

Evaluation of validity of verification methods:
Automating functional safety with QuickCheck
Master of Science Thesis

Oskar Ingemarsson
Sebastian Weddmark Olsson

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Gothenburg, Sweden, September 2013

The Authors grant to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Authors warrant that they are the authors to the Work, and warrant that the Work
does not contain text, pictures or other material that violates copyright law.

The Authors shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agreement.
If the Authors have signed a copyright agreement with a third party regarding the Work,
the Authors warrant hereby that they have obtained any necessary permission from this
third party to let Chalmers University of Technology and University of Gothenburg store
the Work electronically and make it accessible on the Internet.

Evaluation of validity of verification methods:
Automating functional safety with QuickCheck

OSKAR INGEMARSSON
SEBASTIAN WEDDMARK OLSSON

c© OSKAR INGEMARSSON, September 2013.
c© SEBASTIAN WEDDMARK OLSSON, September 2013.

Examiner: MENG WANG
Supervisor: JOSEF SVENNINGSSON

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden, September 2013

Abstract

Quviq QuickCheck can be used when testing and developing software within the automo-
tive industry. A demonstration of QuickCheck with functional safety in mind has been
made. Ambiguities in AUTOSAR 4.0.3 were discovered. Some ISO 26262 requirements
are achievable with the use of QuickCheck, but it is not possible to achieve functional
safety using only QuickCheck. This is mainly because AUTOSAR is written in informal
syntax and can not help verify the model. Coverages have been measured and evaluated.
To reach a higher level of coverage, one need both positive and negative testing, as well
as more than one configuration.

Keywords
AUTOSAR, Verification, QuickCheck, Functional safety, ISO 26262

Contents

1 Introduction 1
1.1 Background . 1

1.1.1 The Development within automotive industry 1
1.1.2 Extent of software in modern vehicles 1
1.1.3 Introduction of standards . 2
1.1.4 Testing . 2

1.2 Purpose . 3
1.3 Objective . 3
1.4 Scope . 4

2 Theory 5
2.1 Software Testing . 5

2.1.1 Random Testing . 5
2.1.2 Property Based Testing . 6
2.1.3 Model Based Testing . 6
2.1.4 Model Checking . 6
2.1.5 Model Checking vs Testing . 7

2.2 Formal Methods and Verification . 7
2.3 Industrial Standards . 7

2.3.1 IEC 61508 and ISO 26262 . 7
2.3.2 AUTOSAR (AUTomotive Open System ARchitecture) 9

2.4 Verification Methods . 10
2.4.1 QuickCheck . 11

3 Method 12
3.1 Existing verification tools . 12

3.1.1 SPIN . 12
3.1.2 Parasoft C/C++test . 13

3.2 Specification . 13
3.3 Testing . 13
3.4 Choice of AUTOSAR module to test . 13
3.5 The Watchdog Mangar (WdgM) . 13

3.5.1 The state machine . 14

ii

3.5.2 Important Functions . 14
3.6 Implementation . 16

3.6.1 Formal Notation . 16
3.6.2 Independence of the Erlang implementation 17
3.6.3 Iterative strategy . 17

3.7 Conflicts and Bugs . 17
3.7.1 Advantage of having the Actual C-code 18

3.8 Implementation structure . 18
3.9 Evaluation of the Implementation . 19

3.9.1 Verifying the tests . 19
3.9.2 Finding better test cases . 19

3.10 Configurations . 20
3.11 Calling the API-commands . 21
3.12 Model State . 22
3.13 Minimizing counter examples . 22

4 Result 23
4.1 Achieving good test cases . 23

4.1.1 Negative Testing . 23
4.1.2 Positive Testing . 23
4.1.3 Prioritized supervision algorithms 24
4.1.4 Tweaking the generators . 24

4.2 Configurations . 24
4.2.1 BSI . 25
4.2.2 Freescale . 26
4.2.3 Example . 27

4.3 Statistics . 28
4.4 Coverage . 28

4.4.1 Erlang module . 28
4.4.2 C-code . 31

4.5 Functional Safety analysis . 32
4.5.1 AUTOSAR . 33
4.5.2 Fulfilled ISO 26262 requirements 34
4.5.3 Confidence interval . 34
4.5.4 Measurements of the state space 34

5 Discussion 36
5.1 Future work . 38

6 Conclusion 39

Bibliography 40

iii

A Introductions to QuickCheck 43
A.1 The General Idea . 43
A.2 Testing C-code . 43
A.3 QuickCheck Modules . 46

A.3.1 eqc . 46
A.3.2 eqc gen . 46
A.3.3 eqc c . 47
A.3.4 eqc statem . 47
A.3.5 car xml . 47
A.3.6 Other modules . 47

B The Watchdog Manager (WdgM) 48
B.1 Supervision, Checkpoints and Graphs . 48
B.2 Global Status . 49
B.3 Local Status . 49
B.4 API functions . 51

B.4.1 WdgM Init . 51
B.4.2 WdgM DeInit . 51
B.4.3 WdgM GetVersionInfo . 52
B.4.4 WdgM SetMode . 52
B.4.5 WdgM GetMode . 52
B.4.6 WdgM CheckpointReached . 52
B.4.7 WdgM GetLocalStatus . 52
B.4.8 WdgM GetGlobalStatus . 52
B.4.9 WdgM PerformReset . 52
B.4.10 WdgM GetFirstExpiredSEID. 52
B.4.11 WdgM MainFunction . 52

C Ambiguities in AUTOSAR 53
C.1 Incorrect reference . 53

C.1.1 Requirement description . 53
C.1.2 Problem description . 53

C.2 Optional or mandatory . 54
C.2.1 Requirement description . 54
C.2.2 Problem description . 54

C.3 Logical supervision results . 54
C.3.1 Problem description . 54

C.4 Incorrect spelling . 54
C.4.1 Requirement description . 54
C.4.2 Problem description . 55

C.5 Retain state . 55
C.5.1 Requirement description . 55
C.5.2 Problem description . 55

iv

Glossary

ASIL Automotive safety integrity level.

Checkpoint A point in the supervised entity. These points can be configured and used
for different supervision functions.

ECU Electronic control unit.

Mocking Mocking allows testing of code units without being reliant on dependencies.

Negative testing Errors should be triggered when generating negative and invalid in-
put data or invalid command sequences.

Positive testing Trying to stay in a valid good state when testing by generating valid
input data and command sequences.

Supervised Entity A critical section in the supervised program.

Supervision functions Logical-, Deadline or Alive supervision.

Wdg Watchdog (the hardware).

WdgIf Watchdog Interface.

WdgM Watchdog Manager.

v

Chapter 1

Introduction

1.1 Background

1.1.1 The Development within automotive industry

In the recent decades there has been a dramatic growth of information and communica-
tion innovations within the automotive industry. Analog vehicles have been transformed
into complex electromechanical systems. New features are implemented (for example
due to user demands, traffic safety or environmental regulations) requiring more com-
putational power and less energy consumption. The average car has already 80 ECU’s
(electronic computation units) and to deal with the extra functionality, each ECU will
need to become more complex. [1] [2] [3] [3] [4] [5]

1.1.2 Extent of software in modern vehicles

The cost of developing a new car model is up to one billion e, where electronics have
reached a mean share of one third of the value. The electronics cost is divided into three
categories: sensor, hardware and software. The share of software has been doubled the
last 10 years and is now equal to the cost for hardware at 40%, and the sensor cost is
20%. [6] [7]

More and more functions will be implemented; Intelligent traffic systems which make
the automotive vehicles communicate with the roadside management systems, infotain-
ment systems will bring, among other, weather information through the Internet and
emergency call support, traffic sign recognition, night vision and automated parking. [3]
[8] [2] [6]

The number of lines of code running in a vehicle is another example of how complex
the automotive software is. The software running on a F-22 Raptor and the F-35 Strike
Fighter, two of the attack planes in the US air force, has about 1.7 million lines of code
and 5.7 million lines of code respectively. The passenger plane Boeing 787 Dreamliner
runs on 6.5 million lines of code, where the average premium-class car has close to 100
million lines of code. [9]

1

1.1.3 Introduction of standards

Because of the high development costs, and the complexity of modern cars, car man-
ufacturers, suppliers and other companies related to the automotive industry joined
efforts in 2003 and created AUTOSAR, short for Automotive Open System Architec-
ture. The main purpose is to make it possible for car manufacturers to buy independent
components from different software suppliers; the AUTOSAR motto is “Cooperate on
standards, compete on implementation”. [10]

Functional safety was introduced to the automotive industry with ISO 26262 in late
2011. ISO 26262 named “Road vehicles – Functional safety” is a general standard on
how the implementation of functional safety in vehicle development should be carried
out from beginning to end. [4]

This standard is built on top of another industrial standard, IEC 61508, named
“Functional safety of electrical/electronic/programmable electronic safety-related sys-
tems”, which purpose is to ensure functional safety in computer based systems’ overall
life cycles. [11] [4]

It is useful to distinguish between systems with different levels of dependability, and
determine where the hazards exists. When this risk analysis is completed, and appropri-
ate reliability and availability requirements are assigned to the system, the system can
be identified by a certain automotive safety integrity level (ASIL). If this number is high,
the system will experience a more rigorous design and testing than could be justified for
a lesser demanding system. These levels are more defined in the standards IEC 61508
and ISO 26262. [12]

The concept of safety integrity levels exists because the implications of failure vary
between applications. The safety integrity levels reflect the importance of correct be-
havior, and exists to ensure functional safety of the applications. [12, p.3,70]

1.1.4 Testing

Functional safety demands testing, and testing accounts for around half of all software
development costs . Reducing the cost is motivated and can be done by automating the
test generation process. [4] [13] [14] [15]

For simple devices it is possible to exhaustively test the functional safety of the
system. For example consider a system consisting of a small number of switches, where
each switch has only two states; open and closed. Then the number of possible failures
can be determined by the combination of all possible failure states of each individual
switch. The complexity issue is that in systems such as microprocessors or ECU’s, the
number of possible failure states is so large that it is considered infinite. This makes it
impossible to exhaustively test the system, and therefore, make the detection of failures
unreliable. This is called the combinatorial explosion problem. [12]

2

1.2 Purpose

This thesis purpose is to automate the testing process of automotive software in an
effective and good way, and to make it possible to raise the Automotive Safety Integrity
Level (ASIL), where applicable.

It is desired to do an evaluation of tools that can be used in order to perform at least
semi formal verification of automotive software modules. The main purpose is however
to evaluate if Quviq QuickCheck can be used to fulfill this.

1.3 Objective

The first problem is to evaluate what “semi formal verification” according to the ISO-
standard means. In formal methods of mathematics, formal verification means to prove
the correctness of algorithms. The ISO-standard mentions both “formal verification”
and “semi formal verification” for software development, but it does not describe how to
realize any of these. This evaluation must be performed to obtain knowledge of how to
properly implement functional safety and reach an ASIL classification, using automated
testing.

A model for an AUTOSAR module needs to be implemented. For this to be a good
model, some questions must first be answered. How can one achieve good test cases for
the model? How can one tweak the test generation to find test cases that are interesting
in a safety critical point of view? Is the implemented model together with the generated
tests good enough to reach the goals?

The test generation is a big problem when verifying a model. With unit tests, one
can argue that each line of code has been executed (100% code coverage), but that is
just a statement for that everything has been executed. Has it been executed correctly?
Is every combination of computations in the system necessary to ensure correctness,
or with other words, is it possible to collapse some states in the system’s state space
without endangering the safety of the whole system?

There must be an evaluation of the solution after the model has been implemented.
Does it ensure functional safety? How can one measure the size of the state space that
is actually verified? Even if test generation is implemented properly, the solution might
not fulfill the functional safety properties defined by the ISO-standard.

