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Abstract

This thesis is concerned with how data from common automotive sensors can
be processed and interpreted in order to support advanced driver assistance
systems (ADAS). More specifically, the thesis addresses aspects of object
tracking using radar detections, mapping and self-localization for automated
vehicles and driver monitoring.

In automotive radar tracking, an observed vehicle typically generates mul-
tiple detections. This thesis presents a detailed sensor model that adapts to
the detection properties of an object by jointly estimating the position of
reflection centres and the position of the object. Moreover, the model con-
siders the limited resolution of the radar and evaluation show results close to
those achieved with a deterministic vehicle model where the reflecting prop-
erties are known. A second contribution to the area of object tracking is a
generalization of the well-known cardinalized probability hypothesis density
(CPHD) filter to incorporate objects that appear through spawning from ex-
isting targets. It is further shown that the generalized filter is tractable for
some common birth and spawning models.

For automated vehicles, some of the studied problems resemble those tra-
ditionally studied in robotics, such as mapping and localization. This thesis
presents and evaluates a self-localization solution based on a set of automo-
tive off-the-shelf sensors together with a map that contains lane markings
and a simplistic description of radar landmarks. The evaluation shows that
this map, in combination with real radar data, provides valuable information
to the localization algorithm. With this motivation, a method for estimating
more detailed radar maps is derived. The map is modelled by an inhomoge-
neous Poisson process describing the expected measurements from the static
environment as a function of the sensor position. The estimation principle
relies on a variational method where the number of landmarks and their
respective parameters are found simultaneously.

In addition to sensors that observe the vehicle and its surroundings, there
are camera-based systems designed to monitor the driver behavior. In the
context of driver distraction, this thesis presents a method for driver gaze
zone estimation, i.e., estimation of which area the driver is currently looking
at, using data provided by such monitoring systems. To improve robustness,
the proposed solutions make use of functions that describe the gaze direction
based on the head pose and eye closure. It is also shown how these functions
can be learnt from data.
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Chapter 1
Introduction

T
he areas of automotive safety and comfort systems have expanded a
lot over the years, in order to provide the driver with a comfortable
and safe driving experience. The safety development started with

passive systems such as seat belts and, later on, air bags, with the aim to
protect the driver and the passengers in case of an accident. Systems that
are designed to support the driver during travel is referred to as advanced
driver assistance systems (ADAS). This category includes, for example, active
safety systems such as collision warning and autonomous braking, driver
distraction/drowsiness warning as well as autonomous driving functions.

In order to operate, many ADAS systems require knowledge about the
surrounding environment, the current traffic situation and the driver. This
knowledge includes information regarding the position and movement of ve-
hicles and pedestrians, the location of stationary objects and the shape of the
road ahead. To acquire this information, the vehicle is equipped with sensors
that observe the surroundings, the driver or properties of the host vehicle.
Common sensors in automotive settings are: radars, cameras and internal
sensors, such as gyroscopes and accelerometers. However, due to imperfec-
tions, these sensors provide noisy observations of the measured quantities
and to mitigate these effects it is common to filter the sensor output.

Bayesian filtering provides a natural framework for dealing with noisy
observations, combining data from multiple sensors and quantifying the un-
certainties in the resulting estimates. The idea in Bayesian filtering is to
recursively estimate an unknown quantity over time. This quantity is called
the state vector and is observed, directly or indirectly, by one or several sen-
sors. Each filter recursion consists of two steps, namely a prediction step,
followed by a measurement update. In the prediction step, a future value of
the state is forecasted based on a process (or motion) model. This model
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Chapter 1. Introduction

captures the behaviour of the state over time, including uncertainties. In the
measurement update, the predicted state is updated using new information
provided by the sensors. To relate the received measurements to the state,
the filter requires a measurement (or sensor) model. Since the measurements
are noisy, the updated estimate will also be associated with uncertainties.

In many scenarios there are practical issues that must be considered in
order to perform filtering. For example, in addition to the noise that affects
the accuracy of the observations, a sensor can either fail to detect an object
or provide false alarms. Some sensors, such as radars, also have a limited
field of view and a limited resolution. Furthermore, in object tracking, there
might be multiple objects in the observed scenario, requiring a robust method
for assigning the received measurements to the tracked objects. There is also
a need to handle the appearance and disappearance of objects.

In this thesis the focus is on Bayesian methods for how data from com-
mon automotive sensors can be processed and interpreted in order to support
advanced driver assistance systems. More specifically, the thesis addresses as-
pects of object tracking using radar detections, mapping and self-localization
for automated vehicles and driver monitoring. The thesis is divided into two
parts. The first part summarizes the main contributions and put them into
context. It also includes a theoretical background to used concepts and meth-
ods. In the second part, the research contributions of the thesis is presented
in the form of five appended papers.

1.1 Research projects

The work presented in this thesis has been carried out within projects fi-
nanced by the Intelligent Vehicle Safety System (IVSS) Program and the
Strategic Vehicle Research and Innovation Program (FFI) which is funded
by the Swedish Agency for Innovation Systems (VINNOVA).

1.2 Contributions of the thesis and future di-

rections

The appended papers cover a range of problems related to how data from
common automotive sensors can be processed in order to extract information
for ADAS systems. Next, the main contributions of the appended papers are
summarized.
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1.2 Contributions of the thesis and future directions

Paper I: Adaptive Radar Sensor Model for Tracking Structured
Extended Objects

Traditionally, in object tracking using radar measurements the objective has
been to track aircrafts at a far distance, mainly for military applications.
In this setting, a detected object is much smaller than the resolution of the
sensor, implying that the object can be treated as a point target that at
most generates one detection at each time step. When tracking vehicles at
short distances, the situation is different. Then, the sensor typically resolves
multiple reflecting features on the same object, and the number of features
varies depending on the distance and angle from which the object is observed.
In tracking theory, objects that generate multiple detections at each time are
called extended objects.

In this paper we derive a detailed sensor model for tracking of extended
objects. The model is based on a line structure that holds a set of reflection
centers whose number and positions are unknown. In the tracking framework,
the model is adapted to describe the received measurements. Evaluation is
performed on real radar data and the achieved tracking performance is com-
pared to that of a detailed model where the size of the car and its reflection
properties are known. The derived solution provides similar results as the
reference model but at a higher computational cost.

Paper II: A CPHD Filter for Tracking With Spawning Models

In many applications where the aim is to perform object tracking, there are
multiple objects to consider and often the number of objects in the observed
region changes over time. A framework that naturally deals with multi-
ple objects, including appearance and disappearance, is based on finite set
statistics (FISST). In contrast to traditional tracking solutions, the objects
are represented by sets where the number of elements is a discrete random
variable.

The two most well-known filters, derived using FISST, are the probability
hypothesis density (PHD) filter and the cardinalized probability hypothesis
density filter (CPHD). In these filters, the process model includes a birth
process and a death/survival process that model the appearance and disap-
pearance of objects. In the PHD filter, new objects can be modelled in two
ways. Either, they appear spontaneously, i.e. independently of other objects,
or they can spawn from existing objects. In the original derivations of the
CPHD filter, no spawning process is included.

In this paper we generalize the CPHD filter to include a model of spawning
objects. Incorporation of the spawning process only affects the process model,
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Chapter 1. Introduction

and consequently, the measurement update equations remain the same as for
the original CPHD filter. It is further shown that the prediction of the in-
tensity function can be adopted from the PHD filter while a new expression
for prediction of the cardinality distribution is required. The derived pre-
diction equation can be intractable due to its combinatorial form. However,
we show that for common birth and spawning models, exact or approximate
expressions can be derived to make the filter tractable.

Paper III: Vehicle Self-Localization Using Off-the-Shelf Sensors
And a Detailed Map

In the work towards self-driving vehicles, it is of a great importance to have
detailed information regarding the position of the ego vehicle. This prob-
lem is called self-localization and is often solved using a combination of a
detailed map and sensors that observe properties of the vehicle as well as the
surrounding environment. In many demonstrations that have taken place,
expensive and bulky sensors have been used.

In this work we use a set of production sensors to investigate their poten-
tial for self-localization. The solution is based on a forward looking radar, a
camera system, a GPS, a gyroscope and wheel speed sensors. As common in
automotive settings, the camera system delivers extracted features, in this
case polynomials that describe the lane markings. Similar, the radar provides
filtered detections describing the range and angle to stationary objects. To
be able to relate the received measurement from the extrospective sensors to
features of known position in the world, a simplistic map of the road as seen
by the radar and the camera is generated. This map enables the mapping of
camera and radar measurements to features of known positions.

When the vehicle is travelling on road segments where there are both lane
markings and good radar landmarks, the evaluation shows a longitudinal
position accuracy within 1 meter and a lateral accuracy around 0.2 meters.
However, when this is not the case, the algorithm is not robust enough to
provide stable and accurate position estimates.

