

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

Göteborg, Sweden, February 2015

AUTOSAR and Linux – Single chip solution
Implementation of Automotive Multipurpose ECU Prototype

system using hypervisor solution

Master of Science Thesis in the Master Degree Program, Networks and

Distributed Systems

KARTHIKEYAN RAVINDRAN

XINGGE XU

AUTOSAR and Linux – Single Chip solution

 ii

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example

a publisher or a company), acknowledge the third party about this agreement. If the

Author has signed a copyright agreement with a third party regarding the Work, the

Author warrants hereby that he/she has obtained any necessary permission from this

third party to let Chalmers University of Technology and University of Gothenburg

store the Work electronically and make it accessible on the Internet.

AUTOSAR and Linux – Single chip solution

Implementation of Automotive Multipurpose ECU Prototype

system using hypervisor solution

 KARTHIKEYAN RAVINDRAN

 XINGGE XU

© KARTHIKEYAN RAVINDRAN, February 2015.

© XINGGE XU, February 2015.

Supervisor and Examiner: Elad Michael Schiller

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover: A Visual illustration of a Multipurpose ECU system is hosting both Linux and

AUTOSAR automotive applications simultaneously on a common shared target

platform using a hypervisor solution. Image is drawn in courtesy of the OpenSynergy’s

COQOS product. (http://www.opensynergy.com/en/products/coqos/products/details/)

Department of Computer Science and Engineering

Göteborg, Sweden February 2015

http://www.opensynergy.com/en/products/coqos/products/details/

AUTOSAR and Linux – Single Chip solution

 iii

Abstract

The rapid explosion in the complex Electrical and Electronics (E/E) system components

in modern automotive systems has resulted in an intricate vehicle on board system

design with more than 50 Electronic Control Unit (ECU) nodes. These ECUs are

interconnected by various communication networks, implementing diverse

functionalities and running more than million lines of code. At one end, there are

classical ECU systems implementing core automotive features like active safety,

passenger comfort and convenience, etc. characterized by demand for hard real-time

behavior and high reliability. At the other end, there are rapidly emerging resource

intensive infotainment and connectivity ECUs offering rich multimedia, navigation

assistance and Human Machine Interface (HMI) applications. There is a growing need

among automotive suppliers and original equipment manufacturers (OEMS) for overall

ECU system consolidation as well as integration and interaction between these two

heterogeneous ECU systems in the future vehicles. AUTomotive Open System

ARchitecture (AUTOSAR) is widely accepted as the standardized automotive software

architecture for developing vehicular applications, and it uses OSEK real-time operating

system (RTOS) specifications as the basis for AUTOSAR OS. It provides perfect

support for the classical automotive control and real-time functionality; however, it fails

to provide support for hosting infotainment and user applications that in turn limits the

prospects of consolidated ECU integration by a common platform. Likewise, general

purpose operating system (GPOS) such as Linux, Android, etc. are used for non-real-

time infotainment and connectivity applications, and they are not inherently designed to

support the real-time control applications.

In order to integrate the classical automotive ECU system, implementing core

automotive features with the infotainment and connectivity ECU system, running HMI

and user applications, automotive manufacturers have started considering the feasibility

of deploying the virtualization technology in automotive embedded systems to support

both AUTOSAR architecture and GPOS in a single platform. In this thesis work, we

propose a design (with a corresponding pilot implementation) for a consolidated,

multipurpose ECU prototype model for simultaneously hosting Linux and AUTOSAR

applications in the same hardware platform using an existing hypervisor solution named

as COQOS. We start by exploring the various consolidation strategies for the

multipurpose ECU prototype and then propose and motivate a suitable hypervisor

solution, hardware platform and reference applications for the prototype. Our study

concentrates on exploratory design and implementation of the proposed prototype

model of consolidated ECU system. This thesis work will serve as a good case study

about integrating automotive application based on AUTOSAR and infotainment

application based on Linux OS in a common platform and the necessary modifications

required for this integration approach using virtualization technology. The report can be

the basis for a comprehensive analysis about the key challenges and necessary

technology enhancements required for implementing full-scale deployment of the

multipurpose ECU system architecture using virtualization technology in the near

future.

Keywords: Multipurpose ECU system, System consolidation, AUTOSAR 4.0, OSEK

OS, Infotainment, COQOS Hypervisor, PikeOS microkernel, Resource partitioning,

AUTOSAR and Linux – Single Chip solution

 iv

Inter-partition communication, PICEA suite, POPULUS, functional safety, I.MX53

SABRE, Multicore architecture.

Preface

This Master thesis was a proposal made by MECEL AB to carry out research analysis

regarding the technical strategies required for design and development of an integrated

ECU demo system executing AUTOSAR and Linux automotive applications

concurrently in a single chip target hardware using a Virtualization (hypervisor)

solution. In this thesis work, we collaborated with OpenSynergy GmbH and utilized

their hypervisor product solution, COQOS for the implementation of the multipurpose

ECU system.

Mecel AB is software and systems consulting firm with more than 25 years of

experience in developing solutions and services for the automotive industry.

OpenSynergy, a specialist in automotive embedded systems, have developed COQOS,

a standard based automotive virtualization software solution. It enables safe and secure

integration of Linux/Android based infotainment, ADAS and Telematics software

applications as well as AUTOSAR based core automotive functionalities to run on

common target hardware.

Acknowledgements

During this thesis work, we have been in contact with many people who have provided

a much-needed support and help. First we would like to thank our examiner and

supervisor Elad Michael Schiller for his consistent support, encouragement and critical

feedback during the course of our thesis work.

We would like to express our gratitude sincerely to our supervisor in MECEL AB, Lars

Henrik Lottberg for his continuous guidance, interest and for spending extended time

with us to sort the technical problems faced by us. We are also extremely grateful to

Mathias Fritzson, who acted as a second supervisor mentoring our technical work and

providing invaluable suggestions. It was a wonderful experience working with both of

you and many thanks for the enthusiasm and sharing your broad knowledge and insights

in the automotive domain with us.

We sincerely acknowledge the assistance extended by Anders Arnholm, Claes Ivarsson,

Christopher Olofsson and several other software engineers from PICEA and POPULUS

product teams. Also, many thanks to MECEL AB and their staff especially Jonas

Arkensved and Karin Denti for giving this wonderful opportunity and providing us with

the necessary equipment and resources to be able to finish this thesis work. We also

sincerely express our gratitude to OpenSynergy GmbH for providing the COQOS

hypervisor product solution and target hardware board with discounted price that was

vital for our prototype development work at MECEL AB. Big thanks also goes to

Andreas Haase and the R&D engineers from OpenSynergy, who were in touch with us

to provide the essential software support and for participating in the professional

discussions regarding this topic.

Finally, we would like to thank our parents, family and friends for their great love,

understanding, motivation and continuous support.

AUTOSAR and Linux – Single Chip solution

 v

Table of Contents

Abstract .. iii

Preface ... iv

Acknowledgements ... iv

List of Abbreviations and Acronym Terms ... ix

1 Introduction ... 1

1.1 Vehicular Embedded Systems ... 2

1.1.1 Increasing Cost and Development Complexity ... 2

1.1.2 Growing Need for Integration of Heterogeneous ECU Systems 2

1.2 Motivation for consolidated platform ... 3

1.3 Context of the research problem ... 4

1.3.1 Automotive control applications and AUTOSAR standard 4

1.3.2 Infotainment applications and Linux ... 4

1.4 AUTOSAR and Linux integration .. 5

1.5 Technical goals and their challenges ... 6

1.6 Proposed problem solution, our contribution and key findings 8

1.7 Scope and limitations .. 11

1.8 Significance and Contribution of the pilot implementation 11

1.9 Sustainable development and ethical aspects .. 12

1.10 Outline of the thesis report ... 12

2 Research Methods ... 14

2.1 A case for prototyping processes .. 14

3 Related work and State of the art .. 16

3.1 Literature research of related work ... 16

3.2 Current state of the art system ... 18

3.3 Beyond the State of the art: ... 19

4 Background ... 21

4.1 Virtualization ... 21

4.1.1 Deploying virtualization in embedded systems ... 21

4.1.2 Classification of virtualization technologies ... 22

4.2 COQOS Hypervisor solution .. 22

4.2.1 PikeOS Microkernel .. 23

4.2.2 Resource partitioning... 23

4.2.3 Time partitioning ... 23

AUTOSAR and Linux – Single Chip solution

 vi

4.2.4 Inter-partition Communication .. 25

4.2.5 PikeOS support for virtualized AUTOSAR and Linux OS 26

4.2.6 PikeOS Development and Integration Process .. 26

4.3 AUTOSAR .. 27

4.3.1 Modular, Layered Architecture ... 27

4.3.2 Basic software (BSW) ... 27

4.3.3 Micro Controller Abstraction Layer (MCAL) ... 28

4.3.4 AUTOSAR Operating System .. 28

4.3.5 AUTOSAR Run Time Environment (RTE) .. 29

4.3.6 Software Component (SWC) ... 30

4.3.7 Virtual Function Bus (VFB) .. 30

5 Requirements and Consolidation Strategies .. 31

5.1 Requirements for Multipurpose ECU system ... 31

5.2 Survey of consolidation strategies ... 32

5.2.1 Linux containers and Real-time Linux patches ... 32

5.2.2 Microkernel based AUTOSAR architecture .. 33

5.2.3 Virtualization based system architecture ... 34

5.3 System settings of the prototype model using Hypervisor technology 34

5.3.1 Rationale for selection of functional components of the prototype model 34

5.3.2 Hypervisor solution ... 35

5.3.3 Target hardware ... 37

5.3.4 Automotive Reference application using AUTOSAR Architecture 38

5.3.5 Infotainment Reference application using Linux OS .. 38

6 Design of components of Prototype model ... 39

6.1 Design of the AUTOSAR partition ... 40

6.1.1 Design of PikeOS compliant AUTOSAR architecture .. 40

6.1.2 Integration of standard AUTOSAR stack and PikeOS OS module 43

6.2 Design of Linux partition .. 44

6.3 Hypervisor technologies .. 45

6.3.1 Partitioning of system resources and separation .. 45

6.3.2 Design of Inter-partition communication .. 49

6.3.3 Time partitioning mechanism for AUTOSAR and Linux partitions 50

7 Implementation and Integration .. 54

7.1 Implementation of PikeOS compliant AUTOSAR application 54

7.1.1 Translation of standardized AUTOSAR interfaces using POSIX API’s 54

AUTOSAR and Linux – Single Chip solution

 vii

7.2 Generate PikeOS compliant AUTOSAR system executable binary 55

7.3 Generation of application binary files for the Linux partition 56

7.4 PikeOS System configuration ... 56

7.4.1 Virtual Machine Initialization Table ... 56

7.4.2 Resource partitioning... 57

7.4.3 Time scheduling mechanism ... 57

7.4.4 Inter-partition Communication mechanism ... 57

7.5 Integration and generation of ROM image for the target hardware 59

7.6 Running the PikeOS image on the Hardware platform 60

8 Measurement Results and Analysis .. 62

8.1 Evaluation Strategy and Measurement parameters ... 62

8.2 Measurement setup: ... 63

8.3 Boot time of the prototype system .. 64

8.3.1 Analysis of the Boot time results: ... 64

8.4 Signal communication delay ... 66

8.4.1 Analysis of inter-partition communication delay .. 67

8.5 Isolation and separation between the applications .. 68

8.6 Significance of our measurement results and analysis 69

9 Discussion and Conclusions .. 70

9.1 Reflections on Design and Implementation phase .. 70

9.1.1 Porting of AUTOSAR and Linux .. 71

9.1.2 Resource partitioning... 71

9.1.3 Inter-partition communication ... 72

9.1.4 Time partitioning ... 72

9.2 Reflections on Evaluation and Results .. 72

9.2.1 Proposed measurement tests for further evaluation of prototype model 73

9.3 Selected extension topics .. 74

9.3.1 Multicore processors and Virtualization.. 74

9.3.2 Fault monitoring and energy efficiency in Virtualized automotive ECUs 75

9.4 Summary and Conclusions .. 75

References .. 77

Appendix A – Proposal for Master Thesis ... 81

Appendix B – Tasks List for Master Thesis ... 82

Appendix C – Software products and Tools used in our Master Thesis 83

AUTOSAR and Linux – Single Chip solution

 viii

List of Figures

Figure 1.1 Connected Cars using wireless technology. .. 3

Figure 2.1 Research Method tailored from “Design science research” 15

Figure 3.1 Remotely connected state of the art ECU systems.. 19

Figure 3.2 Example of a Consolidated ECU system using hypervisor solution

supporting diverse functionality applications. .. 20

Figure 4.1 Assigning resource partitions to time partitions.. 24

Figure 4.2 Assigning time partitions to time slots in the frame 24

Figure 4.3 PikeOS Scheduler concept. ... 25

Figure 4.4 AUTOSAR Layered Architecture 27

Figure 4.5 Sender Receiver communication between 2 AUTOSAR SWCs. 30

Figure 5.1 Microkernel based AUTOSAR architecture for running real-time and non-

real-time applications. .. 33

Figure 6.1 High-Level Design of the Prototype model. ... 39

Figure 6.2 Migration to PikeOS compliant AUTOSAR architecture. 41

Figure 6.3 StartOS functionality for AUTOSAR application startup. 43

Figure 6.4 Strategy for generation of C code files for Standard RTE module and

Proprietary OS module based on PikeOS. .. 44

Figure 6.5 Method for sharing of devices between user partitions using System

partition. .. 47

Figure 6.6 Modeling of PikeOS inter-partition communication based on AUTOSAR

communication specification. ... 50

Figure 7.1 Pseudo codes for the inter-partition communication mechanism between the

AUTOSAR SWC and HMI application. .. 58

Figure 7.2 Overview of PikeOS Build and image generation process. 60

Figure 7.3 PikeOS ROM Image layout. ... 60

Figure 7.4 PikeOS Initialization steps in Target hardware. .. 61

Figure 8.1 Measurement time of PikeOS Startup phases. .. 64

Figure 8.2 Boot time for our prototype model, Optimized Linux and AllGO. 66

Figure 9.1 Different strategies for allocation of cores using hypervisor a) Static

allocation of cores at Initialization and b) Dynamic allocation of cores at Runtime. 74

AUTOSAR and Linux – Single Chip solution

 ix

List of Tables

Table 4.1 Overview of the list of functions offered by various BSW sub-layers 28

Table 5.1 Comparative analysis of hypervisor solutions for our prototype model. 36

Table 6.1 Static allocation of devices in Hardware platform to AUTOSAR and Linux

partitions. .. 46

Table 6.2 List of Shared devices between AUTOSAR and Linux partitions 47

Table 6.3 Configuration of Scheduling Table for AUTOSAR and Linux partition. 52

Table 7.1 Translation of AUTOSAR interfaces using POSIX API functions in PikeOS

 .. 55

Table 8.1 Time measurements for PikeOS Initialization Phases. 65

List of Abbreviations and Acronym Terms

ABS Anti-lock Braking System

ADAS Advanced Driver Assistance Systems

ARXML AUTOSAR Extensible Mark-up Language File

AUTOSAR Automotive Open System Architecture

BSP Board Support Package Software

BSW Basic Software Layer

CAN Controller Area Network

CANIF Controller Area Network Interface Layer

CODEO PikeOS Integrated Development Environment based on Eclipse platform

COM AUTOSAR Communication Layer

E/E Electrics/Electronics Systems

ECU Electronic Control Unit

GCC/GDB GNU Compiler Collection/Project Debugger

GPOS General Purpose Operating System

GPS Global Positioning System

GPU/VPU Graphics/Visual Processing Unit

AUTOSAR and Linux – Single Chip solution

 x

HMI Human Machine Interface

I.MX53 SABRE Smart Application Blueprint for Rapid Engineering based on i.MX53

IDE Integrated Development Environment

KVM Kernel-based Virtual Machine

LXC Linux Containers

MBD Model-Based Design method

MCAL Microcontroller Abstraction Layer

MOST Media Oriented Systems Transport standard for multimedia network

MUXA Multi-channel multiplexer console and debugging utility

MM/T Multimedia/Telematics

OEM Original Equipment Manufacturer

OpenGL/OpenVG Open Graphics Library/Open Vector Graphics standard

OSAL Operating System Abstraction Layer

OSEK Open Systems and their Interfaces for Electronics in Motor Vehicles

PCP Priority Ceiling Protocol

PDUR AUTOSAR Protocol-Data-Unit Router

POSIX Portable Operating System Interface standard

PSP Platform Support Package providing hardware platform dependent functions

PSSW PikeOS System Software module

RFS ROM File-System for PikeOS ROM image

RTE AUTOSAR Run-Time Environment

RTOS Real-Time Operating System

SchM Basic Software Layer Scheduler Module

SWC AUTOSAR Software Component

TCB Trusted Computing Base of a computer system

VFB Virtual Function Bus

VMIT Virtual Machine Initialization Table for system partition configuration

VMWARE/VMM Virtual Machine Monitor or Hypervisor

V2V Vehicle-to-Vehicle communication systems

AUTOSAR and Linux – Single Chip solution

1

1 Introduction

There has been a tremendous increase in the volume of automotive vehicles as well as

new functionalities introduced in them in the last two decades. Also, there has been a

significant demand from public transport governing agencies to develop functionalities

that meet the legal, social and environmental requirements like increased convenience,

safety and control, advanced driver assistance, eco-friendly sustainability, etc. [1, 2]. As

a result, modern automotive systems have at least 50 Electronic Control Units (ECU)

for small and midsized cars and more than 80 ECUs in highend luxury cars [3]. These

ECUs in turn are interconnected by different communication networks and implement

diverse functionalities. The current automotive embedded systems host both control

functions and infotainment applications that are running on separate platforms like

AUTomotive Open System Architecture (AUTOSAR) and general purpose operating

system (Android, Linux, etc.) respectively [1, 4]. AUTOSAR is a standardized

automotive software architecture that enables integration of automotive control and

convenience functional modules. The operating system (OS) module in AUTOSAR

architecture was based on the specification of a real-time OS known as OSEK and was

designed particularly for development of automotive control applications [5, 6]. General

purpose OS such as Linux, Android, etc. are used in the automotive embedded systems

to support non-real-time infotainment and vehicular user applications. In current

automotive systems, there is a growing need for merging and consolidating these

heterogeneous functionalities in a common ECU platform since it is crucial to be

scalable from the economic point of view and be cost effective with respect to energy

efficiency, system complexity and development costs. AUTOSAR provides perfect

support for the classical automotive control and real-time functionality; however, it fails

to provide support for integrating infotainment and user applications [5]. In the same

way, General Purpose Operating Systems (GPOS) are not inherently designed to

support the real-time specifications and hence it cannot support automotive control

functions. These limitations in AUTOSAR and GPOS are the main barrier towards the

prospect of a consolidated ECU integration by a common platform.

In this thesis work, we look at the integration problem of consolidating these

heterogeneous ECU systems, running on top of AUTOSAR and various GPOS. In this

work, we consider only Linux as general purpose OS (GPOS) since it is predominantly

(almost 80%) used for non-real-time user applications in automotive systems [7]. We

propose how this integration problem could be solved by developing a common,

consolidated ECU platform utilizing virtualization technology. Embedded virtualization

solutions (Hypervisor) provide capabilities for dynamic partitioning of limited

embedded system resources among the multiple execution environments and

architectures [8]. We propose a pilot implementation of a multipurpose ECU system to

solve the integration problem, and we show how AUTOSAR and Linux applications

could be concurrently executed on a shared hardware platform using a virtualization

solution while supporting automotive requirements such as less communication delay,

fast boot up time, etc. The proposed solution facilitates a simpler system design with

efficient processor (CPU) time sharing by using a flexible runtime scheduler, exploiting

parallelism by partitioning mechanism and thus opens the door for improved

performance of future automotive systems that have complex functionalities. This report

presents the design, implementation of the pilot implementation and its results along

AUTOSAR and Linux – Single Chip solution

2

with the analysis of the results. This report will serve as a good case study, and it can

provide valuable insights for a more comprehensive research analysis, required to

address the key challenges explored here, further. It also briefly discusses the necessary

technology enhancements that are required for full-scale implementation and

deployment of multipurpose ECU systems using virtualization technology in the

automotive domain in the near future.

1.1 Vehicular Embedded Systems

In the last two decades, complex, distributed electronic control units (ECUs) have

completely replaced the mechanical or hydraulic components used in the automotive

vehicles due to rapid progressions in the field of embedded systems. These electronic

components offer several advantages over their predecessor mechanical components in

terms of fuel consumption, controllability, cost reduction and reusability [1, 9]. The

typical examples of ECUs used in the vehicles are engine management systems, body

and brake control, digital instrument clusters, infotainment head unit, Internet

connectivity box and convenience control modules, etc.

1.1.1 Increasing Cost and Development Complexity

There is an intense competition among vehicle manufacturers to offer more advanced

and innovative electronic features and it has been their key differentiator or unique

selling point. Almost 60 to 90% of the new components in a modern luxury vehicles fall

into the Electrical and Electronics (E/E) systems category. The deployment of every

new complex functionality in turn leads to the introduction of an ECU component in the

automotive system [1, 10]. As a result, the E/E system design in the modern vehicles

has evolved from few isolated monolithic ECUs to a complex, distributed, ECU system

architecture with more than 50 computational nodes interconnected by in-vehicle

networks like CAN, MOST, etc. [10]. It has led to increasing system complexity, high

hardware, software development and maintenance costs for automotive manufacturers.

1.1.2 Growing Need for Integration of Heterogeneous ECU Systems

Apart from classical automotive functionalities, there are also other ECUs in the cars

controlling in-vehicle infotainment systems like audio and rear-end video entertainment,

navigation assistance and internet connectivity solutions, etc. [10]. According to

research[3,9], future cars will require the critical active safety, control and driver

assistance systems to interact with the intelligent navigation systems, internet

connectivity and car-to-car cooperative communication systems to understand the real-

time traffic information, road and weather conditions, etc. Hence, the infotainment and

connectivity services should be seamlessly integrated with classical automotive control

functions to provide new advanced features for automobiles. There are two use cases

listed below that illustrates the requirement for interaction between these diverse

functionality ECU systems in the next generation automotive systems.

(i) Cooperative Adaptive Cruise Control

The current implementation of cruise control system is based on the information

obtained from onboard sensors and offline stored global positioning system (GPS)

databases. However, future car generations require cooperative adaptive cruise control.

It can take smart decisions for automatic braking and speed stabilization based on the

information obtained from vehicle-to-vehicle (V2V) cooperative communication

AUTOSAR and Linux – Single Chip solution

3

systems and intelligent transportation connectivity solutions [9]. It can take into account

real world traffic information such as congestions, crash situations as well as

environment conditions. It can be extended for the collision avoidance systems as well

[9]. To implement such intelligent adaptive systems in cars, the active safety, anti-lock

braking system (ABS) and electronic stability control ECUs needs to interact frequently

with the connectivity and telematics ECUs forming a tightly integrated closed loop

system.

(ii) Connected Car and Autonomous Car

Ongoing research efforts are working towards the implementation of commercialized

driverless and connected cars. In these cars, the infotainment and connectivity systems

need to form a closed feedback loop with the core automotive functionality ECUs like

active safety, chassis control, advanced driver assistance, etc. Figure 1.1 shows the

smart, connected cars that operate with artificial intelligence algorithms that in turn

require efficient input information from connectivity systems, cloud networks and

vehicle infrastructure systems [9].

There are many other examples similar to the above two that demonstrates the growing

need to implement the convergence of the real-time automotive functionality as well as

the non-critical infotainment and vehicular user applications.

Figure 1.1 Connected Cars using wireless technology.

1.2 Motivation for consolidated platform

The best way to combat the integration and scalability issue of ECUs, as described

above, in vehicular systems is by consolidation of ECUs of diverse functionality using a

shared platform to integrate the infotainment services and the automotive control

functions. Then the current vehicular system architecture containing more than 50

distributed ECU nodes will be replaced by few centralized ECUs running manifold

vehicular applications in parallel on top of the modern, powerful multicore processors

[11]. The consolidated platform is also crucial with respect to sustainable development

AUTOSAR and Linux – Single Chip solution

4

and society. The scalability issue of ECUs in automotive systems will lead to high

economic costs to humans. Further increased power consumption due to the

proliferation of ECUs will decrease the energy efficiency and emission control of

automotive systems that in turn will impact the environment. Hence, it is crucial to

resolve this proliferation issue. In the same way, as explained above, the solution to the

integration problem will pave the way for developing advanced safety and driver

assistance systems that can minimize human errors, avoid critical accidents and in turn

save human lives.

1.3 Context of the research problem

The main impediment to the system consolidation of automotive control and

infotainment ECUs is the lack of common OS platform for hosting these diverse

functionalities in a single hardware system.

1.3.1 Automotive control applications and AUTOSAR standard

In order to counter the increasing challenges due to development complexity of the

Electric/Electronic(E/E) systems, Original equipment manufacturers(OEMs), suppliers

and tool developers have jointly developed the Automotive Open System Architecture

(AUTOSAR) standard. It provides a common software infrastructure as well as

standardized development platform for industry collaboration and partnership [4, 32].

AUTOSAR architecture defines various layered modules that are realized by various

OEMs using different implementations. Software and hardware products following

AUTOSAR standard can be easily integrated together and it finally improves the

flexibility and scalability of the automotive E/E systems design and development

process [32]. AUTOSAR architecture provides perfect support for the classical

automotive functionality, that are inherently real-time applications with requirements

for safety-critical timing constraints, high reliability and carefully defined specifications

[5]. It can be achieved only by using a real-time operating system (RTOS) [1, 5] with

real-time scheduling algorithm and task management. For the OS module, AUTOSAR

architecture reuses the open systems and their interfaces for electronics in motor

vehicles (OSEK) real-time OS specifications designed by the automobile industry

consortium for the development of automotive ECU systems [6].