One must propose and motivate what should be done to be able to achieve a semi
formal verification. This can include a confidence interval for how certain the verification
is. The confidence interval would help describing the visited state space because it
is probably not feasible to exhaustively visit all states due to combinatorial explosion
problem. [16]

The main objective is to prove that it is possible to do semi formal verification for
an AUTOSAR module and its specification. It should not matter which configuration
that is used or how the module is implemented, because the specification should hold
for all configurations and implementations. Every company that implements the module
should be able to run the final code to achieve “semi formal verification”. Since modules

3

in AUTOSAR are dependent, the work presented here should be generalized so it can be
hooked on when implementing test suits, using the same techniques, for other modules.

1.4 Scope

We will use AUTOSAR 4.0 revision 3 for our thesis work. Since this version of AU-
TOSAR consists of more than 100 specifications and other auxiliary materials[17], we
will limit our scope to one specification. The module of this thesis is the Watchdog
Manager. This module provides monitoring services used to maintain correctness. The
module is chosen because it got dependencies, and is used to report development and
production errors, but mainly because it executes safety-critical work. The fact that it
got dependencies is important when doing integration testing between different modules.

The aim of the work is to verify software components. In other words no work
considered hardware or a combination of hardware and software will be prioritized. All
implemented code for the verification will run on a standard PC-machine.

We will not implement deprecated API-functions in our model, nor will we test
configurations which will give raise to segmentation faults.

4

Chapter 2

Theory

2.1 Software Testing

There are a lot different testing methods and the testing also varies in different faces of
the development life cycle. Software testing can be divided into four different categories:
correctness testing, performance testing, reliability testing and security testing. This
thesis focuses of correctness testing. Correctness testing needs a set of rules, which
defines the behavior of the software. [18]

2.1.1 Random Testing

When using random testing, test cases are simply selected at random from the input
domain. Random testing has been shown to be cost efficient for a lot of programs.
Subtle errors can be found at low cost and random testing combined with other testing
methods may result in powerful and cost-effective testing solutions. [18]

Random testing usually provides low code coverage because test cases are uniformly
distributed. As an example: To test an if-statement, which compares equality of an
32-bits integer variable v ∈ Z32 to a fixed value vcomp ∈ Z32, one must generate vcomp.
Otherwise the if-statement will not evaluate to true. If test cases are uniformly chosen,
the likelihood of generating vcomp is P = 1

232
. [19]

In white box testing, code knowledge can be added to the generation of test cases.
This can be done by narrowing the input domain and thereby make it possible to dras-
tically increase the number of needed test cases. Sub domains, subsets of the input
domain, can be chosen to represent both valid conditions, as well as invalid conditions.
In the example above, one sub domain can consist of only the value vcomp. Another sub
domain can be defined as Z32\{vcomp}, hence every other 32 bit integer. Now only one
test case is needed from each of the two sub domains. The test case from {vcomp} will
make the if-statement evaluate to true and the test case form Z32\{vcomp} will make it
evaluate to false. [20]

5

2.1.2 Property Based Testing

The purpose of property based testing is to establish formal validation results through
testing. Property based testing assumes that the specified property captures everything
of interest in the program. This because of that property based testing only validates
the property. The property must hold whenever the program is executed. [21]

A problem with testing is to figure out when enough testing has been carried out.
Property based testing solves this by performing an iterative strategy. A test is negative
if it violates the property. The test is positive if a series of tests produces no errors
and the test is “complete” under some coverage metric. A test is “incomplete” if a
series of tests passes, but is not complete under the coverage metric. The iterative
process comes from continuously modifying the property and selecting test cases which
eventually makes the test “complete”. [21]

Programs often consist of several independent properties, for example: array bounds,
race conditions and authentication. Such properties can be put together as one property
that should hold for the whole program. Hence property based testing is very likely an
iterative process, where properties are put together until the test becomes “complete”.
[21]

2.1.3 Model Based Testing

Model based testing uses a model of a system to select test inputs that tries to find test
cases that explores the behavior of the system. The output from the system can then
be compared against the model. The advent of model based testing has given rise to
new techniques that efficiently analyses system models with respect to the behaviour
of the systems requirements. Such techniques can for instance find counter examples,
when system requirements are violated. The meaning of counter examples are concrete
and minimalistic cases when a system has an incorrect behavior with respect to its
requirements. [22]

Model based testing makes it possible to manually select algorithms that automati-
cally and systematically generates test cases from a model of the system. [23]

2.1.4 Model Checking

Model checking exhaustively checks the whole state space of a model that is constructed
for a system. Only the model of the system is checked and there are no actual tests
performed on the system. Instead the model is verified. Model checking uses properties,
which generally can be classified into either liveness and safety. Without formality
liveness means that eventually some wanted behavior will happen and with safety means
that unwanted behaviour will never happen. [24]

Model checking systems can be built on a finite state automata. For instance the
verification tool SPIN, see 3.1, has such a model checking system. [25]

6

2.1.5 Model Checking vs Testing

For larger system, when the state space is very large, it is more reasonable to use testing
since it is infeasible to test the whole state space. It is, however, possible to extract
certain parts of the system, which are considered important, and construct a model for
those parts, which could be formally verified using model checking. [26]

2.2 Formal Methods and Verification

It is almost impossible to write a specification in a natural language and not make
room for different interpretations and misunderstandings. Hence Formal Methods are
introduced which are based on formal languages that have precise rules. Describing a
system with formal notation gives the ability of automating test cases for the system,
since it is precisely defined. Formal methods can be used everywhere in the development
life cycle and not only when writing specification for the whole system. [12, p.272]

In the ISO standard ISO 26262, see section 2.3.1, something called semi-formal nota-
tion is also mentioned. The difference being that formal notation needs both semantics
and syntax to be well defined but semi-formal notation needs only the definition of
semantics. [27]

To determine whether the output of a life cycle phase fulfills the requirements speci-
fied by a previous phase, verification is needed. Formal verification is the verification of
a system using formal methods. The exact meaning of verification is however confusing.
The definition may differ in comparison of academic or industrial use. Even in different
phases of the safety life cycle verification is conducted in various forms. [28][4, 8:9.2][12,
p.309]

2.3 Industrial Standards

2.3.1 IEC 61508 and ISO 26262

IEC 61508 adopts a four level system for categorizing the severity of hazards. It also
adopts a six level system for classifying the frequency of a hazard. There are four risk
classes which are given the values 1-4 where 1 corresponds to the most serious accidents
and 4 to the least serious. Based on this, IEC 61508 has a four level classification of
safety integrity levels called SIL, ranged from 1, being the least critical, to 4, being the
most critical. Each of the safety integrity levels has a criteria of maximum frequency of
failures which a system built on that SIL must satisfy. In other words, a SIL is a level of
measure of the reliability of a safety function. Due to the fact that the failure of a safety
function can lead to a hazardous event, the safety integrity of a specific safety function
must be of such a level to ensure that the failure frequency is sufficiently low or that the
consequences of the hazardous event are modified to meet a tolerable risk. To ensure
safety, functions with SIL 4 need to be tested and documented the most. [12][11][29][30]

The automotive functional safety standard, ISO 26262, has adopted a similar system
of safety integrity levels, called automotive safety integrity levels or ASIL. As with

7

Figure 2.1: Phases of software development in the standard ISO 26262

IEC 61508 there are four integrity levels, ranged A-D, but there are no direct correlation
between the two. [31]

ISO 26262 describes the full development process, from concept to production, with
functional safety in mind. For software development, the standard has a reference model
with different phases of the process, see figure 2.1. Each phase in the reference model is
dependent on the earlier phases. The reference model has the shape of a V, where the
left side contains all development phases, and the right side contains the test phases.
The work flow from this view starts with the phase “specification of software safety
requirements”. This phase specifies the software requirements needed to ensure the
stability of the system. They are derived from the system design specification. This is
part of the integration between software and hardware. The second phase is the “software
architectural design”. It represents the interaction between all software components. The
third phase and the last development phase, in the model is the “software unit design
and implementation”. This phase contains the implementation of each module. If the
implementation does not meet the specified safety, the product needs to go back to an
earlier phase and be redesigned. [4, 6:5.4][12, p.8-9]

Each of these phases is tested thoroughly with the phases “software unit testing”,
“software integration and testing” and “verification of software safety requirements”.
The unit testing phase confirms that the implementation of the module fulfills the de-
sign specifications. If the product pass this phase, it continues to the integration and
testing phase, otherwise it is sent back to the implementation phase. The objective in
the phase software integration and testing is to integrate the software units and demon-
strate that the architectural design is correct. A demonstration that the software safety
requirements is met, is performed in the phase “verification of software safety require-

8

ments”. [4, 6:5.4]

2.3.2 AUTOSAR (AUTomotive Open System ARchitecture)

The AUTOSAR platform has a layered software architecture. This means that the
architecture is divided to a number of different layers, such as the application layer, run-
time environment, the basic software layer, and the microcontroller. In the figure 2.2
the basic software layer is represented as four different parts; services, ECU abstraction,
microcontroller abstraction, and complex drivers. [32]

Figure 2.2: The AUTOSAR software architecture. Noticeable is that the basic software
layer is divided further into four categories with even more subsections.

The runtime environment is the operating system, and the microcontroller is the
hardware. The software running in the application layer is for example software com-
ponents for sensors and actuators. One example of how the different parts in the basic
software layer is integrated, is the watchdog, which consists of several parts as seen in
figure 2.3. The microcontroller abstraction layer has the drivers for the watchdog; the
interaction with the microcontroller. Then there is the watchdog interface at the ECU
abstraction layer. The watchdog interface is the onboard device abstraction. Last is the
watchdog manager (abbreviated WdgM) which runs as a system service in the service
layer. [32]

The watchdog has a number of dependencies to other services in the basic software
layer. For example when an error is found by the watchdog, it could either be reported
to the diagnostic event manager or the development error tracer depending on the type
of error. These are two services that are used for error management. [33]

AUTOSAR’s concept is to make it possible for vehicle manufacturers to buy mod-

9

Figure 2.3: The Watchdog and some other related modules.

ules from different software developers, which will still work together in unison. For
a software developer to present a software module with functionality that fits different
vehicle manufacturers, the standard introduces configurations. The configurations spec-
ifies a number of parameters that can be configured in order to fit a specific vehicle
manufacture. In the watchdog manager for example, there is parameters that specify if
the watchdog manager should report errors to the diagnostic event manager (DEM), or
which type of supervision that should be executed and what to supervise. [10][32]

The current version of AUTOSAR, version 4, has been designed with functional safety
in mind. Essential concepts of ISO 26262 have been developed alongside AUTOSAR.
[10]

2.4 Verification Methods

The standard IEC 61508 propose two methods to formal verify a program. The key is
to model the program into one of the following state transition models. [11, p.127]

1. Finite state machines/state transition diagrams

10

2. Timed Petri nets

IEC 61508 emphasises that Timed Petri nets are best suited for concurrent programs.
Regarding the finite state machine method, the following criteria needs to be satisfied
for the implemented state machine to be formal verified [11, p.77-79][12, p.322]:

completeness the system must have an action and new state for every input in every
state,

consistency only one state change is described for each state/input pair, and

reachability whether or not it is possible to get from one state to another by any
sequence of inputs.

If the state machine is correctly implemented it represents a correct model of the
original program. If it does not exist any unwanted transitions or states, then the
original program is formal verified.