Paper IV: Variational Bayesian Expectation Maximization for Radar
Map Estimation

There are many examples of maps in the literature, and many of them rep-
resents landmarks as points in the observed space. In this paper we propose
that a radar map for localization should describe the behaviour of the de-
tections rather than the position of point sources (which is not what the
environment looks like). The proposed model of the map is similar to that
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in Paper III but where each landmark is described by its own parameters.
That is, each landmark is represented by a position in the east-north coor-
dinate frame, a covariance matrix that capture the extension and a weight
that corresponds to the expected number of detections from the landmark.
In addition, the map includes a description of the clutter intensity. Together,
the environment is described as an inhomogeneous Poisson process.

To estimate the map, we derive two batch solutions, using the expecta-
tion maximization (EM) algorithm and variational Bayesian EM (VBEM).
Both solutions estimate the landmark parameters and the clutter intensity
while considering the unknown data associations. However, a major advan-
tage with the VBEM compared to EM is its ability to estimate the number
of landmarks jointly with their parameters. To limit the influence of the
measurement noise on the landmark extensions estimates, the variation in
the noise due to the distance and the angle between the sensor and a land-
mark is incorporated in the models. Unfortunately, incorporation of the
measurement noise results in a model that is not straightforward to use in
the VBEM framework. To overcome this issue, a set of approximations are
employed. Altogether, the proposed mapping algorithm is straightforward
to implement, computationally efficient and shows promising results.

Paper V: Driver Gaze Zone Estimation Using Bayesian Filtering
And Gaussian Processes

It is well-known that many accidents are caused by driver inattention. It can
be a driver who is using a phone, looking at things besides the road or talking
to a passenger. With the aim to detect if the driver is tired or distracted,
there are camera-based monitoring systems designed to observe the driver.
These systems provide measurements on, for example, the head pose, the
gaze direction and the eye opening. In this paper, we use such information
to find the probability that the driver is looking at different gaze zones. In
particular, the focus is on a set of zones directly related to active driving and
to distraction, for example: the road, the mirrors and down at a display or
a hand-held phone.

In the paper, we consider three sets of information commonly provided by
driver monitoring systems and a solution is derived for each set. For systems
that do not provide observations of the gaze, it is shown how a probabilistic
function that describe the gaze direction based on the head pose and eye
closure can be incorporated into a Bayesian filter. The function can also be
beneficial as a complement to noisy and unstable gaze data. It is further
shown how such a function can be estimated from a set of data with known
gaze focus using Gaussian processes.
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Chapter 1. Introduction

1.2.1 The author’s contributions

Paper II, IV and V are mainly the author’s own work. Of course, theory,
different ideas, encountered issues and structure of the papers have been dis-
cussed with the co-authors. Paper I is mainly Lars Hammarstrand’s work.
The author of this thesis took part in various aspects of the development,
implementation and writing. Finally, Paper III is the result of a close co-
operation with Erik Stenborg. The author of this thesis contributed to all
parts (development, implementation and writing).

1.2.2 Future work

The discussion regarding future work is focused on the topics of the two
most recent papers in the thesis, namely radar mapping and driver monitor-
ing/distraction.

Radar mapping

When observed by a radar, many objects have different properties depend-
ing on the distance and the angle from which they are detected. In the
extreme case, an object might be fully observable from some directions while
occluded from other directions. Several objects might also be unresolved
when observed from some distances but resolved from others. Incorporation
of this type of information would provide an even better description of the
detections from the environment.

When estimating radar maps using simulated data, there are many pos-
sible measures that can be considered in order to evaluate the proposed
methods. However, when using real data, no ground truth is available for
evaluation. Hence, to be able to evaluate such a map, there is a need for an
alternative method. Possible approaches are to evaluate the map regarding
the ability to describe new data or the ability to support another function,
such as a localization algorithm.

Driver monitoring/distraction

In Paper V in this thesis, it is shown how the incorporation of a gaze mapping
in the filtering framework can improve the ability to determine what the
driver is looking at. To further improve the description of the gaze direction,
it is possible to include additional information in the mapping. Example of
such inputs can be head rotational speed or signals from the vehicle, such as
steering, buttons etc.
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Access to information from additional sensors or systems also makes it
possible to extend the proposed gaze zone estimation algorithm to consider
dynamic zones. When having zones describing the road as well as vehicles
and pedestrians, the algorithm can be used to answer questions such as: has
the driver seen the pedestrian approaching the road ahead? is the driver
aware of the car in the blind spot region? etc. Worth noticing is that since
the exact positions of other objects are not known, the corresponding gaze
zones will be associated with uncertainties.
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Chapter 2
Automotive Applications and Sensor
Systems

T
he increasing complexity of automotive systems require more infor-
mation for making decisions and therefore, vehicles are equipped with
a large number of sensors, some of which are observing the surround-

ing environment and some providing information about the vehicle itself or
the driver. This section provides an introduction to the sensors considered
in this thesis and an overview of some potential applications.

2.1 Advanced driver assistance systems

There is a large number of systems in the category of automotive systems
referred to as advanced driver assistance systems. In this section we briefly
discuss a few of these with the purpose of providing the reader with a context
for the contributions of this thesis.

2.1.1 Automotive safety systems

In order to avoid accidents, or to mitigate the consequences caused by an
accident, there are systems designed to detect and sometimes also avoid
potentially dangerous situations [1, 2]. Some examples of such systems are:

Lane keeping assist/lane departure warning: To avoid unintended
lane departures, there are systems that warn the driver [3] and systems that
actively steer back into the lane. For these systems to operate, they require
knowledge regarding the position and the shape of the lane markings. This
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Chapter 2. Automotive Applications and Sensor Systems

information is used to predict if the vehicle will make an unintentional lane
change and to calculate the required torque for steering back into the lane.

Collision warning/avoidance/mitigation: There are many systems de-
signed to warn or intervene in situations where a collision is about to hap-
pen [4,5]. For example, using a forward-looking radar, it is possible to detect
if the vehicle approaches another vehicle at a too high speed. If this is the
case, the system can warn the driver or intervene by braking. To avoid false
alarms, such as automatically brake when the driver intend to overtake the
vehicle ahead, some systems only intervene when it is already too late to
avoid a collision and by that only mitigate the damages.

Pedestrian detection: Using cameras, there are systems that identify
pedestrians [4, 6, 7] and if someone approaches the road in front of the vehi-
cle the driver is warned and if no action is taken, the system automatically
applies the brakes. Similar systems have been developed in order to avoid
accidents involving bicycles or wild animals [8].

An important aspect of automotive safety systems is driver acceptance.
For example, if a system intervenes when the driver has full control over the
situation, or if it provides many false warnings, the system is perceived as
unreliable and annoying and will eventually be turned off. To make these
systems more efficient, they can be given access to information about the
driver. An attentive driver can be given full control over the situation, while
if the driver is tired or distracted, the system can warn or intervene earlier
without the driver perceiving it as a false alarm.

2.1.2 Towards self-driving vehicles

When discussing automated vehicles, it is easy to only think about fully au-
tonomous vehicles where the ”driver” simply enters a destination and lean
back while the vehicle plans and controls the entire trip. However, the level
of automation can range from that of a vehicle equipped with an adaptive
cruise control or an automatic parking system, to fully autonomous, or self-
driving, vehicles [9, 10]. The automation level considers different aspects,
such as if a vehicle function includes execution of steering and/or accelera-
tion/deceleration, monitoring of the driving environment and the expecta-
tion of the driver to take control. One categorization of automation lev-
els is developed by the US National Highway Traffic Safety Administration
(NHTSA) [9], and is summarized as:
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2.1 Advanced driver assistance systems

• Level 0 - No automation: The driver is in control of steering, brake
and throttle at all times. The vehicle can be equipped with warning
systems, such as blind spot monitoring etc.

• Level 1 - Function-specific automation: On this level, the vehicle
automation involves systems that can be in limited control of a specific
task, such as adaptive cruise control or automatic braking, however not
in combination with steering.

• Level 2 - Combined function automation: At least two functions
working together, such as ACC in combination with a lane following
system. Enables both hands-off-wheel and foot-off-pedal operation but
where the driver is expected to be available for control at all times and
at short notice.

• Level 3 - Limited self-driving automation: The vehicle controls all
functions under certain traffic conditions and monitor the situation in
order to alert the driver when a transition to driver control is required.

• Level 4 - Full self-driving automation: The vehicle is designed to
be in control of all functions during an entire trip based on a navigation
input.

When shifting focus from safety systems to self-driving vehicles, new prob-
lems arise. One major difference is that many safety systems are designed
for a specific task or scenario, such as lane keeping or forward collision warn-
ing. A self-driving vehicle needs to handle more complex scenarios including
different situations that arise during normal driving but also more unusual
situations such as foreign objects on the road or if the traffic is re-directed
due to road construction or due to an accident. In addition, a safety sys-
tem is only designed to support the driver and can hence be made rather
conservative in order to avoid false warnings or interventions. When the ob-
jective is to develop self-driving vehicles, the requirement on avoiding false
interventions is complemented by strict requirements regarding missed in-
terventions. While considering these demands, the self-driving vehicle shall
perform tasks ranging from perceiving the environment and assessment of
the traffic situation to self-localization, path planning and vehicle control.