1.3.2 Infotainment applications and Linux

Apart from classical automotive functionalities, there are also other ECUs in the cars

controlling in-vehicle infotainment and connectivity systems. Automotive

manufacturers need to support seamless integration of portable consumer electronic

(CE) devices and user applications in vehicular systems [10]. These infotainment and

telematics applications use different general purpose OS platforms like Android, Linux,

Windows, etc. Open source Linux OS is more commonly used for infotainment

applications since it is cost efficient, flexible and easily portable to support various

audio and graphics drivers [7].

1.3.2.1 Gaps in AUTOSAR standard and Linux

AUTOSAR standard mainly supports merging of automotive control and convenience

function modules running on individual ECUs, in a common single-processor platform,

and it is accomplished using the AUTOSAR software component (SWC)

AUTOSAR and Linux – Single Chip solution

5

implementation [32]. However, current AUTOSAR specifications do not provide

support for infotainment and connectivity applications. Even though, it is extremely

flexible and has a highly modular architecture, it lacks a flexible non-real-time

scheduler to run these non-critical user applications [3]. Apart from this critical gap,

AUTOSAR standard has the following limitations for supporting infotainment and

telematics applications [5, 18].

a) No mechanisms to enable high-resolution graphics. Also, it does not support

audio and video drivers.

b) The communications stacks used in Internet connectivity solutions (IP stack,

Bluetooth, LTE, etc.) cannot be run on top of AUTOSAR architecture.

c) It cannot support algorithms that need to process large amount of data like image

and video processing, etc.

Currently, there seems to be no intended plans or efforts by the AUTOSAR consortium

to address the above challenges. Due to this limitation, now the infotainment, telematics

and Internet connectivity applications run on top of various general purpose OS

platforms like Android, Linux, Windows, etc. depending upon the OEMs and Tier1

suppliers. However, general purpose OS do not have real-time properties inherently and

cannot be used for high critical automotive control applications. Therefore, GPOS also

cannot be used for the consolidated platform, either. Therefore, it is important to find a

consolidation strategy for the integration of these diverse functionality applications in a

common, shared hardware platform. Since Linux is the most widely used (almost 80%)

GPOS for automotive infotainment systems [7], we focus on Linux as the GPOS and

thereby consider integrating Linux and AUTOSAR together on a single hardware

platform in this thesis work.

1.4 AUTOSAR and Linux integration

In the modern vehicular systems, the core automotive control and infotainment

applications have conflicting set of resource, architectural and performance

requirements, and they are based on a different set of standards like AUTOSAR and

Linux [3]. For instance, AUTOSAR architecture often integrates safety critical control

applications like brake control system, diagnostic system, etc. that cannot be hosted by

Linux OS. Also, AUTOSAR tasks require strict timing guarantees and need to be

scheduled by a real-time task scheduler. In contrast, the infotainment and non-critical

vehicular user applications hosted on top of Linux OS are nondeterministic and have

soft or non-real-time tasks. The infotainment applications like digital dashboard and

electronic instrument clusters have complex graphical user interfaces that would

consume more resources for a considerable duration of time and thus require more

computing power. Infotainment applications are implemented based on the

specifications from consumer electronics domain and hence they deploy large, insecure

code base and rich, open source APIs. However, automotive control applications utilize

secure and minimal code base and are based on standard automotive specifications. The

consolidation strategy for heterogeneous ECU systems should focus on providing

support for these diverse set of requirements [3].

AUTOSAR and Linux – Single Chip solution

6

1.5 Technical goals and their challenges

In the present automotive systems, core automotive control and infotainment

applications are implemented using AUTOSAR framework and Linux OS respectively,

and they are executed on separate electronic control unit (ECU) systems. They interact

with each other remotely using the vehicular communication networks for the transfer

of data signals. There is an increasing need to implement the integration of these

heterogeneous functionalities in a single ECU platform, for supporting the future car

technologies and address the ECU proliferation and complexity issues in the current E/E

system architecture in automotive vehicles. The designers of AUTOSAR and Linux

have not explicitly considered the integration of these two systems and hence

AUTOSAR and Linux cannot solve this integration problem by themselves. This thesis

work considers this pressing, practical problem as a starting point for the problem

definition.

Given the existing AUTOSAR and Linux implementations, one needs to find feasible

strategy for consolidation of these heterogeneous systems and their diverse

functionalities in a single, hardware platform and then implement sharing of the

hardware resources and ensure strict separation between these functionalities [8, 13].

This thesis aims to explore several consolidation strategies and then finally design and

implement a pilot model of multipurpose ECU system executing automotive control

(AUTOSAR) and infotainment (Linux) applications in a single target platform.

AUTOSAR architecture stack and Linux OS should be ported and executed on this

common platform. The pilot implementation of the multipurpose ECU system should

have the following capabilities to execute the AUTOSAR and Linux applications

simultaneously on the same embedded system platform.

a) A flexible task scheduling mechanism that should give high priority to critical real-

time automotive tasks while still providing best-effort to soft or non-real-time tasks.

b) Resource sharing and separation mechanism between the AUTOSAR and Linux

application. Both applications should share the limited embedded system resources

like memory and I/O drivers. At the same time, there should be a strict isolation and

separation between the two applications i.e., applications should coexist, and a mal

functioning application in one partition should not affect the application in the other

partition.

c) Inter OS communication mechanism between AUTOSAR and Linux application to

interact and transfer data and signals.

The pilot implementation should be subjected to measurement tests, and the

measurement results should be evaluated to assess if the pilot implementation can

demonstrate an equivalent or better performance when compared to current state of the

art automotive systems.

The main challenge in this work was that we had to analyze and apply the theoretical

concepts of virtualization and real-time systems practically in the realm of the

automotive field and then design and implement a consolidated automotive ECU that is

advanced than the current state of the art ECU system to solve the integration problem.

The pilot implementation of multipurpose ECU system hosts both real-time automotive

AUTOSAR and Linux – Single Chip solution

7

and non-real-time infotainment applications. Automotive control applications have strict

timing constraints and should execute within their specified deadlines. Infotainment

applications need not respond quickly and can tolerate delay since they have soft or

non-real-time requirements. We need to ensure that automotive application can finish all

of its real-time tasks even in worst case scenarios. Also non-real-time infotainment

application should not preempt the real-time automotive application and the

infotainment application should still get a minimal proportion of the CPU time to be

able to provide best-effort response. The challenge here was to study the complex

scheduling mechanism of the common OS platform and then define a suitable

scheduling model for efficiently allocating the CPU time slots between these diverse

functional modules according to the requirements and the type of applications in the

system. This required us to have significant knowledge in the task-scheduling

techniques and fundamental concepts of virtualization. Likewise, we should design the

resource partitioning mechanism for the common platform such that automotive control

and infotainment applications should be spatially isolated from each other even though

they are hosted on the same hardware platform and share the system resources. We need

to ensure optimal memory foot-print and minimize the shared device access conflicts

during runtime so that the multi-purpose ECU system can startup quickly. This

necessitates us to estimate the memory requirements of automotive control and

infotainment applications beforehand and the peripheral devices should be statically

allocated among the partitions during configuration phase itself depending on their

usage by the applications.

The inter-system communication between the applications should be designed such that

it is localized in the same hardware platform and we need to ensure that it has better or

equivalent transmission speed as that of the CAN communication networks used in the

current state of the art automotive system. Also, we need to port the diverse OS such as

AUTOSAR architecture that support real-time control applications and Linux OS that

hosts non-real-time infotainment applications on the same hardware platform without

the necessity for substantial modifications. In order to realize the above goals, it

required us to have significant insights regarding AUTOSAR system architecture,

Virtualization OS concepts, etc. The proposed design and implementation of multi-

purpose ECU will help to achieve breakthroughs in the vehicular ECU development

process and design of E/E system architecture in future vehicles. After the

implementation of multi-purpose ECU system, we had to determine suitable tests to

measure the nonfunctional parameters of the prototype model and then analyze those

results with the related existing models or the state of the art system to demonstrate that

our proposed prototype could be accepted for further analysis and applicability in future

vehicular systems.

This thesis work requires us to have good understanding of knowledge and application

of technologies from several domains such as

a) Real-time systems, for understanding the time-scheduling mechanism of the

hypervisor for scheduling tasks with real-time and non-real-time requirements in

AUTOSAR and Linux application.

b) Fault-tolerance, for ensuring isolation between the two OS partitions.

c) Operating system architecture and concepts, for understanding the virtualization

techniques and porting of the AUTOSAR architecture and Linux OS on top of

the virtualization layer.

AUTOSAR and Linux – Single Chip solution

8

d) Good knowledge of the state of the art automotive embedded systems to identify

the requirements and suitable reference applications that could be deployed in

the prototype model of multi-purpose ECU system.

Also in this thesis work, we appropriately apply the existing concepts of the

virtualization, which has already been used in other domains such as telecom, avionics,

etc. into the automotive field and thereby propose a solution to the integration problem

of core automotive and infotainment functionalities in vehicular systems.

1.6 Proposed problem solution, our contribution and key findings

Our thesis work is a case study and analysis about integrating core automotive

applications, hosted on top of AUTOSAR framework and infotainment applications,

hosted on top of Linux OS in a single, consolidated ECU platform. We implement a

pilot model of multipurpose ECU, that would replace the current state of the art

remotely connected ECUs, communicating using controller area network (CAN) buses,

in vehicular embedded systems. Also, the communication between these diverse

functionalities is localized in the same hardware in our proposed pilot model. In this

report, we discuss the significant challenges in the implementation and evaluation of

proposed pilot implementation to solve the above Integration problem.

This thesis work presents our proposed solution about how a scaled-down version of the

multipurpose ECU system integrating mixed-critical (real-time and non-real-time)

applications could be designed and implemented using virtualization technology. The

prototype model was evaluated and then our results were critically analyzed by

comparing them with other related or current state of the art systems whichever is

applicable. In the Discussion section, we discuss and analyze our chosen design options

such as time-scheduling, inter-system communication, etc. Also we discuss other

design-alternatives that could be considered for the enhancement of our proposed

prototype model. Further in section 9.3, we provide a brief overview about selected

possible extensions or research-avenues that could be explored in future based on our

thesis-work.

a) We explore several consolidation strategies for the design of the consolidated ECU

system such as Linux containers (LXC) technology in combination with real-time

Linux (RTLinux) patches [53], microkernel-based AUTOSAR architecture [35,36],

etc. to solve the integration problem. Finally we motivate and propose to choose

virtualization based system architecture (Hypervisor) [8,23,24] as a suitable

consolidation strategy for the pilot implementation of multipurpose ECU system

executing AUTOSAR and Linux applications concurrently in a shared hardware

platform . The various consolidation strategies are explained in Section 5.

b) We set the requirements for the pilot implementation and based on that we motivate a

suitable virtualization solution, target hardware and reference applications in the

context of prototyping a multipurpose ECU. For virtualization solution, we analyzed

several hypervisor products [55,58,59], finally choose COQOS[12] hypervisor

solution and we motivate the rationale behind the selection of COQOS for our

proposed prototype model. The requirements of the multipurpose ECU system and

rationale for selection of hypervisor (COQOS) were presented in Section 5.

AUTOSAR and Linux – Single Chip solution

9

c) In order to facilitate the evaluation of the proposed prototype model, this report

explains how following technologies provided by the hypervisor were studied and

applied in the context of designing and developing our pilot implementation of

multipurpose ECU system.

1) Time partitioning algorithm, that incorporates both time-driven and preemptive

priority-based scheduling, is used for simultaneously executing strict real-time

(AUTOSAR), and non-real-time (Linux) processes [26, 27].

2) Resource partitioning mechanism is utilized for creating logical partition

containers for AUTOSAR and Linux applications and then allocates the

embedded system resources between them. It also ensures strict separation

between the two partitions.

3) Inter-partition communication using sampling ports, to transfer the data and

signals between the AUTOSAR and Linux partitions [26].

The report will present the theory of the above techniques in Section 4. Then the

application of these technologies in the context of our pilot implementation is presented

in the sections 6 and 7.

During our thesis work while designing the task scheduling-table using the PikeOS time

partitioning mechanism, we observed that it is important to reduce the jitter and

interference from other events during the execution of real-time application in order to

guarantee determinism for real-time tasks. We determined that real-time tasks should be

allocated spare time slots to complete their execution at worst-case scenarios to offset

the extra processing overhead introduced by the virtualization layer as well as the

system monitor or watchdog application. PikeOS microkernel provides dynamic

scheduling mechanism that incorporates both time-driven and preemptive priority-based

scheduling and also it enables the flexible re-utilization of unused time slots of real-time

tasks by the soft or non-real-time tasks. We found this time-scheduling mechanism as a

perfect fit for mixed-critical system with real-time and non-real-time applications.

During resource partitioning, we found that the mechanisms for shared device access

introduce more delay since the tasks need to pass through additional virtualization layer

to access the devices at run-time and hence we statically allocated the devices between

the partitions during configuration phase itself. We found that inter-OS communication

can achieve a faster rate of transmission rate when compared to the current state of the

art CAN communication networks. It eliminates the necessity for a complex

communication protocol and reduces the traffic load in the external communication bus

since the communication is localized on the same hardware platform.

d) In this pilot model, AUTOSAR stack is ported on top of the virtualization solution.

The COQOS hypervisor is based on PikeOS microkernel and modifications were

required in AUTOSAR OS abstraction layer in order to port the AUTOSAR stack

on top of the PikeOS microkernel rather than standard OSEK OS and these

modifications were presented in the sections 6 and 7.

AUTOSAR and Linux – Single Chip solution

10

In the AUTOSAR architecture, the BSW modules and SWC are dependent on the

underlying operating system for scheduling and execution of the tasks and the

applications. During this thesis work, we learnt that the OSEK OS concepts like task

and event model, interrupt processing and resource management functionality needs to

be migrated to the corresponding mechanisms in the proprietary OS such as PikeOS for

porting and executing the AUTOSAR stack on top of a proprietary OS. This porting

process required OS wrapper functions for emulating the appropriate AUTOSAR OSEK

interfaces to BSW, SWC and RTE modules using the API functions of the proprietary

OS. We analyzed the AUTOSAR application in our prototype to understand the

necessary OS functions utilized by it. The automotive application designed in our

prototype uses a quite limited and simple AUTOSAR OS model. The PikeOS OS

concepts were compared to the OSEK interface specifications and studied to analyze if

PikeOS can provide support for these standardized OS interfaces. If there was a one-to-

one match, then the wrapper needs to translate and create mapping between the

interfaces of both OS. We observed that COQOS virtualization solution has good

support for porting the basic AUTOSAR architecture. It provides POSIX APIs to

implement the wrapper functions for the OS abstraction layer to emulate the

standardized AUTOSAR OS interfaces and to port the standard AUTOSAR BSW, RTE

and SWC on top of the PikeOS microkernel.

We faced some incompatibility issues while integrating the code files of the standard

AUTOSAR RTE module and the proprietary OS (PikeOS) module and found that the

integration of AUTOSAR modules from different vendors is not a straightforward

process. We noticed that the code generator tools and build system are quite vendor

specific solutions and are not interoperable with each other. We were able to solve this

issue by synchronizing the OS configuration files and then customizing build process

for the integration of RTE module from standard AUTOSAR stack and OS module

from proprietary OS (PikeOS) and then generating the code files for them [41]. Our

findings show that it is possible to port the standard AUTOSAR stack on top of a

virtualization solution with slight modifications if the virtualization solution provides

good support for the AUTOSAR OS concepts and scheduling mechanism.

e) This thesis work also presents the measurement results and analysis of the non-

functional parameters of pilot implementation like boot time, signal communication

delay, and isolation property in Section 8.

The research analysis of this work includes a preliminary evaluation that demonstrates a

basic validation of our proposed prototype model of multipurpose ECU designed using

virtualization solution. This preliminary evaluation serves as a proof of concept that it

could be accepted for deployment in future automotive embedded systems in order to

solve the integration problem of core automotive control and infotainment

functionalities. We evaluated the non-functional parameters like boot time, signal

transmission delay, and isolation property and then the results were studied by a

comparative analysis of related existing models and current state of the art system. From

this analysis, we could infer that our proposed implementation of multipurpose ECU

system achieves better or equivalent performance when compared with the existing

systems. Our prototype model shows that it is possible to integrate the automotive

control application modules based on AUTOSAR architecture with infotainment

AUTOSAR and Linux – Single Chip solution

11

applications based on Linux OS, and they can share the system resources on the same

ECU hardware platform using the hypervisor solution. Also, the intercommunication

between automotive control function and infotainment application can be localized in

the same ECU hardware platform instead of using complicated in-vehicle

communication networks. Thus in our thesis work, we were able to demonstrate that

virtualization technology can be utilized to implement the seamless integration of

classical automotive control functionalities and advanced infotainment functionalities

and thereby support the future car technologies in next generation vehicular systems.

1.7 Scope and limitations

This report provides a proof of concept (POC) pilot implementation of multipurpose

ECU system to study the integration problem in general. In this thesis work, we

consider the integration of a reference automotive control application based on

AUTOSAR framework and a reference infotainment HMI application executing on top

of Linux OS, since AUTOSAR architecture and Linux OS are the predominantly used

OS platforms in automotive ECU systems. However, the concepts used in this thesis

work can also be considered for the integration of automotive applications using other

OS platforms such as Android, GENIVI software architecture, etc. Moreover, we

consider a single processor platform rather than multicore processor for out pilot

implementation. However, this pilot implementation could be easily migrated towards a

multicore processor platform and this report also theoretically discusses the

enhancements needed for deploying virtualization technology in multicore processors.

Further, this work carries out only limited evaluation and measurement tests, and it does

not consider a comprehensive evaluation and analysis of safety, performance and

security aspects of the multipurpose ECU system. As the prototype model is only a

scaled-down mocked up implementation, full-scale performance measurements are

outside of the project scope. The safety and security aspects of multipurpose ECU

systems have been already discussed by Marko Wolf and his coauthors in several

research articles [13, 14, and 15].

1.8 Significance and Contribution of the pilot implementation

The proposed demo prototype of multipurpose ECU system, implemented using

virtualization solution, will pave the way for flexible utilization of limited resources in

future automotive systems as well as reduction in hardware costs associated with ECU

proliferation and communication interface overhead between the separate ECUs

connected remotely[3]. It also addresses the growing need for interaction between the

diverse functionality ECUs in next generation car technologies and can simplify the E/E

system architecture in modern vehicles. Our work also demonstrates how AUTOSAR

architecture could be ported on top of a hypervisor layer. The concepts used in this pilot

implementation can be considered as a case study analysis for the selection and

integration of a hypervisor solution in future vehicular ECU development process. It

could potentially lay down the foundation for integration of infotainment head units,

driver assistance system and connectivity units in a single hardware platform using

virtualization technology.

AUTOSAR and Linux – Single Chip solution

12

1.9 Sustainable development and ethical aspects

This thesis work proposes a prototype of consolidated ECU platform which addresses

significant problems with respect to sustainable development and society. The

scalability issue of ECUs in automotive systems will lead to high economic costs to the

humans. Further increased power consumption due to the proliferation of ECUs will

decrease the energy efficiency and emission control of automotive systems that in turn

will impact the natural environment. Our proposed solution of consolidated ECU

system will solve the above issues w.r.t society and environment. The consolidated

ECU model resolves the proliferation issue and provides the solution to the integration

problem. It will pave way for integration and interaction of heterogeneous modules like

core automotive control and infotainment functions in a single, consolidated ECU

system that will in turn help in developing advanced safety and driver assistance

systems that can minimize human errors, avoid critical accidents and in turn save human

lives. Thus the outcome of this thesis work, i.e., prototype of multipurpose ECU system

indirectly contributes to welfare of the society, improves the quality of life of human-

beings and helps to provide a safe, natural environment.

1.10 Outline of the thesis report

The thesis report contains nine sections and is structured as follows

 Section 1 gives an introduction to our thesis work, problem background, problem

definition and our contribution, significance and scope of this thesis work.

 Section 2 provides an overview about the research method deployed in our thesis

work and the different phases of our thesis work.

 Section 3 presents the literature research of related work and briefly explains the

current state of the art system and their limitations.

 Section 4 provides the theoretical overview of virtualization technology, AUTOSAR

framework and the technical concepts applied in our thesis work

 Section 5 provides the requirements for proposed pilot implementation, overview of

different consolidation strategies and functional components of the proposed

prototype system.

 Section 6 contains the technical details about the design of the sub-components of

the proposed prototype model.

 Section 7 provides an overview of the implementation and then integration of the

different sub-components into a single, consolidated ECU system using the

development tools provided by hypervisor solution.

AUTOSAR and Linux – Single Chip solution

13

 Section 8 presents the evaluation criteria, measurement results along with their

analysis for the parameters of pilot implementation.

 Section 9 presents the reflections about our thesis work and selected potential

extensions related to our thesis work that could be explored in future. It also consists

of summary and conclusions of our thesis work.

AUTOSAR and Linux – Single Chip solution

14

2 Research Methods

A research method is a systematic and scientific way to solve a research problem on a

particular topic. The research method for this thesis work, i.e., design, development and

analysis, is based on Design Science Research Methodology for Information Systems

Research proposed by Peffers et al. [16]. Derived from this Design Science Research

Method, we propose to solve the integration problem in current automotive systems by

constructing an artefact of consolidated multipurpose ECU system executing

heterogeneous applications, real-time automotive control and infotainment application,

simultaneously on a single hardware platform using a commercial virtualization

solution. We decide to realize and implement this multipurpose ECU system by the

prototyping method.

2.1 A case for prototyping processes

In this work, we carry out technical, applied research that focuses on proposing a

practical design and implementation strategy for a multipurpose ECU system. The

proposed pilot system with further improvements could be applied in a real world

context in near future to address the gaps in existing state of the art systems and to

provide a solution for a pressing practical problem i.e., integration problem in current

automotive embedded systems. Also, we aim to derive further knowledge from the

development and evaluation of the proposed artifact from an engineering perspective.

Taking all these into consideration, we decide to accept prototyping as the main method

for this thesis work instead of other methods like theoretical case study, formal proofs,

survey, etc. Further from an engineering point of view, a tentative prototype model that

could be built faster provides invaluable opportunities to get better understanding of the

requirements, explore the design options, and experiment with our proposed strategy

and implementation. Prototyping method helps to acquire useful insight about the

diverse, complex aspects of the research problem and hence in our thesis work, we

choose to deploy Proof of concept (POC) prototyping [42] that can be used to build a

scale down, mocked up version with a potential design approach. This prototype model

can simulate certain fundamental aspects of a complete engineering system and then

helps to gain insight about the development and implementation process of the real

multipurpose ECU system. The observation of the system and primary evaluation can

be carried out under controlled conditions to analyze the functional behavior of the

proposed model. Also, the limitations and necessary enhancements required to

overcome them can be studied [42]. The research method for this thesis work was based

upon Design Science Research Method, and prototyping process [16, 42], and it consists

of several phases as shown in the Figure 2.1 below.

a) Identify and define the research problem: The research problem for the thesis was

formulated and defined with the stakeholders (MECEL AB).This thesis work

proposes design and implementation strategy for the prototype model of a

consolidated, multipurpose ECU system using virtualization technology. The

objectives and framework for the thesis work were set, and the context of the study

was limited to the consolidation of automotive control and infotainment applications

based on AUTOSAR architecture and Linux OS respectively.

AUTOSAR and Linux – Single Chip solution

15

b) Problem Assessment and Build on existing knowledge: Literature research on

related topic was carried out to gain knowledge about the prior research work done

and also to understand the gaps in AUTOSAR architecture and the existing design

and implementation strategy of related prototype models.

c) Exploratory Analysis of Design Alternatives and Selection: The requirements are

laid down for the proposed prototype model to understand the problem more clearly.

Several design strategies for the proposed prototype model were analyzed against

the specified requirements and then finally a consolidation strategy using

virtualization solution is chosen for the design and implementation of the prototype

model. In this work, the knowledge contribution is done using exaptation technique,

i.e., nontrivial application of known solution to a new problem [17]. The

virtualization is a proven concept already used in software infrastructure

consolidation and other embedded domains (telecom and avionics). We apply and

extend this strategy for solving a new problem, i.e., integration problem in

automotive systems. The functional components of the prototype model were

chosen so that it can closely simulate the functionality of an automotive ECU

system.

d) Design and Implementation of Prototype model: A high-level system architecture

consisting of these functional components was proposed for the prototype model.

Then the design for various components of the prototype model like porting

AUTOSAR and Linux application on top of hypervisor, configuration of hypervisor

technologies such as resource partitioning, time partitioning, inter-partition

communication, etc. were carried out in accordance with the set requirements and

problem objectives. Once the design of the components of the prototype model was

completed, we proceed to the implementation of the functional components as per

the design and then finally integration of the sub-components into a complete

prototype system.

e) Basic Evaluation and Analysis of the Implemented Prototype model: Finally

controlled measurement tests were carried out on the prototype model, and the

evaluation results were analyzed and compared with the current state of the art and

other related artefact systems. Then the limitations and necessary improvements

required for a full-scale implementation of the proposed artifact were analyzed and

discussed.

Figure 2.1 Research Method tailored from “Design science research [16].”

AUTOSAR and Linux – Single Chip solution

16

3 Related work and State of the art

Existing implementation deploys remotely connected ECU systems on separate

processors for core automotive control and infotainment functionalities and they interact

with each other using vehicular communication networks like CAN, Flexray, etc. The

existing implementation has led to ECU proliferation that has resulted in a complex

automotive E/E system architecture with more than 50 to 80 distributed ECU nodes.

This has resulted in high hardware and software development costs, ECU to ECU

communication network over-head, increased power consumption due to proliferation

of ECU nodes and under-utilization of the additional CPU time of the modern

processors.

Unlike the current state of the art systems, we report on a consolidated ECU system

integrating core automotive control and infotainment functionalities executing on top of

different operating systems on a common hardware platform using virtualization

technology.