Since most program specifications are written in natural languages there may be
a lot of ambiguities. Techniques have been developed to reduce such cases, and these
techniques are often referred to as semi formal verification, because they often lack
the mathematical rigor associated with formal verification. These methods use textual,
graphical or other notation; often several techniques are used in unity. [12, p.91]

The description of semi formal verification in IEC 61508 states: ”Semi-formal meth-
ods provide a means of developing a description of a system at some stage in its develop-
ment, i.e. specification, design or coding. The description can in some cases be analyzed
by machine or animated to display various aspects of the system behavior.” [11, p.77]

2.4.1 QuickCheck

QuickCheck was invented by Koen Claessen and John Hughes, as a testing module for
Haskell in 2000. In 2006 John Hughes founded the company Quviq together with Thomas
Arts. Quviq offers a commercial version of QuickCheck for Erlang. One of the main
differences, except from the programming language, is that the commercial version of
QuickCheck has a C-testing interface. Hence it is possible to test C-code in Erlang with
the help of QuickCheck. All test code is written in Erlang and checked against API calls
to the C-code, this is called model based testing. It is not necessary to have the actual
source code; it is enough to only supply the compiled byte code and some library files
of the program to be able to test it. [34][35]

QuickCheck uses property based testing, which means that system requirements are
implemented and tested as properties. QuickCheck also makes use of random testing,
but has guided random test generation. This means that the samples can be weighted
to cover certain parts of the state space with more likelihood. [35]

11

Chapter 3

Method

3.1 Existing verification tools

Software unit testing can be achieved by using a lot of different tools. For example unit
testing can be done with the help of static methods such as code reviews and static
path analyzers, and dynamic methods such as automatic generation of test inputs or
designing test cases to be used alongside the actual code. The choice of verification tool
was therefore not the most essential when it comes to pure unit testing. One can of
course take the simplicity to achieve good unit testing into account, but this was not
the goal of this project. [36] [37]

The phase “verification of software safety requirements” in the V-model, will not
influence the choice of benchmarking software; to be able to test this phase, a greater
amount of components of the whole system must be available. Such components include
hardware, and this report will not cover hardware integration. The scope of this project
was to be able to run the implementation on a standard PC-machine.

The most interesting part of the V-model was the phase “software integration and
testing”. If it exists a tool that could be used to easily combine tests and requirements
from different modules, and if it was possible to test functional safety concept from this
combination, for example by corrupting some software elements.

Two tools that could be used in order to achieve better code and some functional
safety was SPIN and Parasoft C/C++test. While SPIN can be used to verify the model,
Parasoft C/C++test is used to define policies on work flow as well as on coding.

3.1.1 SPIN

SPIN is used to trace logical design errors in distributed software. It supports a high
level language, called Promela, to specify system descriptions. Promela is an acronym
for PROcess MEta LAnguage, and is a verification model language. The system prop-
erties that should be checked are written in logical temporal language (LTL), and SPIN
reports errors such as deadlocks, race conditions and incompleteness between these prop-
erties and the system model. It also supports embedded C-code as part of the model

12

specifications. It supports random, interactive and guided simulation, with both partial
and exhaustive proof techniques. [38]

3.1.2 Parasoft C/C++test

Parasoft C/C++test is a commercial integrated development testing solution for C and
C++. It automates code analysis, and enforces code policies depending on given rules.
The solution is part software, part practical rules for team collaboration. It can detect
certain run-time errors such as memory access errors, null pointer referencing, buffer
overflows, division by zero and the use of uninitialized memory or variables. It can
create and execute unit tests and collect code coverage from application executions. [39]

Parasoft claims that it should be possible to satisfy some of the ASIL requirements
using their solution. [40]

3.2 Specification

In AUTOSAR, specifications for each module is given in text form. Therefore before a
module can be tested, that specification must first be implemented in code.

3.3 Testing

Properties of a module have to take the current state in consideration, since most func-
tions written in an imperative language are not immutable. This gives raise to the idea
of a state based testing tool.

3.4 Choice of AUTOSAR module to test

When deciding which AUTOSAR module to test, there were a number of modules up
for discussion. Since the goal was to get a proof of concept; examining if it was possible
to get an ASIL-classification and achieve functional safety using QuickCheck, it seemed
preferable to choose a less complicated module. It was also desirable to have the actual C-
code and not just library files, because then ambiguities in AUTOSAR could be checked
in a more efficient way.

3.5 The Watchdog Mangar (WdgM)

The AUTOSAR module that was chosen was the watchdog manager. This module
seemed to fit the needs because it is a medium sized module which is highly state depen-
dent and safety critical. It is safety critical since it monitors the hardware watchdogs.
Since the objective was to be able to formally verify AUTOSAR modules and thereby
examine if it was possible to higher the ASIL-classification, it seemed reasonable to chose
a safety critical module. To evaluate if it was possible to reach the objectives, a module

13

with some functionality, which still was not to complex, was desirable. The watchdog
manager is described in detail in appendix B. As described in B.2 the watchdog man-
ager has a global status that defines its general behavior. This status can be assigned
5 different values: WDGM GLOBAL STATUS DEACTIVATED, WDGM GLOBAL
STATUS OK, WDGM GLOBAL STATUS FAILED, WDGM GLOBAL STATUS EXPIRED
and WDGM GLOBAL STATUS STOPPED. The transition between these statuses can
be described with the use of a state machine. The global status was considered very
important, since it specifies correct and incorrect behaviour of the watchdog manager.

3.5.1 The state machine

The watchdog manager’s global status state machine is shown in figure 3.1. Its transi-
tions depend on the changes of the supervision functions variables, and the current state.
If the behavior of the watchdog manager is correct, it will stay in either the state WDGM
GLOBAL STATUS OK or WDGM GLOBAL STATUS DEACTIVATED. There are
however lots of reasons for the status to change from the correct state. It depends
on the arguments of the API-calls but also the order of the commands that are called
and which AUTOSAR configuration that is supplied. The configuration is important
because it specifies how much faulty behavior the watchdog should tolerate. It could
also disable some states and state transition or make some transition more likely to hap-
pen. The effect can for instance come from the number of checkpoints supplied in the
configuration. A correct behavior of the watchdog manager depends on that checkpoints
are reached with correct timing and does so in the right order.

Besides the transition between the deactivated state and the OK state, the only
function that can give rise to state transitions for the global status is the main function.
In a working ECU, the main function should continuously be called by the run-time
environment (RTE), in a configured time interval. Note that the timing is not used
when using QuickCheck, see section 3.11.

3.5.2 Important Functions

The most interesting API-calls are the ones that modifies the internal state of the watch-
dog manager, see appendix B.4, namely WdgM Init, WdgM DeInit, WdgM SetMode,
WdgM MainFunction, and WdgM CheckpointReached. The reason for this is that they
will influence the result of the following API-calls.

The Init and DeInit functions can just change the global status between two states
and should only change the state of the watchdog when the watchdog is in either WDGM
GLOBAL STATUS OK or WDGM GLOBAL STATUS DEACTIVATED, according to
figure 3.1. If this happens they will change the internal state of the watchdog indepen-
dently of previous called commands. The behavior of these commands will therefore not
vary much.

WdgM SetMode changes the mode, but should retain the global and local statuses
of the supervised entities. It should not be possible to change the mode if the watch-

14

WDGM GLOBAL STATUS DEACTIVATED

WDGM GLOBAL STATUS OK

WDGM GLOBAL STATUS FAILED

WDGM GLOBAL STATUS EXPIRED

WDGM GLOBAL STATUS STOPPED

Figure 3.1: State diagram that shows possible transitions between states

dog manager is in either WDGM GLOBAL STATUS EXPIRED or WDGM GLOBAL
STATUS STOPPED.

The two remaining API-calls that needs to be discussed in details are the main
function and the checkpoint reached function. As can be seen in figures 4.1(a), 4.2(a)
and 4.3(a), they are also the two commands that are called the most.

WdgM MainFunction

The WdgM MainFunction handles alive supervision calculations, and the function WdgM
CheckpointReached handles the increasing of the alive counters, a certain number of calls
to WdgM CheckpointReached must be done before each WdgM MainFunction. It does
not end there. Each checkpoint may have some logical supervision, so the order of the
called checkpoints is important as well. It is also possible to set deadline supervision
for a supervised entity. Both deadline supervision and logical supervision is handled by

15

WdgM CheckpointReached.

WdgM CheckpointReached

Deadline supervision demands that a configured amount of time must have elapsed since
the start checkpoint was visited. Because AUTOSAR does not specify how the handling
of time should be implemented, see sections 3.11 and 4.5.1, we implemented the model
as the source C-code was implemented, with the use of WdgM MainFunction. This is
possible because we know that WdgM MainFunction is called periodically.

3.6 Implementation

The chosen module was already unit tested and run actively in the lab environment.
The implementation of the properties was done to be able to test API-calls, which

is also described in appendix A, against the C-code. QuickCheck then checked that the
postconditions held, according to figure 3.2. The postconditions were written to test that
AUTOSAR requirements held. In other words that the API-calls were called correctly.

Figure 3.2: Shows Erlang modeled states with calls against the C-code

3.6.1 Formal Notation

For QuickCheck to be able to automatically generate test cases, AUTOSAR specifica-
tions written in a natural language, needed to be transformed into properties in Erlang
code. In other words transforming informal notation into formal notation.

A problem when translating the AUTOSAR specifications into code was that there
were ambiguities. It was easy to see that there was room for different interpretations,

16

which most likely would result in implementation conflicts later. This is described more
precise in section 3.7.

The translating process was done iteratively as described in section 3.6.3.

3.6.2 Independence of the Erlang implementation

The implementation in Erlang was done independent from the design choices in the C-
code. The idea was to ensure an independent model; if the model was inspired by the
C-code, it could have transmitted faults. Implementing the Erlang module independent
of the C-implementation would also result in that ambiguities in the AUTOSAR specifi-
cation would be easier to find, since two different interpretations of the same specification
would eventually be available.

3.6.3 Iterative strategy

The implementation of the AUTOSAR module in Erlang was done in an iterative way.
Not every piece of code were required to be implemented before tests could be run. This
is because a module in AUTOSAR consist of a number of API-calls. It was enough
to implement some of the specifications for one API-call before tests could be run. Of
course this tested only the implemented part of the C-code. Early tests may not have
fully tested the implemented API-call because some branches in the C-code will never
have been reached before other unimplemented API-calls.

3.7 Conflicts and Bugs

Early in the implementation phase QuickCheck found differences between the Erlang
and C-implementation. This was expected because every programmer makes mistakes.
The question was whether the fault was in the C-code or the Erlang code. Then the
API was thoroughly read and a conclusion was made based on this. Either a bug in the
C-code was found or the Erlang code needed to be corrected. There were however cases
when the API was ambiguous. In those cases the C-interpretation was chosen as correct
and the ambiguous specification was documented.

There is a number of possible ways to handle bugs when QuickCheck encounters
them. The problem is that QuickCheck generates arbitrary command sequences, it
cannot “save” an error and proceed to find the next error. Either the C-code or the
model needs to be adjusted. The best way, with the model in mind, would often be to
let a third party correct the discovered bugs. However this is time consuming because
the support line has often already much to do, and the releases does not come that often.
Another way is to mock the faulty API-call. In other words simulate the output of the
C-code in order to circumvent or hide a API-function, but then you will only find one
bug per function, strictly limiting the probability to find bugs. There is a QuickCheck
Erlang module for the purpose of mocking C-code, see appendix A.3.6. Then there are
two equally good methods. Either the Erlang model needs to have the fault implemented,
or the C-code needs to be fixed. There are pros and cons with both methods. If the

17

Erlang model introduce bugs, there may be secondary failures which are not discovered.
This could also happen when correcting the C-code, but then more knowledge of the
module is needed, and some of the secondary failures can easier be avoided. It also takes
more time to get the extra knowledge of the C-code.

The alternatives listed below were discussed.