Defense Advanced Research Projects Agency (DARPA) urban challenge
[11, 12] Around the world, there are many projects on self-driving vehicles.
The most well-known is probably the Google Car [13], but many car manu-
facturers also focus on this topic. For example, in 2013, a German team had
a demonstration where a car drove autonomously along a pre-defined 100 km
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Chapter 2. Automotive Applications and Sensor Systems

long route using radar and camera sensors [14]. In the Volvo DriveMe project,
the aim is to have 100 cars in open traffic by 2017.

2.2 Sensor systems

Depending on the application, the required information for making a robust
system differs and thus affects the choice of sensors. For example, parking
assistance systems often use ultrasound sensors to measure the distance to
other vehicles and objects. This sensor works well in this setting, but to
measure the distance to a vehicle on a highway, maybe up to 150 meters, a
radar is used. The subsequent sections provide an overview of the sensors
considered in the thesis. The focus is on the type of information provided by
the different sensors and how it can be used in automotive systems.

2.2.1 Radar

Many automotive systems make use of radar sensors due to its ability to
accurately measure the distance, the angle and the relative speed to both
moving and stationary objects. Another important strength is the robustness
to weather conditions such as rain, fog and snow [15].

Radar is an acronym for RAdio Detection And Ranging and the basic
measuring principle relies on the transmission of microwaves that are re-
flected by other objects and thereafter registered by a receiver [16]. From
the transmitted signal power, only a fraction will return to the receiver. The
reflected power depends on several parameters, such as the distance to the
object, what type of object it is etc. The received signal is processed in order
to extract useful information. A common output from an automotive radar
unit is a set of detections, where each detection includes the range and angle
to a reflecting feature/object as well as the relative radial velocity. In some
settings, the signal strength can be accessible.

Automotive radars are often divided into three categories [17], namely
short range radar, medium range radar and long range radar with typical
fields of view according to Table 2.1. In automotive settings, different types
of radars are used depending on the application. Maybe the aim is to monitor
the blind spot region, or observe the traffic in order to warn for approaching
vehicles at an intersection, so called cross traffic alert. Often, the vehicle is
equipped with a set of radar sensors with the purpose to support different
systems.
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2.2 Sensor systems

Short range Medium range Long range

radar (SRR) radar (MRR) radar (LRR)

Range 30 m 100 m 250 m

Angle ±80◦ ±40◦ ±15◦

Table 2.1: Typical properties of the field of view for different radar types.

Figure 2.1: An example of a radar setup (not to scale).

2.2.2 Camera

There are several advantages with vision-based sensors [2]. They are cost-
efficient sensors that are well suited to detect road and traffic information
intended to be clearly visible for the human eye. Depending on the system,
either the raw images or a set of extracted features are made available. The
main drawbacks with a camera are its sensitivity to varying lighting condi-
tions, such as strong sunlight or poor lighting, as well as heavy rain, fog or
dirt.

Forward looking camera: A camera mounted to face forward can be
used to monitor the road ahead of the vehicle. By analyzing the captured
video frames, it is possible to detect pedestrians, traffic signs, lane mark-
ings or other vehicles. Another advantages with a camera is that it enables
classification of detected objects.
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Driver monitoring: Using one or multiple cameras inside a vehicle enable
monitoring of the driver. There are several such monitoring systems on the
market and the information they provide differ slightly. Common observa-
tions are the position of the head, the head rotation, the gaze direction and
eye closure.

2.2.3 Internal sensors

All vehicles are equipped with a large number of internal sensors, with the
purpose of monitoring the vehicle and provide the driver, or a system, with in-
formation [18]. Internal sensors whose function is regularly used by the driver
are the speedometer, the odometer (that measures the travelled distance of
a vehicle) and the fuel level indicators. Another example is accelerometers
that are used to detect abrupt changes in the velocity of a vehicle. This
information can be used for triggering the inflation of airbags in case of an
accident.

2.2.4 Global navigation satellite system

Global navigation satellite system (GNSS) is a family of systems that uses sig-
nals from satellites in order to locate a receiver on Earth [19]. Like many other
technical findings, the development of satellite navigation started within the
military area, but over the years it has spread into civil applications. Nowa-
days, most phones are equipped with a navigation system.

The most well-known system is the global positioning system (GPS),
that makes use of 24 satellites in orbit around the Earth. Each satellite
transmits its position and the current time while the GPS receiver listens
to several satellites and computes its position based on the measured signal
propagation time for each satellite. There are many potential sources of
errors in this process. For example, the transmitted signals travel through
the atmosphere which affects the signal path and speed. Closer to ground
the signal can be reflected by buildings, the ground or other objects. This
phenomenon is called multipath and affect the position since the signal has
travelled a longer distance.

To improve the accuracy in the position measurements, it is possible to
use reference stations located at known positions. This way, some of the
sources to disturbances, such as atmospheric effects, can be cancelled out.
However, it still requires an open area in order to avoid multi-path.
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Chapter 3
Bayesian Filtering

I
n many applications, the aim is to recursively estimate some parameters
of interest based on measurements from one or several sensors. It can, for
example, be the position and velocity of an aircraft observed by a radar,

or the locations of firefighters in a building using inertial sensors mounted on
knees and feet. In the Bayesian filtering, the parameters of interest are col-
lected in a state vector, and through filtering of the observations, a posterior
distribution of the state is computed. In this chapter, the general filtering
problem is defined and the conceptual solution is derived. It is shown that a
filtering recursion consists of two steps, namely a prediction step and a mea-
surement update, and it is discussed how these are performed in different
types of problems.

3.1 Problem formulation

The general problem can be formulated as finding an estimate of the state
vector xk using information from a set of sensors. The subscript k denotes
the discrete time instant corresponding to continuous time tk. The available
information regarding xk is a set of observations, collected by one or several
sensors from time 1 to k. The complete set of data is an ordered set denoted
by

Z1:k = {z1, z2, . . . , zk}, (3.1)

where zi is a vector containing the observations made at time i. The assumed
relations between the state at different times and the received measurements
are illustrated in Figure 3.1. From this figure, two key modelling assumptions
in filtering can be noticed. Firstly, the evolution of the state vector fulfills
the Markov property. That is, a future state only depends on the current
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xkxk−1 xk+1 xk+2

zkzk−1 zk+1 zk+2

. . . . . .

Figure 3.1: The assumed dependencies between the states and the measure-
ments.

state such that:

p(xk|xk−1, . . . ,x0) = p(xk|xk−1). (3.2)

Secondly, a measurement at time k is only dependent on the current state,
xk, implying that:

p(zk|xk, . . . ,x0) = p(zk|xk). (3.3)

In a Bayesian filtering setting, the objective is formulated as recursively
finding the posterior probability density function (pdf) p(xk|Z1:k). This den-
sity summarizes the knowledge about the state, given all the data up to and
including time k. From the density, an estimate x̂k|k of the state can be
derived according to a chosen optimality criterion. For example, the most
likely value of xk is referred to as the maximum a posteriori (MAP) estimate
and is defined as

x̂MAP
k|k = arg max

x
p(xk|Z1:k). (3.4)

Alternatively, if the aim is to minimize the mean squared error, the estimate
can be found as

x̂MMSE
k|k = arg min

x
E
{
(xk − x̂k)

T (xk − x̂k)|Z1:k

}

= E{xk|Z1:k}

=

∫
xkp(xk|Z1:k)dxk. (3.5)

Having established that the posterior density is of primary interest, next the
conceptual solution for computing p(xk|Z1:k) is detailed.
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3.2 Conceptual solution

3.2 Conceptual solution

In this section we derive the equations needed for one filter recursion. More
specifically, we show how the posterior from time k − 1, p(xk−1|Zk−1), and
the observations at time k can be used to compute p(xk|Z1:k).

By splitting the measurement set into the data from the current time step
and from previous times, the posterior probability density function is

p(xk|Z1:k) = p(xk|zk,Z1:k−1). (3.6)

Then, by using Bayes’ law

p(xk|zk,Z1:k−1) =
p(zk|xk,Z1:k−1)p(xk|Z1:k−1)

p(zk|Z1:k−1)

=
p(zk|xk)p(xk|Z1:k−1)

p(zk|Z1:k−1)
, (3.7)

where the second equality follows from the assumption in (3.3), i.e., if xk

is known, the new observations do not depend on previous measurements.
In (3.7), the factor p(zk|xk) is called the likelihood and p(xk|Z1:k−1) is the
predicted density. The denominator p(zk|Z1:k−1) is a normalization factor
that ensure that the posterior density integrates to one. Ignoring the nor-
malization, the posterior is found as:

Posterior ∝ Prior× Likelihood. (3.8)

Consequently, the posterior is found by combining the knowledge in the prior
(in this case the predicted density) with the information provided by the new
set of measurements.

The predicted distribution is found by marginalizing over the state at the
previous time step

p(xk|Z1:k−1) =

∫
p(xk,xk−1|Z1:k−1)dxk−1

=

∫
p(xk|xk−1,Z1:k−1)p(xk−1|Z1:k−1)dxk−1

=

∫
p(xk|xk−1)p(xk−1|Z1:k−1)dxk−1, (3.9)

which is called the Chapman-Kolmogorov equation. It is worth noticing that
the last equality follows from the assumption that the state evolution over
time satisfies the Markov property. In (3.9), p(xk−1|Z1:k−1) can be identified
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as the posterior density at time instant k − 1 and p(xk|xk−1) is the state
transition density describing how the state evolves over time.

