HE1 bar 0.01 Pressure drop steam HE2 bar 0.01 

Aspen model inputs from 100 MW plant design  

Heat losses section 1 
kJ/kg dry 
biomass 

3.32 Heat losses section 2 
kJ/kg dry 
biomass 

9.65 

Final moisture content 4% w.b. 
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Table 5 – Energy balance results of the macroscopic model – 100 MW fuel input. 

Heat exchanger 
section 1 

Heat exchanger 
 section 2 

Moisture  
Condenser 

Electricity 
consumption 

Heat load kW 773 Heat load kW 810 Heat load kW 883 Fan 1 kW 43 

Steam 
flow 

kg/s 13.8 
Steam 
flow 

kg/s 51 
Steam 
flow 

kg/s 0.35 Fan 2 kW 164 

Temp. in °C 120 Temp. in °C 110 Temp. in °C 112 
   

Temp. out °C 150 Temp. out °C 120 Temp. out °C 50 
   

Final moisture content 4%w.b. 
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Table B.1 – General assumptions for the indirect gasification case study. 

Biomass type - wood chips (Table 1) 

Biomass flow (dry ash free) kg/s 5.4 

Initial moisture weight % 20 

final moisture  weight % < 2% 

Biomass pre-heating C 128°C 

Gasification steam pre-heating C 155°C 

MP steam - 7 bar,    Tsat 165°C 

LP steam - 3.6 bar, Tsat 140°C 

Design length m 250 

Bed height section 1 and 3 m 0.1 

Bed height section 2  m 0.2 

 

  



45 

 

Table B.2 – Design of the belt for different total lengths. 

Belt Length 
(m) 

Belt Width 
(m) 

Speed section     
1 and 3 (cm/s) 

Speed section 2     
(cm/s) 

150 3.65 5 2.5 

200 2.75 6.5 3.25 

250 2.20 8 4 

300 1.85 10 5 
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Table B.3 – Aspen model results in the indirect gasifier case study. 

Aspen model inputs from CFD simulation Section 1 Section 2 Section 3 

Moisture content at the end of 
the section 

% 19.35 10.3 1.95 

Biomass average temperature 
the end of the section 

°C 93 107 128 

Steam recirculated in the section 
kg/kg dry 
biomass 

2.85 9.11 7.16 

Heat load in the section 
kJ/ kg dry 
biomass 

176 308 317 

Pressure drop steam in 
condensers 

bar 0.01 0.01 0.01 

Residence time in the  section s 465 2545 1320 

Aspen model inputs from 100 MW plant design 

Heat losses in the section 
kJ/kg dry 
biomass 

2.5 24 8 

Initial moisture content 20%, initial biomass temperature 25 °C 

 

 