1. Fix the C-code, in other words change the source code. Knowledge about the
structure in the C-code is needed.

2. Mocking, in other words simulate different C-code output. The pitfall is if that
each mocked function eliminates all bugs in the function. Not only a selected
subset; at most one bug per function can then be found.

3. Change the Erlang module to a faulty behavior to follow the C implementation.
The problem is that other configurations or updated versions of the C-code will
show up as faulty when using the same Erlang model, and it could be hard to
discover secondary failures.

We choose to correct the C-code, item 1, because then we had direct feedback and
could discover where in the code the bugs were introduced. Also this was the most
dynamic of the alternatives and allowed further bugs to be found.

When thoroughly reading the AUTOSAR API not only ambiguous rules were found
but also rules that contradicted each other were recognized. In those cases the imple-
mentation in the C-code was followed.

Although the C-code was used in lab environments, bugs were found early in the
process.

3.7.1 Advantage of having the Actual C-code

A great method for understanding the AUTOSAR specification, when a clear interpre-
tation of it did not exist, was to examine the C-code. QuickCheck can be used to test
libraries when only the compiled source code is available. However, this makes the am-
biguities harder to discover, because a third model would be needed to justify whether
the C model or the Erlang model would be correct.

3.8 Implementation structure

The final implementation consisted of several Erlang modules. Table 3.1 lists the mod-
ules defining the watchdog manager. There are also other modules that reads configura-
tion files, defines the generators, measuring code coverage etcetera, those modules have
however no equivalence in the C-code.

18

Table 3.1: Erlang modules defining the watchdog manager
modules descriptions

wdgm helper Helper module used by most of the other modules.
wdgm checkpointreached Erlang version of checkpointreached, see appendix B.4.6.
wdgm main Erlang version of the main function, see appendix B.4.11.
wdgm pre Checks for AUTOSAR preconditions.
wdgm post Checks for AUTOSAR postconditions.
wdgm next Defines the watchdog manager state model, utilizes both

wdgm checkpointreached and wdgm main.

3.9 Evaluation of the Implementation

If tests return positive, it does not really say much more than that those tests evaluated
to true. There was a need to evaluate what was actually tested. Coverage of the code
and also coverage of visited states was needed to evaluate tests.

3.9.1 Verifying the tests

When the module was fully implemented in Erlang code there had to be some assurance
of that every piece of code in the C implementation was actually tested. Code coverage
for the Erlang implementation was measured using the Erlang module cover. The cov-
erage were only measured on the modules listed in 3.1 since they are the only modules
that defines the Erlang version of the watchdog manager.

To be able to measure the code coverage of the C-code the commercial tool Bullseye
Coverage was used. When using these tools it was easy to see that the result was
not good enough. The main problem was that WdgM was put in an absorbing state.
All commands that were executed after that, were not able to change the state of the
WdgM. The reason for that an absorbing state was reached was the availing of negative
testing. The testing was negative because invalid command sequences and arguments
were generated.

Figure 3.3 shows an example of how the status of the watchdog manager changed
during the execution of API-calls. After a number of commands the absorbing state
stopped was reached.

3.9.2 Finding better test cases

The next step was to tweak the generators that were used by QuickCheck to construct
valid API-calls. This was done to find better test cases, i.e. there were a number
of branches in the C-code that needed a specific sequence of API-calls with correct
arguments, to be reached. For example, it was unreasonable to test functions often
when the initialization function WdgM Init has not yet been called.

Thanks to QuickCheck’s weight feature, it was simple to change the ratio of the
generation of certain API-calls; by matching the state and the function name of the

19

0 20 40 60 80 100 120 140

commands

OK

DEACTIVATED

FAILED

EXPIRED

STOPPED

st
at

us
es

s per c

For one test

Figure 3.3: Shows changes to the global status in the execution of one QuickCheck test.

API-call, one can change the probability of generation of that call.
For example the initialization function WdgM Init should have a high priority if it

had not been called previously, and a low priority if it had been called previously.

weight (S , ’WdgM I n i t ’) −>
case S#s t a t e . i n i t i a l i z e d of

true −> 1 ;
−> 200

end ;

It was a good idea not to lower some ratios to much, because then certain API-sequences
would not be generated, and bugs could have been missed.

The tweaking of the generators were implemented in an iterative way by changing the
probability properties of the generators and analyze the results and the coverage. After
the analysis, the generators were tweaked even more to make the result and coverage
even better.

To get a better picture of the work flow used in this thesis see figure 3.4.
A challenging step was the analysis of the results. If the testing tool returned zero

errors what did that say about the robustness of the input byte code? Passing 100 of 100
tests is just a statement and does not say anything more than that some tests passed.
Can tests be implemented in a clever way so that it is possible to get some kind of
confidence on the correctness of the code?

3.10 Configurations

When the code coverage was calculated it was recognized that not every piece of code
was executed. The reason seemed to be that the current configuration disallowed the
execution of some parts of the code, even though the program behaved correctly. It was

20

1. Construct a model for an AUTOSAR module in Erlang

2. Run QuickCheck for this model and compare the results with the output from the
C-code.

3. Tweak the generators for the test cases

4. Evaluate the results

(a) Evaluate the state space

(b) Evaluate if the test cases are relevant

(c) Minimize irrelevant states

5. Are the results good enough, does it satisfy the requirements for the ASIL levels?

6. If not go the step 2

Figure 3.4: Work flow

easy to run tests on several configurations, because the implementation of the Erlang
module was made independent of configurations. This resulted in almost full coverage.

Three configurations with different complexity were used. The first one, an exam-
ple configuration (this will further on be called the Example configuration), had many
supervision functions configured for each mode, and followed a strict execution of the
program.

There were also a minimal configuration (BSI configuration) which, in lack of supervi-
sion functions, only could change the global status between WDGM GLOBAL STATUS
OK and WDGM GLOBAL STATUS DEACTIVATED. This on the other hand, tested
some null conditions, for example when there are no supervised entities. For more in-
formation about the states, see appendix B.2.

The last configuration (named Freescale configuration), which was one of the config-
urations that were used actively in lab equipment, was similar to the example configu-
ration but a bit more relaxed. The global status stayed in a non-absorbing state more
often; it was easier to do positive testing.

The tweaking of generators, where the aim was to generate better test cases, seemed
in some sense to be configuration dependent. Better test cases were generated if the
generators were tweaked according to a specific configuration, see chapter 4.

3.11 Calling the API-commands

API-calls were executed by QuickCheck using the run commands/1 function according
to appendix A. The run-time environment module (RTE) is however responsible for the

21

scheduling of the main function, which according to AUTOSAR, should be executed
in a given time interval. Since the RTE was not available when testing the watchdog
manager, the main function was called randomly and it was assumed that every time
the main function was called, a given amount of time had passed.

Except for the main function, only one internal algorithm that was used by the
watchdog manager was time dependent, namely the deadline supervision algorithm.
A supervised entity with deadline supervision consists of two checkpoints. One start
checkpoint, one stop checkpoint and a maximum time it should take to reach the stop
checkpoint after the start checkpoint was reached. The AUTOSAR specification was
however lacking of a clear definition of how time should be handled. The C-code just
used ticks, not actual time stamps, which was incremented every time the main function
was called. It was in other words assumed that the RTE was able to execute the main
function correctly and a fixed amount of ticks would always represent the same amount
of time. After accepting this implementation, it was easy to adopt the same approach
in the Erlang module. More about this can be found in section 4.5.1.

3.12 Model State

The model state was constructed as minimal as possible. It is easier to get the model
correct if the model state is kept simple. A complex structure means more data needs to
be searched through when a bug is found. Even though it was tempting to use a more
efficient data structure, a simple Erlang record was used to represent the model state.
Using more efficient data structures could for instance speed up the execution of tests.
The main reason for using a record was to make it easy to follow the model state and
make it possible to use QuickCheck’s function eqc statem:show states/1, see appendix A,
for showing the state between command sequences. The efficiency of the test model was
considered less relevant than the readability of the model state. The idea was to make
it easy to find the actual bug, when conflicts arouse between the C-code and the Erlang
module. Running the actual tests was also not considered time or memory critical.

3.13 Minimizing counter examples

After a generated command sequence fails, QuickCheck automatically tries to minimize
the command sequence needed to prove that there is a difference between model and
code; a so called counter example. This process is called shrinking. This makes it
easier to find where in the code the failure arouse from. For example, a sequence of
30 commands could be shrunk to 5, if all those 5 commands is needed for the counter
example, and none of the 25 other commands is needed. This is very useful, because
it is easier to delouse a small number of command sequences than a large number with
lots of unnecessary commands (for the counter example).

22

Chapter 4

Result

4.1 Achieving good test cases

To find good test cases is not trivial. It may not be enough to generate test cases which
follows a correct behavior. Negative testing also needs to be taken into consideration,
otherwise a module that is incorrectly implemented could return bad arguments or results
to other modules.

4.1.1 Negative Testing

The problem with negative testing is that the watchdog manager quickly will be put in an
absorbing state when an invalid API-call is executed. After such an invalid execution, all
following API-calls will not test anything new since the absorbing state is reached. As a
consequence it is not possible to test multiple invalid executions with one test. A problem
using QuickCheck is that the test cases are generated before the actual execution of the
program; it is likely that a lot of API-calls will be executed after an invalid execution
of the program. This results in that negative testing may be time consuming using
QuickCheck.

4.1.2 Positive Testing

There are a lot of things that can cause an invalid behavior of the watchdog manager.
Because of this, there may be a lot of calculations needed to find test cases that are
valid, so that the absorbing state is not reached. The complexity of finding such cases
grows with the complexity of the configuration. However, properties are continuously
tested as long the absorbing state is not reached. Eventually, even when trying to make
use of positive testing, the absorbing state will be reached if the configuration is not
too simple. This is because the order of commands will influence if the behavior is
correct or not. Even if it is possible to prioritize certain commands the random factor
of QuickCheck will eventually cause an invalid behavior. See figure 4.1(b), 4.2(b), and
4.3(b) for how many commands that are executed before the absorbing state ’WDGM
GLOBAL STATUS EXPIRED’ is reached.

23

4.1.3 Prioritized supervision algorithms

The supervision algorithms are important parts of the watchdog manager since they
specify transitions, liveness and timing properties of the program. It was therefore
chosen to prioritize different algorithms when running some of the tests on the module.
When doing so, more bugs were found. This emphasizes the importance of finding tests
that are critical for the system and not only trust that results have been achieved based
on line coverage.

Since there are different supervisions of checkpoints that can be configured at the
same time, the supervision functions must be prioritized when generating command se-
quences and arguments. A checkpoint that is generated too many times can for example
cause the alive supervision to fail because it goes outside of its bound. Alive supervision
can also fail if a checkpoint is not generated enough times, according to the configuration.
If a checkpoint is generated only because it needs to be inside of its alive supervision
bound, then there is a risk that rules for deadline or logical supervision is violated. The
easiest way to prioritize checkpoint generation is to start with logical supervision. This
is because logical supervision follows certain graphs, where each vertex is represented
by a checkpoint and each edge is a valid transition between two checkpoints. These
graphs are defined by the logical supervision functions in the AUTOSAR configuration.
Logical supervision maintains both internal graphs, inside of each supervised entity, and
external graphs which are transitions between supervised entities. It is easy to get next
possible checkpoints for all graphs, and then check whether one of those checkpoints also
is configured for alive or deadline supervision. If it is, calculate the status for those su-
pervision functions and then choose which checkpoint should be selected. If checkpoint
generation is not prioritized with logical supervision as foundation, alive supervision or
deadline supervision could be used. This is harder because it is more likely to end up
with a checkpoint that violates logical supervision rules.