There are several benefits to this approach such as simplified system architecture with

few consolidated ECU nodes that results in reduction of hardware and software

development time and costs, integration and interaction of diverse functionalities in the

same processor platform to support next-generation vehicular technologies, efficient

utilization of peak processor potential by parallel execution of multiple applications and

also decreases the need for external communication bus since the communication

between the applications is localized in the same hardware platform. Further benefits

are explained below in section 3.3.

In this section, we compare and discuss the significant aspects of this thesis work with

respect to other related work and we show how our thesis work acts as an extension to

the existing studies, analyses the challenges in solving the integration problem and the

applicability of virtualization in automotive systems. Then it provides an overview of

the current state of the art implementation for the interaction between core, automotive

(AUTOSAR) and infotainment (Linux) ECU systems and the limitations in the current

system architecture.

3.1 Literature research of related work

There has been several research works that seek to address the integration problem in

automotive ECU systems. AUTOSAR consortium describes an approach to integrate

basic AUTOSAR diagnostic applications in a Multimedia/Telematics (MM/T) ECU

running on top of General purpose OS (GPOS) system like WinCE or QNX [18]. In this

design, AUTOSAR Runtime Environment (RTE), Software components (SWCs) and

specific Basic software (BSW) modules are integrated in a MM/T ECU, and they are

made to believe that they are running in a complete AUTOSAR architecture by

emulating the missing BSW modules, AUTOSAR OS module and the interfaces using

the services provided by the underlying General purpose OS [18]. However, this simple

integration method without using virtualization solution can be applicable only in

limited situations. Most of the automotive applications have real-time requirements and

in this architecture the GPOS does not differentiate between real-time and non-real-time

tasks and also GPOS scheduler cannot be used for automotive applications that require

critical timing guarantees. Likewise, it cannot be used for safety-critical functionalities

AUTOSAR and Linux – Single Chip solution

17

as the GPOS inherently does not have high safety integrity levels and hence crashes or

errors in the underlying GPOS will impact the safety-critical automotive application

running on top of the GPOS system. However, the concepts used in this study were

quite interesting for us since in this thesis work, we take up a related approach when we

try to port the AUTOSAR application on top of a proprietary OS platform (PikeOS

microkernel).

The literature includes solutions that utilize hypervisor to solve the integration problem;

implementation of automotive gateway based on an open source virtualization solution,

KVM and Quest-V separation kernel for mixed criticality systems [19, 20]. The KVM

hypervisor, unlike COQOS, is not based on microkernel implementation and can be run

only on a processor that provides hardware support for virtualization. Quest-V is only a

separation kernel and does not provide any virtualization services. It also depends on

hardware-assisted virtualization for isolation and memory partitioning. This is a major

limitation for OEMs as many commercial processors do not provide hardware

extensions for virtualization. However, COQOS can be executed on most of the

processor boards since it uses paravirtualization technique where guest OS like

AUTOSAR and Linux needs to be modified and ported on top of PikeOS microkernel

[12]. Also, KVM uses Linux as host OS and then utilizes real-time extensions and

patches to support real-time tasks. It can support only soft real-time applications at best,

and there will be some latency for hard-real-time applications. Also, security assurance

level of Linux is relatively low for running safety-critical applications. However,

PikeOS microkernel, chosen for our pilot implementation has been certified for

compliance with stringent industrial safety and security standards and has already been

deployed in mission-critical avionics projects [12, 26].

In the automotive gateway prototype, KVM implements a two-level hierarchical

scheduling architecture and uses a combination of different task scheduling algorithms.

It utilizes Sporadic Server (SS) or Constant Bandwidth Server (CBS) for the real-time

tasks. The non-real-time tasks are allocated lower priority and can only be scheduled

when the real-time tasks are idle using Completely Fair Scheduler (CFS) or Fixed

Priority (FP) scheduler. Also, it uses virtual CPU (vCPU) framework, where multiple

virtual CPUs (vCPUs) are created and assigned to the same physical processor core, and

then it binds and allocates the tasks of the various guest OS (AUTOSAR and Linux)

among these vCPUs [19]. In Quest-V architecture, the system is divided into several

partitions, and each partition performs its local scheduling mechanism without using a

complex global scheduler, and the CPU usage is effectively managed by a real-time

kernel using an equivalent vCPU scheduling framework [20]. The time partitioning

scheme used in PikeOS follows an analogous approach like KVM implementation

where tasks in the various guest OS are allotted to logical time partitions and uses an

advanced, flexible scheduler, combining time driven and priority-based scheduling, for

executing real-time and non-real-time tasks [27]. The scheduling mechanism in the

automotive gateway using KVM does not explain how it will handle the dynamic,

system events like CAN communication interrupts, arrival of data from sensors, etc.

PikeOS resolves the conflict between time driven and event driven real-time processes

by using a novel approach where the scheduler needs to choose between two active time

domains, foreground domain for time driven real-time tasks and background domain for

event driven processes and non-real-time tasks [26, 27]. As a result, PikeOS partition

scheduler uses a simplistic scheduling algorithm, and context switching overhead is fast

AUTOSAR and Linux – Single Chip solution

18

and bounded, i.e., O (1) since it needs to consider only two partitions during every

context switch [26, 27]. However, the context switching overhead in vCPU framework

will be high in the worst-case scenario, i.e., O(n), where n is the number of virtual

CPUs. In the same way, the scheduling mechanism in automotive gateway using KVM

and Quest-V architecture seems to be more complicated compared to PikeOS

partitioning scheduler since they utilize a combination of several scheduling algorithms

and hence they will have a large code base for the scheduling mechanism.

Quest-V architecture uses message passing based on shared memory regions for inter-

partition communication [20]. The automotive gateway implementation also deploys

shared memory regions in the KVM Linux kernel, that is accessed using a device driver

interface by the application tasks in each guest OS [19]. In our implementation, we use

simple sampling ports mechanism for transfer of data messages between the AUTOSAR

and Linux applications. These sampling ports were based on socket based

communication, and they never block or queue and provide much faster communication

access when compared to the shared memory regions [29].

There seems to be very few research articles focusing on the challenges associated with

porting of AUTOSAR stack on top of a virtualization abstraction layer. The automotive

gateway implementation using KVM hypervisor uses only a customized AUTOSAR

compliant OS, and it does not specify any details about the porting of this OS on top of

the KVM hypervisor. The Quest-V architecture also mentions support for AUTOSAR

stack but further details about the implementation are lacking in that report. Reinhardt,

Kaule and Kucera specify the limitation of AUTOSAR in supporting mixed critical

systems by itself independently and then outline a proposal for deploying AUTOSAR

BSW in combination with an additional hypervisor layer for implementing a domain-

oriented E/E design to solve the ECU scalability issues in automotive systems [21]. We

take their analysis as a basis, and we focus on the challenge of porting AUTOSAR

architecture on top of the hypervisor solution, PikeOS microkernel and then outline the

necessary modifications required in the AUTOSAR OS abstraction layer and the

standard AUTOSAR build process.

3.2 Current state of the art system

In the current automotive system architecture, infotainment and automotive control

ECUs exists separately, and they are interacting with each other remotely using the

vehicular communication networks for the transfer of data signals. Figure 3.1 depicts

the example of a remotely connected ECU system. The current system does not address

the ECU proliferation and the overall complexity issue of the vehicular interconnection

wiring systems. Also, it hosts only a single control functionality in the modern,

powerful processors and thus the excess CPU time is not effectively utilized [3, 13].

AUTOSAR and Linux – Single Chip solution

19

 Figure 3.1 Remotely connected state of the art ECU systems.

3.3 Beyond the State of the art:

A consolidated ECU system can be implemented using the virtualization technology as

shown in Figure 3.2, and it can support diverse OS on a common target platform to

execute different functionality applications. This implementation offers several

advantages and overcomes the existing limitations in the state of the art systems [24].

a) Reduction of hardware units, development costs and system complexity
The proposed multipurpose ECU systems will reduce the number of ECU units in cars

considerably, and it will lead to simpler system architecture with few centralized,

compact ECU nodes. This, in turn will reduce the development time and maintenance

costs as it will be easier to carry out software development and upgrades [13].

b) Minimizes ECU to ECU communication overhead and wiring system
In the state of the art systems, the communication between the applications in different

ECU nodes is handled by various communication protocols like CAN, Flexray, etc.

running on complex interconnection wiring systems. It results in a communication

overhead of nearly 100 to 1000 milliseconds for message transmission and a separate

processor for handling these vehicular networks. In the proposed solution, the

applications that require frequent interaction will be integrated in a single multipurpose

ECU and also the communication will be localized in same processor platform [3].

c) Efficient utilization of the processing capacity and system resources
The proposed multipurpose ECU systems deployed using virtualization technology can

consolidate and provide parallel execution of multiple functional applications on a

single, powerful processor by exploiting their peak processor potential and facilitate

efficient usage of shared hardware resources like memories and I/O peripheral devices.

AUTOSAR and Linux – Single Chip solution

20

d) Increased flexibility and transferability of automotive software design
The proposed ECU system using virtualization technology can easily support diverse

operating systems and this enables developers to choose a flexible software platform for

the hosting the automotive applications and also reuse and transfer the existing

communication stacks and user applications directly into the automotive systems

without need for significant adaptations [13].

Figure 3.2 Example of a Consolidated ECU system using hypervisor solution

supporting diverse functionality applications.

AUTOSAR and Linux – Single Chip solution

21

4 Background

This section introduces about virtualization solution; technical concepts applied in our

pilot implementation such as time scheduling, resource partitioning of diverse operating

systems (OS) and inter-partition communication mechanism using virtualization

technology. It also describes how the hypervisor can support diverse operating systems

and the tools used for implementation and integration of the components into a single

system. Then this section highlights the fundamental concepts of AUTOSAR

architecture modules related to this thesis work. The concepts explained in this section

will help the reader clearly to understand the design and implementation of

multipurpose ECU prototype that is described in the later sections.

4.1 Virtualization

Virtualization is loosely defined as a “ framework or methodology of dividing the

resources of a computer into multiple execution environments, by applying one or more

concepts or technologies such as hardware and software partitioning, time-sharing,

partial or complete machine simulation, emulation and many others [25]. “

Hypervisor is a software or firmware that realizes the virtualization technology in the

computer or embedded systems [8]. Virtualization technologies like VMware, virtual

desktop infrastructure, were initially used extensively in the server domain for hosting

multiple logical server instances on a single server, and then gradually entered into the

enterprise domain for software infrastructure consolidation. Then it was applied in the

consumer space for simultaneously running multiple operating systems (OS) on a single

PC [8, 23].

4.1.1 Deploying virtualization in embedded systems

Initially, embedded systems were mostly uni-application and uni-processor systems

implementing simple and dedicated functionality. However, modern embedded systems

have to implement several complex functionality domains and computationally

demanding software applications with strict reliability and security. Thus, it can be seen

that the embedded systems are reaching a degree of complexity and challenges

comparable to that of the server enterprise space in terms of resource sharing and

system consolidation. Most of the embedded systems use customizable system

architectures that in turn are more suited for virtualization [22, 23].

Virtualization is seen as the next frontier by the embedded system architects and

product development engineers to solve the decision challenges associated with

increasing resource and application requirements of modern embedded systems. Also,

the advent of the powerful multicore processors, demand for higher performance and

lower power consumption has been a major driving force behind the deployment of

virtualization in avionics, medical and industrial devices, next generation mobile

platforms and automotive systems [11, 23]. The support for virtualization extensions by

the processor chip providers has furthered the introduction of hypervisor technology in

embedded systems [8]. The hypervisor solution offers the flexibility to host

heterogeneous operating systems on the same multicore processor. It also implements

robust reliability and fault containment mechanism to guarantee safe separation between

mission critical, hard real-time applications and the general purpose, untrusted user

applications.

AUTOSAR and Linux – Single Chip solution

22

4.1.2 Classification of virtualization technologies

Hypervisor can be classified into two types depending on how they are deployed and

realized.

a) Type1 or bare metal hypervisor where the hypervisor executes directly on top of the

hardware in the kernel mode and manages the hardware and different VMs[28]

b) Type2 or OS level hypervisor where the hypervisor runs as an application on top of a

conventional OS environment and then manages the guest OS that runs at third level

above the hardware [28].

Another type of classification is made depending on how the hypervisor virtualizes the

guest operating systems.

a) “Full virtualization” technique that requires hardware processor support for

virtualization and uses binary translation of OS instructions at runtime to trap into

the VMM. There is no need for modification of the guest OS, and the guest OS is

not aware that it is being virtualized. However, there will be a high-performance

overhead due to the scanning and translation of OS binary instructions before

execution [8, 23].

b) “ParaVirtualization” technique that requires modified guest OS to replace OS code

instructions with hyper calls that communicate directly with the VMM. This results

in high performance and low virtualization overhead and also guest OS are aware of

being virtualized [23].

Type1 hypervisor with a thin hypervisor layer and small Trusted codebase (TCB) is

suitable for virtualization in embedded systems as embedded systems have limited

resources. Likewise, paravirtualization is more suited for embedded systems since it

offers high performance and less code overhead and also the modification in guest OS

is not complicated since the kernel code in embedded systems is usually small and is

readily available to application developers.

4.2 COQOS Hypervisor solution

COQOS is a highly scalable software framework for implementing virtualization

technology in the automotive domain [12]. It provides a flexible solution for automotive

OEMs and suppliers to seamlessly integrate the infotainment head units, telematics and

consumer electronics user applications along with the real-time AUTOSAR based

automotive applications like advanced driver assistance systems(ADAS), chassis

control, etc. on a single ECU system using a powerful processor[12]. In this thesis

work, COQOS containing a lightweight PikeOS microkernel implementation [12, 26],

that is comparable to a Type1 hypervisor, was deployed in our pilot implementation of

Multipurpose ECU system. Paravirtualization was done for AUTOSAR and Linux guest

OS, and they are ported on top of this hypervisor solution

It has been chosen since it provides the following features.

 Support for the AUTOSAR framework and paravirtualized Linux kernel versions.

 Support for various processor architectures and target platforms.

AUTOSAR and Linux – Single Chip solution

23

4.2.1 PikeOS Microkernel

The COQOS solution uses the SYSGO’s PikeOS microkernel architecture [26]. The

PikeOS microkernel has already been extensively deployed in mission-critical avionics

projects, and it is certified for compliance with the stringent safety and security

standards. It provides several state of the art functionalities and capabilities and this in

itself is an extensive research topic [26, 27]. We briefly explain the technical aspects of

PikeOS used and applied in the context of our pilot implementation like

i. Strict isolation and partitioning of resources using the resource partitioning

technique.

ii. Time partitioning mechanism for flexible and efficient scheduling of real-time

and non-real-time tasks.

iii. Inter-partition communication for implementing communication between the

partitions for transfer of data signals.

4.2.2 Resource partitioning

Resource partitions are logical containers with statically defined set of hardware and

software application resources with predefined access levels. PikeOS microkernel

divides global kernel memory space into statically configurable subset of pools and then

allocates it among the tasks in resource partitions at creation time. This mechanism

ensures strict isolation between the partitions as a malfunctioning application in one

resource partition can only exhaust the memory allocated to it and cannot access the

memory pools of the other resource partitions. It is a simplistic solution since it

maintains a minimal trusted code base and the only challenge is that the developer

should predict the kernel memory requirements of the RTOS and GPOS beforehand.

Likewise, RAM user memory resources are allocated to the partitions by PikeOS using

predefined configurations. Address spaces that contain the corresponding RAM memory

pages are created and allocated to each partition during system startup. Threads in a

partition are always attached to an address space, and it can only access and manage the

address space it owns [26, 29].

Additionally, access rights and communication rights are assigned to each thread to

restrict and monitor their access to system call interface. Each access right enables a

task to access a set of system calls, and the microkernel can check each system call of a

task with their corresponding assigned abilities to ensure that it does not consume

excess kernel resource or manipulate system settings. The abilities of a task are stored in

the corresponding task descriptor table, and it cannot be changed or extended during the

lifetime of the task. Also, a health monitor can be configured for error detection, fault

handling and recovery of partitions and user applications executing inside a partition

during runtime [29]. The above mechanisms guarantee strict separation and protection

of system resources between the resource partitions.

4.2.3 Time partitioning

The pilot implementation of multipurpose ECU system will host both real-time

AUTOSAR and non-real-time Linux applications. There should be a flexible

mechanism to schedule both critical real-time and non-real-time tasks simultaneously.

PikeOS implements an advanced time partitioning scheme that incorporates both time-

driven and preemptive priority-based scheduling for running hard real-time tasks, as

well as soft real-time and non-real-time tasks [26, 27]. In PikeOS, time partitioning can

AUTOSAR and Linux – Single Chip solution

24

be considered as a two-step process. PikeOS creates time partitions that are used for

allocating a certain CPU time to each resource partition. The resource partitions in the

PikeOS system are first assigned to the time partitions as shown in Figure 4.1.

Figure 4.1 Assigning resource partitions to time partitions.

There is a major time frame of fixed duration that is cyclically repeated. This time frame

is subdivided into several time slots of variable duration. The time partitions are allotted

to the time slots in the major time frame as shown in Figure 4.2. Time driven scheduling

mechanism schedules the time partitions in the major time frame. Within each time

partition, the applications are scheduled by their priority according to preemptive

priority based algorithm [26, 27].

Figure 4.2 Assigning time partitions to time slots in the frame

This scheduling method is used in several RTOS. However the unique feature in

PikeOS is that there are two time partitions that can be active at the same time; a special

time partition with ID 0 (T0), that is referred to as background time partition that is

always active and another time partition, Ti chosen from T1,T2,..,TN-1 (where N is the

AUTOSAR and Linux – Single Chip solution

25

highest time partition created) that acts as foreground time partition, switched cyclically

by a time driven scheduler as shown in Figure 4.3.The real-time tasks are allocated in

the time driven partitions T1, T2, .., TN-1 and are given a medium to high-level priorities.

The non-real-time tasks are allocated in the background time partition, T0 and they are

provided with a common low priority level. The safety-critical system services such as

health monitor and watchdog are allocated to the background time partition, T0 and they

are assigned highest priority so that they can be activated instantly. This flexible

scheduling mechanism ensures efficient load balancing among the different types of

tasks. Strict, time drove real-time tasks get their fixed time slots that are calculated

according to their worst-case execution times. If those tasks are completed earlier, then

the remaining free time slices of their time slot will be assigned to the low priority, non-

real-time tasks in the background partition using the PikeOS scheduler, thus effectively

utilizing the excess computing time. Additionally PikeOS provides different scheduling

schemes that can be created during system configuration, and it provides the ability to

switch dynamically between these schemes during runtime [26, 27].

Figure 4.3 PikeOS Scheduler concept.

4.2.4 Inter-partition Communication

The resource partitions are strictly isolated and separated by using PikeOS micro kernel.

However, it is also important for the applications in different resource partitions to

communicate with each other in a controlled manner. PikeOS micro kernel provides

three methods for implementing the inter-partition communication mechanisms [29].

(i) Queuing ports: It implements point to point communication channel between

the resource partitions. Messages are stored in each channel up to a user defined

maximum size in a First in First out (FIFO) queue. When reading or writing to

the channel, the queue is blocked with a timeout value.

(ii) Sampling ports: This is equivalent to queuing ports; however, there is no queue

to store the messages. The sampling ports consist of a message buffer of fixed

size and when new messages arrive, old messages are rewritten. The messages

can be updated periodically at a faster rate.

AUTOSAR and Linux – Single Chip solution

26

(iii) Shared memory regions: It is used for transferring large amounts of data. The

shared memory segments are considered as shared file system and the read and

write access to the shared memory is configured for each partition. Also, it needs

application specific protocols for the synchronization and coordination of read,

write access between the different partitions.

4.2.5 PikeOS support for virtualized AUTOSAR and Linux OS

In PikeOS, applications/user programs can be either executed directly on top of PikeOS

microkernel interface or on top of resource partitions that host paravirtualized operating

systems that are adapted to the PikeOS microkernel. These guest operating systems that

can be run on top of PikeOS microkernel are known as personalities [26, 29]. In our

prototype implementation, we use the following personalities provided by PikeOS,

Embedded Linux (ELinOS) and Portable Operating System Interface (POSIX Real-

time), for porting virtualized Linux and AUTOSAR OS respectively on top of PikeOS

microkernel [26, 31].

a) ELinOS

ELinOS is an embedded Linux distribution provided by SYSGO AG [31]. ELinOS

offers all the features used in industrial real-time applications and supports a broad

range of BSPs, drivers and real-time hardware extensions. It provides the latest kernel

version (2.6.35), for the Linux HMI demo application and is used to create the

virtualized Linux OS that can be hosted in a partition on top of PikeOS microkernel.

b) Portable Operating System Interface (POSIX) Real-time

The PikeOS POSIX real-time personality is suitable for deployment of compact real-

time systems in a partition and we use it to emulate the AUTOSAR OS since it provides

good support for the concepts of AUTOSAR OS such as task model, events, scheduling,

alarm mechanisms and resource management. POSIX Real-time personality provides

POSIX API functions for the programming environment [29].

4.2.6 PikeOS Development and Integration Process

The PikeOS provides an Eclipse based IDE tool named as CODEO for cross

compilation of software applications for the supported paravirtualized OS and then

configuring them in separate partitions [30]. The applications can be compiled, linked

and built into application binaries for the target hardware system using the PikeOS

cross-compiler toolchain. The PikeOS system settings are configured using CODEO by

the developer, and these parameters are automatically updated and stored in a

configuration file in XML format known as VMIT.xml [30]. The specification of the

system configuration settings such as partitions, their resource requirements, time

scheduling parameters, inter-partition communication channels and ports and the

applications that execute within the partitions are updated in this file. Finally, the

partition configuration file (VMIT.xml), user application binaries and PikeOS binary

objects (microkernel module and PikeOS system software) are assembled and built into

a single binary file using a ROM image builder tool. This binary file is the PikeOS

ROM image file that can be downloaded and initialized on an embedded hardware

platform [30]. CODEO specifies the bootstrap mechanism for starting up the ROM

image in the embedded target hardware.

AUTOSAR and Linux – Single Chip solution

27

4.3 AUTOSAR

AUTOSAR is an open and standardized software architecture framework jointly

developed by vehicle manufacturers, major OEM suppliers and automotive tool

developers in order to counter the increasing complexity of E/E systems in vehicles [4].

It provides a software infrastructure platform for collaboration, transferability,

reusability and partnership between different stakeholders in the automotive domain

while at the same time promoting competition on innovative features [32].

4.3.1 Modular, Layered Architecture

The AUTOSAR standardization provides a modular, layered ECU software architecture

that enables model based development (MBD) of automotive embedded software

functionality and also it helps to eliminate the boundaries between the diverse

automotive functional domains. Furthermore, AUTOSAR provides software component

framework that allows the description of automotive functionalities in terms of

componentized software entities (SWC) that in turn helps to model the software for

individual requirements. AUTOSAR provides a standard and simplified development

infrastructure for ECUs, where the application software realizing automotive vehicle

functions (SWC) are separated from the platform specific basic software modules

(BSW), operating the ECU through a transparent middleware layer called Runtime

Environment (RTE) as shown in the Figure 4.4. This design helps to develop the

automotive software functionality without any knowledge about the corresponding

ECUs [4, 32].

Figure 4.4 AUTOSAR Layered Architecture [32].

4.3.2 Basic software (BSW)

The Basic Software modules provide the infrastructural functionality on an ECU, and it

contains standardized and ECU specific components. The Basic software modules are

divided into sub layers as shown in the below Table 4.1 according to their functionality

[32].

AUTOSAR and Linux – Single Chip solution

28

Services Memory management, diagnostics, Watchdog, ECU state

management, CRC, end to end protection and implements

scheduler functions for BSW modules.

Communication Vehicular network communication and management services

OSEK RTOS Real-time scheduler, task and event management, alarms,

resource allocation and interrupt handling services. Also handles

assignment of cores to applications in multicore processor.

MCAL Driver interfaces for I/O devices, communication, memory and

microcontroller direct access and internal peripherals

Table 4.1 Overview of the list of functions offered by various BSW sub-layers

4.3.3 Micro Controller Abstraction Layer (MCAL)

MCAL contains the internal drivers for microcontroller, and it enables the upper layers

of AUTOSAR stack to be independent of the hardware implementation [32]. In this

thesis project, the CAN communication module in MCAL was utilized to receive and

process the CAN frames containing the data values from a vehicular CAN network

simulator tool, CANalyzer.

4.3.4 AUTOSAR Operating System

In order to maintain the backward compatibility with automotive legacy applications,

the AUTOSAR OS is based upon standard OSEK OS specifications [6]. The essential

features of AUTOSAR OS are [6]

i. It can be configured and scaled statically.

ii. Amenable to reasoning of real-time performance.

iii. Provides a priority based scheduling and protective functions at runtime.

iv. It can be hosted on the low-end controllers and without external resources.

4.3.4.1 AUTOSAR OS concepts

a) Task management

Tasks are schedulable entities of a software application that are executed by the

scheduler. Each task can be in anyone of the states as explained below.

1. Running: The task is being executed, and CPU time is allocated to this task and in a

uniprocessor platform, only one task can be in running state at any point in time.

2. Ready: The task has satisfied all the conditions for execution and waiting for

scheduler to allocate the processor time to it.

3. Waiting: The task that is waiting for an event to occur to continue its execution.

4. Suspended: The task that has been terminated by the scheduler goes into this state

until it is activated again by scheduler.

The tasks are allocated their priority statically during configuration phase so that

scheduler can determine the precedence for the execution of tasks according to their

priority [6].