The state transition density, p(xk|xk−1), is given by a process (motion)
model and the likelihood, p(zk|xk), is given by a measurement (sensor) model.
There models describe the relations between the states and the observations
in Figure 3.1 and are commonly expressed as:

xk = fk−1(xk−1,vk−1) (3.10)

zk = hk(xk,wk), (3.11)

where fk−1(·) and hk(·) are potentially non-linear models and where vk−1

and wk are process and measurement noise, respectively.

3.3 The Kalman filter

If both the process model and the measurement model are linear with additive
Gaussian noise, the models in (3.10) and (3.11) can be formulated as

xk = Fk−1xk−1 + vk−1 (3.12)

zk = Hkxk +wk, (3.13)

where vk−1 ∼ N (0,Qk−1) and wk ∼ N (0,Rk). If, in addition, the prior
density of the state, p(x0), is Gaussian, the resulting posterior probability
density function will also be Gaussian and the filtering can be performed
optimally using the Kalman filter [20].

In the Kalman filter, the posterior density at time k − 1 is given by

p(xk−1|Z1:k−1) = N (xk−1; x̂k−1|k−1,Pk−1|k−1), (3.14)

where x̂k−1|k−1 is the estimates state at time k−1 and Pk−1|k−1 is the covari-
ance matrix capturing the uncertainties in the estimate. In the prediction
step, the posterior in (3.14) is propagated through the process model in order
to compute an estimate of xk using the data up to and including time k− 1.
Since the Gaussian density is completely described by its mean and covari-
ance, it is sufficient to describe how to compute these quantities. Hence, the
mean and covariance of the predicted density are:

x̂k|k−1 = Fk−1x̂k−1|k−1 (3.15)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1. (3.16)

In the measurement update step, the predicted state and covariance are
updated using the measurement zk. The result is a Gaussian posterior den-
sity, N (xk; x̂k|k,Pk|k), whose mean and covariance are computed according
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to:

Sk = HkPk|k−1H
T
k +Rk (3.17)

Kk = Pk|k−1H
T
kS

−1
k (3.18)

x̂k|k = x̂k|k−1 +Kk(zk −Hkx̂k|k−1) (3.19)

Pk|k = Pk|k−1 −KkSkK
T
k . (3.20)

These steps are iterated in order to find the posterior density at each time
instant k.

In many cases, the used models are not linear and the Kalman filter can
thus not be applied to the problem. Instead, one must resort to one of many
approximate methods, some of which will be briefly presented in the following
section.

3.4 Filtering with non-linear models

There are many non-linear models commonly used in object tracking and
filtering. One example is the measurement model used when tracking a mov-
ing object using range and bearing measurements. Assuming that the state
vector contains the position of the object, defined in a Cartesian coordinate
frame, xk = [xk, yk]

T . If the sensor is located at the origin, the measurement
model is [

rk
ϕk

]
= h(xk) +wk =

[ √
x2
k + y2k

arctan (yk/xk)

]
+wk, (3.21)

where rk and ϕk are the measured range and angle, respectively.
In contrast to the linear case, propagating a Gaussian density through

this type of non-linear function does not result in a Gaussian density. To
perform filtering in this case, there are different approaches. For example,
one can linearize the models and apply the Kalman filter equations to the
linear state model. Or, the involved densities can be represented by samples
that are propagated through the non-linear models. For illustration, we
consider the scenario where both the process model and the sensor model
are non-linear with additive Gaussian noise. More specifically,

xk = f(xk−1) + vk−1 (3.22)

zk = h(xk) +wk, (3.23)

where vk−1 ∼ N (0,Qk−1) and wk ∼ N (0,Rk). Next, we present some
common filtering methods for problems involving nonlinear models.
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3.4.1 The extended Kalman filter

One approach for filtering with nonlinear models is to linearize the models
and then use the Kalman filter equations. The linearization in the extended
Kalman filter (EKF) [21] is performed by a first order Taylor expansion
around the expected value of the state, i.e. for the prediction step at time k
the process model is linearized about x̂k−1|k−1. To illustrate the idea in EKF
we consider the type of process model in (3.22). Further, we introduce the
notation

F̂ =
[
∇xk−1

f(xk−1)
T
]T ∣∣∣

xk−1=x̂k−1|k−1

, (3.24)

where ∇xk−1
,

[
∂

∂xk−1(1)
, . . . ,

∂

∂xk−1(n)

]T
. Consequently, the first order

Taylor expansion of the model at x̂k−1|k−1 is

xk = f(xk−1) + vk−1

≈ f(x̂k−1|k−1) + F̂(xk−1 − x̂k−1|k−1) + vk−1 (3.25)

which is linear in xk−1. Based on this linear model, the Kalman filter can be
applied to the problem. Using (3.25), the expected value and covariance of
xk|Z1:k−1 are:

E{xk|Z1:k−1} = f(x̂k−1|k−1) (3.26)

Cov(xk|Z1:k−1) = F̂Pk−1|k−1F̂
T +Qk, (3.27)

which can be recognized as the prediction equations in the Kalman filter.
In a similar fashion, given the nonlinear sensor model in (3.23), a linearized
model can be found by computing the Jacobian

Ĥ =
[
∇xk

h(xk)
T
]T ∣∣∣

xk=x̂k|k−1

. (3.28)

This model can then be used in the Kalman filter update equations (3.17) –
(3.20).

The EKF is a very popular choice in many applications due to its low
complexity and good performance. However, the filter encounters difficulties
if the models are highly non-linear or if the linearization point is poor. To
deal with these issues, there are modifications to the algorithm. One example
is the iterative EKF [22, 23], where an iteration step is included in order to
improve the linearization point and consequently improve the estimation.
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3.4.2 Sigma point filters

There are several methods in the family of sigma point filters, two of which are
named the unscented Kalman filter (UKF) [23,24] and the cubature Kalman
filter (CKF) [25]. Similar to the EKF, these are Gaussian filters, meaning
that the involved densities are approximated as Gaussians. However, in
contrast to the EKF where the process and/or the measurement models are
linearized, the sigma point filters work by representing the predicted and
posterior densities by a set of weighted deterministic samples, called sigma
points. The sigma points are propagated through the non-linear functions
and, together with the weights, used to approximate the mean and covariance
of the transformed density. The difference between the methods within this
family of filters is how the sigma points and the weights are chosen.

Considering the prediction step at time k, a set of N sigma points are
chosen to represent the posterior density p(xk−1|Z1:k−1). Denoting the sigma
points by X (i) and their corresponding weights by W (i), the predicted mean
and covariance are found as

x̂k|k−1 ≈
N∑

i=1

W (i)f(X (i)) (3.29)

Pk|k−1 ≈
N∑

i=1

W (i)
(
f(X (i))− x̂k|k−1

)(
f(X (i))− x̂k|k−1

)T

. (3.30)

The measurement update step is performed by constructing a Gaussian
approximation to the joint distribution p(xk, zk|Z1:k−1),

[
xk

zk

] ∣∣∣∣ Z1:k−1 ∼ N
([

x̂k|k−1

ẑk|k−1

]
,

[
Pk|k−1 Pxz

Pzx Pzz

])
. (3.31)

Then, the conditional distribution is p(xk|zk,Z1:k−1) = N (xk; x̂k|k, P̂k|k)
where the mean and the covariance are given by

x̂k|k = x̂k|k−1 +PxzP
−1
zz (zk − ẑk|k−1) (3.32)

P̂k|k = Pk|k−1 −PxzP
−1
zz Pzx. (3.33)

The measurement update in a sigma point filter is then carried out by using
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Chapter 3. Bayesian Filtering

the sigma points to perform moment matching of the components in (3.31):

ẑk|k−1 ≈
N∑

i=1

W (i)h(X (i)) (3.34)

Pxz ≈
N∑

i=1

W (i)
(
X (i) − x̂k|k−1

)(
h(X (i))− zk

)T

(3.35)

Pzz ≈ Rk +

N∑

i=1

W (i)
(
h(X (i))− zk

)(
h(X (i))− zk

)T

. (3.36)

3.4.3 Particle filters

In the filtering methods discussed so far, the posterior pdf is Gaussian or
approximated as a Gaussian. The accuracy in the Gaussian approximation
depends on the models. For example, if the true posterior is multi-modal, the
approximation might be very poor. A family of methods that can be used
to describe any density is called particle filters [26–28]. The idea in particle
filters is to approximate the posterior density by a set of N weighted random
samples according to

p(xk|Z1:k) ≈
N∑

i=1

w
(i)
k δ(xk − x

(i)
k ), (3.37)

where x
(1)
k , . . . ,x

(N)
k are called particles and w

(1)
k , . . . , w

(N)
k are their corre-

sponding weights, satisfying w
(i)
k ≥ 0 and

∑
w

(i)
k = 1. Hence, the aim in the

particle filter setting is to recursively determine the particle states and the
weights.