4.1.4 Tweaking the generators

The generators did not need to be tweaked much when performing negative testing since
if the commands are uniformly random generated by QuickCheck an invalid behavior
will quickly arise. However, with a small probability of generation, null pointers were
also passed as arguments to the API-commands to see how the system behaved. Turning
of the configuration parameter WdgMDevErrorDetect caused segmentation faults when
passing null pointers. This does not follow the requirements for functional safety, see
section 4.5.1.

4.2 Configurations

The watchdog manager (WdgM) was tested using three different configurations. The
configurations were of different complexity. One was a minimal configuration, one an
example configuration and one was a live configuration, used in actual implementations.

24

Because there is only a small number of commands that influences the state transi-
tions, those commands were tweaked and therefore was generated more often. On the
other hand, all get-functions were tweaked to not be generated as often.

4.2.1 BSI

As a highly simplified configuration, BSI gives in some sense good results. Using this
configuration the WdgM never visited the absorbing state according to figure 3.1. How-
ever, looking at the state transitions, as seen in figure 4.1(b) and table 4.1, only two
states are visited. This happens because the configuration is too simple, it is actually
impossible to hit any other states than WDGM GLOBAL STATUS OK or WDGM
GLOBAL STATUS DEACTIVATED. There are no checkpoints or supervision functions
configured for the BSI configuration. It is easy to run tests using this configuration, but
it does not by itself, fully test the code because most of the specification requirements
will never be tested. The untested requirements are mainly requirements for supervision
functions that are, according to the configuration, never executed. Those untested re-
quirements also leaves other requirements untested because the watchdog manager never
reaches a state when those other requirements must hold.

Table 4.1: State transitions of the BSI configuration.
Number of tests: 1192

PPPPPPPPPFrom
To

DEACTIVATED EXPIRED FAILED OK STOPPED

DEACTIVATED 02.87% 00.00% 00.00% 09.25% 00.00%
EXPIRED 00.00% 00.00% 00.00% 00.00% 00.00%

FAILED 00.00% 00.00% 00.00% 00.00% 00.00%
OK 03.12% 00.00% 00.00% 84.76% 00.00%

STOPPED 00.00% 00.00% 00.00% 00.00% 00.00%

Figure 4.1(a) shows how many times a certain command was generated versus the
length of the command sequence that was generated. E.g. the function WdgM CheckpointReached
was generated in average a little more than 40% of all calls. This is because, in any other
configuration, the supervision functions often demand that a certain number of check-
points is reached before the next main function is called. There is also a dependency
the other way around; the main function often has to be called a certain number of
times before WdgM CheckpointReached is called on a certain supervised entity. This
is why the main function also has quite high proportions. Other functions that stand
out are WdgM SetMode and WdgM Init. WdgM SetMode is called because different
modes can have different supervision functions and supervised entities. That is why we
need to call this function often. It should retain the states of supervised entities that are
activated in the new mode and should reset the local state if the entity is deactivated
in the new mode. The function WdgM Init is in contrast called fewer and fewer times.
This function is only needed when the global state is deactivated. It has more likelihood

25

0 20 40 60 80 100 120

length of command sequences

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P
er

ce
nt

ag
e

of
 c

om
m

an
ds

 c
al

le
d

setmode
mainfunction
checkpointreached
init
deinit

Commands

Total number of tests: 1192

0 20 40 60 80 100 120

length of command sequences

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P
er

ce
nt

ag
e

of
 c

om
m

an
ds

 c
al

le
d

getmode
performreset
getfirstexpiredseid
getlocalstatus
getglobalstatus
getversioninfo

Commands

Total number of tests: 1192

(a) Shows percentage of each possible command executed; state dependent functions to the left
and get functions to the right.

0 20 40 60 80 100 120

length of command sequences

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P
er

ce
nt

ag
e

in
 s

ta
te

ok
deactivated

Global Statuses

Total number of tests: 1192

(b) Shows percentage of each visited global sta-
tus

Figure 4.1: Some statistics of the BSI minimal configuration.

to be generated among the first commands in the command sequence, or right after a
WdgM DeInit deactivation call.

4.2.2 Freescale

The Freescale configuration is, compared to BSI, a more realistic configuration. All
supervision algorithms are configured and there are both external and internal graphs
for logical supervision. It is also one of the configurations that is actively used in lab
environments. The state machine for the global status is totally covered by running
QuickCheck, see table 4.2 and figure 4.2(b). Looking at table 4.2 one can see that some
transitions are done very seldom. This is due to the fact that a lot of things must be

26

fulfilled for those transitions to occur, which also highly depend on the configuration
supplied. Due to the randomness factor of QuickCheck such cases are hard to reach.

0 20 40 60 80 100 120

length of command sequences

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P
er

ce
nt

ag
e

of
 c

om
m

an
ds

 c
al

le
d

setmode
mainfunction
checkpointreached
init
deinit

Commands

Total number of tests: 1023

0 20 40 60 80 100 120

length of command sequences

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P
er

ce
nt

ag
e

of
 c

om
m

an
ds

 c
al

le
d

getmode
performreset
getfirstexpiredseid
getlocalstatus
getglobalstatus
getversioninfo

Commands

Total number of tests: 1023

(a) Shows percentage of each possible command executed, state dependent functions to the left
and get functions to the right.

0 20 40 60 80 100 120

length of command sequences

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P
er

ce
nt

ag
e

in
 s

ta
te

ok
deactivated
failed

Global Statuses

Total number of tests: 1023

0 20 40 60 80 100 120

length of command sequences

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P
er

ce
nt

ag
e

in
 s

ta
te

expired
stopped

Global Statuses

Total number of tests: 1023

(b) Shows percentage of all visited global status, recoverable statuses to the left and non recoverable
to the right.

Figure 4.2: Some statistics for the Freescale configuration.

4.2.3 Example

The example configuration is somewhat more complex than the Freescale configuration.
This is because it supports all functionality of an configuration. Because of the com-
plexity, some transitions are harder or even impossible to reach. Noticeable is that the
transition from the state WDGM GLOBAL STATUS FAILED to the state WDGM
GLOBAL STATUS OK according to figure 3.1 is never made, see table 4.3. The reason

27

Table 4.2: State transitions of the Freescale configuration.
Number of tests: 1023

PPPPPPPPPFrom
To

DEACTIVATED EXPIRED FAILED OK STOPPED

DEACTIVATED 02.43% 00.00% 00.00% 08.32% 00.00%
EXPIRED 00.00% 03.36% 00.00% 00.00% 00.11%

FAILED 00.00% 00.17% 07.77% 00.12% 00.11%
OK 02.56% 00.18% 00.87% 69.53% 00.12%

STOPPED 00.00% 00.00% 00.00% 00.00% 04.34%

for that is that the alive functions must fail once and then continue without failures.

Table 4.3: State transitions of the Example configuration
Number of tests: 1067

PPPPPPPPPFrom
To

DEACTIVATED EXPIRED FAILED OK STOPPED

DEACTIVATED 02.03% 00.00% 00.00% 07.23% 00.00%
EXPIRED 00.00% 27.00% 00.00% 00.00% 01.00%

FAILED 00.00% 00.11% 02.99% 00.00% 00.04%
OK 01.52% 02.50% 00.38% 36.93% 00.12%

STOPPED 00.00% 00.00% 00.00% 00.00% 18.15%

4.3 Statistics

The distribution of API-calls seems, according to figure 4.1(a), 4.2(a) and 4.3(a), to be
the same for all configurations. The arguments to the API-calls is however different,
even though it is not seen in those plots.

4.4 Coverage

4.4.1 Erlang module

The Erlang module cover was used to calculate the line coverage for the Erlang module.
To get an idea of how many tests that were needed to be executed, before the line coverage
of the Erlang module converges against a certain value, the coverage was measured after
each executed test for every configuration.

As can be seen in the figures 4.4, 4.5 and 4.6, the example configuration takes the
longest time before it converges. It also becomes clear that the freescale configuration
needs more tests to converge than the BSI configuration. The complexity of the config-
urations seem to play an important part. This is not surprising because a more complex
configuration may drastically increase the state space.

28

0 20 40 60 80 100 120 140 160

length of command sequences

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P
er

ce
nt

ag
e

of
 c

om
m

an
ds

 c
al

le
d

setmode
mainfunction
checkpointreached
init
deinit

Commands

Total number of tests: 1067

0 20 40 60 80 100 120 140 160

length of command sequences

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P
er

ce
nt

ag
e

of
 c

om
m

an
ds

 c
al

le
d

getmode
performreset
getfirstexpiredseid
getlocalstatus
getglobalstatus
getversioninfo

Commands

Total number of tests: 1067

(a) Shows percentage of each possible command executed, state dependent functions to the left
and get functions to the right.

0 20 40 60 80 100 120 140 160

length of command sequences

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P
er

ce
nt

ag
e

in
 s

ta
te

ok
deactivated
failed

Global Statuses

Total number of tests: 1067

0 20 40 60 80 100 120 140 160

length of command sequences

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P
er

ce
nt

ag
e

in
 s

ta
te

expired
stopped

Global Statuses

Total number of tests: 1067

(b) Shows percentage of all visited global status, recoverable statuses to the left and non recoverable
to the right.

Figure 4.3: Some statistics for the Example configuration

The Erlang model is separated into a number of files. The results of the coverages
of these files, after running all configuration, can be seen in table 4.4. This table lists
the same modules as table 3.1.

The module wdgm pre checks preconditions of the model state; constraining the
model states ability to change. This will affect the wdgm next module. The wdgm next
module changes the model state, and is called after a call to the C-code is performed.
Note that wdgm next module are totally independent of the C-code, see appendix A. The
wdgm next module has two helper modules wdgm main and wdgm checkpointreached
which changes the model state if the main function or the checkpoint reached function
was the most recently called functions in the C-code. The module wdgm post checks

29

0 100 200 300 400

Tests

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

C
ov

er
 p

er
ce

nt
ag

e

Coverage Per Tests
number of lines: 428

Figure 4.4: Coverage per tests using the BSI configuration

0 100 200 300 400 500 600

Tests

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

C
ov

er
 p

er
ce

nt
ag

e

Coverage Per Tests
number of lines: 428

Figure 4.5: Coverage per tests using the Freescale configuration

that AUTOSAR specification holds, by comparing the models state and the actual state
of the C-code.

The total line coverage results is 97.38%. The reason we do not achieve 100% code
coverage depends on certain delimitations. Some lines can not be covered when the
configuration parameter WdgMDevErrorDetect is true. On the other hand, if it is false,
then the C-model will fail with a segmentation fault and the Erlang model will not be
covered anyway. There is also a number of implementation specific lines, which another
C-code model might reach but not the one that we had. There are also places that
depended on the configuration to be more simple. A good idea is to supply configurations
that only has specific supervision functions configured. Then it should be possible to
prioritize only that supervision function and get better coverages.

30

0 100 200 300 400 500 600 700 800

Tests

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

C
ov

er
 p

er
ce

nt
ag

e

Coverage Per Tests
number of lines: 428

Figure 4.6: Coverage per tests using the Example configuration

Table 4.4: Shows coverage statistics generated by the Erlang module cover
.

Total line coverage 97.38%

module total number of lines lines covered line coverage (%)

wdgm helper 80 79 98.75%
wdgm checkpointreached 104 98 94.23%
wdgm main 81 80 98.77%
wdgm pre 19 19 100%
wdgm post 99 96 96.97%
wdgm next 37 37 100%

4.4.2 C-code

Bullseye Coverage was used to analyze the coverage of the C-code. The results show that
the condition/decision coverage is 85.64% and all functions except for two are covered,
see figure 4.7. The reason that there are functions which are not covered, is that one
of the functions is deprecated and the other is a support function to that function.
One of our delimitations was to not implement deprecated functions into Erlang code.
The missing condition/decision coverages in the C-code are for example checks for null
pointers, some of which never evaluated to false. Many checks seems to be redundant
and impossible to evaluate to true, if one excludes the possibility of hardware failures or
other failures which may corrupt the memory of the watchdog manager. There is as well
branches and conditions regarding the WdgMDevErrorDetect configuration parameter,
which if turned off resulted in a segmentation fault.