AUTOSAR and Linux – Single Chip solution

29

b) Scheduler

It is a system application that determines the tasks that should be given access to the

system resources i.e., processor, I/O devices, etc. OSEK OS uses event driven, fixed

priority scheduling policy where the tasks are activated and deactivated by periodic

timing or sporadic events and tasks are executed according to their allocated priority [6].

c) Event mechanism

AUTOSAR OS uses events for synchronization of tasks, i.e., state transition of tasks

from running to waiting state and vice versa. Events can be expiry of a timer, reception

of CAN messages, availability of a resource, notification of hardware interrupts, etc.

[6].

d) Resource management

AUTOSAR OS module uses resource management for protection and coordination of

shared resources such as memory, hardware devices, etc. for the different tasks. It uses

OSEK priority ceiling protocol (PCP) to prevent deadlocks and priority inversion

problem i.e., lower priority tasks indirectly preempting and delaying the execution of a

higher priority task that is waiting for access to a shared resource [6]. According to this

protocol all the shared resources are assigned static ceiling priority i.e., priority of

highest priority task that will ever use that resource. Whenever a task acquires a

resource, its priority will be temporarily raised to the ceiling priority of the resource,

and it will be the only task that is in running state among all the tasks that share this

resource and thus, deadlocks and priority inversion problems can never occur.

e) Alarms and Counters

The AUTOSAR mechanism provides alarms and counter mechanism for processing of

recurring events, i.e., interrupts that occur at regular events, reception of periodic CAN

frames, etc. A counter is equivalent to a timer. Each counter is associated with the alarm

function that expires when the counter reaches a particular value and upon expiry of

alarm, either the task is activated, or event is set for the task [6].

Apart from the above, AUTOSAR OS also carries out of processing of hardware and

software interrupts by providing corresponding interrupt service routines (ISRs),

mapping of runnable entities of the application to tasks, memory and timing protection,

etc.

4.3.4.2 Operating System abstraction layer (OSAL)

In the AUTOSAR framework, standard OSEK OS specifications are used for the

execution of AUTOSAR software components. If these software components are

implemented to be run on top of a proprietary OS, then the OSEK OS interfaces should

be emulated and provided by using an Operating System Abstraction Layer (OSAL) [5].

4.3.5 AUTOSAR Run Time Environment (RTE)

In the AUTOSAR framework, RTE is the middle layer that provides the application

layer with the services from the BSW layer. All communication between SWCs, either

inter ECU or intra ECU is accomplished by the RTE using the interfaces of Virtual

Function Bus (VFB) i.e., mapping connectors and ports. It also takes care of the real-

time scheduling of the SWCs [33]. The essential task of the RTE is to ensure that SWCs

AUTOSAR and Linux – Single Chip solution

30

are independent of the ECU on which they are mapped. As SWC’s are dependent on the

type of application, the RTE has to be tailored for the specific ECU in which it serves

and the RTE will differentiate between different ECUs and the SWCs can remain same

accomplishing the intended functionalities [33].

4.3.6 Software Component (SWC)

An AUTOSAR application consists of several SWCs interconnected by connectors [34].

The SWC is independent of the hardware infrastructure, and it encapsulates a part or the

complete automotive functionality. SWC includes a formal description that contains

details about the operations and data elements, communication properties, specific

implementation, internal behavior (runnable entities, task and events), composition and

required hardware resources [32]. The essential attribute of the SWC is that it should be

atomic i.e., only one instance of a certain SWC can be present in a vehicle and that is

assigned to one ECU [32].

4.3.7 Virtual Function Bus (VFB)

The virtual functional bus is the abstraction layer that comprises the interconnections

and data exchanges between SWCs, other components and the system environment of

the entire vehicle independent of any underlying hardware [34]. The functionality of the

VFB is provided by ports, port interfaces and mapping connectors. Software

components have the required port (Rport) as input and provided port (Pport) as output

to interact and exchange the data elements with other software components. The ports

should be associated with port interfaces, that define the services or data that is

transmitted between the ports of different SWCs [34]. Commonly used port type

interfaces supported by the VFB are client-server and sender-receiver interfaces.

In our application, we use the sender-receiver communication mechanism between the

SWC and the BSW COM module via the RTE. This mechanism provides asynchronous

(non-blocking) communication where a sender distributes information to several

receivers, or one receiver gets information from several senders and there is no data or

control flow response mechanism. The ports between the software components, that

need to interact and communicate with each other, are linked using assembly connectors

as shown in Figure 4.5 below [34].

 Figure 4.5 Sender Receiver communication between 2 AUTOSAR SWCs.

AUTOSAR and Linux – Single Chip solution

31

5 Requirements and Consolidation Strategies

In this thesis work, we propose to design a pilot implementation of multipurpose ECU

in order to study and solve the integration problem of automotive control and

infotainment applications. This section briefly explains the requirements for our pilot

implementation, overview of alternate consolidation strategies and then we motivate the

reasons behind the chosen consolidation strategy using virtualization solution. We

highlight the functional components in our prototype model, particularly virtualization

solution and the rationale for their selection.

5.1 Requirements for Multipurpose ECU system

System design always begins with setting requirements for the system in order to

determine the design choices. The main challenge for the pilot implementation of

multipurpose ECU system is to find a suitable common OS platform or system

architecture for concurrently running the real-time automotive control and non-real-time

infotainment applications on the same target hardware, sharing the system resources like

CPU, kernel and RAM memory, I/O peripheral devices, etc. Also, the common OS

platform should provide an Inter OS communication mechanism so that these diverse

applications running on a shared hardware platform should be able to exchange data

signals between them.

The common OS platform for the multipurpose ECU should have following functional

requirements.

(i) Flexible scheduling mechanism

Automotive control applications must respond quickly and hence they need immediate

access to resources. They have strict timing constraints and should execute within their

specified deadlines. Infotainment applications need not respond quickly and can tolerate

delay since they have soft or non-real-time requirements. The common OS platform

should provide a dynamic scheduling mechanism for efficiently allocating the CPU time

between the diverse functional modules such as real-time tasks in the AUTOSAR

application and non-real-time tasks in the Linux application, by giving high priority to

the real-time tasks while still providing best-effort to non-real-time processes.

(ii) Capability for partitioning of system resources and isolation between the partitions

The common OS platform should provide capabilities for sharing and partitioning of

embedded system resources like kernel, user memory and I/O devices between the

AUTOSAR and Linux applications. There should be strict separation and isolation

between them; the different applications should safely coexist and execute in the

common platform, and one faulty application should not affect the other applications in

the system. In our pilot model, the execution of AUTOSAR and Linux applications

should be strictly isolated from each other even though they are hosted on the same

hardware platform and share the resources like CPU time, I/O peripheral devices, etc.

(iii)Communication between the applications

The common OS platform should provide a simple and faster way for the transfer of

message signals between AUTOSAR and Linux applications, i.e., the communication

between the diverse applications should be localized in the same hardware platform

without going through the external CAN communication bus.

AUTOSAR and Linux – Single Chip solution

32

(iv) Support for AUTOSAR architecture and general purpose OS

The consolidated ECU system should have abilities to host diverse OS such as

AUTOSAR architecture (real-time control applications) and Linux (non-real-time

infotainment applications) without the need for substantial modifications.

Apart from the above, the common OS platform should be able to meet the below

nonfunctional requirements that are measurable.

(i) Meet automotive requirements like fast boot time and minimum communication

delay

The consolidated ECU system should satisfy the automotive real-time requirements like

fast bootup time, minimum signal communication delay, etc. For instance, automotive

real-time applications should be started instantly within 5 to 10 seconds as soon as the

car is powered on. The boot time of the consolidated ECU system and signal

communication delay between AUTOSAR and Linux application should have better or

comparable performance when compared to the current state of the art, remotely

connected ECU systems. This is important since automotive companies compete mainly

on cost/performance ratio.

Based on above requirements, we analyze different design alternatives and select a

suitable consolidation strategy for our prototype model.

5.2 Survey of consolidation strategies

We present various design strategies for the common system architecture of proposed

prototype model of multipurpose ECU and then we motivate the reasons behind our

chosen design strategy.

5.2.1 Linux containers and Real-time Linux patches

Linux containers (LXC) technology provides a lightweight virtualization for running

multiple isolated Linux systems known as containers on a single Linux kernel and root

file system (RFS), and it provides isolation of resources between the containers using

kernel control groups [53]. Thus, Linux container technology is equivalent to a Type2

Hypervisor or operating system level virtualization implementation. This mechanism

does not virtualize the hardware platform; it only provides separation between the

different systems. OS level instructions are executed directly on the CPU and hence do

not require dynamic translation as done in Paravirtualization. RTLinux, a hard real-time

variant of Linux, that contains a small real-time kernel that coexists with the typical

Linux kernel, can be used to support the real-time control applications. We consider

using LXC in combination with RTLinux as a design alternative for the multipurpose

ECU system. However, there were several shortcomings in this approach.

 Linux containers will support only Linux OS; AUTOSAR architecture needs to be

ported on top of the Linux OS, and it requires substantial effort.

 Also, RTLinux contains only a simple priority-based scheduler for handling

interrupts in general and hence it cannot completely replace the functionality of the

OSEK RTOS. So, we need to modify the kernel to include feasible scheduling

algorithms as per the requirements of specific automotive applications. This is quite

complicated and hence, it cannot adequately support hard real-time applications.

AUTOSAR and Linux – Single Chip solution

33

 Additionally there is less domain isolation and separation since Linux kernel

inherently does not have a strong security level assurance, and it cannot provide a

high protection level like virtualization technology.

 Critical automotive applications cannot be booted up instantly as it needs to wait

until the startup of Linux kernel and that itself takes almost 5 seconds.

5.2.2 Microkernel based AUTOSAR architecture

There are several literature research articles proposing an AUTOSAR compatible micro

kernel [35, 36]. In this approach, minimum core and safety relevant functions like task

creation, scheduling and memory access are carried out by the AUTOSAR OS. It is the

only software module that executes in the privileged mode of the CPU, thus creating a

thin microkernel layer with minimal codebase. To support heterogeneous operating

systems, the task scheduling in microkernel-based AUTOSAR model needs to be

modified to include a flexible scheduling algorithm for executing both real-time and

non-real-time tasks [36]. Then AUTOSAR microkernel can be considered as a

virtualization platform and other OS such as Linux/Android can be virtualized by

adapting it to the VFB layer of AUTOSAR architecture as shown in the Figure 5.1.

Also, AUTOSAR 4.0 provides memory partitioning and protection mechanism [5].

However, still developing an AUTOSAR compatible microkernel requires major

architectural changes as explained above and significant technical breakthroughs would

be needed for meeting the safety-critical requirements as well as providing support to

infotainment and connectivity applications that use high-resolution graphics and

complex communication stacks. This approach requires considerable effort and time

(maybe years) and hence it is not a viable solution for our pilot implementation that we

intend to develop within few months.

Figure 5.1 Microkernel based AUTOSAR architecture for running real-time and non-

real-time applications.

AUTOSAR and Linux – Single Chip solution

34

5.2.3 Virtualization based system architecture

Virtualization solution has already been deployed in the embedded systems domain in

avionics, telecom switches and next generation mobile devices for system consolidation

and isolation of diverse functionalities [23]. At present, automotive embedded systems

also implement several distributed functionality domains and computationally

demanding software applications. Most of the automotive systems have started using

general purpose software with extensive insecure code base and rich open source APIs

[10]. Hypervisor technology provides a scalable architecture for multiple functionality

domains, eases software design since it offers a common abstraction layer for

developers without the need for complex porting process of diverse OS and hence the

existing user applications can be easily reused in automotive systems without significant

modifications. It can efficiently tap the processing power of the state of the art

processors to provide peak performance potential by parallel execution of applications

[24]. Also, several, diverse applications in automotive system can share the hardware

resources like memory and I/O peripheral devices between them using hypervisor

solution. The chosen hypervisor technology meets all the requirements for the pilot

implementation of multipurpose ECU as listed in Section 5.1. It can provide support for

hosting several diverse operating systems and then ensure separation and isolation

between them. The applications in the diverse OS can interact with each other using

inter OS communication mechanism provided by hypervisor technology. Most of the

hypervisor solutions inherently deploy advanced, dynamic scheduling mechanisms.

Also, most modern processors have high processing speeds and capabilities, and thus, it

can offset the small processing overhead due to the additional hypervisor abstraction

layer. Hence, we decide to select the system design using hypervisor technology as the

consolidation strategy in order to solve the integration problem in automotive embedded

systems.

5.3 System settings of the prototype model using Hypervisor technology

The functional components of the proposed pilot implementation of the multipurpose

ECU are

a) COQOS as the hypervisor solution

b) I.MX53 SABRE ARD as the target hardware platform

c) AUTOSAR 4.0 and Linux (kernel:2.6.35) as the two OS partitions

d) AUTOSAR control application developed using MECEL PICEA suite [38].

e) Linux HMI Instrument cluster application developed using MECEL POPULUS

suite.

5.3.1 Rationale for selection of functional components of the prototype model

The pilot demo system containing reference implementations of automotive real-time

application based on AUTOSAR architecture and non-real-time infotainment

application based on Linux OS, executing concurrently on a common processor

platform was designed to serve as the scaled down, prototype model for multipurpose

ECU that could be deployed in future automotive systems. The main challenge is to

design a simplistic prototype that could model the final engineering system and hence

the functional components of the pilot model were selected and designed so that they

could simulate the functionality of the real working ECU system as close as possible.

Also, it is important to keep in mind that the selected functional components should

AUTOSAR and Linux – Single Chip solution

35

have good interdependency so that they can be integrated holistically into a complete

system.

5.3.2 Hypervisor solution

The choice of the hypervisor solution was critical for the implementation of

multipurpose ECU prototype since it should provide capabilities for flexible scheduling

of diverse applications, partitioning and isolation of resources and support for porting

Linux and AUTOSAR OS architectures. There was several open source as well as

proprietary hypervisor solutions applicable for embedded systems domain like Kernel-

based Virtual Machine (KVM), Xen, OKL4, Wind River Hypervisor and COQOS. We

carried out a comparative analysis of the features of these hypervisors, as shown in

Table 5.1, in order to select a suitable hypervisor for our proposed pilot implementation

of multipurpose ECU hosting both Linux OS and AUTOSAR architecture.

5.3.2.1 Comparative Analysis of the Hypervisor solutions

There are several open source hypervisor solutions like KVM and Xen, and we

considered them for our prototype implementation [55, 57].

KVM: This is an open source hypervisor, and it utilizes Linux as the host OS. The

guest OS are ported on top of the Linux kernel and it requires hardware virtualization

extensions [55]. The main disadvantage in this is that Linux kernel does not provide

support for hard real-time applications and at best it can be used only for soft real-time

applications. It is mainly used in server systems and general embedded devices [54, 57].

Xen: This is most commonly used open source Type1 hypervisor, and it can support

both full virtualization as well as paravirtualization if there are no hardware

virtualization extensions available in the processor platform [54]. Since it is open source

code, developers need to implement suitable and specific scheduling algorithms as per

the requirements of the target applications. It is mainly used in mobile platforms and

general embedded devices [55, 56].

Even though, we can avoid high costs by using an open source hypervisor, there is

limited information available about the security assurance levels of open source

hypervisors and this is critical for automotive embedded applications. Both KVM and

Xen hypervisors do not provide support for AUTOSAR architecture and hence it

requires extensive effort to port it on top of the hypervisor abstraction layer for our pilot

implementation.

There were several proprietary hypervisor solutions like Wind River, OKL4 Microvisor

and COQOS, and we considered them as well for our prototype implementation of

multipurpose ECU system.

Wind River Hypervisor: This is a Type1 embedded hypervisor implemented by Wind

River, and it provides support for real-time behavior and capabilities required for high

performance embedded applications [59]. It delivers a thin virtualization layer with

minimal codebase. It implements reliable and safe partitioning and also the scheduling

mechanism can be configured or modified according to the requirement of the target

applications. Even though, it provides support for the various processor architectural

models, there was no pluggable board support packages (BSPs) available for Freescale

boards at the time of our thesis work. Wind River Hypervisor solution is used in a wide

AUTOSAR and Linux – Single Chip solution

36

array of embedded applications like aerospace, telecom equipment, consumer and

medical embedded devices, mobile platforms as well as automotive systems [59].

OKL4 Microvisor: This is an open source, microkernel based hypervisor solution

provided by OK Labs. It has good support for real-time systems, resource management

and a minimal codebase. It is mainly used in mobile platforms and supports several

guest OS such as Linux distribution, Android, Symbian and Windows. However, there

is not much support available for AUTOSAR architecture and hence extensive effort is

needed to port it on top of OKL4 Microvisor [58, 60].

 Table 5.1 Comparative analysis of hypervisor solutions for our prototype model.

COQOS: Open synergy’s COQOS product is based on the SYSGO's PikeOS

microkernel. The virtualization layer is very thin and is only about 3k lines of code. It

AUTOSAR and Linux – Single Chip solution

37

also provides full support for Linux, Android and AUTOSAR framework. Also, the

microkernel allows safe and reliable partitioning of the processor resources. It also

fulfills the highest safety and security standards as the PikeOS microkernel has been

extensively used in avionics and safety critical applications. It also provides a

configurable communication bridge between the Linux and AUTOSAR OS. COQOS

uses paravirtualization instead of hardware-assisted virtualizations and provides

paravirtualized versions of Linux and Android guest OS. Another appealing factor is

that COQOS has been specifically designed for the automotive ECU systems and for

integration of AUTOSAR based automotive application with Linux/Android based

infotainment application [12,26].

5.3.2.2 COQOS Hypervisor solution

Finally, OpenSynergy’s COQOS hypervisor was selected as the suitable virtualization

solution for the pilot implementation of multipurpose ECU [12]. The primary motive

behind the selection of the COQOS hypervisor solution was because it meets all the

requirements as specified in Section 5.1.

(i) Resource Partitioning: As explained in Section 4.2.2, COQOS provides a resource

partitioning mechanism to allocate system resources for different OS partitions.

AUTOSAR and Linux OS can be hosted in separate partitions on a single hardware

platform and share the system resources using this mechanism.

(ii) Time Partitioning Mechanism: As explained in Section 4.2.3, COQOS provides

time partitioning mechanism to allot CPU time slots for different OS partitions

hosting real-time and non-real-time applications. AUTOSAR real-time and Linux

non-real-time applications can access the CPU time using this flexible time

partitioning scheme.

(iii) Inter system Communication Mechanism: As explained in Section 4.2.4,

COQOS provide several communication methods to enable inter OS communication

between the partitions, and one of those methods was utilized for transfer of data

signals between AUTOSAR and Linux application in our prototype model.

(iv) COQOS is specially designed for the automotive domain, and it had good support

for paravirtualization of AUTOSAR architecture and embedded Linux OS [12].

(v) It is based on PikeOS microkernel that provides a lightweight abstraction layer with

minimal code base. It has been extensively used in safety-critical avionics and

industrial applications. It can fulfill hard, real-time features and is certified for

compliance with the stringent safety standards (IEC61508, EN 50128, etc.)[26].

5.3.3 Target hardware

Freescale i.MX53 SABRE ARD was selected as the target hardware for the pilot

implementation [40]. It provides

a) High processing speeds up to 1 GHZ for hosting the additional hypervisor layer.

b) FlexCAN interface module for CAN communication.

c) Support for Linux OS and capabilities for executing accelerated high definition

2D/3D graphics with minimal CPU loading to support the infotainment applications.

AUTOSAR and Linux – Single Chip solution

38

As a result, the other functional components such as hypervisor, automotive and Linux

reference applications can be seamlessly integrated on top of this hardware platform.

The reference applications for the pilot model were selected and designed so that they

could closely simulate the functionality of a real working ECU.

5.3.4 Automotive Reference application using AUTOSAR Architecture

We developed an automotive control application using AUTOSAR 4.0 architecture.

Vehicular real-time values, such as speed, revolutions per minute (RPM), and engine

temperature are sent to this control application periodically by a CAN network

simulator tool. The AUTOSAR application mainly consists of an application SWC,

COM communication stack, BSW OS module and a generated RTE module.

(i) The COM communication stack (BSW modules such as CanDrv, CanIf, PDUR and

COM) is configured to receive the CAN frame containing the payload data from the

CAN simulator tool, encapsulate the payload data and then finally deliver it to SWC

through RTE module.

(ii) The SWC with receiver ports and sender-receiver interfaces is created for

periodically reading the data values from the BSW communication layers via RTE.

Also, it consists of a C function known as runnable, that implements the actual

business logic of ECU functionality. The SWC would perform some processing

with these data values for the engine control functionality of automotive ECU.

(iii) In the RTE module, a periodic timing event necessary for scheduling of the

runnable is created. RTE read functions that enable the SWC to access the BSW

communication modules and fetch the appropriate data signals, are implemented

[33].

(iv) The BSW OS module consists of an OS task that is associated with the RTE timing

event. The SWC will utilize this OS task for the periodic scheduling of the runnable

function. The BSW scheduler contains the schedule table for the activation of tasks

in the AUTOSAR application [5].

The AUTOSAR application is configured using the Volcano VSx tools, and it utilizes

the BSW, RTE software libraries and generator tools provided by MECEL Picea suite

[38]. This automotive application simulates a typical control process functionality that

could be deployed in an engine management ECU.

5.3.5 Infotainment Reference application using Linux OS

We used an instrument cluster HMI application, developed using MECEL Populus suite

as the Linux reference application [39]. The Linux application gets the input data values

periodically from the automotive control application and then updates the gauges and

indications like speed, RPM, engine temperature, etc. during runtime on the HMI

display unit. This is a state of the art GUI application that deploys accelerated 2D/3D

graphics with high resolution and frame rates. It typically resembles the dashboard

application that could be used in the automotive infotainment head unit.

AUTOSAR and Linux – Single Chip solution

39

6 Design of components of Prototype model

Based on the selected consolidation strategy using virtualization technology, we

propose a pilot implementation of multipurpose ECU system. In this ECU system,

automotive control and infotainment applications based on AUTOSAR architecture and

Linux OS respectively, are implemented so that they can concurrently execute in a

single hardware platform using the COQOS hypervisor solution. The proposed solution

facilities consolidation of heterogeneous, distributed ECU nodes and aims to solve the

integration problem in the current state of the art vehicular systems. The real-time

AUTOSAR and non-real-time Linux application are separated by allocating them to two

different partitions that have their own memory space, and the partitions share the I/O

peripheral devices in the hardware and the CPU time [29]. Then we implement inter-

partition communication channels between the partitions so that the applications can

transfer data signals between them. The high-level system design of the proposed

prototype model as shown in the Figure 6.1 below consists of three software functional

components namely,

 Partition 1 named as AUTOSAR partition containing the automotive control

application based on AUTOSAR architecture.

 Partition 2 named as Linux partition containing the Linux kernel, root file system

and HMI application based on Linux OS.

 Hypervisor solution, that provides the virtualization technologies.

Figure 6.1 High-Level Design of the Prototype model.

AUTOSAR and Linux – Single Chip solution

40

Apart from the above, the prototype model also consists of the target hardware platform,

I.MX53 SABRE ARD. However, the hardware platform is a commercial off-the-shelf

(COTS) product that is supported by COQOS hypervisor and there is no particular

design and implementation done in this hardware for our prototype implementation

[12]. The three software functional components of the prototype model are designed

such that they can enable parallel execution of AUTOSAR and Linux applications on

the same hardware platform.

The main design objectives for the prototype model were

1. Porting of AUTOSAR application on top of hypervisor solution.

2. Porting of Linux application on top of hypervisor solution.

3. Enable parallel execution of AUTOSAR and Linux applications on the same

hardware platform using the hypervisor solution. This involves

a) Efficient processor (CPU) time sharing between the real-time AUTOSAR and

non-real-time Linux partitions using PikeOS time partitioning mechanism.

b) Sharing and strict separation of the hardware resources in target device (i.MX53

SABRE) between the two partitions using PikeOS resource partitioning

mechanism.

c) Communication interface to transfer the data signals in a simple and faster way

between the partitions using PikeOS inter-partition communication method.

The design considerations, techniques and optimization for each of the functional

components were carried out in accordance with the above objectives and to fulfill

automotive requirements like quick startup time, less signal communication delay, strict

isolation, etc. As in Design Science Research Method, we expose the basis of our design

decisions and explain what design was done for each functional component and why it

is being done [17].

6.1 Design of the AUTOSAR partition

The AUTOSAR partition consists of an automotive control application based on

AUTOSAR framework, which could be ported on top of the hypervisor solution. The

design considerations for the AUTOSAR partition are

a) Create a PikeOS compliant AUTOSAR architecture for the automotive application

so that it could be integrated and executed on top of the PikeOS microkernel as

shown in Figure 6.2.

b) Optimize the startup time of the AUTOSAR application to support the fast bootup

requirement.

6.1.1 Design of PikeOS compliant AUTOSAR architecture

In the AUTOSAR architecture, the BSW modules and SWC are dependent on the

underlying operating system for scheduling and execution of the tasks and applications

[32]. Usually, the industry standard OSEK OS specification is used in the state of the art

AUTOSAR architecture [6]. In this prototype design, we use the virtualization layer,

PikeOS microkernel as the OS module to create a PikeOS compliant AUTOSAR

architecture that could be integrated and executed on top of PikeOS microkernel as

AUTOSAR and Linux – Single Chip solution

41

shown in Figure 6.2 below. This involves two main modifications in the state of the art

AUTOSAR framework.

a) As per AUTOSAR specifications, an OS abstraction layer (OSAL) need to be

implemented that provides OS wrapper functions for emulating the appropriate

AUTOSAR OSEK interfaces to BSW, SWC and RTE if a proprietary OS (PikeOS)

is used instead of standard OSEK OS [5].

b) Integrate the state of the art AUTOSAR BSW, RTE and SWC with the OS module

based on PikeOS and generate code files using AUTOSAR build process [41].