There are different choices to make in a particle filter, resulting in some-
what different algorithms. However, the basic steps in a particle filter are
often the same. First a set of new particles are generated by propagating each
particle in time and then the weights are updated using the measurements.
A basic particle filter propagates the particles using the process model and
updates the weights using the measurement likelihood. Then,

x
(i)
k ∼ p(xk|x(i)

k−1) (3.38)

w
(i)
k ∝ w

(i)
k−1p(zk|x

(i)
k ), (3.39)

which implies that particles that describe the measurements well will get
larger weights and therefore contribute more to the posterior density in
(3.37).
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3.4 Filtering with non-linear models

Algorithm 1 Particle filter overview

1: Generate particles, x
(1)
0 , . . . ,x

(N)
0 , from a prior distribution p(x0).

2: for k = 1 : K do
3: for i = 1 : N do
4: Propagate the particle in time, x

(i)
k−1 → x

(i)
k

5: Update the weight w
(i)
k using the measurement vector zk

6: end for
7: end for

Unfortunately, all particle filters degenerate. That is, with time only a
few particles will have non-zero weights resulting in a poor approximation
of the posterior density in (3.37). To solve this issue, the filters include
a resampling step where new particles are generated by sampling from the
current approximation of the posterior. Each new sample will have a weight
w

(i)
k = 1/N . Some algorithms, such as the Bootstrap particle filter [26],

include resampling in each recursion while other only resample the particles
when it is required according to a certain criterion.
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Chapter 4
Multiple Object Tracking

I
n many situations where object tracking is of interest, there are multiple
objects to consider and it is also likely that the number of objects in the
observed region changes over time. The presence of multiple objects also

leads to multiple observations at each time instance, resulting in issues with
the measurement-to-track associations. That is, given a set of data, it is not
known which object generated which measurement, or even which objects
that were detected. In addition, there might be clutter detections among the
available measurements. These detections further complicate the difficulties
with the unknown associations. All these aspects must be considered when
designing a multiple object tracking algorithm.

There are two conceptually different approaches to multiple object track-
ing, namely vector- and set-based methods. To illustrate the difference, we
consider a scenario with two objects described by the states x1

k and x2
k, re-

spectively. In the traditional vector-based setting, the multiple object state
xk, is

xk =

[
x1
k

x2
k

]
. (4.1)

That is, the single object states are stacked in order to produce an ordered
vector. If instead a set-based approach is adopted, the state variable is an
unordered set, Xk, such that

Xk = {x1
k,x

2
k} = {x2

k,x
1
k}. (4.2)

Example 4.1 (Vector representation vs set description)
One example of probability density functions describing the objects in the
two different settings is illustrated in Figure 4.1. In the vector case, the
single peak at [x1

k, x
2
k] = [3,−3] indicates that the most likely x1

k is 3 and the
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Figure 4.1: The probability density functions .

most likely x2
k is -3. Due to the orderless property of the set in (4.2), the set-

density has two peaks, one at [x1
k, x

2
k] = [3,−3] and one at [x1

k, x
2
k] = [−3, 3],

indicating that one object (either x1
k or x2

k) is located around 3 and one
around -3.

Both representations can be generalized to an arbitrary number of objects,
and depending on the representation, both the problem formulation and
the derived solutions will be affected. The next section continues with a
discussion on data association for multiple object states as the one in (4.1).
In Section 4.2, the theory of tracking using random finite sets, as in (4.2), is
introduced. Each theory section is followed by a brief description of practical
tracking implementations.

4.1 Data association for a known number of

objects

To describe the idea of data association in the vector-based setting, we as-
sume that the number of objects is known. The appearance and disappear-
ance of objects in this setting is not discussed in this thesis.

4.1.1 Problem formulation

Let us consider a scenario with N objects, where each object i is described
by a state vector xi

k. At time k, a sensor delivers a set of measurements
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4.1 Data association for a known number of objects

denoted zk = [z1k, . . . , z
mk
k ] including both object detections and clutter. The

following assumptions are made regarding the objects and the measurements:

• The motion of the objects is independent. Hence, it is enough to de-
scribe the single object motion model according to xi

k = f(xi
k−1)+vk−1.

• Each object is assumed to give rise to at most one measurement at
each time instant. Due to a probability of detection less than 1, it is
possible that the object is not detected at all.

• The measurement set contains both detections from objects and clutter
(false alarms). Further, each object-generated measurement is gener-
ated by exactly one object.

Theses assumptions imply that the objects are considered point targets and
that the sensor has an infinite resolution. In is worth noting that these
assumptions have the origin in the traditional application of radar tracking,
namely tracking of aircrafts at far distances. In other settings, such as vehicle
tracking, the assumptions might not valid and thereby negatively affect the
results.

Based one the stated assumptions the objective is to find the posterior
probability density function (pdf) of the multiple object state vector xk.
More specifically, the aim is to recursively compute p(xk|Z1:k), where, as
before, Z1:k = {z1, . . . , zk} is the collection of measurements from time 1 to
k.

4.1.2 Conceptual solution

Assuming that at time k, there are N objects and a set of mk observations,
we can introduce a data association vector ak = [a1k, . . . , a

N
k ] where

aik =

{
j if measurement j is assigned to object i
0 if object i was not detected at time k.

(4.3)

Over time, a sequence of association vectors, A1:k = [a1, . . . , ak], can be
created and if this sequence is known, the multi object posterior p(x|Z1:k) =
p(x|Z1:k,A1:k) can be found using any of the filtering methods discussed in
the previous chapter. However, since the data associations are unknown, for
the computation of the posterior pdf to be exact, it must consider all possible
hypotheses according to:

p(xk|Z1:k) =
∑

t

Pr
{
At

1:k|Z1:k

}
p(xk|Z1:k,A

t
1:k). (4.4)
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However, the number of possible sequences of association vectors grows ex-
ponentially over time, making the computation of the exact pdf in (4.4)
intractable. As often in practice, this forces us to resort to approximate
methods.

4.1.3 Data association methods

In this section, we review some common algorithms used to approximate
(4.4). A simple way to perform data association is to adopt the nearest
neighbour method. That is, at each time instant, the most likely measure-
ment is assigned to each object and then used to update the object state
vector. In this method, each object is handled separately, possibly resulting
in that more than one object is updated using the same measurement, an
issue that may lead to coalescence of object tracks. As an improvement, in
global nearest neighbour, all objects and measurements are considered simul-
taneously in order to find the best global data association hypothesis. The
main benefit with these approaches is that they avoid treating multiple hy-
potheses. On the other hand, by making a hard decision, the approximation
of (4.4) might be poor.

To take multiple hypotheses into account, the data association can be
handled by the probabilistic data association (PDA) filter [29] or the joint
PDA (JPDA) filter [30]. The relation between PDA and JPDA is similar to
that between nearest neighbour and global nearest neighbour, that is, while
PDA only considers local hypotheses, JPDA also takes the global hypotheses
into account. In both filters, the posterior density for object i is a weighted
sum of the posterior densities computed under the different association hy-
potheses

p(xi
k|Z1:k) =

mk∑

j=1

p(xi
k|Z1:k, a

i
k = j)Pr

{
aik = j|Z1:k

}
. (4.5)

The difference between PDA and JPDA lies in the computation of the as-
sociation probabilities Pr {aik = j|Z1:k}. While PDA treats the problem as
several single object problems, in JPDA it must be ensured that no associa-
tion conflicts occur. Assuming that the computation of the posterior densities
p(xi

k|Z1:k, a
i
k = j) is performed using a Gaussian filter, the posterior density

in (4.5) is a Gaussian mixture. At each time step, this mixture is approxi-
mated by a single Gaussian with the same mean and the same covariance as
the mixture.

In contrast to the methods discussed so far, which reduces the mixture in
(4.4) to a single (Gaussian) density, in multiple hypothesis tracking (MHT)
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4.2 Random finite sets for filtering

several sequences of possible association hypotheses are propagated to the
next time instant [31]. This way, the decision regarding the most probable
hypothesis is postponed to a later time when more data have been received.
There exists several methods to limit the number of considered association
sequences. Two common approaches are pruning of hypotheses with low
probabilities, and merging of hypotheses that result in similar state descrip-
tions.

4.2 Random finite sets for filtering

In this section we introduce the concept of random finite sets (RFS) and de-
scribe the two most common methods for incorporating them in a Bayesian
filtering framework. In the traditional filtering setting, such as in the pre-
vious sections, the aim is to estimate a state vector xk based on a set of
observations. This state vector is stochastic and can contain information
about one object or several stacked single object state vectors. However,
regardless of how many objects the state vector describes, the number, and
thus the length of the vector, is typically assumed to be known. For a ran-
dom finite set on the other hand, both the number of elements in the set, i.e.
the number of objects, as well as their states, are stochastic [32].

Let us consider an RFS X = {x1, . . . ,xn}. The number of elements in X
is called the cardinality and is denoted by |X|. The related cardinality distri-
bution is a probability mass function p(n), which gives the probability that
the set contains exactly n elements/objects, i.e. Pr {|X| = n}. For example,
with probability Pr {|X| = 0} the RFS X is the empty set ∅, with probability
Pr {|X| = 2} the set contains two elements such that X = {x1,x2}, and so
on.