The coverage statistics shown in figure 4.7 is constructed using the three configura-
tions mentioned. Using several configurations gave better results since some code blocks

31

were impossible to reach if not certain configuration parameters were set.
C:\cc_stg\Git\Evaluation_of_validity_of_verification_methods_Github\code\coverage\all.cov

2014-06-16 12:05:06

../modules/c/WdgM/src/WdgM.c

Name
Function
coverage

Uncovered
functions

Condition/decision
coverage

Uncovered
conditions/decisions

 ../modules/c/WdgM/src/WdgM.c
93% 31 - 29 = 2

82%
420 - 346 = 74

 WdgM_UpdateAliveCounter(WdgM_SupervisedEntityIdType)
0% 1 - 0 = 1

0% 10 - 0 = 10

 WdgM_IsOneAliveConfig(WdgM_SupervisedEntityIdType)
0% 1 - 0 = 1

0% 6 - 0 = 6

 WdgM_DeadlineSupervision(WdgM_ModeType,uint16)
100% 1 - 1 = 0

41% 12 - 5 = 7

 WdgM_CalculateAliveSupervision(WdgM_ModeType,WdgM_SupervisedEntityIdType)
100% 1 - 1 = 0

60% 28 - 17 = 11

 WdgM_UpdateCheckpointAliveCounter(WdgM_CheckpointIdType)
100% 1 - 1 = 0

70% 10 - 7 = 3

 WdgM_ValidInitialMode(const WdgM_ConfigType*)
100% 1 - 1 = 0

75% 8 - 6 = 2

 WdgM_GetLocalStatus(WdgM_SupervisedEntityIdType,WdgM_LocalStatusType*)
100% 1 - 1 = 0

75% 4 - 3 = 1

 WdgM_IsValidCheckpointId(WdgM_SupervisedEntityIdType,WdgM_CheckpointIdType)
100% 1 - 1 = 0

78% 14 - 11 = 3

 WdgM_CheckpointReached(WdgM_SupervisedEntityIdType,WdgM_CheckpointIdType)
100% 1 - 1 = 0

81% 16 - 13 = 3

WdgM_CheckLogicalSupervisedEntities(WdgM_SupervisedEntityIdType,WdgM_CheckpointIdType)

100% 1 - 1 = 0
81% 70 - 57 = 13

 WdgM_PerformReset(void)
100% 1 - 1 = 0

83% 6 - 5 = 1

 WdgM_MonitorActiveEntity(WdgM_ModeType,uint16)
100% 1 - 1 = 0

85% 28 - 24 = 4

 WdgM_TriggerWatchdogs(void)
100% 1 - 1 = 0

85% 14 - 12 = 2

 WdgM_SetMode(WdgM_ModeType,WdgM_CallerIdType)
100% 1 - 1 = 0

86% 22 - 19 = 3

 WdgM_ResetSupervisedEntity(WdgM_ModeType)
100% 1 - 1 = 0

86% 22 - 19 = 3

 WdgM_CheckLogicalSupervisonGraph(WdgM_CheckpointIdType)
100% 1 - 1 = 0

95% 40 - 38 = 2

 WdgM_CalculeteGlobalStatus(void)
100% 1 - 1 = 0

100% 30 - 30 = 0

 WdgM_DeInit(void)
100% 1 - 1 = 0

100% 8 - 8 = 0

 WdgM_GetFirstExpiredSEID(WdgM_SupervisedEntityIdType*)
100% 1 - 1 = 0

100% 4 - 4 = 0

 WdgM_GetGlobalStatus(WdgM_GlobalStatusType*)
100% 1 - 1 = 0

100% 2 - 2 = 0

 WdgM_GetMode(WdgM_ModeType*)
100% 1 - 1 = 0

100% 2 - 2 = 0

 WdgM_GetVersionInfo(Std_VersionInfoType*)
100% 1 - 1 = 0

100% 2 - 2 = 0

 WdgM_Init(const WdgM_ConfigType*)
100% 1 - 1 = 0

100% 20 - 20 = 0

 WdgM_IsSEActivated(WdgM_SupervisedEntityIdType)
100% 1 - 1 = 0

100% 10 - 10 = 0

 WdgM_IsValidCallerId(WdgM_CallerIdType)
100% 1 - 1 = 0

100% 2 - 2 = 0

 WdgM_IsValidMode(WdgM_ModeType)
100% 1 - 1 = 0

100% 2 - 2 = 0

 WdgM_IsValidSEId(WdgM_SupervisedEntityIdType)
100% 1 - 1 = 0

100% 8 - 8 = 0

 WdgM_MainFunction(void)
100% 1 - 1 = 0

100% 8 - 8 = 0

 WdgM_SetGlobalStatus(WdgM_GlobalStatusType)
100% 1 - 1 = 0

100% 2 - 2 = 0

 WdgM_SwitchWdgMode(WdgM_ModeType)
100% 1 - 1 = 0

100% 6 - 6 = 0

 WdgM_ValidModeSwitch(WdgM_ModeType)
100% 1 - 1 = 0

100% 4 - 4 = 0

Figure 4.7: Shows coverage statistics generated by Bullseye Coverage

4.5 Functional Safety analysis

The V-model used by ISO 26262 requires that a certain work flow is taken into con-
sideration during the whole development process. It is therefore hard to analyze code
that is written without the standard in consideration and then examine if it fulfills the
requirements of the given standard.

Since one important part of the functional safety concept is that it must be taken
in consideration during the whole development process, one can not simply say that
QuickCheck makes it possible to acquire functional safety. If every development step
before the implementation of the watchdog manager satisfies the requirements for func-
tional safety, one also must follow the same constraints in the remaining part of the

32

development life cycle to achieve functional safety. If this is assumed, there is still
one important assumption left before one can reason about how QuickCheck can ben-
efit. This assumption is based on that the model for the watchdog manager is correct,
namely the AUTOSAR specification.

4.5.1 AUTOSAR

Due to the informal syntax of AUTOSAR it is not well fitted for functional safety, since
the informal syntax makes it possible for different interpretation. To be able to reach the
requirements for a higher ASIL classification, AUTOSAR modules must be interpreted
dependently. In other means they must agree on the same model.

One way of doing this is to interpret AUTOSAR in a model based language like SPIN
and check that the model, after transforming it into formal syntax, is valid. The model
in itself should then not contain any bugs. This can also be done using QuickCheck.

The model for the system must, in a functional safety point of view, be implemented
before the C-code is written. It seems pointless to test the actual C-code before there is
assurance for that the model actually is correct according to formal syntax.

C in itself is also a formal language but C is not good fitted to formally defining the
actual requirements of AUTOSAR. This is for instance because of its low level nature.

In this thesis a defined AUTOSAR model already existed, written in C-code. The
AUTOSAR model was implemented in Erlang and compared against the first model. A
better work flow, with functional safety in mind, had been to define AUTOSAR in a
model based language and check that this model holds. Then implement the actual C-
code following the formal notation of the previous constructed model. Implementing the
C-code would be easier because then there are no room for different interpretations. After
the C-code is implemented, write the model in Erlang following the formal model written
in the model based language. Then there is again no room for different interpretations.
After the two implementations of the model, compare those using QuickCheck. If there
are no bugs, then the original model was translated into C-code correctly.

The proposed work flow would require a lot of work, which is beyond the scope of
this thesis. For example the C-code needs to be rewritten.

Development error detection

It was discovered that it existed a configuration parameter, WdgMDevErrorDetect,
which would turn off functional safety checks. This made the C-code crash with segmen-
tation fault as soon as negative testing was performed. This could for example be null
pointers or improper identification numbers. AUTOSAR is not specified enough for the
parameter WdgMDevErrorDetect to be switched off. With functional safety in mind,
this parameter must be on!

33

Definition of time

In AUTOSAR time is specified as seconds and there are two functions that need to keep
track of the time. First it is the main function that needs to be scheduled periodically
by the run-time environment. This is done with a configuration parameter given for
each mode. Time is also needed for deadline supervision. In deadline supervision when
a start checkpoint is reached, a timer should start. If the final checkpoint is not reached
within the configured time marginal, then the deadline supervision for the supervised
entity with the given checkpoint will fail. Because it is known that WdgM MainFunction
should be called periodically, it could be used for the measurements of time. For each
call to WdgM MainFunction a counter could be incremented to keep track of the cycles.

4.5.2 Fulfilled ISO 26262 requirements

ISO 26262 mentions several requirements that QuickCheck will be able to fulfill. Aside
from general requirements, e.g. that a “safety plan” should be available, there are also
verifications in which the hardware should be taken into consideration. This is beyond
the scope of this thesis. There are also tests that needs several modules implemented to
make any sense. Such tests have not been executed, since only the watchdog manager
module has been tested, but should be possible to run after implementing more modules
in Erlang code. QuickCheck has a module for mocking C-code, see appendix A, which
could possible also be used for running such tests.

4.5.3 Confidence interval

As seen in section 4.4, total coverage of a module could be hard to reach, because the
code is configuration dependent. This makes it also hard to predict how well tested a
module is with the use of a confidence interval. One can at least say that the more
complex a configuration is, the more test cases is needed to improve the coverage. For
the Freescale configuration for example, it took approximately 400 test cases to achieve
90% code coverage, while it only took around 200 test cases to achieve the maximum
38% coverage the BSI configuration could supply.

4.5.4 Measurements of the state space

One way of measuring the state space, is to collect statistical data during the execution
of the tests. It is hard to say much about the whole system’s state space since it is very
large, due to the combinatorial explosion problem. In the case of an AUTOSAR module
the state space also varies on the configuration in use, since features and supervision
features can be configured. However looking at certain parts that are considered to be
important for the system, much more can be said. For instance when examining the
internal graphs of the watchdog manager, one can easily see that every node in those
graphs is visited.

Measuring the code coverage can in itself tell if important parts of the state space are
covered or not. This is possible because the parts of the code that changes the state of

34

the watchdog manager are not covered. These parts can however be dead or redundant
code, in the worst case, if something unexpected happens to the hardware, which is
beyond this thesis. Total code coverage is hard, or may be even impossible to reach.
Even if all lines of code in for example an algorithmic part of the watchdog manager
are covered, this algorithm may not be totally verified. This is because the states are
dependent of actual values of variables.

35

Chapter 5

Discussion

The model has been implemented in an iterative way. Function for function, require-
ment for requirement. This process is very easy with the use of QuickCheck. In the
beginning there were a lot of negative testing, because we did not care about tweaking
the generators. By limiting the state space for negative tests, we achieved a better ratio
for positive testing when generating random tests. This was done by letting some com-
mand sequences weight more than others when QuickCheck generates the test cases. In
figure 5.1 we show how the state space is minimized when QuickCheck has been tweaked.

State space

Limited state space

Positive testing state space

Generated test Non valid test

Figure 5.1: The state space when tweaking QuickCheck’s generators.

36

The outer box in figure 5.1 represents the full state space, and the inner circle rep-
resents positive test cases. This means that all test cases outside of the circle represent
negative test cases. When tweaking generators it means we can limit some of the neg-
ative test state space, in order to have QuickCheck generate more interesting positive
test cases. The black dots in the figure represent different generated test cases, and the
gray dots represent test cases which will not be generated after the new limitations.