6.1.1.1 OS wrapper functions for emulation of OSEK OS interfaces and services

The OSEK OS concepts like task model, fixed priority based scheduling of tasks, event

mechanism for synchronization of tasks, interrupt processing, resource management and

alarms functionality[6] needs to be migrated to the corresponding mechanisms of

PikeOS. AUTOSAR architecture implements these functions using standardized OS

interfaces. First, we analyze our AUTOSAR application to understand the necessary OS

functions utilized by it. When porting AUTOSAR RTE or BSW into propriety OS

platforms, the third party OS need to reimplement these standardized OS interfaces

using their own API functions to emulate OSEK OS [5]. The PikeOS mechanisms were

compared to the OSEK interface specifications and studied to analyze if PikeOS can

provide support for these standardized OS interfaces. If there is a one-to-one match,

then the wrapper needs to translate and create mapping between the interfaces of both

OS. The AUTOSAR application designed in our prototype uses a quite limited and

simple AUTOSAR OS model.

 Figure 6.2 Migration to PikeOS compliant AUTOSAR architecture.

AUTOSAR and Linux – Single Chip solution

42

a) Task modeling:

The reference AUTOSAR application consists of a basic OS task model instead of an

extended one for scheduling of runnable entities of the application. In basic task model,

a task has three basic states: running, ready and suspended [6]. We need to provide the

interfaces for state transition between these three states in our OSAL wrapper functions.

b) Event, counter and alarm mechanism:

In reference AUTOSAR application, the OS tasks are associated with periodic timing

events for the activation and execution of the tasks by the scheduler. In AUTOSAR OS

model, events are registered with specific alarm functions and these functions set or

reset the events. These alarm functions have predefined timing counter values, and

when the counter reaches the specified value, the alarm function is called that in turn

triggers or resets the associated event [6]. So we require interfaces to increment counter

value, set or cancel the alarm function, etc., in the OSAL wrapper functions.

c) Interrupt processing

In our reference application, CAN frames are sent from the simulator tool, and it in turn

triggers the CAN hardware interrupt signals. This requires the OSEK interfaces to trap

and process these CAN interrupt signals [6]. Therefore, we need corresponding

interfaces in OSAL wrapper functions to enable, disable and handle the CAN interrupts.

d) Scheduling and resource management:

A scheduling service is required to allocate system resources to tasks. When it is called,

the scheduler will search for any task that is in the ready state. The task in the ready

state with the highest priority will get the system resources and will be scheduled to

running state [6]. There should also be a mechanism for protection and coordinated

access to common resources such as memory, I/O devices, etc. that are shared between

different tasks to prevent deadlocks and priority inversion problem. This is done by

OSEK priority ceiling protocol (PCP) that guarantees mutual exclusion for the common

resources shared among different tasks [6]. We need corresponding interfaces in OSAL

wrapper function to implement the scheduling and resource management mechanisms.

PikeOS provides several personalities to paravirtualize and emulate a guest OS on top

of the PikeOS microkernel. We use the PikeOS POSIX real-time personality to emulate

the standardized OSEK OS interfaces since it provides good support for real-time

systems [26, 29]. The COQOS solution provides POSIX compliant APIs [12] and the

OSAL wrapper function utilizes these POSIX API functions for translating and

mapping the OSEK interfaces of AUTOSAR OS in PikeOS, and this is explained in the

Implementation section.

e) Optimization in AUTOSAR application

PikeOS provides facilities only for initialization of partitions and scheduling of the

applications inside the partition according to the time partitioning mechanism. However,

the immediate execution and startup of the application depends upon the design of the

application. AUTOSAR OS uses a standardized interface; StartOS to initialize the

AUTOSAR operating system and application during system startup or reset [5, 6].

StartOS interface carries out the initialization steps as shown in the Figure 6.3, and it

calls the StartupHook routine and the user can put all the OS dependent initialization

code in this routine [6]. In our prototype system, the fast startup of the real-time

AUTOSAR and Linux – Single Chip solution

43

AUTOSAR application is an essential requirement for automotive ECU system, and this

depends upon OSEK Startup interface (StartOS) [6].

PikeOS did not directly provide the StartOS interface function. Instead, it had an

equivalent OS interface named as “START_AUTOSAR” that was used for starting the

OS services. The Startup functionality was coded and implemented in the OS

abstraction layer (OSAL) by using this PikeOS interface (START_AUTOSAR), as per

the specifications provided by OSEK OS. The initialization procedure in StartupHook

routine was customized so that it is not complicated and lengthy to execute. We placed

limited and necessary initialization procedures in the StartupHook function to ensure

quick startup of AUTOSAR application and at the same time we ensured that

AUTOSAR application could be loaded and executed correctly.

Figure 6.3 StartOS functionality for AUTOSAR application startup.

6.1.2 Integration of standard AUTOSAR stack and PikeOS OS module

During the porting of AUTOSAR stack on top of PikeOS microkernel, we integrate the

standard BSW, RTE and SWC modules from MECEL AUTOSAR stack along with

proprietary OS module from COQOS. As explained above, the OS module is based on

PikeOS microkernel and contains the OS abstraction layer developed by POSIX API

functions. However, the integration of AUTOSAR modules from different vendors is

not a straightforward process as the code generator tools and build system are quite

vendor specific solutions and are not interoperable with each other. This is a typical

system integration problem that arises while linking of modules from different

subsystems. We provided a strategy to customize the standard build process in order to

integrate the standard AUTOSAR stack along with an OS module based on other

Propriety OS such as PikeOS.

The standard build process can be used to generate C source and header files containing

the application specific configuration parameters for BSW, MCAL modules and SWC

using the configuration files (Arxml) and SWC coding implementation since SWC and

BSW modules are not directly dependent on the OS module in AUTOSAR architecture

[41]. However in AUTOSAR framework, RTE and OS modules are interdependent

since the SWC and BSW scheduler uses the RTE layer to access OS module for task

scheduling, resource allocation and communication [5]. The problem is that RTE

module is from standard stack provided by MECEL and OS module is based on a

proprietary OS like PikeOS and is provided by COQOS. The OS header files (Os.h,

Os_Cfg.h, MemMap.h and Ioc.h) contain the configuration information of OS such as

task, application, alarms, resources, etc. as well as the declarations and definitions of the

OS interface functions. These header files are referenced by the BSW scheduler and

SWC to access the OS services through RTE interfaces and hence it is important that

the OS interface functions should be mapped correctly with the generated RTE code

AUTOSAR and Linux – Single Chip solution

44

[41]. We implemented a strategy for the integration of RTE and OS modules from

different vendors and then carry out C code file generation as shown in the Figure 6.4.

We synchronized the OS configuration parameters such as tasks, counter and accessed

resources in the OS configuration file (OS.arxml) as per the PikeOS microkernel and

our AUTOSAR application settings. Using COQOS generator tools, we generated the

code files (source and header files) for PikeOS compliant OS module. Then we used

MECEL generator tools to automatically create the RTE code (source and header files)

containing the configuration of OS dependent entities such as RTE events and runnable

that are then remapped according to the updated OS configuration file. These generated

source and header files (code files) are finally integrated together during build process

to generate the complete AUTOSAR system executable [41].

Figure 6.4 Strategy for generation of C code files for Standard RTE module and

Proprietary OS module based on PikeOS.

6.2 Design of Linux partition

When compared to AUTOSAR framework, porting of Linux OS on top of PikeOS

microkernel does not require much effort as COQOS already provides an embedded

Linux distribution named as ELinOS with the latest kernel version (2.6.35) for creating

a virtualized Linux OS partition[31]. Unlike AUTOSAR partition that consists of only

AUTOSAR application, the Linux partition consists of the kernel, root file system,

dependency library files and Linux application. The main challenge was to port a

lightweight Linux partition to ensure minimal memory footprint that enables quick

startup of the Linux HMI application. We achieved this by removing the unnecessary

features and then optimizing the necessary functionalities in the Linux partition.

a) Minimal set of root file system
The Busybox package, that emulates the standard UNIX executables in a lightweight

manner in single binary file, is chosen for providing the functionality of root file system

since it occupies less memory size and is more suited for small embedded systems.

AUTOSAR and Linux – Single Chip solution

45

b) Using Loadable kernel modules and dependency library files

The device drivers for graphics support were added as loadable kernel modules so that

there was no need for recompilation, and it saves much memory. Also, the performance

will be faster since kernel modules are loaded into the kernel only when required and

will be unloaded after the usage. Similarly, we load the necessary dependency files for

graphics support (OpenGL/OpenVG) as dynamically linked shared libraries (.so) that in

turn will reduce the startup time of the Linux kernel.

c) Other optimizations

The startup Init script was simplified by removing the commands for initialization of

unused system services and also the necessary tasks in the Init function were startup in

parallel to reduce boot time. The ext4 file format is chosen for the Linux image since it

provides faster file system checking and loading during bootup. Also, we optimized the

boot loader module (U-boot) by removing the CRC check for checking the data

integrity of image during startup and then disabling the unnecessary features in the boot

loader module that in turn will reduce the boot time of the Linux kernel.

6.3 Hypervisor technologies

The COQOS hypervisor solution provides abilities for partitioning of resources, inter-

partition communication, and flexible scheduling of real-time and non-real-time tasks

[12]. However, it is not a typical off-the-shelf virtualization solution and the design and

implementation of these technologies should be customized and applied in the context

of our prototype model and the requirements.

6.3.1 Partitioning of system resources and separation

The embedded system platform has limited resources like kernel, user memory, I/O

peripheral devices, etc. unlike a general purpose computer. COQOS hypervisor provides

facilities for allocation of system resources as well as separation between them to ensure

fault containment between the multiple operating system partitions.

6.3.1.1 Resource allocation for the partitions

The real-time AUTOSAR and non-real-time Linux application in the hardware platform

(I.MX53 SABRE ARD) are separated by allocating them to two different resource

partitions that have their memory space, and they share the hardware I/O peripheral

devices and processor CPU time. Additionally there is a default system partition known

as partition 0 that acts as a watchdog to monitor and carry out fault-handling of the other

user partitions, and applications hosted in a partition [29].

The following are design considerations for the resource partitioning and separation

between AUTOSAR and Linux user partitions.

a) Ensure an optimal memory footprint and resource allocation (I/O peripheral devices

and memory) for the partitions to enable quick initialization of the PikeOS kernel

and minimal task latency for the applications.

b) Assign the necessary access privileges and rights for the tasks to ensure strict

separation and protection of the resources.

AUTOSAR and Linux – Single Chip solution

46

a) I/O Peripheral devices

First the peripheral devices in the target hardware needs to be efficiently allocated to

Linux and AUTOSAR partitions to optimize the resource management and minimize

the device access conflicts during runtime, that in turn will reduce the task latencies.

PikeOS provides facilities for both static allocations and sharing of devices between the

partitions [29]. In our system design, we have tried to statically allocate the I/O

peripheral devices between partitions as much as possible. The mechanisms for shared

device management will add more overhead and delay since the tasks need to pass

through the additional PikeOS software abstraction layer to access the shared devices at

runtime. We identified the devices in the target system that needs to be statically

allocated between AUTOSAR and Linux partitions according to their usage as shown in

Table 6.1 below. These devices can be quickly accessed from AUTOSAR and Linux

partitions without any delay, and there is no need to pass through the PikeOS

virtualization layer.

I/O Peripheral device Partitions Usage

Graphical and video

processor

Linux For the graphics and

frame buffering of HMI

application

FlexCAN module AUTOSAR For CAN

communication

Display Screen Linux To display the HMI

application

Internal RAM module Linux To provide faster CPU

cache access for the

resource demanding

graphics applications

 Table 6.1 Static allocation of devices in Hardware platform to AUTOSAR and Linux

partitions.

However certain I/O peripheral devices such as Serial interface, Ethernet and Hardware

timer module (GPT) needs to be shared between the AUTOSAR and Linux partitions as

shown in Table 6.2 below. Usually, these shared devices are allocated to one of the

resource partitions and then they are emulated as external files to other partition so that

it can access it. However in our design, the devices that need to be shared were assigned

to the system partition (partition 0) and then these devices are emulated as external file

descriptors to both AUTOSAR and Linux partitions as shown in Figure 6.5 below.

These two user partitions can register with these emulated devices, open and close them

whenever they require access to these shared devices. The resource management

mechanism in PikeOS guarantees synchronized and mutually exclusive access for the

shared devices between the user partitions. The main advantages of allocating them in

the system partition is that even if one of the resource partition is restarted or shutdown,

it will not affect the other partition since the device will always be available in the

AUTOSAR and Linux – Single Chip solution

47

default system partition,0. The system partition is always available and will be affected

only when the entire PikeOS system is reset or shutdown [29].

I/O Peripheral device Partitions Usage

Ethernet AUTOSAR/Linux

(Assigned to PikeOS

System partition,

Partition 0)

For network access to

monitor and debug

AUTOSAR and Linux

partition

Serial interface console AUTOSAR/Linux

(Assigned to PikeOS

System partition,

Partition 0)

For console output and

configuration of the boot

script

Hardware timer(GPT)

module

AUTOSAR/Linux

(Assigned to PikeOS

System partition,

Partition 0)

Used for time

synchronization

 Table 6.2 List of Shared devices between AUTOSAR and Linux partitions

Figure 6.5 Method for sharing of devices between user partitions using System

partition.

AUTOSAR and Linux – Single Chip solution

48

b) Memory allocation:

The virtual memory in PikeOS is logically divided into two regions, kernel and user

[29]. These memory regions need to be allocated sufficiently for AUTOSAR and Linux

partitions and also the memory footprint of the partitions needs to be optimized as the

PikeOS system can startup quickly if the memory footprint is optimal. For real-time

AUTOSAR partition, the kernel memory requirements are relatively deterministic, and

there is not much variance between the worst-case and average-case memory

requirement. It depends upon the number of AUTOSAR tasks, software component and

associated runnables. The AUTOSAR application implemented in our prototype is quite

simple and consists of limited tasks and runnables. AUTOSAR development tools were

used automatically to calculate the trusted code base and stack size of the tasks and

runnable, and they provide a realistic prediction of the kernel memory size required for

the AUTOSAR application. We allocated 0.4 MB as the kernel memory for the

AUTOSAR application. Likewise, memory map file of the application binary of the

AUTOSAR application was used to estimate the user memory for the AUTOSAR

application.

However for Linux partition, it is not quite straightforward to determine the memory

requirements. We executed the Linux application directly on the target platform and

determined the user and kernel memory requirement. We allocated 50 MB as user

memory for the Linux partition, and 10% of user memory is used for the kernel

memory. Apart from static memory allocation, the following optimizations were also

done for the AUTOSAR and Linux partitions

 A parent task can spawn many child tasks, and these child tasks can consume much

memory. As we had only one application in AUTOSAR partition, the child task was

limited to 1.

 To further reduce the RAM memory usage, the read only parts of the applications in

PikeOS were not copied to the RAM filesystem. Instead, they were executed

directly from the SD Flash memory and mapping is provided in the RAM to the load

address of the data segments of these applications.

 In order to prevent unnecessary caching that degrades performance, caching is

inhibited for the I/O memory access and caching is allowed only RAM and kernel

memory access.

6.3.1.2 Access privileges for Resources

As explained above, static allocation of devices and memory pools to partitions will

provide strict separation between the partitions. However, this is not adequate and

additionally we need to ensure that the devices, memory regions or file systems do not

unintentionally change the system settings. PikeOS provides options for assigning the

access rights to the resources in each partition in order to restrict their access to system

interface [26].

 The memory regions for kernel, RAM and statically assigned I/O devices in each

resource partition were given read, write and execute access for the assigned

partitions so that they can only exclusively access them.

AUTOSAR and Linux – Single Chip solution

49

 The shared peripheral devices between the user partitions were given only the read

and write access rights for the user resource partitions and only the system partition

has the execute access for these devices.

6.3.2 Design of Inter-partition communication

The primary design considerations for inter-partition communication between Linux

and AUTOSAR partitions are as follows

a) Ensure fast transfer of data signals between the partitions: The inter-partition

communication should provide better or equivalent transmission speed as that of the

CAN communication networks used in the current state of the art automotive

system.

b) Make it compatible with the AUTOSAR communication framework: AUTOSAR

standard specifies that the interaction between AUTOSAR and non-AUTOSAR

application should be modeled based on AUTOSAR semantics such as port,

connectors and interfaces to ensure interoperability and easier migration [34].

c) Minimal error checking mechanism for controlled communication between

AUTOSAR and Linux application

PikeOS offers three mechanisms for inter-partition communication mechanism; Shared

memory segments, Queuing ports and Sampling ports [29]. The shared memory

segments are considered as shared file system, and their file access attributes needs to

be configured for each partition. Also, it requires application specific protocols for the

synchronization and coordination of read, write access of shared memory segments

between the partitions. Queuing ports as the name indicates, uses FIFO queuing and

blocking mechanisms that in turn adds more latency to the message transfer [29]. In our

design, we have chosen sampling ports for inter-partition communication mechanism

since sampling ports are simple to implement, do not block or queue and are quite

faster. The sampling ports consist of a message buffer of fixed size, and the messages

are updated periodically at a fast rate, i.e., even 2 to 30 milliseconds. The sampling ports

are connected between the partitions using the communication channels.

The sampling ports along with the communication channels provide the analogous

abstraction as that of AUTOSAR provider and receiver ports connected by assembly

connectors, used for the communication between different SWCs [34]. In our design,

the Linux application is considered equivalent to an AUTOSAR SWC and the

implementation of inter-partition communication was modeled based on AUTOSAR

sender-receiver communication mechanism as depicted in Figure 6.6 below [34]. Also,

we ensure error checking for the inter-partition communication by implementing a

simple validation for checking the data integrity of the signals transferred from

AUTOSAR to Linux partition. This validation is done to detect and check that the data

is not unintentionally changed or corrupted due to hardware or software faults that could

occur during inter-partition communication.

AUTOSAR and Linux – Single Chip solution

50

Figure 6.6 Modeling of PikeOS inter-partition communication based on AUTOSAR

communication specification.

6.3.3 Time partitioning mechanism for AUTOSAR and Linux partitions

PikeOS provides time partitioning mechanism for sharing the CPU time slots between

the partitions [29]. However, the configuration of this CPU time sharing should be done

by the designer efficiently to allocate the CPU time between the partitions according to

the requirements and depending on the type of applications in the system. The prototype

model of multipurpose ECU consists of real-time AUTOSAR application and non-real-

time Linux application.

The time partitioning mechanism consists of two phases [30].

a) To allocate time partitions (TP) to different resource partitions such as Linux and

AUTOSAR.

b) To allocate time slots/duration (TS) to these time partitions.

The following are the primary design considerations for the time partitioning scheme

i. PikeOS should provide good real-time performance because the AUTOSAR control

application has real-time constraints such as deadlines, quick response time, etc. and

it should be allocated a fixed and sufficient processor time to ensure determinism

and it should finish all of its tasks even in the worst-case scenario. Traditionally,

latency sensitive applications have been assumed not to be compatible with

virtualization. This is because virtualization often incurs additional processing-time

overhead and variability. The time partitioning scheme for AUTOSAR partition

should also take this factor into consideration.

ii. Even though, Linux partition does not have real-time constraints and is of less

priority when compared to AUTOSAR partition, it should still get a minimal

proportion of the CPU time to be able to provide best-effort response. It should not

be starved of CPU time slots by the AUTOSAR application.

AUTOSAR and Linux – Single Chip solution

51

iii. Both AUTOSAR and Linux partition should get fixed, static time slots and also, the

non-real-time Linux partition should not impact the timing behavior of real-time

AUTOSAR partition.

In order to achieve the first purpose, we choose to measure the jitter of the periodic task

in AUTOSAR application. Jitter is the deviation of an assumed periodic signal in

electronics and telecommunication. In reality, applications may get interference from a

variety of other events such as from events from other applications, kernel events, the

hardware interrupt, etc. All of these interferences may cause a delay and thereby cause

jitter for the periodic task. This makes it difficult to trace the source of jitter correctly.

Therefore, we should try to reduce interference from other factors and make the jitter

value influenced more by the hypervisor solution in our design. For the second purpose,

we need to allow Linux system getting access to the CPU time slots whenever the real-

time task is idle.

Taking these into consideration, we design a simple task in AUTOSAR application that

runs a periodic task to read CAN signals from the simulator tool and pass it to the RTE

module. This periodic task is cyclic for every 500ms, and this task would process the

CAN signals. The task can tolerate a delay of 0.5 seconds and hence the maximum

deadline for the tasks is fixed as 500ms. Real-time tasks are quite deterministic, and we

approximately estimated the actual execution time of this task to be less than 20

milliseconds, and it should be scheduled and executed within the allocated time window

even during the worst-case scenario. During this time window for real-time task, other

tasks are not scheduled by the hypervisor in order to reduce the interference. As the

Linux application does not have real-time constraints, we set the Linux partition to be

scheduled later when compared to AUTOSAR partition. Also, it is assigned lower

priority so that the Linux tasks cannot preempt AUTOSAR task when both arrive at the

same time. This will reduce the interference and jitter period for the real-time

automotive task.

Computing the time window for Linux partition is not quite straightforward and easy

since Linux is a non-real-time OS, and hence it is nondeterministic. In AUTOSAR

partition, all the processes are contained within the AUTOSAR application. However,

Linux partition can have many system daemon background processes apart from the

processes associated with Linux HMI application. Therefore, it is difficult to model the

process behavior of the Linux partition. Usually, the HMI application takes 100

milliseconds for execution. However, this is always not correct and applicable since it

may even take more time due to memory caching, execution of background and system

services, etc. depending on the conditions during runtime. Hence, we give more time

slots to Linux partition since it requires more CPU time to execute its processes. This

ensures best effort response for Linux partition and also it will not be starved of access

to CPU time slots.

PikeOS system partition consists of critical services such as system monitor and

watchdog applications for error detection and fault recovery. These critical services

should be always executed instantly if errors or faults occur in the user partition or

applications, and these critical services should be able to preempt the running

AUTOSAR and Linux processes. Therefore, we should give PikeOS system partition

the highest priority and make sure that the critical services are always available.

However, these faults rarely occur and are not periodic [26, 29]. So, the system partition

AUTOSAR and Linux – Single Chip solution

52

processes will not consume more than 10 to 20 milliseconds during normal scenarios

when there are no faults in the PikeOS system. Thereby it will not interrupt the

execution of AUTOSAR and Linux partitions during normal cases and will not cause

any interference.

6.3.3.1 Time partition allocation

After the above analysis, we start to design the time partitioning scheme. TP0 is

allocated to PikeOS system partition, TP1 to Linux partition and TP2 to AUTOSAR

partition. The special background partition, TP0 is allocated to PikeOS system partition

with the highest priority. This is because PikeOS system partition monitors the other

two user partitions and should provide quick response for external errors and internal

fault situations. Hence, it should always be available and executed instantly during fault

conditions. From a safety point of view, such kind of critical application should be

temporally separated from non-critical and untrusted applications. AUTOSAR and

Linux resource partitions are allocated to normal, foreground time partitions and the

AUTOSAR partition is assigned a higher priority compared with Linux. Higher priority

enables tasks in AUTOSAR partition to be scheduled earlier than tasks in Linux

partition and also protects it from preemption by non-real-time tasks in the Linux

partition.

6.3.3.2 Time slots allocation

PikeOS system partition is allocated to TP0 and therefore we do not need to consider

how it is scheduled since it will be taken care by PikeOS microkernel by default [29].

AUTOSAR and Linux partitions are allocated to normal foreground time partitions, and

it requires a scheduling table. The scheduling table is designed for the allocation of time

slots to the AUTOSAR and Linux partitions and is shown in Table 6.3 below.

Time Slots Offset Duration Time Partition

TS0 0 3 TP2 (AUTOSAR)

TS1 3 12 TP1 (Linux)

Table 6.3 Configuration of Scheduling Table for AUTOSAR and Linux partition.

For each time frame, AUTOSAR partition may get only three time slots (we use the

default value of 10ms for each time slot) and Linux systems get 12 time slots. This is

because, in our AUTOSAR partition, we have one simple task to read CAN signals and

pass it to RTE module. Even though, the total execution time is only 20 milliseconds at

average-case for the AUTOSAR application, we have allotted 30ms taking into account

the processing time overhead introduced by the virtualization layer. Linux partition gets

12 time slots, and it can access the CPU resources when the automotive control task is

idle. The scheduling table defines the offsets and durations for each time partition, and

each time partition may be activated only during its time slot. According to our

requirement, automotive application should be scheduled first and hence the offset value

of AUTOSAR time partition, TP2 is set as 0. In our design, the total time frame for one

scheduling cycle takes 150 milliseconds, and this value is much smaller than the

deadline duration for our designed AUTOSAR task, i.e., 500 milliseconds. In the worst

AUTOSAR and Linux – Single Chip solution

53

case scenario, when all the processes are ready at the same moment, TP0 will get the

CPU resource first, followed by the AUTOSAR control task and Linux HMI application.

Our scheduling mechanism allows safety-critical processes in the system partition like

system monitor and watchdog applications to be scheduled instantly and have quick

response time to external errors and internal faults. Our designed AUTOSAR task and

Linux processes are scheduled based on the above schedule table. The AUTOSAR task

allocated to time partition, TP2 is assigned higher priority than the Linux processes in

TP1. During each scheduling cycle, TP2 will be scheduled first and gets access to CPU

time immediately. When the AUTOSAR task in TP2 is idle, then the Linux processes in

TP1 would be able to borrow the free, unused CPU time slots dynamically from

AUTOSAR partition, TP2 and then utilize it for their execution. This design mechanism

ensures best-effort performance for Linux application and allows efficient usage of CPU

resources. Both AUTOSAR and Linux applications will get static, time slots and the

priority assignments will ensure that the non-real-time Linux application cannot

preempt or impact the real-time AUTOSAR application that requires strict timing

guarantees. Thus, our designed scheduling mechanism satisfies the runtime

requirements of both AUTOSAR and Linux partitions.