Similar to a random vector, an RFS can be described by a probability
density function. This pdf can be defined using the joint pdf of the ordered
single object states. That is,

p
(
{x1, . . . ,xn} = {α1, . . . ,αn}

)
=

n!∑

i=1

p
(
x1 = ασi(1), . . . ,x

n = ασi(n)

)
,

(4.6)
where σi denotes the i:th permutation of the index vector [1, 2, . . . , n]. In
addition, an RFS is associated with an intensity function, v(x), which de-
scribes the concentration of objects over the single object state space. More
specifically, the intensity function is defined by the property:

∫

S

v(x)dx = E{|X ∩ S|}, (4.7)
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where S is a region in the single-target state space. Hence, the integral in
(4.7) describes the expected number of elements/objects in X that are in the
region S. Similarly,

∫
v(x)dx is the expected number of objects in X .

Before discussing the problem formulation and the most common solu-
tions within the set-based tracking framework, we present two central types
of random finite sets and illustrate their differences by an example.

Cluster RFS

A cluster RFS is defined as a random finite set whose elements are indepen-
dent and identically distributed (i.i.d.) with an arbitrary cardinality distri-
bution p(n). The set density for such an RFS is given as

p({x1, . . . ,xn}) = n!p(n)p(x1) · · ·p(xn), (4.8)

where p(xi) = v(xi)/
∫
v(xi)dxi is the single object probability density func-

tion. The factor n! is related to the fact that there are n! vectors that
correspond to the same set.

Poisson RFS

A random finite set, X = {x1, . . . ,xn}, is called a Poisson RFS if its ele-
ments are i.i.d. and the number of elements in the set is Poisson distributed,
i.e., p(n) = λnexp(−λ)/n! where λ =

∫
v(x)dx is the expected number of

elements in X . Inserting this cardinality distribution in (4.8), the resulting
set density is

p({x1, . . . ,xn}) = λne−λp(x1) · · ·p(xn)

= e−λv(x1) · · · v(xn)

= exp
(
−
∫

v(x)dx
)
v(x1) · · · v(xn). (4.9)

That is, similar to a Poisson distribution that is completely characterized by
its mean, a Poisson RFS can be described by its intensity function, v(x).

Example 4.2 (Cluster and Poisson RFS)
To illustrate the properties of the Poisson and the cluster RFS, we study a
scalar problem, that is, the single object state is a scalar denoted by x. The
intensity function of the RFS is depicted in Figure 4.2.
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Figure 4.2: An example of an intensity function in one dimension.

Considering a Poisson RFS, the expected number of objects is found as
N̂ =

∫
v(x)dx = 2.5 implying that the cardinality distribution for this RFS

is p(n) = λne−λ/n! with λ = 2.5 as illustrated in Figure 4.3.

n
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Figure 4.3: The cardinality distribution for the Poisson RFS, i.e. a Poisson
distribution with λ = 2.5.

For a cluster RFS with the same intensity function, the expected number
of objects is still N̂ =

∫
v(x)dx = 2.5. However, the intensity function is

not enough to define the cardinality distribution. Instead, the cardinality
distribution can be any probability mass function with a mean that equals
N̂ =

∑
np(n) =

∫
v(x)dx. Two examples of cardinality distributions that

fulfill this criterion are shown in Figure 4.4.
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(a) One of many possible cardinality dis-
tributions.
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(b) Another of many possible cardinality
distributions.

Figure 4.4: An illustration of the properties of a cluster RFS.

4.2.1 Problem formulation

At the discrete time instance k, we denote the number of objects by nk, and
their individual states by x1

k,x
2
k, . . . ,x

nk
k , which take values in the single-

object state space. The complete multi-object state at time k is defined as
the unordered set:

Xk = {x1
k,x

2
k, . . . ,x

nk
k }. (4.10)

Since the number of objects as well as their states are random variables, Xk is
a random finite set. In a similar fashion, at time k, the used sensors provide
a set of measurements:

Zk = {z1k, z2k, . . . , zmk
k }. (4.11)

This set consists of both object-generated measurements and clutter, and it
is unknown which measurements originate from the objects and which are
clutter. The objective in the multi-object tracking setting is to recursively
compute the posterior set density p(Xk|Z1:k) where, similar as in previous
sections, Z1:k denotes the collection of all data from time 1 to k.

4.2.2 Conceptual solution

When representing the objects and the measurements as sets, there is a need
for an alternative Bayesian filter that is able to handle set densities. In [32],
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the multi-object Bayesian filter is given by the equations

p(Xk|Z1:k−1) =

∫
p(Xk|Xk−1)p(Xk−1|Z1:k−1)δXk−1 (4.12)

p(Xk|Z1:k) =
p(Zk|Xk)p(Xk|Z1:k−1)∫
p(Zk|Xk)p(Xk|Z1:k−1)δXk

, (4.13)

where the integrals are set integrals defined as,

∫
p(X)δX = p(∅) +

∞∑

n=1

1

n!

∫
p({x1, . . . ,xn})dx1 · · · dxn. (4.14)

This integral considers the variability in the number of elements in the set
X , as well as the distribution of the elements.

In the remainder of this chapter, we discuss the two most common multi-
object Bayesian filters, namely the probability hypothesis density (PHD)
filter and the cardinalized PHD (CPHD) filter.

4.2.3 The probability hypothesis density filter

In the PHD filter the intensity function is propagated over time, and each
filter recursion consists of a prediction and a measurement update of the in-
tensity function. The filter relies on a set of assumptions and approximations,
most of which are common in tracking theory:

• The predicted multi-target RFS is a Poisson process, i.e. the targets
are assumed to be independent and identically distributed (i.i.d.) with
a Poisson cardinality distribution. This assumption is specific for the
PHD filter and, as will be discussed later, it contributes to the main
drawbacks with the filter.

• Each target evolves and generates measurements independently of all
other targets.

• The birth of new targets and the survival of existing targets are inde-
pendent of each other.

• New targets can appear through spontaneous birth or through spawn-
ing from existing targets.

• The clutter RFS is a Poisson process

• The clutter measurements are independent of the target-generated mea-
surements.
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Under these assumptions, and using finite set statistics, the PHD filter pre-
diction and measurement update equations were derived in [33]. A major
advantage with the PHD filter is that it avoids explicit treatment of the
data associations hypotheses. In addition, the filter naturally incorporates
the appearance and disappearance of objects. To describe appearing objects,
the process model includes a birth process that allows new objects to appear,
both spontaneously and through spawning from existing objects. In a similar
manner, disappearing objects are treated by a survival/death process.

As mentioned, the assumption that the predicted objects RFS is a Pois-
son process leads to weaknesses of the filter. Firstly, the cardinality estimates
are associated with a high variance, i.e. large uncertainties, something that
makes the filter very sensitive to missed detections. In [34], this property
is clearly illustrated. Secondly, identically distributed objects is a poor as-
sumption in many problems. This is further discussed in Example 4.3.

Example 4.3 (Independent and identically distributed objects)
Considering a scenario with two scalar objects that are identically distributed,
their single-object densities are both p(x). Here, p(x) is a sum of two Gaus-
sians according to:

p(x) = w1N (x;m1, σ
2
1) + w2N (x;m2, σ

2
2), (4.15)

where m1 = −5, m2 = 5, w1 = w2 = 0.5 and σ2
1 = σ2

2 = 1. As depicted
in Figure 4.5, p(x) has two well-separated peaks. Having two independent
objects described by this density, the probability that both objects are de-
scribed by the first component is 0.25. Similarly, with probability 0.25, both
objects are at the second component. Consequently, even if the data clearly
indicates that there are two objects, the probability of having one object at
each Gaussian is only 0.5.

4.2.4 The cardinalized probability hypothesis density
filter

To overcome the issues associated with the cardinality estimation in the
PHD filter, the CPHD filter was derived [35]. The assumptions adopted in
the CPHD filter are similar to that of the PHD filter, but differs at some
points. Firstly, the original CPHD filter does not incorporate object spawn-
ing. Secondly, the most important difference is that while the cardinality
distribution of the object RFS is approximated as Poisson in the PHD filter,
it is arbitrary in the CPHD filter.

As discussed in Example 4.2, the intensity function of a Poisson RFS
contains enough information to specify the cardinality distribution. However,

36



4.2 Random finite sets for filtering

x
-10 -8 -6 -4 -2 0 2 4 6 8 10

p(
x)

0

0.1

0.2

0.3

0.4

0.5

Figure 4.5: The single-object density in Example 4.3.

this is not the case for a cluster RFS. Consequently, while it is sufficient to
use intensity function in PHD filter, the CPHD propagates both the intensity
function, v(x), and the cardinality distribution, p(n), over time. Thus, each
iteration consists of a prediction and a measurement update of both the
intensity and the cardinality.

4.2.5 Extensions to the PHD and the CPHD filters

During the years since the PHD and the CPHD filters were first presented, a
lot of research has been carried out in order to make the filters practical and
to adapt them to different tracking problems. In this section, we provide an
overview of some of these results.