As an example, it is unnecessary to test functions if the watchdog manager state
machine has not been initialized with a call to the WdgM Init function. We can weight
the generation of the WdgM Init function to be called with a higher ratio if the state
machine is not initialized yet.

weight (S , ’WdgM I n i t ’) −>
case S#s t a t e . i n i t i a l i z e d of

true −> 1 ;
−> 200

end ;

We want to do this because there are only some functions that actually change the
state of the watchdog manager; there is a lot of so called get-functions which only retrieve
information.

Sometimes the model needs to be corrected because of ambiguities in AUTOSAR or
errors in the model. Quite often it was the C-code that had the errors and needed to
be corrected. Easier when you do white box testing, when the source code is known,
because then you can really check the code and compare with the requirements.

The C-code coverage was measured differently from the Erlang code coverage, which
used line coverage instead of condition/decision coverage. Recursion is often used in
functional programming languages as Erlang, therefore it is not as suited for condi-
tion/decision coverage as C-code is. Erlang also comes with a coverage library, which
makes it easy to use. On the other hand, measuring line coverage in an imperative
language like C is a bit redundant since statements are executed sequentially. Therefore
conditions/decision coverage seems more reasonable.

We achieved fair coverage of the C-code, around 85%, and the Erlang code, around
97%. The problem was the requirements, where we achieved around 50%. It would
help if a QuickCheck model was implemented for the whole system as well. Many of
the requirements had dependencies in other modules, and some requirements for the file
structure, the configuration or even the generation of files.

QuickCheck is good for overall testing, and can help with raising the functional safety
of modules.

Stripped of comments and blank lines, the implemented Erlang model is almost 1300
lines of code. This is to be compared with the C-code which is over 14500 lines of code.

37

5.1 Future work

An interesting thing we wanted to do from the beginning was to implement another
module, preferably one that has some kind of dependency with the watchdog manager.
This is because then, it would be possible to test towards the phase “system integration
and testing” in ISO 26262 and get even better results.

Another good idea is to do more negative testing, and testing of null pointers. This
should be done to raise the coverage for the C-code to even better levels.

We could also try new configurations. More configurations = better testing.

38

Chapter 6

Conclusion

It is possible to achieve some functional safety using QuickCheck, at least within the
software units. There are however a number of ISO 26262 requirements that are not
possible to achieve with only a software testing tool. For example requirements that
verify the hardware specifications or how the safety plan should be made. It is hard
to use the ISO 26262 V-model if the software units do not follow system properties
that has been verified by a system model. Because AUTOSAR is written with informal
syntax, it cannot be used to verify the software units. This means one must translate
the AUTOSAR requirements to formal syntax and verify that the formal requirements
mean the same as the informal requirements.

It is important to not only measure the state space, but also the code coverage. This
can also be done with the use of QuickCheck. It is easy to measure Erlang coverages,
and it is also easy to specify which compiler QuickCheck should use to perform C-code
coverages. QuickCheck gathers information about the state space, which is output after
a test has been run.

Both negative and positive testing can be implemented with the use of QuickCheck.
Negative testing can be time-consuming because the program quickly comes to an ab-
sorbing state. It is therefore important to tweak the generators correctly.

Integration tests can also easily be implemented, by connecting several AUTOSAR
modules. When doing this even more ISO 26262 requirements can be evaluated and
verified.

One needs to be aware of the configuration of the AUTOSAR module which is going
to be implemented, because it may contain variables that is not safe to turn off. It may
also be difficult to reach the whole state space if the configuration is to simple or to
complex.

39

Bibliography

[1] Navet N, Simonot-Lion F. Automotive Embedded Systems Handbook. Hoboken:
CRC Press; 2008.

[2] Ulsoy, Galip A, Peng H, Çakmakci M. Automotive Control Systems. New York;
Cambridge [U.K.]: Cambridge University Press; 2012.

[3] Gut G, Allmann C. In: Meyer G, editor. In-Research Project E-Performance - In-
Car-Network Optimization for Electric Vehicles. Berlin, Heidelberg: Springer Berlin
Heidelberg; 2012. p. 69–78.

[4] ISO 26262. Road vehicles - Functional safety. ISO, Geneva, Switzerland; 2011.
Available from: www.iso.org/iso/search.htm?qt=ISO+26262&published=on.

[5] Hughes J, Arts T, Gerdes A, Svensson H. Quviq Course material; 2013.

[6] Strassberger M, Schroth C, Bechler M, Kosch T. Automotive Internetworking.
Wiley-Blackwell; 2012.

[7] Hiraoka C. Technology Acceptance of Connected Services in the Automotive In-
dustry. Gabler Verlag; 2009.

[8] SARTRE. Safe road trains for the environment;. Available from: http://www.

sartre-project.eu/en/Sidor/default.aspx.

[9] Charette RN. This Car Runs on Code. IEEE Spectrum. 2009 Feb;.

[10] AUTOSAR. Basic Information: Short Version; 2011.

[11] IEC 61508. Functional safety of electrical/electronic/programmable electronic
safety-related systems. ISO, Geneva, Switzerland; 2000.

[12] Storey N. Safety-Critical Computer Systems. Harlow: Addison-Wesley; 1996.

[13] Claessen K, Hughes J. QuickCheck: a lightweight tool for random testing of Haskell
programs. Acm sigplan notices. 2011;46(4):53–64.

[14] Hughes J. In: Software Testing with QuickCheck. vol. 6299. Berlin, Heidelberg:
Springer Berlin Heidelberg; 2010. p. 183–223.

40

www.iso.org/iso/search.htm?qt=ISO+26262&published=on
http://www.sartre-project.eu/en/Sidor/default.aspx
http://www.sartre-project.eu/en/Sidor/default.aspx

[15] Kantamneni HV, Pillai SR, Malaiya YK. Structurally Guided Black Box Testing.
Dept. of Computer Science, Colorado State University; 1998.

[16] Grindal M. Handling combinatorial explosion in software testing [Dissertation].
Institutionen för datavetenskap Linköpings universitet; 2007.

[17] AUTOSAR. AUTOSAR 4.0; 2013. Available from: http://autosar.org/index.

php?p=3&up=2.

[18] Pan J. Software testing. Retrieved September. 1999;2.

[19] Godefroid P. Random testing for security: blackbox vs. whitebox fuzzing. In:
Proceedings of the 2nd international workshop on Random testing: co-located with
the 22nd IEEE/ACM International Conference on Automated Software Engineering
(ASE 2007). ACM; 2007. p. 1.

[20] Loo P, Tsai W. Random testing revisited. Information and Software Technology.
1988;30(7):402 – 417. Available from: http://www.sciencedirect.com/science/
article/pii/0950584988900377.

[21] Fink G, Bishop M. Property-based Testing: A New Approach to Testing for
Assurance. SIGSOFT Softw Eng Notes. 1997 Jul;22(4):74–80. Available from:
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/263244.263267.

[22] Meinke K, Walkinshaw N. 1. In: Margaria T, Steffen B, editors. Model-Based
Testing and Model Inference. vol. 7609 of Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 440–443. Available from:
http://dx.doi.org/10.1007/978-3-642-34026-0_32.

[23] Schieferdecker I. Model-Based Testing. IEEE Software. 2012;29(1):14–18.

[24] Jhala R, Majumdar R. Software model checking. ACM Computing Surveys (CSUR).
2009;41(4):1–54.

[25] Holzmann GJ. Software Model Checking with SPIN. In: Advances in Computers.
vol. 65; 2005. p. 77–108.

[26] Clarke EM, Grumberg O, Peled D. Model checking. Cambridge, Mass; London:
MIT; 1999.

[27] Brockmeyer DU, Gros M, Valea A. ISO 26262 Compliant Automatic Requirements-
Based Testing for TargetLink. An der Schmiede 4, 26135 Oldenburg, Germany:
BTC Embedded Systems AG; 2012.

[28] Arts T; 2013. personal communication.

[29] Bell R. In: Dale C, Anderson T, editors. Introduction and Revision of IEC 61508.
Springer Verlag London Limited; 2011. .

41

http://autosar.org/index.php?p=3&up=2
http://autosar.org/index.php?p=3&up=2
http://www.sciencedirect.com/science/article/pii/0950584988900377
http://www.sciencedirect.com/science/article/pii/0950584988900377
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/263244.263267
http://dx.doi.org/10.1007/978-3-642-34026-0_32

[30] Nordland O. In: Dale C, Anderson T, editors. A Devil’s advocate on SIL 4. Springer
Verlag London Limited; 2011. .

[31] Greb K, Seely A. Design of Microcontrollers for Safety Critical Operation. In: ARM
TechCon3. Santa Clara Convention Center, California: Texas Instruments; 2009. .

[32] AUTOSAR. Layered Software Architecture; 2011.

[33] AUTOSAR. Specification of Watchdog Manager;. Document Identification Number
080.

[34] QuviQ. About us; 2014. Available from: http://quviq.com/about.html.

[35] Hughes J. QuickCheck: An Automatic Testing Tool for Haskell;. Available from:
http://www.cse.chalmers.se/~rjmh/QuickCheck/manual.html.

[36] Naik K, Tripathy P. Unit Testing. In: Software testing and quality assurance:
theory and practice. Hoboken, NJ, USA: John Wiley & Sons, Inc; 2011. .

[37] Myers GJ, Badgett T, Thomas TM, Sandler C. The art of software testing. Hoboken,
N.J: Wiley; 2004.

[38] What is SPIN?;. Available from: http://spinroot.com/spin/what.html.

[39] Parasoft. Parasoft C/C++test;. Available from: http://www.parasoft.com/

printables/C++TestDataSheet.pdf.

[40] Parasoft. Satisfying ASIL Requirements with Parasoft C++test;. Available from:
http://www.parasoft.com/printables/asil_automotive.pdf.

42

http://quviq.com/about.html
http://www.cse.chalmers.se/~rjmh/QuickCheck/manual.html
http://spinroot.com/spin/what.html
http://www.parasoft.com/printables/C++TestDataSheet.pdf
http://www.parasoft.com/printables/C++TestDataSheet.pdf
http://www.parasoft.com/printables/asil_automotive.pdf

Appendix A

Introductions to QuickCheck

A.1 The General Idea

The general idea with QuickCheck, is here explained by using an example. Let us say
that one has a sort function that takes a list Xs of any sortable items and returns
the sorted version Y s of Xs. To verify the correctness of this function it is possible to
look at certain properties that must hold for a correctly implemented sort function. For
instance:
The arity of Y must be the same.

|Xs| = |Y s| (A.1)

The elements of Y s must actually be sorted.

yi−1 ≤ yi,∀yi ∈ Y s, i 6= 0 (A.2)

For all permutations Pe(Xs) holds:

sort(Zs) = Y s, ∀Zs ∈ Pe(Xs) (A.3)

The sets Xs and Y s contain the same elements.

x ∈ Xs↔ x ∈ Y s (A.4)

Instead of specifying own test cases QuickCheck makes it possible to write such proper-
ties, automatically generates test cases and checks that the properties specified actually
holds.

A.2 Testing C-code

QuickCheck is a testing tool for the programming language Erlang, but it is possible to
efficiently test C-code, using QuickCheck, by performing API-calls against the C-code
within Erlang. Lets say that there is a Queue implementation in C that has a function
for creating a new queue as well as functions for inserting and retrieving elements from
a queue structure.

43

typede f s t r u c t
{

i n t s i z e ;
i n t head ;
i n t t a i l ;
i n t ∗ b u f f e r ;

} Queue ;

Queue∗ new(i n t s i z e) { . . . }
i n t put (Queue∗ q , i n t element) { . . . }
i n t get (Queue∗ q) { . . . }

This program has a number of properties that should hold. For instance:

• When creating a new queue, the C function should return an address to the memory
where it have allocated space.