AUTOSAR and Linux – Single Chip solution

54

7 Implementation and Integration

This section shows how the different components of the prototype model are configured

and implemented as per the design techniques discussed in the previous section and how

they are integrated into a single system image, that could be run on top of the selected

hardware platform (I.MX53 SABRE ARD), using the development tools provided by

COQOS hypervisor solution. The AUTOSAR and Linux applications are implemented

independently, and the executable files are generated. The PikeOS system

configurations like resource partitioning, time scheduling and inter-partition

communication mechanism are configured using a PikeOS configuration tool known as

CODEO [30]. The application binaries and PikeOS system configuration are combined

into a single integration system. This PikeOS integration system can be considered as

the prototype model of multipurpose ECU system. The PikeOS integration system in

turn is converted into a bootable PikeOS ROM image that can be downloaded and

executed on the embedded target, i.e., i.MX53 SABRE ARD platform.

7.1 Implementation of PikeOS compliant AUTOSAR application

This implementation consists of two phases;

1. As described in the Design section 6.1.1, OS wrapper functions are implemented

using POSIX API’s for translating and emulating the AUTOSAR OSEK interfaces

in PikeOS microkernel. These wrapper functions provide an OS abstraction layer

(OSAL) for porting the standard AUTOSAR RTE and BSW modules on top of the

proprietary OS platform, PikeOS microkernel.

2. Build the AUTOSAR system executable binary using suitable toolchain.

7.1.1 Translation of standardized AUTOSAR interfaces using POSIX API’s

a) Task model

The OSEK interface functions for the task model are ActivateTask() and

TerminateTask() that implement the state transition of the AUTOSAR tasks[5,6].

PikeOS provides schedulable runnable entities known as threads, and these threads are

used to emulate the OSEK task mechanism [26]. Using POSIX pthread APIs, we

implement the standardized AUTOSAR interfaces in OSAL wrapper for emulating state

transition of the tasks, to set scheduling priority for tasks and assign them to the

schedule table equivalent to the OSEK task concept [6].

b) Events, Alarms and Counters

The OSEK interface functions for the event functionality are SetEvent() and

ClearEvent() that are used to set and reset events for the associated tasks[5,6]. PikeOS

has an event mechanism associated with each thread to wait and resume using events,

and this is used to emulate the OSEK event model [26]. Using POSIX pthread condition

variable functions, cond_signal and cond_wait, we implement these standardized

AUTOSAR interfaces in PikeOS wrapper for setting and clearing events and enable the

state transition of a thread to suspended and running states. Also OSEK alarm and

counter interfaces, SetAlarm() and IncrementCounter() are emulated using POSIX

timers and POSIX alarm function. When the counter reaches the predefined timer value

set by the associated alarm function, the alarm expires and it will generate a POSIX

AUTOSAR and Linux – Single Chip solution

55

signal, SIGALRM to notify the event mechanism that in turn will activate, restart or

suspend a thread associated with the alarm function.

c) Scheduler and Resource management

The OSEK OS uses event driven, fixed priority scheduling that is also supported by the

PikeOS implementation and therefore the POSIX API, sched_yield() is used by the

tasks to get access and relinquish the CPU resource. The resource management

mechanism of OSEK OS was realized using the pthread mutex functions by considering

the shared resource as a critical section and thereby mutual exclusion is enforced. The

mutex locking and unlocking functions implement the GetResource() and

ReleaseResource() OSEK interfaces respectively. Also, whenever a thread acquires a

resource, its priority is raised to the maximum controlled priority of the corresponding

user partition. This is equivalent to the OSEK resource ceiling priority for protection of

shared resources from deadlocks and priority inversion problem [6].

The translation and mapping of the AUTOSAR OSEK interfaces in the PikeOS

microkernel using POSIX API functions are shown in the Table 7.1 below.

OS Concept AUTOSAR interfaces POSIX API functions

Task model ActivateTask()

TerminateTask()

pthread_create()

pthread_join()

pthread_kill()

pthread_cancel()

pthread_setschedparam()

Event Model SetEvent()

WaitEvent()

pthread_cond_signal

pthread_cond_wait()

Counters and Alarms SetAlarm()

IncrementCounter()

alarm() & SIGALRM

POSIX signal

timer_settime()

Resource management GetResource()

ReleaseResource()

pthread_mutex_lock()

pthread_mutex_unlock()

Scheduler Schedule() Sched_yield()

Table 7.1 Translation of AUTOSAR interfaces using POSIX API functions in PikeOS

7.2 Generate PikeOS compliant AUTOSAR system executable binary

After updating the OS abstraction layer(OSAL) as explained above, the code

files(source and header files) for the RTE module based on standard AUTOSAR stack

and OS module based on PikeOS microkernel are generated by customizing the build

process as described in Design section 6.1.2. The complete system executable was

AUTOSAR and Linux – Single Chip solution

56

created for AUTOSAR application using these generated code files by the AUTOSAR

build process [41]. The gcc 4.4 cross compiler toolchain was used for build process

since it supports POSIX APIs, and it is also supported by the hardware platform

(I.MX53 SABRE) used in our pilot implementation. All the makefiles in the

AUTOSAR application are updated according to the new toolchain to setup the

compilation and build process, and an AUTOSAR application binary executable file

that could be run on top of PikeOS microkernel was created.

7.3 Generation of application binary files for the Linux partition

In this prototype model, ELinOS, embedded Linux distribution provided by SYSGO is

used for providing the kernel and root file system for the virtualized Linux partition

[31]. As described in the Design section, a minimal set of root file system and Linux

kernel are configured using ELinOS to ensure less memory footprint for the Linux

partition. Once they are configured, the Linux HMI application, dependency library

files, and loadable kernel modules for the graphics support are copied into the root file

system. ELinOS contains its development environment and tools for creating the

application binary files for the Linux partition. It creates two application binaries, one

for the Linux kernel and other for the Linux root file system.

7.4 PikeOS System configuration

Once the application binary files for AUTOSAR and Linux partitions are created, the

PikeOS system mechanisms like resource partitioning, time scheduling of partitions and

inter-partition communication needs to be configured according to the design settings

discussed in the previous section. PikeOS provides an Eclipse based integration

development environment named as CODEO for system configuration and integration

of components into a single target image that can be deployed on the hardware platform

[30]. It provides a graphical editor for the configuration of PikeOS system properties

like resource partitioning, time scheduling of partitions and defining inter-partition

communication channels and ports. Using this project configurator editor, we configure

the PikeOS system settings as defined in the Design section.

7.4.1 Virtual Machine Initialization Table

PikeOS consists of a table known as Virtual Machine Initialization Table (VMIT). As

the PikeOS system settings are configured using CODEO, they are automatically

updated in a file in XML format known as VMIT.xml, which contains the VMIT table.

The specifications of the PikeOS partitions, their resource requirements, time

scheduling parameters, inter-partition communication settings and the applications that

execute within the partitions are updated in this file [29]. During the build process, this

file is compiled into a binary module and included in the target image. The target image

is loaded into the hardware platform and when the PikeOS system is startup, PikeOS

microkernel reads this VMIT binary module and creates the resource partitions, inter-

partition communication channels and time scheduling of the tasks with the configured

settings in the hardware platform [30]. The VMIT specification file is divided into the

following major subsections:

a) Partition table: Contains resource settings of the partition like memory resources,

allotted I/O peripheral devices, applications contained in the partition, etc.

AUTOSAR and Linux – Single Chip solution

57

b) Connection table: Contains the inter-partition communication channel settings.

c) Schedule table: Contains the time partitioning parameters of the time partitions like

offset, duration, etc.

7.4.2 Resource partitioning

The resource partitioning mechanism is configured using the CODEO project

configurator. First using CODEO, the two user partitions namely, AUTOSAR and

Linux are created. By default, PikeOS creates a system partition known as service

partition that acts as a watchdog, to monitor the user partitions and for debugging

purpose [29]. The following settings were configured for the resource partitions as per

the specifications in the Design section.

 Allocation of kernel and user memory regions to user partitions.

 The I/O peripheral devices that are exclusively used by each partition were allotted

to the AUTOSAR and Linux partition. The physical address of the I/O memory

regions is associated with the virtual address of the resource partitions.

 Certain I/O peripheral devices need to be shared between the AUTOSAR and Linux

partitions. These devices were assigned to the system partition (partition 0) and

configured as external file descriptors to both AUTOSAR and Linux partitions.

 The access privileges of the partition for the assigned resources were configured.

Also, the maximum priority of the AUTOSAR and Linux partitions are set.

 Then the AUTOSAR application binary and the Linux application binaries are

copied to the AUTOSAR and Linux partitions respectively.

7.4.3 Time scheduling mechanism

As explained in the design strategy, time partition and time slot allocation for Linux and

AUTOSAR user partitions are configured using the PikeOS configuration editor. The

scheduling table containing the offset value and time duration for the AUTOSAR and

Linux partition are configured. Also, the priority of the AUTOSAR and Linux time

partitions are configured using PikeOS configuration editor, CODEO [30].

7.4.4 Inter-partition Communication mechanism

As specified in the Design section, the inter-partition communication was implemented

by communication channels consisting of sampling ports. The source and destination

sampling ports on both Linux and AUTOSAR partitions are configured, and the

attributes of the sampling ports such as the direction (Sender/Receiver), refresh time,

maximum message size are setup using the CODEO project configurator editor [30].

Sampling ports consists of a message buffer that can store two messages at a time, and

the configured refresh rate determines the validity or timeout period of the messages.

The sampling ports between the two partitions are linked by the inter-partition

communication path known as channel [29]. The properties of the channel such as

endpoints (source and destination ports) and port type are also setup using the CODEO

AUTOSAR and Linux – Single Chip solution

58

configuration editor, and the configured channel will connect the sampling ports in each

partition and establishes a communication path between the two partitions.

7.4.4.1 Coding of sender and receiver functions for transfer of data signals

As the sampling ports and communication channels are configured, a path is established

for the data transfer between the two partitions. The channels contain an I/O buffer and

utilize message passing protocol, allowing data to be transferred in variable sized

messages up to the maximum message size that is specified [29]. In the prototype

model, the exchange of data signals like speed and revolutions per minute(RPM) takes

place between the SWC in automotive control application in AUTOSAR partition and

the HMI application in Linux partition using the inter-partition communication

channels.

Figure 7.1 Pseudo codes for the inter-partition communication mechanism between the

AUTOSAR SWC and HMI application.

In order to realize the communication mechanism, functions need to be coded using the

PikeOS sampling port APIs. We coded sender and receiver functions on AUTOSAR

and Linux partitions respectively that are analogous to the AUTOSAR RTE module

read and write functions to emulate the AUTOSAR sender-receiver communication

mechanism as presented in Figure 7.1 above [34]. The sender function was placed in the

AUTOSAR and Linux – Single Chip solution

59

runnable entity of the SWC. The two data elements, Speed and RPM, were defined with

the AUTOSAR data types and associated with the corresponding two sampling ports.

The SWC periodically reads the speed and RPM values, (every 500 milliseconds) sent

to the CAN communication bus via the RTE functions. Whenever there is an updated

value for speed or RPM, a simple checksum (Ex: square of the data value) is calculated

based on the updated data value. Then the updated data values and the calculated

checksum are written to the AUTOSAR sampling ports. The communication channels

act as a link between the partitions and transfers the data values and checksum to

destination sampling ports in the Linux partition. The receiver function is placed in the

Linux application, and it periodically polls and reads the values from sampling ports.

Whenever there is an updated value, it reads the corresponding checksum. It computes

the checksum with the same algorithm, which is used in sender function, and compares

the computed checksum and received checksum. This simple checking is done to detect

and ensure that the data is not unintentionally changed due to hardware or software

faults during inter-partition communication. If they are equal, then the Linux application

notifies these values to the HMI unit that in turn updates the associated speed and RPM

indication in the instrument cluster display. The sender function was implemented in the

SWC entity in AUTOSAR application in AUTOSAR partition, and the receiver

function was implemented in the Linux application in Linux partition.

7.5 Integration and generation of ROM image for the target hardware

The application binaries for the AUTOSAR and Linux partition are generated, and the

PikeOS system settings that consist of configuration of resource partitioning, time

scheduling of partitions and inter-partition communication settings are stored in the

PikeOS configuration file, VMIT.xml. Apart from this, there are also PikeOS system

binary objects such as kernel, PikeOS system software module (PSSW) and platform

support package (PSP) for the target platform [30]. These binary objects were provided

along with PikeOS software, and they are directly used without any additional

configuration in our prototype implementation.

The prototype model of multipurpose ECU system using PikeOS microkernel is

transformed into a PikeOS integration project, and it consists of three parts

1. Application binaries for AUTOSAR and Linux partitions

2. PikeOS Configuration file, VMIT.xml

3. PikeOS binary objects such as kernel, PSSW and Platform support package.

This integration project is converted into a single bootable ROM image using PikeOS

ROM image generation tool as shown in Figure 7.2 below

AUTOSAR and Linux – Single Chip solution

60

 Figure 7.2 Overview of PikeOS Build and image generation process.

The ROM image generation tool integrates all the components of the integration project

into a composite ROM image file as shown in Figure 7.3 below [30].

Boot

loader

Microkernel PSSW VMIT Application

Binaries

 Figure 7.3 PikeOS ROM Image layout.

7.6 Running the PikeOS image on the Hardware platform

The PikeOS ROM image containing AUTOSAR and Linux partitions on top of the

PikeOS microkernel is downloaded to the target system, I.MX53 SABRE board. Once

the board is switched on, the image starts booting up, and the boot loader starts the

PikeOS microkernel. The PikeOS initialization steps in the target hardware are shown in

the Figure 7.4 below. The microkernel gets all the necessary information about the

partitions, applications in partitions, assigned resources, time scheduling and inter-

partition communication parameters from the VMIT file. Then it loads and initializes

the AUTOSAR and Linux partitions with the allocated resources according to VMIT

file and a partition daemon thread is started for each partition. The partition daemon

manages the partitions and then loads and starts up the AUTOSAR and HMI application

processes in the corresponding memory regions in each partition. Then the kernel also

AUTOSAR and Linux – Single Chip solution

61

sets up the application scheduling and inter-partition communication between the two

partitions as specified in the VMIT.xml [29].

 Figure 7.4 PikeOS Initialization steps in Target hardware.

The working prototype model, i.e., PikeOS system image with the AUTOSAR and

Linux applications executing simultaneously on separate partitions in the common

target platform, i.MX53 SABRE board demonstrates the concept of a consolidated ECU

system. It can be observed that AUTOSAR and Linux HMI applications were able to

initialize and execute concurrently on the shared hardware platform, and it proves that

the AUTOSAR and Linux OS were correctly virtualized on top of PikeOS microkernel.

The AUTOSAR application could process the frames sent from the CAN simulator tool

and also these values were transferred to the Linux application through the inter-

partition communication i.e., sampling ports and channels. Thus, the inter OS

communication mechanism could be implemented correctly between AUTOSAR and

Linux application in different partitions [29]. Thus, this working prototype model

demonstrates the concept of a consolidated, multipurpose ECU implemented using

virtualization technology.

AUTOSAR and Linux – Single Chip solution

62

8 Measurement Results and Analysis

We carried out measurements and testing in our proposed prototype model of

multipurpose ECU for the evaluation of the nonfunctional requirements like boot time,

signal communication delay and separation between the diverse applications. The

measurement results were compared with the equivalent existing models or current state

of the art system and then analyzed to assess the applicability of our proposed prototype

model for real-world automotive systems. The boot time of the multipurpose ECU,

hosting two heterogeneous automotive applications that are executing concurrently on

the same hardware platform, was measured to be nearly 2.2 seconds. The

communication between the applications was localized on the same hardware system

instead of using an external communication bus and hence we could achieve a faster

communication rate of 30 to 40 milliseconds (ms) for the transfer of data signals in our

prototype model. Also, we could ensure isolation and separation between the diverse OS

partitions even though they are hosted on a shared hardware platform. From our

measurement results and analysis, we could infer that our proposed implementation of

multipurpose ECU does achieve equivalent or better performance for these parameters,

i.e., boot time, message transmission time and separation between applications, when

compared to related existing models or the state of the art ECU system.

8.1 Evaluation Strategy and Measurement parameters

In this report, we present the design and implementation of an artifact i.e., multipurpose

ECU system. This artifact was realized by a prototype implementation and hence a full-

scale evaluation and testing is not required. For our prototype model of multipurpose

ECU system, there were five requirements defined in Section 5.1. Some of the

functional requirements such as porting of AUTOSAR and Linux OS on a common

platform, flexible time scheduling between the different applications, resource sharing

mechanism for allocation of system resources among different applications, and inter-

system communication for exchange of data signals between AUTOSAR and Linux

applications are met by the design and implementation of the prototype model itself

using the hypervisor solution. However, some measurement tests under simple

conditions were carried out to check the applicability of our proposed prototype model

in the automotive systems. The following parameters were measured in our prototype

implementation of consolidated ECU system.

a) Boot time of the system

The startup time of the automotive ECU systems is an essential requirement. It is not

allowed to use few minutes to boot up the system like a general purpose computer. Most

of the vehicular system functionalities require their applications to be started up within

10 to 20 seconds after the car is started. The critical automotive applications such as a

rearview camera, engine management system must be available instantly within 3 to 5

seconds after power on. Even less critical applications such as audio FM systems and

infotainment screens must be available within 20 seconds after power on for good user

experience [43]. In the state of the art systems, speed and RPM values are required to be

read soon after the car is started. In the multipurpose ECU prototype, AUTOSAR

application and Linux application should be able to startup as soon as the common

hardware platform (I.MX53 SABRE board) is powered on. Though there is no specific

limit to the boot time, we expect this value to be as small as possible and hence for our

AUTOSAR and Linux – Single Chip solution

63

multipurpose ECU prototype, we set the benchmarking value for boot time to be less

than 5 seconds.

b) Signal communication delay

In our prototype model, the data signals were transmitted between the applications in

different partitions using inter-partition communication mechanism. It should not

introduce high delay when compared to the state of the art vehicular communication

networks. There are several vehicular communication bus standards like Controller area

network (CAN), Local interconnect network (LIN), Media oriented systems transport

(MOST), FlexRay, etc. For our analysis, we consider only the CAN communication bus

since it is predominantly used in the in-vehicle networks [44]. In the CAN

communication networks, the delay for transfer of data signals takes 100 to 1000

milliseconds depending on network load and the priority of signals [44]. For our

prototype model, we expect the value of signal transmission delay to be within smaller

range, and less than the state of the art CAN communication bus since our

communication mechanism is localized on the same hardware and hence it should be

much faster. So for our multipurpose ECU prototype, we set the benchmarking value for

signal communication delay to be within the range of 50 to 100 milliseconds.

c) Isolation and separation between the applications

The prototype model should provide strict isolation between the concurrently executing

applications even though they share the same hardware platform and system resources

such as CPU, I/O devices, etc. In our prototype, there are two partitions running on the

same processor and the hypervisor manages these partitions. The hypervisor module

should ensure strict isolation between the partitions. The faults and errors in one

partition should not affect the execution of the application in the other partition or the

underlying hypervisor layer. This isolation property is checked by a simple test where

we continuously reboot or halt one of the partitions and observe the execution behavior

of the application in the other partition.

8.2 Measurement setup:

The PikeOS system in our prototype model consists of a system partition known as

service partition (partition 0) apart from the user partitions, AUTOSAR and Linux. This

service partition provides console access to control, debug and monitor the user

partitions and applications running in each partition. PikeOS provides a tool named as

MUXA tool that can be run on a host PC, and it provides bidirectional virtual channels

for remotely connecting and communicating with system partition to monitor the user

partitions and applications executed in the target hardware from the host PC [29, 30].

This is equivalent to a virtual terminal application such as Telnet that provides

bidirectional communication facility. Using this MUXA tool, we established channel

connections with the system partition (partition 0) from a host PC to check the status

information of the user partitions and applications in each user partition, inter-partition

communication channels, ports and running processes. Also, it is possible to halt or

reboot the user partitions and the target system from this MUXA tool [30]. We carried

out our measurement tests using the MUXA utility provided by PikeOS.

AUTOSAR and Linux – Single Chip solution

64

8.3 Boot time of the prototype system

 Figure 8.1 Measurement time of PikeOS Startup phases.

We inserted some code in the Init module of the PikeOS to dump the initialization times

of the boot loader, PikeOS partitions and applications in the console display after

switching on the hardware platform. The complete bootup time was approximately 2200

milliseconds (2.2 seconds) as shown in the above Figure 8.1.

8.3.1 Analysis of the Boot time results:

As shown in the above Figure 8.1, the startup of the PikeOS system consists of four

phases. The first phase depends completely on the hardware platform. The next three

phases depend on the hardware as well as the software configuration of the kernel,

partitions and applications in the PikeOS system [29]. The time measurements for the

initialization times of the boot loader, kernel, PikeOS partitions and applications were

presented in Table 8.1.

Initialization Phases Time (milliseconds)

Boot loader ready since power on, T1 60 milliseconds

Initialization of PikeOS kernel since

power on, T2
1050 milliseconds

Initialization of user partitions since

power on, T3
1900 milliseconds

Startup of application since power on,

T4

Complete bootup time of PikeOS system

2200 milliseconds

AUTOSAR and Linux – Single Chip solution

65

Table 8.1 Time measurements for PikeOS Initialization Phases.

In our proposed design, we have chosen the following design options and optimizations

so that there is not much latency or delay while booting up the system.

a) In the resource partitioning mechanism, devices in the hardware platform were

carefully considered according to their utilization by user partitions and most of the

devices were included statically and given direct exclusive access in the user

partitions. Only three I/O devices were dynamically shared between the user

partitions and they were included directly in the system partition. Thus, we

minimized the functionality of the system partition that acts as a partition manager

in PikeOS system. This helped to minimize the latency in the second phase during

loading of the PikeOS kernel since it takes less time to initialize the system partition

as it has minimal I/O devices assigned to it.

b) PikeOS system carries out the memory mapping and management before the

initialization of the user partitions [29]. It was important to ensure a minimal, as

well as sufficient memory footprint for the AUTOSAR and Linux partitions. We

analyzed the memory requirements of the AUTOSAR and Linux partitions and then

allocated minimal and average-case memory space for kernel and RAM user

memory regions of the AUTOSAR and Linux partition. As a result, the memory

mapping for the partitions will be carried out quickly, that in turn reduced the

startup time of the partitions during the third phase.

c) The AUTOSAR partition contains only a simple AUTOSAR application, and we

optimized the StartOS functionality of the AUTOSAR application to immediately

start up the AUTOSAR application. The Linux partition is a typical OS partition

consisting of Linux kernel, root file system and libraries apart from the HMI

application. We ported a lightweight Linux partition with minimal set of root file

system, kernel modules, etc. so that the Linux partition and applications could be

initialized quickly. Thus, we optimized the startup time of the applications during

the fourth phase.

The measured boot time of our prototype model using PikeOS is compared other

equivalent in-car systems as shown in the Figure 8.2 below.

Startup of application since PikeOS

kernel startup = T4 - T2
1150 milliseconds

Startup of Application since

initialization of partition = T4 - T3
300 milliseconds

AUTOSAR and Linux – Single Chip solution

66

 Figure 8.2 Boot time for our prototype model, Optimized Linux and AllGO.

As it can be seen, our pilot implementation using PikeOS has better performance

compared with the Optimized Linux and AllGO Android systems [45, 46]. Even though

we do not have much information about the type of hardware and applications deployed

in these systems, we can safely assume that our prototype model is more complicated

since it executes two state of the art heterogeneous automotive applications on the same

inexpensive, hardware platform.

PikeOS utilizes a thin, microkernel while other systems use a monolithic kernel. Apart

from this factor, the fast bootup performance also depends on the hardware, software

configuration of the kernel, partitions and applications in the PikeOS system [29]. There

are certain other options to increase the bootup performance of our system. In our

proposed design, after the PikeOS kernel is started up, the Linux and AUTOSAR

partition were started up simultaneously by the kernel. PikeOS provides a mechanism

known as modular boot and using this concept; it is possible first to load only part of the

PikeOS image and thereby bootup the PikeOS kernel and the real-time AUTOSAR

partition earlier [12, 29]. Then the rest of the image can be loaded later, and the Linux

partition can be startup. This in turn will provide a faster startup time for the

AUTOSAR application and slower startup time for Linux application compared to our

approach. The designer can choose either of these approaches, and it purely depends on

the fast boot requirements for the applications considered for the multipurpose ECU

system. In automotive system, infotainment and automotive applications should be

startup immediately after ignition on, and they require more or less equivalent bootup

times.

8.4 Signal communication delay

In our prototype model, the speed and RPM data signal values are transmitted from the

AUTOSAR to Linux application through the inter-partition channels and it is necessary

that inter-partition communication occur without considerable delay. We measured the

AUTOSAR and Linux – Single Chip solution

67

time for the inter-partition communication by inserting code in the sender and receiver

functions in the AUTOSAR and Linux application respectively to dump the time stamps

for the transmission and reception of these data signals. The measured inter-partition

communication time for data signals was 30 to 40 milliseconds (ms).

8.4.1 Analysis of inter-partition communication delay

In the state of the art vehicular architecture, the remotely connected ECUs uses

different communication buses like CAN, MOST, LIN, FlexRay, etc. The CAN

communication networks are predominantly used and therefore it is considered for our

comparative analysis [44]. In vehicular networks, many ECU nodes will be ready to

transmit at the same time, and they share a common communication medium, CAN

network. CAN communication networks utilize a message based protocol and

prioritized arbitration scheme for determining the transfer of messages according to

their configured priority value [44]. The signals are encapsulated in a message frame

known as CAN frame according to a standard format, and the protocol is used for

formatting and de-formatting of signals, error handling, priority arbitration, transmission

and reception of messages, etc. The delay associated with transmission of a message in

the CAN networks consists of

a) Message delay: encapsulation and decapsulation of signals into a fixed frame

format, error checking, etc.

b) Queuing delay: The time that the message needs to wait in the queue until it gets a

slot to transmit according to its priority.

c) Transmission delay: Transmission time for the message depends upon data rate of

communication medium and propagation distance.