Gaussian mixture implementations

In order to make the PHD and the CPHD filters useful, it is necessary to
have a representation of the intensity function that is practical. One rep-
resentation that has been a part of the breakthrough of the filters is the
Gaussian mixture versions of PHD [36] and CPHD [37]. In this setting, it
is assumed that the intensity function v(x) can be described as a weighted
sum of Gaussians

vk|k(x) =

Jk|k∑

j=0

w
(j)
k|kN (x;m

(j)
k|k,P

(j)
k|k), (4.16)
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where w
(j)
k|k, m

(j)
k|k and P

(j)
k|k are the weight, mean and covariance of the j:th

component. As a result, each Gaussian can be handled in a similar way as
in the Kalman filter framework. The main drawback is that the number
of components in the mixture grows over time and it is necessary to em-
ploy a method for limiting the number of Gaussians. Common approaches
are merging components that are similar according to some criterion, and
pruning components with weights lower than a certain threshold.

Applications

The popularity of the PHD and CPHD filter is shown in the literature, where
the filters have been applied and adapted to many problems, for example:

• Extended objects tracking. Both filters have been derived for ex-
tended object tracking [38–40]. That is, these version of the filters are
capable of jointly estimating the position, velocity and extension of the
object.

• Mapping [41, 42].

• Simultaneous localization and mapping (SLAM). In SLAM, the
aim is to simultaneously estimate the ego position and a map of the
observed surroundings. In this setting, the PHD filter has been applied
for describing the map [43].

• Unknown clutter intensity [44].

In addition, the evaluation of a tracking algorithm when the number of ob-
jects is unknown, requires a metric that takes both the number of objects
as well as the state estimates into account. For this purpose, the optimal
sub-pattern assignment (OSPA) was proposed [45].
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W
hen the aim is to estimate constant parameters or functions there
are many well-suited methods (both Bayesian and non-Bayesian)
to choose from. The focus in this chapter is on three such meth-

ods used in this thesis. First, it is shown how the Expectation Maximization
(EM) algorithm can be used to find either a maximum likelihood (ML) es-
timate or a maximum a posteriori (MAP) estimate of a parameter vector.
Second, using Variational Bayesian EM, it is discussed how an inference prob-
lem can be re-formulated as an optimization problem with the objective of
finding distributions of the parameters of interest. Third, we introduce the
Gaussian process, a non-parametric Bayesian method that can be used to
learn unknown functions from data.

5.1 Expectation maximization

The expectation maximization (EM) algorithm [46] is an efficient method
for parameter estimation in problems that include hidden (latent) variables.
These variables are not observed but may be important to explain the re-
lation between parameters of interest and the observations. In many au-
tomotive and tracking applications, the hidden variables correspond to the
unknown measurement to object associations [47]. In the most common set-
ting, the EM algorithm is used to find the maximum likelihood estimate of
some parameters θ, given some data X. However, if prior knowledge regard-
ing the parameters is available, it is straightforward to adjust the algorithm
to instead compute the maximum a posteriori estimate. In both cases, the
estimation is performed iteratively where, as suggested by the name, each
iteration consists of an expectation step and a maximization step.
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5.1.1 Maximum likelihood EM

In the maximum likelihood EM (ML-EM) algorithm, the aim is to find the
parameter vector, θ, that maximizes the likelihood p(X|θ). This is equivalent
to maximizing the log-likelihood according to

θML = arg max
θ

log p(X
∣∣θ). (5.1)

Considering models that are formulated using hidden variables, Z, the like-
lihood can be expressed through marginalization over Z:

log p(X|θ) = log
∑

Z

p(X,Z|θ). (5.2)

Since EM is an iterative solution, the objective is to find a method that
increases the log-likelihood as much as possible in each iteration [48]. Con-
sequently, the aim is to maximize log p(X|θ(t+1)) − log p(X|θ(t)), where the
superscript (t) indicates the estimate at iteration t. The increase in the
log-likelihood can be expressed as:

log p(X|θ(t+1))− log p(X|θ(t)) = log
∑

Z

p(X,Z|θ(t+1))− log p(X|θ(t))

= log
∑

Z

p(X,Z|θ(t+1))

p(X|θ(t))

= log
∑

Z

p(Z|X, θ(t))
p(X,Z|θ(t+1))

p(X,Z|θ(t))
. (5.3)

Working on an expression that includes the logarithm of a sum is not prac-
tical. Using Jensen’s inequality [49], (5.3) can be rewritten as

log p(X|θ(t+1)) ≥ log p(X|θ(t)) +
∑

Z

p(Z|X, θ(t)) log
p(X,Z|θ(t+1))

p(X,Z|θ(t))
, (5.4)

which provides a lower bound on the log-likelihood. The maximization of the
likelihood can thus be interpreted as the maximization of the lower bound.

By ignoring the terms in (5.4) that are constant with respect to θ(t+1),
we find the new estimate of θ as

θ(t+1) = arg max
θ

∑

Z

p(Z|X, θ(t)) log p(X,Z|θ)

= arg max
θ

EZ{log p(X,Z|θ)|X, θ(t)}. (5.5)

In (5.5), the two steps of the algorithm become clear:
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5.1 Expectation maximization

Expectation-step: Conditioned on the current parameter estimate, θ(t),
the expectation of log p(X,Z|θ), with respect to the hidden variable, is com-
puted.

Maximization-step: A new parameter estimate, θ(t+1), is found by max-
imization of EZ{log p(X,Z|θ)|X, θ(t)}.

Starting with an initial parameter vector θ(0), these two steps are iterated
until a chosen convergence criterion is fulfilled. However, it is worth noting
that a drawback with the EM algorithm is its sensitivity to the choice of
initialization point. An unfavorable initialization may cause the algorithm
to converge to a local optima.

Example 5.1 (EM for Gaussian mixture estimation)
In this example we have a set of data denoted by X = {x1, . . . ,xN}, where
N = 500 and each observation is a 2-dimensional vector. This data set is
illustrated in Figure 5.1. Suppose that each measurement xi is an observation
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Figure 5.1: Illustration of the data set X = [x1, . . . ,xN ] where N = 500 and
each xi = [xi

1, x
i
2]

T .

of a Gaussian mixture with three components. That is,

p
(
xi
∣∣w1,µ1,P1, w2,µ2,P2, w3,µ3,P3

)
=

3∑

j=1

wjN
(
xi;µj ,Pj

)
. (5.6)
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Introducing the parameter vector θ = [w1,µ1,P1, w2,µ2,P2, w3,µ3,P3], the
objective is to compute the ML estimate of θ based on the data X. The
main difficulty in this problem is that the data associations are unknown.
That is, it is not know from which Gaussian component that each observa-
tion originates. Instead, the associations are introduced as hidden variables,
denoted by Z.

As shown in (5.5), the EM algorithm starts with the log-likelihood:

log p(X|Z, θ) = log p(X|Z, θ) + logPr {Z|θ} . (5.7)

In this example, Z is a matrix whose elements zij are 1 if measurement i
is associated with component j, and 0 otherwise. Since each observation
originates from one of the Gaussian components, Z must have exactly one
non-zero element in each row. If this is not the case, Pr {Z|θ} = 0 implying
that p(X|Z, θ) = p(X|Z, θ)Pr {Z|θ} = 0. Hence, in the following discussion
we only consider Z that fulfill the above requirement, resulting in:

p(X|Z, θ) =
N∏

i=1

3∏

j=1

(
N (xi;µj,Pj)

)zij
(5.8)

p(Z|θ) =
N∏

i=1

3∏

j=1

(
ωj

)zij . (5.9)

From these expressions we can formulate the log-likelihood:

logp(X,Z|θ) =
N∑

i=1

3∑

j=1

zij

(
logωj − log(2π)− 1

2
log |Pj| −

1

2
(xi − µj)

TP−1
j (xi − µj)

)
.

(5.10)

Computing the expectation of (5.10) with respect to Z is consequently equiv-
alent to computing the expectation of zij . At iteration t+1, this expectation
is found according to

E
{
zij

∣∣X, θ(t)
}
= Pr

{
zij = 1

∣∣X, θ(t)
}
= ω

(t)
j . (5.11)

In the M step, we find a new parameter vector θ(t+1). Since the log-likelihood
is a sum of simple terms, the maximization can be performed by solving:

∂

∂θj
EZ

{
log p(X,Z|θ)

∣∣∣X, θ(t)
}
= 0, (5.12)

for each parameter θj in θ. This step results in a new estimate, θ(t+1), that
is used in the E step in the next iteration.
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5.1.2 Maximum a posteriori EM

Based on the discussion regarding the maximum likelihood EM algorithm,
it is straightforward to derive an EM solution for MAP estimation. The
problem of finding the parameters that maximize the posterior density, or
equivalently the logarithm of the posterior, is closely related to the ML set-
ting. From Bayes’ law, it follows that:

log p(θ|X) = log p(X|θ) + log p(θ)− log p(X), (5.13)

where p(θ) captures the prior knowledge of the parameters. Ignoring the
term that is constant with respect to θ, the maximization can be expressed
as

θMAP = arg max
θ

log p(X|θ) + log p(θ)

= arg max
θ

EZ{log p(X,Z|θ)|X, θ(t)}+ log p(θ). (5.14)

Hence, to find the MAP estimate, the expectation step is identical to the ML
case while the maximization step also takes the prior knowledge regarding
the parameters into account.