Thus, the delay associated with the messages could be between 100 to 1000

milliseconds depending upon the traffic load in the network and the distance that the

message needs to traverse from sender to receiver ECU node [44]. Also, this CAN

communication mechanism utilizes additional processor power and requires complex

wiring mechanism [24]. Two ECUs in automotive systems, for instance, an

infotainment and powertrain control ECU usually transfer 10 to 40 signals between

them, and they have to contend with the signals transmitted by the other 50 to 60 ECU

nodes [44].

In our prototype design, the ECU applications that interact with each other frequently

can be integrated in a single consolidated platform, and they utilize simple inter-

partition communication mechanism using sampling ports and channels. This helps to

reduce the traffic load on the external CAN communication bus since the

communication between these applications is localized on the same hardware platform

and also the transmission rate is faster, i.e., 30 to 40 milliseconds(ms). There is also no

need for the formatting and de-formatting of signals into a standard message frame and

a complex communication protocol as there is no necessity for contention with message

signals from other ECUs. Further, the signal propagation distance is significantly

reduced by integrating these two ECU systems on the same platform. Thus in our

proposed implementation of multipurpose ECU system, these 10 to 40 data signals can

be transferred by configuring the necessary sampling ports and channels between the

infotainment and powertrain control applications executing in separate partitions in the

same hardware platform.

AUTOSAR and Linux – Single Chip solution

68

8.5 Isolation and separation between the applications

The two heterogeneous applications in our prototype implementation are separated and

isolated by our design configurations even though they share common resources such as

I/O devices, CPU processor, inter-partition communication channels and the underlying

PikeOS microkernel. We carried out a simple testing procedure to check this separation

property. We used Muxa tool [30] to connect to the system service partition (partition 0)

and then we continuously rebooted/halted one of the user partitions, and we observed

the execution state of the application in the other user partition. The AUTOSAR

application continued its execution and was processing the CAN frames without any

impact when the Linux partition was restarted or halted. Likewise, we could observe

that the Linux HMI application could continue its execution behavior without any

interference when the AUTOSAR partition was restarted or halted. From this simple

testing, we can logically conclude that the partitions are strictly isolated, and the faults

or errors in one resource partition do not propagate to the other. In the state of the art

systems, the applications are isolated by executing them on separate dedicated hardware

platforms that are remotely connected. However, this incurs hardware cost and

complicated wiring mechanisms. In our prototype model, we have implemented

following design options to ensure the strict separation of applications executing on a

single, shared hardware platform.

a) Spatial isolation was implemented by statically allocating the devices used by each

user partition to them exclusively and also each user partition was given sole access

rights to these devices so that other user partition cannot access it. The kernel and

RAM user memory in the hardware system were partitioned into virtual memory

regions and then statically allocated to the user partitions with suitable access rights

during design phase. Thus, the memory pools are statically allocated to the user

partitions during system startup, and they can only access this allocated memory

space and cannot intentionally or unintentionally access the code and data regions of

other application.

b) The partitions still share some I/O devices and the CPU processor time. Temporal

isolation was guaranteed by allocating the shared I/O devices in the system partition

that acts a partition manager, and each user partition has been provided with limited

access to these I/O devices. Also, the dynamic resource management protocols in

the PikeOS ensure mutual exclusion to these shared devices for the two user

partitions [29]. Likewise using time partitioning mechanism, the user partitions were

allotted fixed and static time slots so that the software processes in each partition are

also separated [29]. Thus, a faulty or malfunctioning process in one application

cannot acquire the complete CPU time or cause a denial-of-service (DoS) attack on

other processes. It can only utilize the time slots allotted to it and cannot affect the

time scheduling of the processes in other partitions.

From these, we can infer that the two heterogeneous applications in the prototype

implementation of multipurpose ECU are strictly separated, albeit they share the same

hardware platform and thus they have equivalent isolation and separation property as

that of the state of the art, remotely connected ECU systems.

AUTOSAR and Linux – Single Chip solution

69

8.6 Significance of our measurement results and analysis

Automotive companies compete mainly on cost/performance ratio. Hence, it is

important that our proposed pilot implementation of multipurpose ECU should meet the

nonfunctional requirements like fast boot time, less message transmission time and strict

isolation between the applications. The boot time of the multipurpose ECU is nearly 2.2

seconds even though it hosts two heterogeneous automotive applications, executing

concurrently on the same hardware platform. The communication between the

applications is localized on the same hardware system instead of using an external

communication bus and hence we could achieve faster communication rate of 30 to 40

milliseconds (ms) for the transfer of data signals in our prototype model. Also, we could

ensure spatial and temporal isolation between the applications even though they are

hosted on a shared hardware platform. From our measurement results and analysis, we

could infer that our proposed implementation of multipurpose ECU does achieve

equivalent or better performance for these parameters i.e., boot time, message

transmission time and separation between applications, when compared to related

existing models or the state of the art ECU system. Even though, we have carried out

limited measurement tests under simple conditions, these results are significant since we

could demonstrate a basic validation of our prototype model. It could serve as a simple

proof of concept that our proposed model of multipurpose ECU using virtualization

solution could be accepted for deployment in automotive embedded systems in order to

solve the integration problem of core automotive control and infotainment

functionalities. This prototype model can be introduced in future vehicular systems as a

full scale implementation after further research study and comprehensive analysis, with

more advanced technological enhancements.

AUTOSAR and Linux – Single Chip solution

70

9 Discussion and Conclusions

Here we reflect and discuss about our design options for the prototype model,

challenges faced during the design and evaluation phase, limitations and other design

alternatives that could be considered for the refinement of our proposed prototype

model. This self-introspective analysis will help to provide essential inputs and valuable

insights that can be the basis for further comprehensive analysis required for full-scale

implementation and deployment of a multipurpose ECU system in the automotive

domain.

9.1 Reflections on Design and Implementation phase

We started the design phase in our thesis work by setting the requirements for the

prototype model of multipurpose ECU system. We consider the conflicting set of

functional requirements for diverse OS platforms like real-time AUTOSAR architecture

and non-real-time Linux OS as well as the nonfunctional automotive requirements like

quick boot time, minimal signal communication delay and isolation of applications, etc.

Based on these requirements, we explored several consolidation strategies to integrate

the AUTOSAR and Linux operating systems on the same hardware platform [35, 36,

53]. Significant architectural changes were required in the standardized automotive

framework; AUTOSAR in order to support the non-real-time infotainment applications.

These modifications require major effort and time and hence we did not consider this

approach for our prototype model. We choose virtualization since it is a proven

technology that has already been widely used in avionics and telecom domain for

consolidation of mixed critical systems (hard real-time and non-real-time) [23]. Even

though, virtualization technology does add some processing overhead due to the

additional abstraction layer, this can be easily mitigated by the high-performance

processor platforms available in the market. The choice of hypervisor for the prototype

model was an important design choice. There were several open source hypervisor

solutions available like KVM, OKL4 and Xen, etc. However, they provide support

mainly for different variants of Linux OS used for mobile applications, and there was

not much support available for the paravirtualization of AUTOSAR real-time OS. Also,

open source solutions inherently do not have strong security assurance levels and hence

it could not be applicable for safety-critical automotive applications. The main driving

force behind the choice of commercial COQOS hypervisor was that it fulfilled all the

requirements set by us for the prototype model of multipurpose ECU. It is specifically

targeted for the automotive industry and has good support for paravirtualization of

AUTOSAR architecture [12]. Also, it has high-security assurance level since it

complies with the stringent security and safety standards [26]. However, the main

limitation is that COQOS is a closed source, proprietary software solution and hence our

design and implementation strategy is bounded to the options and techniques available

in the COQOS solution. We studied the concepts and technologies available in COQOS

solution and applied these concepts to the implementation of our prototype model

considering our problem objectives and requirements.

AUTOSAR and Linux – Single Chip solution

71

9.1.1 Porting of AUTOSAR and Linux

COQOS has good support for porting the basic AUTOSAR architecture. It provides

POSIX APIs to implement the wrapper functions for the OS abstraction layer to port the

standard AUTOSAR stack on top of the PikeOS microkernel [12]. These wrapper

functions were used to emulate the standardized AUTOSAR OS interfaces in PikeOS

and then the standard AUTOSAR BSW, RTE and SWC could be ported on top of the

PikeOS microkernel. The reference AUTOSAR application in our prototype model

utilized only the basic set of AUTOSAR OS features and hence we were able to

translate the OSEK interfaces used by the AUTOSAR OS functions, in PikeOS

microkernel using OSAL wrapper. However, most AUTOSAR applications use

extended OS functions, and it is important to check if it is possible to the port the

complete state of the art AUTOSAR architecture on top of PikeOS microkernel. To

achieve this, PikeOS needs to provide support for emulating the complete set of

standardized OSEK OS interfaces. We faced some incompatibility issues while

integrating the code files of the standard AUTOSAR RTE module and the proprietary

OS (PikeOS) module, and then generating the complete system executable. We were

able to solve this issue by synchronizing the OS configuration files and then

customizing build process for the integration of RTE module from standard AUTOSAR

stack and OS module from PikeOS and then generating the code files for them [41].

We used the proprietary Linux distribution (ELinOS) [31] provided by COQOS to

create the virtualized Linux OS with the latest kernel version (2.6.35) and a minimal set

of root file system. We ported a lightweight Linux partition with minimal memory

footprint for the quick startup of Linux partition in PikeOS system.

9.1.2 Resource partitioning

We ensured spatial isolation between the AUTOSAR and Linux partition by static

allocation of I/O peripheral devices to user partitions and memory segmentation

technique. The AUTOSAR and Linux partitions were allocated fixed, static set of

memory segments instead of a global, dynamic memory. As a result, the kernel and

RAM memory requirements of AUTOSAR and Linux needs to be calculated

beforehand, and it can only utilize the allocated memory segments at runtime [26]. For

real-time OS, it is relatively easy to estimate the memory requirements. However for

General Purpose OS (GPOS) such as Linux and Android that host resource-intensive

infotainment applications, it can cause minor performance impact for HMI display and

buffering of the video and audio systems. Even though, this approach is quite inflexible

sometimes, it can guarantee strict separation between the trusted and untrusted

applications in different partitions. We used a resource partitioning mechanism with

minimal memory footprint and static allocation of devices to the user partitions to

optimize the boot time of the prototype model. In our prototype model, there were only

two or three devices that need to be shared between the partitions and these were

allotted to the system partition. However, in some cases, there will be several I/O

devices that need frequent shared access between the partitions. There will be some

latency since we use the system partition as proxy, and the tasks need to pass through

the additional PikeOS hypervisor layer to access the shared devices at runtime. Hence,

there will be an additional delay when applications access the shared devices via system

partition when compared to accessing them natively. Hence, efficient shared device

management techniques such as mixed criticality locks or non-blocking wait-free

AUTOSAR and Linux – Single Chip solution

72

protocols [47, 48] should be deployed in order to guarantee a minimum latency for the

real-time applications.

9.1.3 Inter-partition communication

PikeOS offers shared memory segments for transferring data signals. However, it will

introduce latency since it needs application specific protocols for the synchronization of

read and write access between the partitions [29]. Sometimes it may even take more

than one to two seconds for the transfer of signals between the applications due to the

synchronization and waiting delay for reading and writing the signals. In our prototype

implementation, the inter-partition communication was realized using PikeOS sampling

ports mechanism. As a result, there was no synchronization or blocking delay, and we

could achieve a fast communication rate of 30 to 40 milliseconds (ms) for the transfer of

signals between the AUTOSAR and Linux applications. However there is a limitation

on the number of signals that could be transmitted between two applications using the

sampling ports mechanism. We also showed how the PikeOS inter-partition mechanism

between AUTOSAR and Linux partition can be modeled analogous to the AUTOSAR

sender receiver communication mechanism between 2 SWCs, using PikeOS sampling

ports and channels.

9.1.4 Time partitioning

In our prototype model, time scheduling requirement was not complicated, and we

implemented a simple time partitioning scheme consisting of fixed time duration slots

for AUTOSAR and Linux partitions. However, certain automotive applications need

dynamic scheduling mechanisms. For Ex: A safety-critical application that needs to be

available quickly requires the complete CPU time exclusively for itself while starting

up, and after it is initialized, it can share the CPU time with other applications. PikeOS

offers advanced time partitioning schemes to support these dynamic scheduling

mechanisms, and it could be considered for the complex time scheduling requirements

of automotive ECUs [27, 29].

9.2 Reflections on Evaluation and Results

We analyzed the parameters of the prototype model like boot time, message

transmission delay and isolation between the applications. The expected boot time of

the automotive applications should be within 4 to 8 seconds [43]. We optimized the

boot time of the prototype model by allocating minimal memory footprint for the

partitions and static allocation of devices to the user partitions instead of allocating all

the peripheral devices in the system partition. Thus, we could achieve a boot time of

nearly 2.5 seconds for our proposed prototype model of multipurpose ECU system. In

the state of the art vehicular architecture, CAN communication protocol was used for

the transfer of message signals between different ECU nodes. In this protocol, the delay

for the message communication would vary considerably between 100 to 1000

milliseconds depending on the traffic load in the network and the distance that the

message needs to traverse [44]. The sampling ports in PikeOS provide a fast

communication rate compared to the state of the art CAN communication networks and

since the communication interface is localized on the same hardware platform, the delay

for the inter-partition communication was reduced to 30 to 40 milliseconds (ms) in our

prototype model. The isolation between the applications was tested by simply rebooting

AUTOSAR and Linux – Single Chip solution

73

one of the partitions and checking the execution behavior of the application in the other

partition. We could observe that there was no impact on the other partition when one of

the user partitions was rebooted or halted continuously. Thus we can infer that we have

achieved good temporal and spatial isolation between the diverse applications executing

in the same hardware system by our proposed design and configuration in the prototype

model of multipurpose ECU system.

9.2.1 Proposed measurement tests for further evaluation of the prototype model

According to Alexandra Aguiar and Fabiano Hessel, virtualization solution should

guarantee reliability and fault isolation to safety-critical embedded systems [28]. The

basic idea behind system partitioning is that if a fatal error occurs in a partition, it

should be localized within that partition, and it should not impact the underlying

hypervisor layer and other partitions [28]. In order to test this concept completely,

further comprehensive fault injections tests such as buffer overflow and denial-of-

service attacks should be carried out. Also, fault testing for the inter-partition

communication layer between the partitions could not be carried out due to time

constraints. It was also important to measure the additional latency and overhead caused

by the virtualization abstraction layer when compared to the native system since

automotive companies compete mainly on cost/performance ratio. The GPU

performance of the HMI application could be evaluated by measuring the frame rates of

the HMI display using GPU performance tools. This would show the impact of the

additional hypervisor layer overhead on the GPU performance. Likewise, the jitter for

the CAN frames needs to be computed by measuring the time difference between frame

transmission from the CAN network simulator tool and arrival time at the SWC entity

in AUTOSAR application. These jitter measurements should be carried for various

transfer rates such as 10, 100 and 1000 milliseconds to determine the average-case jitter

and latency due to the processing time overhead introduced by the additional hypervisor

abstraction layer. These measurement tests were planned initially but could not be

carried out in our thesis work. The COQOS product license was expensive, and we

could utilize it only for a limited duration i.e., one month and hence we could not carry

out the above measurement tests due to time constraints.

As explained above, we integrate and suitably apply the knowledge derived from

several related areas like real-time systems, operating system concepts, virtualization

technology and automotive systems for the design and implementation of the prototype

model of multipurpose ECU system. In our thesis work, we utilize the proven concept

of virtualization technology, which has already been deployed in other domains, into

automotive systems. We apply the virtualization technology concepts for designing and

implementing our proposed prototype of multipurpose ECU for resolving the

integration problem in automotive systems. The knowledge from operating system

architecture was utilized for porting the AUTOSAR architecture based on OSEK OS,

and Linux OS on top of the hypervisor layer. The concepts from real-time systems were

deployed in implementing the time partitioning and resource partitioning mechanism for

our proposed prototype model using hypervisor technology. Also, basic comprehension

of the automotive domain was required for setting the requirements and for the high-

level design of the prototype model of ECU system.

AUTOSAR and Linux – Single Chip solution

74

9.3 Selected extension topics

We provide a brief overview about selected possible extensions that could be explored

in future based on our thesis work. We discuss the research improvements and

necessary engineering measures required so that virtualization solution can gradually

find its way successfully into the real world automotive platforms in the near future.

9.3.1 Multicore processors and Virtualization

In order to truly unlock the benefits of parallelism using multicore processors, we need

to dynamically manage and allocate the cores to different partitions with diverse

configurations like Symmetric multiprocessing (SMP), Asymmetric multiprocessing

(AMP) and a mix of both depending on the system load conditions at runtime and

priority levels of applications in the multipurpose ECU [49,50]. The virtualization layer

provides the above capabilities for flexible scheduling of cores to different partitions

[50]. Our prototype model consists of a dual partitioned ECU system running real-time

and non-real-time applications, and it was implemented on a single processor platform.

Using multicore processors, the hypervisor solution can implement either of the below

mechanisms to improve performance. Also, the partitions can be securely isolated from

each other by using different cores that in turn can increase reliability [37, 51].

a) Statically allocate several cores to the real-time OS partition and a single core to

non-real-time, general purpose OS partition during system configuration at startup.

b) Dynamically allocate cores to OS partitions depending on their priority levels or

demand for processor utilization at runtime.

c) Use a mixed configuration in a tri-core processor, where two cores are statically

allocated to the OS partitions at system startup and one core is dynamically

scheduled across the partitions during runtime depending on a partition’s privilege

level or processor utilization.

Figure 9.1 Different strategies for allocation of cores using hypervisor a) Static

allocation of cores at Initialization and b) Dynamic allocation of cores at Runtime.

AUTOSAR and Linux – Single Chip solution

75

9.3.2 Fault monitoring and energy efficiency in Virtualized automotive ECUs

Fault detection, fault management and fault recovery are required to ensure the

correctness of safety-critical, automotive applications in a multipurpose ECU system.

As a result, the functionality of the health monitoring and system watchdog monitor

applications in the current hypervisor solution should be enhanced. Hypervisors should

implement an advanced, configurable watchdog as system application that performs

runtime monitoring of the automotive applications and implement corrective actions if

the system does not function correctly. It should check if the state transitions or runtime

behavior of the executing system are in line with the requirement specification

properties and state information of the system specified at design time [50]. It should

take suitable corrective actions in case of faults and maintain the fail-operation mode

even in the presence of critical errors. The watchdog application should also verify the

timing properties of interrupts and task scheduling mechanism of the system to

guarantee timing guarantees. This watchdog monitor can run on a separate core and the

automotive applications to be monitored are implemented on other cores in a multicore

ECU system to ensure that there is no performance impact on the automotive

applications due to computational overhead of the watchdog monitor application [50].

Likewise, power monitoring and energy efficiency is crucial due to the limited battery

supply available in the automotive ECU systems. The watchdog system application can

monitor the runtime energy consumption and based on that, corrective actions such as

temporarily turning the idle software units to sleep or hot standby mode and dynamic

voltage scaling can be carried out in the multipurpose ECU system[52].

9.4 Summary and Conclusions

Automotive OEMs and manufacturers face multitude of technical and financial

challenges due to the proliferation of core automotive control and infotainment

functionalities in vehicular systems, and the increasing necessity for providing

integration and interaction between these heterogeneous functionalities for supporting

the next generation vehicular technologies [3, 9]. In this thesis work, we look at the

integration problem of consolidating heterogeneous automotive applications, running on

top of AUTOSAR architecture and Linux OS, in separate ECU platforms. We propose a

pilot implementation of a multipurpose ECU system, in which AUTOSAR and Linux

applications could be concurrently executed on a shared hardware platform, to solve the

integration problem. Initially, we set the requirements for this proposed pilot

implementation of multipurpose ECU system. Then our thesis work explores several

consolidation strategies based on these requirements and finally chooses the strategy of

using embedded virtualization technology to solve the integration problem in

automotive ECU systems. We demonstrate this concept by proposing the design along

with corresponding implementation for a prototype model of multipurpose ECU

executing real-time control and non-real-time infotainment applications simultaneously,

on top of AUTOSAR architecture and Linux GPOS respectively in a shared hardware

platform using a virtualization solution. In this report, we present our chosen

consolidation approach using a commercial virtualization solution named as COQOS

and it is based on PikeOS microkernel [12, 26]. Then we chose a suitable hardware

platform, automotive control and infotainment reference applications based on

AUTOSAR architecture and Linux OS respectively for the prototype model. The

standard AUTOSAR stack was ported on top of the PikeOS microkernel virtualization

AUTOSAR and Linux – Single Chip solution

76

layer by implementing necessary wrapper functions in the OS abstraction layer (OSAL)

to emulate the standardized OSEK interfaces in PikeOS microkernel [5]. Linux GPOS

could be easily ported on top of PikeOS microkernel without much effort by utilizing

the Linux distribution provided by hypervisor [31]. Then partitioning and sharing of

system resources such as memory and I/O peripheral devices, CPU time sharing

between AUTOSAR and Linux applications were configured using the COQOS

hypervisor. Intersystem communication was also implemented to exchange data signals

between AUTOSAR and Linux application executing in different partitions. The

techniques presented by COQOS hypervisor were applied in the context of the design

and implementation of our proposed prototype model of multipurpose ECU to satisfy

the nonfunctional automotive requirements like fast bootup time, less signal

transmission delay and strict isolation between the applications. The subcomponents of

the prototype model were configured separately and then integrated into a single system

image using the COQOS development and compilation tools [30].The PikeOS system

image was loaded in the target hardware platform and we were able to execute the two

reference applications concurrently in the selected hardware platform using COQOS

hypervisor, and the application in different partitions were able to intercommunicate and

transfer data signals between them.

Finally, we carried out a basic testing of the prototype model for measuring and

evaluating the nonfunctional parameters like boot time, message transmission delay and

isolation property and then the results were studied by a comparative analysis with

related existing models and current state of the art system. The analysis of our

measurement results shows that our proposed prototype model achieves better or

equivalent performance when compared to the current state of the art ECU systems.

Thus, we have demonstrated that it is possible to integrate the automotive control

application modules based on AUTOSAR architecture with infotainment applications

based on Linux OS, and they can share the system resources such as memory, I/O

devices and CPU processor time on the same ECU hardware platform using the

hypervisor solution. Also, the intercommunication between automotive control function

and infotainment application can be localized in the same ECU hardware platform

instead of using complicated in-vehicle communication networks. Thus in our thesis

work, we were able to demonstrate that virtualization technology can be utilized to

implement the seamless integration between classical automotive control systems and

the advanced infotainment systems in the future car technologies.

However, it should be kept in mind that this is a single case study, and the prototype

system is quite limited. Also, it is critical to carry out a comprehensive analysis and

validation of the prototype system to guarantee that it meets the automotive

performance and safety requirements. We could not carry out a full scale evaluation and

further refinement of the prototype model due to lack of time, and financial constraints.

The deployment of virtualization solution in next generation vehicular ECU systems is

becoming inevitable and has already generated active interest among automotive

manufacturers [13, 24]. We envision that our work and results presented in this report

will serve as a useful stepping stone for exploring further research avenues in this

fledgling technical field. We expect that the outcome of this thesis work will provide

valuable insights for further research study, focusing in depth on the various technical

aspects discussed in this report and will pave way for implementing virtualization

technology in automotive embedded domain in near future.

AUTOSAR and Linux – Single Chip solution

77

References

[1] F. Simonot-Lion and Y. Trinquet, “Chapter 1. Vehicle Functional Domains and Their Requirements”,

in Automotive Embedded Systems Handbook, Ed. 2008, Industrial Information Technology series, CRC

Press.

[2] EU - European Commission transport council, “DIRECTIVE- 2010/40/EU OF THE EUROPEAN

PARLIAMENT AND OF THE COUNCIL on the framework for the deployment of Intelligent Transport

Systems”, 7 July 2010. [Online]. Available at:

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:207:0001:0013:EN:PDF

[3] A. Hergenhan and G. Heiser, “Operating systems technology for converged ECUs,” in 6th Embedded

Security in Cars Conference (escar), ISITS, Nov 2008, Hamburg, Germany.

[4] AUTOSAR ProjectObjectives, R4.0 V3.0 Rev 3, AUTOSAR, December 2011, [Online]. Available at:

http://www.autosar.org/fileadmin/files/releases/4-0/main/auxiliary/AUTOSAR_RS_ProjectObjectives.pdf

[5] Specification of Operating System, R4.0 V5.0 Rev 3, AUTOSAR, November 2011, [Online].

Available at:

http://www.autosar.org/fileadmin/files/releases/4-0/software-architecture/system-

services/standard/AUTOSAR_SWS_OS.pdf

[6] OSEK - Operating System Specification, Version 2.2.3, OSEK/VDX, February 2005, [Online].

Available at: http://portal.osek-vdx.org/files/pdf/specs/os223.pdf

[7] IHS Automotive, “Linux to Take the Lead in Automotive Infotainment Operating System Market”,

Southfield, Michigan, November 2013, [Online]. Available at: http://press.ihs.com/press-release/design-

supply-chain-media/linux-take-lead-automotive-infotainment-operating-system-mar

[8] J. Fornaeus, “Device hypervisors”, in Proceedings of the 47th Design Automation Conference,

(DAC), 13-18 June 2010, ACM/IEEE, Anaheim, California, USA, pp. 114 - 119.

[9] R. Bishop, Intelligent Vehicle Technology and Trends, Norwood, MA: Artech House, 2005.

[10] A. Sangiovanni-Vincentelli, “Automotive electronics: Trends and challenges”, in Convergence,

October 2000, Detroit, MI, USA.

[11] D. Kleidermacher, “Chapter 7: System Virtualization in Multi-core Systems”, in Real World Multi-

core Embedded Systems, Ed. March 2013, Newnes, pp. 227 - 267.

[12] OpenSynergy GmbH , “COQOS Operating System-Datasheet”, 2013, [Online]. Available at:

http://www.opensynergy.com/fileadmin/user_upload/Datenblaetter/COQOS-Datasheet.pdf

[13] J. Pelzl, M. Wolf, T. Wollinger, “Virtualization Technologies for Cars - Solutions to increase safety

and security of vehicular ECUs”, in Automotive - Safety and Security, 19 - 20 November 2008, Stuttgart,

Germany.

[14] A. Groll, J. Holle, M. Wolf, T. Wollinger, “Next Generation of Automotive Security: Secure

Hardware and Secure Open Platforms”, in 17th ITS World Congress (ITS Busan), 25 – 29 October 2010,

Busan, Korea.

[15] F. Stumpf, C. Meves, B. Weyl, M. Wolf, “Security Architecture for Multipurpose ECUs in

Vehicles”, in 25
th

 Joint VDI/VW, Automotive Security conference, 19 – 20 October 2009, Ingolstadt,

Germany.

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:207:0001:0013:EN:PDF
http://www.autosar.org/fileadmin/files/releases/4-0/main/auxiliary/AUTOSAR_RS_ProjectObjectives.pdf
http://www.autosar.org/fileadmin/files/releases/4-0/software-architecture/system-services/standard/AUTOSAR_SWS_OS.pdf
http://www.autosar.org/fileadmin/files/releases/4-0/software-architecture/system-services/standard/AUTOSAR_SWS_OS.pdf
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
http://press.ihs.com/press-release/design-supply-chain-media/linux-take-lead-automotive-infotainment-operating-system-mar
http://press.ihs.com/press-release/design-supply-chain-media/linux-take-lead-automotive-infotainment-operating-system-mar
http://www.opensynergy.com/fileadmin/user_upload/Datenblaetter/COQOS-Datasheet.pdf

AUTOSAR and Linux – Single Chip solution

78

 [16] K. Peffers, T. Tuunanen, M.A. Rothenberger and S. Chatterjee, “A Design Science Research

Methodology for Information Systems Research,” in Journal of Management Information Systems, 2007,

pp. 45 - 78.

[17] V. Vaishnavi, B. Kuechler “Design Research in Information Systems”, 2005. [Online]. Available at:

http://www.desrist.org/design-research-in-information-systems

[18] Demonstration of Integration of AUTOSAR into a MM/T/HMI ECU, V1.0.0, AUTOSAR, November

2010. [Online] Available at:

https://www.autosar.org/fileadmin/files/releases/AUTOSAR_TR_IntegrationintoMMTHMIECU.pdf

 [19] Z. Gu, Z. Wang, S. Li, H. Cai, “Design and Implementation of an Automotive Telematics Gateway

based on Virtualization”, in Proceedings of the 2012 IEEE 15th International Symposium on Object

Component Service-Oriented Real-Time Distributed Computing Workshops (ISORCW), 11 April 2012,

IEEE Computer Society, Washington, USA, pp. 53 - 58

[20] Y. Li, R. West, and E. Missimer, “The quest-v separation kernel for mixed criticality Systems”, in

Proceedings of the 1
st
 International Workshop on Mixed Criticality Systems, (WMC), Real-Time Systems

Symposium (RTSS), 3

December 2013, pp. 31 - 36.

[21] D. Reinhardt, D. Kaule, and M. Kucera, “Achieving a Scalable E/E-Architecture Using AUTOSAR

and Virtualization”, in SAE International Journal of Passenger Cars- Electronic and Electrical Systems,

April 2013, pp. 489 - 497.

[22] R. Kaiser, “Chapter 15. Applicability of Virtualization to Embedded Systems”, in Solutions on

Embedded Systems, Ed. November 2011, Springer, LNEE - Lecture Notes in Electrical Engineering, pp.

215 - 226.

[23] G. Heiser, “The role of virtualization in embedded systems”, in Proceedings of the 1st workshop on

isolation and integration in embedded systems (IIES), April 2008, ACM, New York, USA, pp. 11 - 16.

[24] M. Strobl, M. Kucera, A. Foeldi, T. Waas, N. Balbierer and C. Hillbert, “Towards automotive

virtualization”, in International Conference on Applied Electronics (AE), IEEE, 10-12 September 2013,

pp. 1 – 6.

[25] A. Singh, “An Introduction to Virtualization”, January 2004. [Online]. Available at

http://www.kernelthread.com/publications/virtualization

[26] R. Kaiser, S. Wagner, “Evolution of the PikeOS Microkernel”, in Proceedings of the 1st

International Workshop on Microkernels for Embedded Systems (MIKES), January 2007, National ICT

Australia (NICTA), Sydney, NSW, Australia.

[27] R. Kaiser, “Alternatives for Scheduling Virtual Machines in Real-Time Embedded Systems”, in

Proceedings of the 1st workshop on isolation and integration in embedded systems (IIES), April 2008,

ACM, New York, USA, pp. 5 - 10.

[28] A. Aguiar and F. Hessel, “Embedded systems' virtualization: The next challenge?”, in 21st IEEE

International Symposium on Rapid System Prototyping (RSP) , 8-11 June 2010, Fairfax, VA, USA,

pp. 1 - 7.

[29] pikeOS - PikeOS Fundamentals, Version S3136-1.8, PikeOS v3.2, © Copyright 2005 – 2012,

SYSGO AG, 2012, Klein-Winternheim, Germany.

[30] pikeOS - Using PikeOS, Version S3136-1.11, PikeOS v3.2, © Copyright 2005 – 2012, SYSGO AG,

2012, Klein-Winternheim, Germany.

[31] ELinOS – A Development Environment for Embedded Linux Applications, 14th Edition, © Copyright

2001 - 2010, SYSGO AG, October 2010, Klein-Winternheim, Germany.

http://www.desrist.org/design-research-in-information-systems
https://www.autosar.org/fileadmin/files/releases/AUTOSAR_TR_IntegrationintoMMTHMIECU.pdf
http://www.kernelthread.com/publications/virtualization

AUTOSAR and Linux – Single Chip solution

79

[32] AUTOSAR Technical Overview, R3.2 V2.2.2 Rev 1, AUTOSAR, April 2011, [Online]. Available at:

https://www.autosar.org/fileadmin/files/releases/3-2/main/auxiliary/AUTOSAR_TechnicalOverview.pdf

[33] Specification of RTE, R4.0 V3.2.0 Rev 3, AUTOSAR, October 2011, [Online]. Available at:

https://www.autosar.org/fileadmin/files/releases/4-0/software-

architecture/rte/standard/AUTOSAR_SWS_RTE.pdf

[34] Specification of VFB, R3.2 V1.3.0 Rev 2, AUTOSAR, May 2012, [Online]. Available at:

https://www.autosar.org/fileadmin/files/releases/3-2/main/auxiliary/AUTOSAR_SWS_VFB.pdf

[35] D. Haworth, An AUTOSAR-compatible microkernel for systems with safety-relevant components,

Herausforderungen durch Echtzeitbetrieb, Informatik aktuell, Heidelberg,© Springer-Verlag Berlin, 2012.

[36] S. Faucou, P. Emmanuel Hladik, A. Marie.Déplanche, and Y. Trinquet “Overview of microkernel

standards for real-time in-vehicle embedded systems”, in Taiwanese-French Conference on Information

Technology (TFIT), March 2008, National Taiwan University, Taipei, Taiwan, pp. 28 – 39.

[37] K. Senthilkumar, R. Ramadoss, “Designing Multi-core ECU Architecture in vehicle networks using

AUTOSAR”, in Third International Conference on Advanced Computing (ICoAC), IEEE, 4-16

December 2011, Chennai, India, pp. 270 – 275.

[38] MECEL AB, “Product brief – Mecel Picea Suite – Datasheet”, 2013, [Online]. Available at:

http://www.mecel.se/products/mecel-picea/Product.Brief.Mecel.Picea.pdf

[39] MECEL AB, “Product brief – Mecel Populus Suite – Datasheet”, 2013, [Online]. Available at:

http://www.mecel.se/products/mecel-populus/Product.Brief.Mecel.Populus.pdf

[40] Freescale, “i.MX53 SABRE Platform for Automotive Infotainment - Factsheet”, 2013, [Online].

Available at: http://www.freescale.com/files/32bit/doc/fact_sheet/IMX53SBRAUTFS.pdf

[41] AUTOSAR Methodology, R4.0 V2.1.0 Rev 3, AUTOSAR, November 2011, [Online]. Available at:

http://www.autosar.org/fileadmin/files/releases/4-0/methodology-

templates/methodology/auxiliary/AUTOSAR_TR_Methodology.pdf

[42] J.E. Urban, “Software Prototyping and Requirements Engineering”, Rome Laboratory, Rome, NY,

June 1992 [Online]. Available at:
 https://www.thecsiac.com/sites/default/files/SW%20Prototyping%20and%20Requirements%20Engineering.pdf

[43] D. Stolarz, “Reducing OS Boot Times for In-Car Computer Applications”, 22 April 2004, [Online].

Available at: http://www.linuxjournal.com/article/7544

[44] R.I. Davis, A. Burns, R.J. Bril, and J.J. Lukkien, “Controller Area Network (CAN) schedulability

analysis: Refuted, revisited and revised”, Real-Time Systems, April 2007, pp. 239 - 272.

[45] E. Brown, “Linux boots in 2.97 seconds”, 7 November 2008, [Online]. Available at:

http://archive.linuxgizmos.com/linux-boots-in-297-seconds

[46] AllGo Embedded Systems, “AllGo Systems announces Android Automotive IVI system solution

with 4 seconds boot up time”, October 2013, [Online]. Available at:

http://www.allgosystems.com/for_release_oct_2013.php

[47] J. Schneider, “Overcoming the Interoperability Barrier in Mixed-Criticality Systems”, in Proceedings

of the 19th ISPE International Conference on Concurrent Engineering (CE), September 2012, Trier,

Germany.

https://www.autosar.org/fileadmin/files/releases/3-2/main/auxiliary/AUTOSAR_TechnicalOverview.pdf
https://www.autosar.org/fileadmin/files/releases/4-0/software-architecture/rte/standard/AUTOSAR_SWS_RTE.pdf
https://www.autosar.org/fileadmin/files/releases/4-0/software-architecture/rte/standard/AUTOSAR_SWS_RTE.pdf
https://www.autosar.org/fileadmin/files/releases/3-2/main/auxiliary/AUTOSAR_SWS_VFB.pdf
http://www.mecel.se/products/mecel-picea/Product.Brief.Mecel.Picea.pdf
http://www.mecel.se/products/mecel-populus/Product.Brief.Mecel.Populus.pdf
http://www.freescale.com/files/32bit/doc/fact_sheet/IMX53SBRAUTFS.pdf
http://www.autosar.org/fileadmin/files/releases/4-0/methodology-templates/methodology/auxiliary/AUTOSAR_TR_Methodology.pdf
http://www.autosar.org/fileadmin/files/releases/4-0/methodology-templates/methodology/auxiliary/AUTOSAR_TR_Methodology.pdf
https://www.thecsiac.com/sites/default/files/SW%20Prototyping%20and%20Requirements%20Engineering.pdf
http://www.linuxjournal.com/article/7544
http://archive.linuxgizmos.com/linux-boots-in-297-seconds
http://www.allgosystems.com/for_release_oct_2013.php

AUTOSAR and Linux – Single Chip solution

80

[48] M. Herlihy, “Wait-free synchronization”, ACM Transactions on Programming Languages and

Systems (TOPLAS), January 1991, pp. 124 - 149.

[49] N. Böhm, D. Lohmann, and W. Schröder-Preikschat, “Multi-Core Processors in the Automotive

Domain: An AUTOSAR Case Study”, in Proceedings of the Work-in-Progress Session of the 22nd

Euromicro Conference on Real-Time Systems (ECRTS), 6-9 July 2010, Brussels, Belgium, pp. 25 - 28.

[50] J. Makitalo, “RECOMP-Deliverable D3.1: Virtualization: Requirement definition and Mechanism

description”, ARTEMIS-2009-1, Second Project Periodic Report, 2012.

[51] N. Navet, A. Monot, B. Bavoux, and F. Simonot-Lion, “Multi-source and Multicore Automotive

ECUs-OS Protection Mechanisms and Scheduling”, in Proceedings of the IEEE International Symposium

on Industrial Electronics (ISIE), 4-7 July 2010, Bari, Italy, pp. 3734 - 3741.

[52] R. Zalman, B. Böddeker, “AUTOSAR at the Cutting Edge of Automotive Technology”, in

Proceedings of the 7th International Conference on High-Performance and Embedded Architectures and

Compilers (HIPEAC), January 2012, Paris, France.

[53] R. Rosen, “Resource management: Linux kernel Namespaces and cgroups”,

Haifux, May 2013, [Online]. Available at: http://www.haifux.org/lectures/299/netLec7.pdf

[54] D. Petrovic, A. Schiper, "Implementing Virtual Machine Replication: A Case Study Using Xen and

KVM," in IEEE 26th International Conference on Advanced Information Networking and Applications

(AINA), 26 - 29 March 2012, pp. 73 - 80.

[55] N. Franssens, J. Broeckhove, P. Hellinckx, "Taxonomy of Real-Time Hypervisors," in Eighth

International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 28-30

October 2013 , pp. 492 – 496.

[56] S. Xi, J. Wilson, C. Lu and C. Gill "RT-Xen: Towards real-time hypervisor scheduling in Xen," in

Proceedings of the International Conference on Embedded Software (EMSOFT), 9-14 October 2011, pp.

39 - 48.

[57] A. Kivity, “KVM: The Linux Virtual Machine Monitor”, Proceedings of the Linux Symposium,

2007.

[58] A. Iqbal, N. Sadeque, and R. I. Mutia, "An overview of microkernel, hypervisor and microvisor

virtualization approaches for embedded systems, Technical Report, Department of Electrical and

Information Technology, Lund University, Sweden, 2009, [Online]. Available at:

http://www.eit.lth.se/fileadmin/eit/project/142/virtApproaches.pdf

[59] Wind River, “Wind River Hypervisor product description”, 2013, [Online]. Available at:

http://www.windriver.com/products/product-notes/wind-river-hypervisor-product-note.pdf

[60] G. Heiser, B. Leslie, “The OKL4 microvisor: convergence point of microkernels and hypervisors”, in

Proceedings of the first ACM Asia-Pacific Workshop on systems, 30 August 2010, New Delhi, India.

http://www.haifux.org/lectures/299/netLec7.pdf
http://www.eit.lth.se/fileadmin/eit/project/142/virtApproaches.pdf
http://www.windriver.com/products/product-notes/wind-river-hypervisor-product-note.pdf

AUTOSAR and Linux – Single Chip solution

81

Appendix A – Proposal for Master Thesis

(i) Background:

Embedded systems or ECU units in the automobiles have been increasing in complexity

and they support real-time automotive control applications as wells as non-real-time

applications like Infotainment, HMI and Navigation assistant systems. Normally the

real- time tasks are executed by AUTOSAR based RTOS and non-real-time processes

are executed by general purpose OS like Android/Linux/Windows etc. Currently both

the OS have different requirements and they do not share resources like processor and

memory.

(ii) Purpose:

The purpose of this Master Thesis is to combine an AUTOSAR OS with a Linux OS on

the same target hardware, single chip solution. Since the AUTOSAR OS and Linux OS

have different requirements a virtualization solution (hypervisor) is required. The

Master Thesis shall implement a demo system containing a reference implementation of

AUTOSAR OS, Linux OS and Hypervisor on a target hardware fulfilling automotive

requirements.

(iii) Description:

This Master Thesis contains a theoretical part to learn more about; AUTOSAR, Linux,

Hypervisor, Tool chain/Debugger and Target hardware.

Definition of the OS and hypervisor solution to be used is done on the first phase of the

Master Thesis. Requirement analysis is done to map the automotive requirements with

theoretical solutions and thereafter have software architecture. Software design

containing configuration of the system including Inter-system communication between

AUTOSAR OS and Linux OS is done.

Implementation of demo system is done on pre-defined target hardware. This includes

making sure that the hardware is configured and setup properly. The OS are working

accordingly and that necessary demo application(s) is developed to demonstrate

features/functions for performance measurements. Carry-out measurements on the demo

system and map the measurement results against automotive requirements. Finally we

analyze and comment on the results. There will also be some generic and customer

specific automotive requirement specifications available for this kind of ECU (System).

(iv) Limitations:

The thesis is not intended to do the complete integration of the AUTOSAR architecture

part with Linux applications. It will only implement a pilot project of basic demo

applications with the integration of AUTOSAR and Linux OS on top of the hypervisor

solution as a proof of concept. Also this thesis project is dependent upon the availability

of the target hardware platform and the hypervisor solution.

AUTOSAR and Linux – Single Chip solution

82

Appendix B – Tasks List for Master Thesis

Tasks for the Master Thesis are divided into two phases namely the Research study

phase and Implementation phase.

a) Phase 1 – Research Study Phase

1. Investigation/Survey on selection of the hypervisor product solution and the target

hardware platform.

2. Study about the selected hypervisor product solution and the target hardware

platform and understand their functionality.

3. Study about OSEK OS/AUTOSAR interfaces and understand how to integrate and

interface it with the hypervisor abstraction layer.

4. Survey on Linux kernel and distribution and understand how to integrate it with the

hypervisor.

5. Explore and understand how AUTOSAR and Linux OS communicate with each

other using the Inter OS communication mechanism provided by the hypervisor

product solution. Analyze and study the interfaces and libraries provided by the

hypervisor solution.

6. Study about the automotive performance requirements like fast boot up and quick

loading and how it is done in the current implementation.

7. Complete the interim report for the Phase-1.

b) Phase 2 – Design and Implementation Phase

1. Design software architecture for the integration of the AUTOSAR & Linux with the

hypervisor solution.

2. Prepare the development environment, debugging methods and run the hypervisor

on the intended target hardware.

3. Select the suitable sample demo applications. Develop the demo applications and

execute it on the virtualized platform and check their functionality as proof of

concept.

4. Integrate the AUTOSAR OS and Linux by using the interfaces of the hypervisor

solution. Develop the communication module that allows AUTOSAR & LINUX OS

to communicate the data signals with each other on top of the hypervisor abstraction

layer.

AUTOSAR and Linux – Single Chip solution

83

5. Carry-out basic measurement testing of the demo system to ensure that it conforms

to the standard automotive requirements and analyze the measurement results.

6. Reflect and evaluate the measurement results and compare it with the current state

of the art ECU system and related automotive ECU models.

7. Testing, Optimizing and Refactoring the solution (optional and if necessary).

Appendix C – Software products and Tools used in our Master Thesis

The following software products and tools were used during the course of our Master

thesis-work.

a) AUTOSAR development tools

1. MECEL PICEA SUITE

This was developed by MECEL AB and it is a comprehensive solution for effective

development and seamless integration of the AUTOSAR compliant ECUs. It was

mainly developed for automotive ECU suppliers. It contains the AUTOSAR basic

software modules, RTE, tool for configuring the RTE, BSW modules and editing the

application software components (SW-C). PICEA SUITE provides complete eclipse

based tool-chain support to integrate the various description elements together into an

ECU application system. The configuration of BSW modules and RTE, as well as the

implementation of the Application SWCs can be done effectively using the Picea suite.

Then the code and software executable of RTE and BSW for the ECU can be built using

the generator tools and make-file build system. Then Application SWCs can be

integrated on the automotive ECU system.

Source: http://en.wikipedia.org/wiki/Mecel

2. Volcano VSx tool-suite

This is an integrated tool suite developed by Mentor Graphics, for the top-down

automotive system and ECU design. It provides automotive software and electronic

systems design, development, integration and verification. This tool-suite is built upon

Eclipse framework and it enables the design of the software and hardware architecture

of an AUTOSAR system, mapping of the application software components to ECUs and

the design of the communication networks between the different ECUs. It can generate

the AUTOSAR ECU extract and other AUTOSAR ECU system configuration files.

Source:

http://s3.mentor.com/public_documents/datasheet/products/vnd/VolcanoAUTOSAR_sol

utions.pdf

AUTOSAR and Linux – Single Chip solution

84

b) HMI development tools

Mecel Populus HMI Suite is a complete package-tool developed by MECEL AB for

designing, implementing and deploying state-of-the-art, HMI based user interfaces for

automotive and distributed embedded systems. It ensures effective software life-cycle

management while minimizing the time and cost associated with system engineering

and verification of HMI applications. The brief description of functional components of

Populus suite can be found below.

(i) Populus Editor: The Populus editor is a window application used for specifying the

complete graphical layout, visual and the HMI flow/logic of the user interface. It

creates the HMI database which controls all the aspects of HMI display Unit like

screen layout settings, animation effects, text-entries, handling user inputs and

reacting to events. Using the HMI database, it also configures behavior of Populus

engine, the run-time software component, which interacts with the FU applications

and generates the graphical interface on the target display unit. Populus editor also

generates FU interface class and FIL which enables the engine to interact and get the

data from the FU application

(ii) Functional Unit: Functional Unit defines the actual business-logic implementation

code for the HMI application. It can be located internally in the same ECU system

or distributed in external ECU. FU communicates with the Populus engine via a

communication protocol known as ODI and periodically notifies the indications and

changes to update HMI Unit. Populus editor automatically generates the FIL (Java

or C/C++ interfaces) using the FU-SDK libraries which takes care of implementing

the ODI protocol and enables the interaction between the decoupled HMI display

and FU application modules. In addition, the FU modules are completely re-usable.

MECEL Populus Suite handles efficient and complete software life-cycle management

of HMI application project like design, development, testing and integration into the

target system. Also late HMI and FU changes can be easily added.

Source: http://en.wikipedia.org/wiki/Mecel

c) LTIB Tool-Chain

LTIB (Linux Target Image Builder) project is a simple tool that can be used to develop

and deploy BSPs (Board Support Packages) for various target platforms and processor

architectures like PowerPC, ARM, Freescale, etc. Using this tool, the developer will be

able to develop a GNU/Linux image for the specific target platform. It supports building

of root file system, boot-loader and Linux kernel image for multiple target platforms

and the developer can choose different system configurations (e.g. toolchain selection,

kernel selection, package selection, etc.) during the build process.

Source: http://savannah.nongnu.org/projects/ltib

http://savannah.nongnu.org/projects/ltib

AUTOSAR and Linux – Single Chip solution

85

d) COQOS Virtualization solution development tools

1. CODEO

CODEO is the PikeOS IDE (Eclipse based) used for application development, system

configuration, integration and deployment of PikeOS projects in embedded target

platform. It also provides project configurator editor, a special graphical editor for

project definition and system configuration properties like resource and time

partitioning, application scheduling and defining the properties of inter-partition

communication channels and ports. The CODEO IDE also provides capabilities like

debugger for debugging the PikeOS application projects in the target environment using

GDB tools and tracer analyzer tool for adding trace points in each partition and then

analyze the response time, latency, CPU time and scheduling behavior, etc. Trace events

are displayed as icons in the CODEO Trace Tool oscilloscope. It also provides

MONITOR tool for examining the partition information and system parameters. There

is a CPU emulator program called QEMU which can be used for booting the PikeOS

application projects virtually in the host PC without the real hardware [29, 30].

Source: http://www.sysgo.com/products/pikeos-rtos-and-virtualization-concept/

2. ELinOS

ELinOS is a development environment for building embedded Linux distribution and is

provided by SYSGO AG. ELinOS offers all the features used in industrial real-time

applications and supports a broad range of BSPs, target boards, processor architectures,

drivers and real-time hardware extensions. It provides the latest kernel version and is

used to create the virtualized Linux OS that can be hosted in a partition on top of

PikeOS microkernel. ELinOS is mainly used for industrial applications and the CODEO

IDE can be used as the application development environment for creating the embedded

Linux distribution using ELinOS [30, 31].

Source: http://www.sysgo.com/products/elinos-embedded-linux/

3. MUXA

PikeOS provides a utility named as MUXA tool that can be run on a host PC, and it

provides bidirectional virtual channels for remotely connecting and communicating with

the system partition in the target platform to monitor the user partitions and applications

executed in the target hardware from the host PC. MUXA is a utility which provides

console and debugging functionalities for the various personalities/partitions in the

PikeOS system. In order to check the system status of the different partitions, Muxa

provides a multi-channel multiplexer to have several virtual bi-directional

communication channels between the partitions in the embedded target system and the

host PC with a single physical link [29, 30].

Using this MUXA tool, it is possible to check the status information of the user

partitions and applications in each user partition, inter-partition communication

channels, ports and running processes. Also, it is possible to halt or reboot the user

partitions and the target system remotely using this MUXA tool. The Muxa utility

should be configured and setup on both host side (PC) and target platform side [29, 30].

AUTOSAR and Linux – Single Chip solution

86

On the target side, the Muxa application registers as a file provider, allowing

applications to access it via set of predefined file functions. On the host side, the host

Muxa application listens on the physical link between target and host on one side and

provides a command interface and TCP/IP port connections for the channels on the

other side. Muxa connections can be used for both binary data exchange and character

oriented console communication [29, 30].

e) CANalyzer- Vehicular CAN network simulator tool

CANalyzer is a CAN bus communication simulator and analysis tool provided by

Vector Informatik GmbH. This is primarily used by automotive and electronic control

unit suppliers to simulate, measure, and then analyze the in-vehicle network

communication traffic in automotive systems. Using this tool, we can send and receive

the CAN messages from the automotive ECU systems. It supports CAN, FlexRay,

MOST as well as LIN communication bus systems.

Source: http://en.wikipedia.org/wiki/CANalyzer

http://en.wikipedia.org/wiki/Vector_Informatik