5.2 Variational Bayesian EM

In the variational Bayesian EM (VBEM) [50, 51], no distinction is made
between the parameters, θ, and the hidden variables, Z. Instead, both θ and
Z are treated as random variables described by their respective distributions.

To emphasize the equal treatment of all variables, the considered param-
eters are here denoted θ1 and θ2. The problem is hence to find the joint
posterior density p(θ1, θ2|X). However, in many problems the joint poste-
rior is hard to find and instead, in VBEM, the posterior is approximated by
a factorization

p(θ1, θ2|X) ≈ q1(θ1)q2(θ2). (5.15)

Employing this approximation, the aim is to find q1(θ1) and q2(θ2) that make
the approximation in (5.15) optimal in the ”exclusive” Kullback-Leibler (KL)
sense [52, 53]. Consequently, in VBEM, the considered inference problem is
reformulated into an optimization problem where the aim is to minimize

KL(q1(θ1)q2(θ2)||p(θ1, θ2|X)) =

∫ ∫
q1(θ1)q2(θ2) log

q1(θ1)q2(θ2)

p(θ1, θ2|X)
dθ1dθ2

(5.16)
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with respect to the distributions q1(θ1) and q2(θ2).
A common technique to perform this optimization is to iteratively mini-

mize the KL divergence with respect to one of the distributions while holding
the other one fixed. We start the derivation by keeping q2(θ2) fixed and con-
sider the KL divergence as a function of q1(θ1). That is,

KL(θ1) =

∫ ∫
q1(θ1)q2(θ2)

[
log q1(θ1) + log q2(θ2)− log p(θ1, θ2|X)

]
dθ1dθ2

=

∫
q1(θ1)

[
log q1(θ1)−

∫
q2(θ2) log p(θ1, θ2|X)dθ2

]
dθ1 + C1,

(5.17)

where the constant C1 contains all terms that do not depend on θ1. We
continue by introducing a density

g(θ1) ∝ exp

(∫
q2(θ2) log p(θ1, θ2|X)dθ2

)
, (5.18)

such that log g(θ1) = logC2+
∫
q2(θ2) log p(θ1, θ2|X))dθ2. Using the density

g(θ1), we can rewrite (5.17) as

KL(θ1) =

∫
q1(θ1)

[
log q1(θ1)− log g(θ1)

]
dθ1 + C1 + logC2

=

∫
q1(θ1)

log q1(θ1)

log g(θ1)
dθ1 + C

= KL(q1(θ1)||g(θ1)) + C. (5.19)

This expression is minimized when q1(θ1) = g(θ1) implying that

q(θ1) ∝ exp

(∫
q2(θ2) log p(θ1, θ2|X)dθ2

)

= exp
(
Eq(θ2){log p(θ1, θ2|X)}

)
. (5.20)

Similarly, the optimal q2(θ2), given q1(θ1), is

q(θ2) ∝ exp
(
Eq(θ1){log p(θ1, θ2|X)}

)
. (5.21)

For many problems, (5.20) and (5.21) have closed form solutions. More
specifically, this is the case for models in the conjugate-exponential family,
i.e. models with an exponential likelihood and a prior that is conjugate to
that likelihood [54]. This family include many common models involving
Normal, Poisson, Gamma, Wishart and Inverse Wishart distributions. In
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case the used model is not in the conjugate-exponential family, there is a
need for further approximations [55].

A drawback with VBEM is that, even for fairly simple models, the deriva-
tions required for the analytical approximation of the posterior density can
be troublesome. However, the resulting VBEM algorithm is computationally
efficient compared to many alternative methods that rely on Markov Chain
Monte Carlo sampling [56].

5.3 Gaussian processes

With the focus on learning unknown functions based on data, in this section
we introduce the concept of Gaussian processes [57, 58]. This is a Bayesian
non-parametric method that can be used to describe a distribution over func-
tions. A major advantage with this approach is that Gaussian processes are
very flexible and are capable to describe very complex functions. The follow-
ing discussion is based on the definition of a Gaussian process:

Definition: “A Gaussian process is a collection of random variables, any
finite number of which have a joint Gaussian distribution.”

For illustration, we consider an unknown function f , with argument x ∈
Rn and scalar output y. In the discussion on Bayesian filtering, many of the
involved densities are assumed to be Gaussian, characterized by its mean and
covariance. Similarly, a prior for the function f can be defined by a Gaussian
process that is specified by its mean function and covariance function. This
prior is denoted by

f(x) ∼ GP
(
m(x), k(x,x′)

)
, (5.22)

where the mean and covariance functions are defined as

m(x) = E
{
f(x)

}

k(x,x′) = E
{(

f(x)−m(x)
)(
f(x′)−m(x′)

)}
. (5.23)

By choosing the mean and covariance functions, any knowledge regarding the
function can be incorporated into the prior. Based on this prior and a set of
training samples D = {x(i), y(i)}Ni=1 that are related through f , the objective
in this section is to find a description of f(x∗), where x∗ is an arbitrary vector
in Rn.

As often in reality, the observations are affected by noise. This noise is
modelled as Gaussian such that each training sample is

y(i) = f(x(i)) + w(i), (5.24)
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where w(i) ∼ N (0, σ2
n). From the definition of a Gaussian process, the noisy

samples from the process are jointly Gaussian, implying that

y ∼ N
(
m(x),K+ σ2

nIN×N

)
, (5.25)

where y = [y(1), . . . , y(N)]T , m(x) = [m(x(1)), . . . , m(x(N))]T and

K =




k(x(1),x(1)) k(x(1),x(2)) . . . k(x(1),x(N))
k(x(2),x(1)) k(x(2),x(2)) . . . k(x(2),x(N))

...
...

. . .
...

k(x(N),x(1)) k(x(N),x(2)) . . . k(x(N),x(N))


 . (5.26)

Given the training samples and the prior knowledge regarding the function,
the output for an arbitrary input vector can be estimated. Denoting a set
of M input vectors by x∗ = [(x

(1)
∗ )T , . . . , (x

(M)
∗ )T ]T , we wish to find the

corresponding outputs y∗ = [y
(1)
∗ , . . . , y

(M)
∗ ]T . From the definition of the

Gaussian process, the vector of training outputs, y, and the sought outputs
y∗ are jointly Gaussian. That is,

[
y
y∗

]
∼ N

([
m(x)
m(x∗)

]
,

[
K K∗
KT

∗ K∗∗

])
. (5.27)

In [58], it is shown that the conditional distribution p(y∗|y) is given as

p(y∗|y) = N
(
m(x∗) +KT

∗K
−1(y−m(x)),K∗∗ −KT

∗K
−1K∗

)
. (5.28)

To illustrate the discussed theory, the section ends with an example.

Example 5.2 (Gaussian processes)
In this example we consider an unknown function f , such that y = f(x),
where both x and y are scalars. A prior of f can be specified as

f ∼ GP(m(x), k(x, x′)) (5.29)

where m(x) and k(x, x′) shall be chosen to summarize our prior knowledge
regarding the function. Assume that we know that the function is fairly
smooth and varies around y = 0. These properties are captured by

m(x) = 0 (5.30)

k(x, x′) = exp

(
− 1

2L2
(x− x′)2

)
, (5.31)

where L = 3. Changing L affects the smoothness of the function.
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5.3 Gaussian processes

For illustration, we study the function on a limited interval by construct-
ing a vector x that consists of n equally spaced values on [−30, 30]. A sample
from the process in (5.29) is a function [58]:

fs(x) = m(x) +
√
K · ξ, (5.32)

where ξ ∼ N (0, In×n), and K is a matrix whose elements are given by
K(i, j) = k(xi, xj) as defined in (5.31). In Figure 5.2, two samples from
the process are depicted.

x
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3
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Sample 2
Prior mean

Figure 5.2: Samples from the prior process.

Assume that we observe the function for 7 different values of x. For
i = 1, 2, . . . , 7, these samples can be described as

y(i) = f(x(i)) + w(i), (5.33)

where w(i) ∼ N (0, σ2
n) is the observation noise. Depending on the noise

level, the information regarding f obtained from the samples will differ. For
illustration, we consider two scenarios. First, the noise variance is σ2

n = 0,
i.e., we observe the true function values, and second, σ2

n = 1.
The estimated functions, including uncertainties, are shown in Figure

5.3. Worth noting in 5.3(a) is that when the samples are noise-free, the true
function is observed and consequently there are no uncertainties regarding
the function at these points. This can be compared to the case where the
samples are noisy. Then, as shown in Figure 5.3(b), the samples provide less
information about the underlying function. Finally, in both figures it is clear
that in unobserved intervals, such as x ∈ [20, 30], the posterior function is
very similar to the prior. The reason is that the available samples do not
provide much information regarding the function on these intervals.
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(a) Posterior mean function including uncertainties for σ2
n = 0.

x
-30 -20 -10 0 10 20 30

y

-3

-2

-1

0

1

2

3
Samples
Posterior mean function
± 2 standard deviations

(b) Posterior mean function including uncertainties for σ2
n = 1.

Figure 5.3: The posterior functions for training samples with two different
noise levels.
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