• The function put should insert the element into the queue and return the element.

• It should be possible to dequeue an element in the order it was inserted with the
function get.

Such properties can be used when using QuickCheck.
When testing C code with QuickCheck one uses state based testing. Which means

that a model state S is passed around and checked against API calls according to figure
A.1.

Figure A.1: Shows state based testing against API and model state

First a model of the queue must be implemented in Erlang code. It is also needed to
implement a representation of the current state of the queue.

44

−record (s t a t e , { p t r , queue}) .

new next (S , P o i n t e r ,) −>
#s t a t e{ptr=P o i n t e r , queue=[]} .

put next (S , , [, X]) −>
S#s t a t e{queue = S#s t a t e . queue++[X]} .

get next (S , ,) −>
S#s t a t e{queue = t l (S#s t a t e . queue)} .

The record will contain information needed to successfully test the states of the
program. It has two variables; ptr which is the pointer to the queue and queue which is
a list defining all inserted elements in the queue.

QuickCheck must also be told how to call the C-functions.

new(S i z e) −>
q:new (S i z e) .

put (Pt r , Val) −>
q:put (Pt r , Val) .

get (Ptr) −>
q : g e t (Ptr) .

Now the postconditions, program properties that must hold, are defined.

new post (S , Arguments, ReturnValue) −>
case ReturnValue of

{ p t r , ”Queue” , } −> true ;
−> fa l se

end .
put post (S , [, Inse r tedValue] , ReturnValue) −>

ReturnValue == Inser tedValue .
get post (S , Arguments, ReturnValue) −>

ReturnValue == hd(S#s t a t e . e lements) .

To be able to test these properties QuickCheck needs to know how to generate
arguments for every functions.

new args (S) −>
[nat ()] .

put args (S) −>
[S#s t a t e . p t r , i n t ()] .

get args (S) −>
[S#s t a t e . ptr] .

The functions nat() and int() are generators defined by QuickCheck to generate arbitrary
natural numbers and integers.

To test the functions put, get and new defined in the C-code a QuickCheck property
is written in the following way.

45

prop () −>
?FORALL(Cmds, commands () ,

begin
. . . = run commands(Cmds)

end) .

The function commands() is a generator that looks for functions defining the API-
calls, such as new, put and get, in the Erlang module. The commands() function then
combines every function apii defining an API-call with a function argi which generates
the arguments to apii.

After the property has been implemented, it can be tested by:

eqc :qu i ckcheck (prop ()) .

It is possible define how many tests QuickCheck should execute and also if the states
of the model should be shown:

eqc :qu i ckcheck (eqc :numtests (N, eqc statem:show s t a t e s (prop ()))) .

A.3 QuickCheck Modules

QuickCheck consist of several Erlang modules.

A.3.1 eqc

The module eqc is the main QuickCheck module. This module defines a lot of macros
that can be used when writing properties and also basic functions like quickcheck.

A.3.2 eqc gen

The module is used for generations of test cases. The module contains various functions
and macros for this purpose. There are some predefined generators, for instance for
integers and characters etcetera, but it is quite easy to construct a generator for almost
any data type. Just to get the idea follows code for a string generator.

?LET(Pat, nat () , vec to r (Pat , char ()))

The macro ?LET binds a generated value from the second argument, to Pat which
can be used in the third argument. The above code binds a natural number, from the
generator nat(), to Pat and creates a vector with length Pat of characters.

A generator can also be weighted, or in other words certain values can be more likely
to be generated than others.

?LET(Pat, nat () , vec to r (Pat ,
f requency ([{1 , choose (0 ,127)} ,

{3 , 32}])))

The code above will also generate a string of length Pat, but the generation of the white
space character will be 3 times more likely to happen than a uniformly random character.

46

A.3.3 eqc c

Contains the C-testing interface. In other words how to communicate with C-code.

eqc c : s t a r t (q , [{c s r c , ”q api . h”} ,
{ a d d i t i o n a l f i l e s , [”queue . o”]}])

The code above starts the C-program queue.o, and an Erlang module is created with
the name of the first parameter, q. This module can now be used within Erlang to call
the C-program.

A.3.4 eqc statem

Offers state based testing as shown above. A command has a definition, precondition,
postcondition, and a next function.

Noticeable is that only the post function may depend on the C-code. QuickCheck
has a generation step where tests are generated according to the precondition and the
model state. The C-code is run first after the generation step and can only be used to
check postconditions. This is actually what one want because it would be pointless to
execute a program and then test it depending on the execution of the same program
and not the model itself. For instance if we let the next state function depend on the
C-program, then the model will be faulty if the C-program has incorrect behavior.

Possible preconditions for queue example above could be that the functions put and
get can only be called if the queue has first been created and new can only be called
with a size greater than zero.

new pre (S , [S i z e]) −>
S i z e > 0 .

put pre (S) −>
(S#s t a t e . ptr /= undefined) andalso
(length (S#s t a t e . queue) < S#s t a t e . s ize) .

get pre (S) −>
(S#s t a t e . ptr /= undefined) andalso
(length (S#s t a t e . queue) > 0) .

A.3.5 car xml

Additional to the commercial version, there is a car module. This module is specifically
created to parse AUTOSAR XML configuration files.

A.3.6 Other modules

There are also other modules; for instance a module for mocking C-code. Or in other
words, if one has a C-function that is declared but the definition is missing, one can
simulate its output. This is however not used in this thesis.

47

Appendix B

The Watchdog Manager (WdgM)

The watchdog is a basic AUTOSAR module. It’s purpose is to supervise a programs
execution by triggering hardware watchdogs entities. For the hole description of the
module see the AUTOSAR specification.

B.1 Supervision, Checkpoints and Graphs

The watchdog supervises the execution of so called Supervised Entities. Important places
in a supervised entity are marked as checkpoints. There are at least one checkpoint
for every supervised entity. The checkpoints and transitions between checkpoints are
defined as graphs. Checkpoints and transitions between checkpoints within a given
supervised entity are marked as internal graphs. There may however be transitions
between checkpoints of different supervised entities, such graphs are marked as external
graphs. Available graphs are supplied by the configuration. There may be different
graphs for different modes of the watchdog manager.

There are three supervision algorithms to verify the correctness of supervised entities.

• Logical Supervision:
Logical supervision verifies if graphs are executed in the correct order.
Let G = (V,E) be a internal graph for a supervised entity S such that ∀ck ∈ V →
ci ∈ S. For the graph G there exist a start checkpoint cs ∈ V and a final checkpoint
cf ∈ V . The logical supervision checks that the first checkpoint c1 that is reached
has the property c1 = cs and for every reached checkpoint cj there exists an edge
(cj−1, cj) ∈ E, j 6= 1.

• Alive Supervision:
Alive supervision periodically verifies the timing of transitions and checkpoints
reached in a graph.

• Deadline Supervision:
Deadline supervision does the same as alive supervision but aperiodically.

48

B.2 Global Status

The global status represents the current state of the whole watchdog manager. There
are five different statuses.

• WDGM GLOBAL STATUS DEACTIVATED
The watchdog manager is in a resting state, deactivated, and will not execute any
supervision functions.

• WDGM GLOBAL STATUS OK
The watchdog manager is in a correct state.

• WDGM GLOBAL STATUS FAILED
A failure has occurred for an alive supervision and the watchdog is configured to
have a tolerance against this kind of error.

• WDGM GLOBAL STATUS EXPIRED
A fault has happened and the watchdog is configured to postpone the error reac-
tion. In contradiction to WDGM GLOBAL STATUS FAILED there is no recovery
mechanism for this state and the watchdog manager will eventually reach the state
WDGM GLOBAL STATUS STOPPED.

• WDGM GLOBAL STATUS STOPPED
This is an absorbing state of the watchdog state machine. Recovery mechanisms
will be started and usually a watchdog reset will occur.

The different statuses are related to each other according to figure B.2. There is only
a small number of functions that is allowed to change the global status; those are the
main function, the initialization function and the de-initialization function. The main
function decides the next global status by checking the local statuses of the supervised
entities and the current global status. The initialization function should only be able to
change the global status from deactivated to ok, and the de-initialization function from
ok to deactivated.

B.3 Local Status

A local status is a status of one supervised entity and could be set according to the
current local status and the results of the supervision functions. There are four different
local statuses. Init setmode mainfunction

• WDGM LOCAL STATUS DEACTIVATED
If a supervised entity is set to deactivated, it will not be checked by the supervision
functions.

• WDGM LOCAL STATUS OK
The supervised entity is in a correct state.

49

Figure B.1: The possible global statuses represented as a graph

• WDGM LOCAL STATUS FAILED
Alive supervision for the supervised function has failed.

• WDGM LOCAL STATUS EXPIRED
A fault has been observed within the supervised function. The main function will
save the identification of the first supervised entity which reaches this state.

Figure B.3 describes the state machine for the local status of a supervised entity.

50

Figure B.2: The possible local statuses represented as a graph

B.4 API functions

B.4.1 WdgM Init

Initializes the watchdog manager by setting, among other things, the local status of all su-
pervised entities to either WDGM LOCAL STATUS OK or WDGM LOCAL STATUS DEACTIVATED.
It also changes the global status to WDGM GLOBAL STATUS OK.

B.4.2 WdgM DeInit

Deinitializes the watchdog manger.

51

B.4.3 WdgM GetVersionInfo

Returns the version info of the watchdog manager module.1

B.4.4 WdgM SetMode

Sets a new mode for the watchdog manager.

B.4.5 WdgM GetMode

Returns the current mode for the watchdog manager1.

B.4.6 WdgM CheckpointReached

Performs deadline and logical supervision for a given supervised entity.

B.4.7 WdgM GetLocalStatus

Returns the local status of a supervised entity1.

B.4.8 WdgM GetGlobalStatus

Return the global status of the watchdog manager1.

B.4.9 WdgM PerformReset

Shall set the trigger condition for all configured watchdogs to zero and thereby causing
the hardware watchdogs to cause an external hardware reset.

B.4.10 WdgM GetFirstExpiredSEID.

Returns the supervised entity that first reached the state WDGM LOCAL STATUS EXPIRED1.

B.4.11 WdgM MainFunction

The main function is periodically called, it first updates the local statuses by running
alive supervision for the supervised entities and then sets the global status depending
on the current state of the watchdog manager; this includes the new values of the local
statuses.

1The function shall not change the internal state of the watchdog manager and should be side effect
free.

52

Appendix C

Ambiguities in AUTOSAR

This section is used to describe some of the ambiguities we found in AUTOSAR. The
highlighting refers to words or statements within the requirements that is to informal or
even wrong.

C.1 Incorrect reference

C.1.1 Requirement description

[WDGM273] If the function WdgM CheckpointReached determines that the result
of the Logical Supervision for the given Checkpoint is true, and the Checkpoint is the
initial one (WdgMInternalCheckpointInitialRef), then shall set the Activity Flag of

the Graph corresponding to the Checkpoint to true . (BSW09221, BSW09222)

[WDGM329] If the function WdgM CheckpointReached determines that the result
of the Logical Supervision for the given Checkpoint is true, and the Checkpoint is the
initial one (WdgMInternalCheckpointFinalRef), then shall set the Activity Flag of

the Graph corresponding to the Checkpoint to true . ()

C.1.2 Problem description

Both requirements [WDGM273] and [WDGM329] refers to a “initial” checkpoint,
but one of the requirements (preferably [WDGM329]) should instead refer to a “final”
checkpoint. It should in that case also set the activity flag of the corresponding graph
to false.

53

C.2 Optional or mandatory

C.2.1 Requirement description

[WDGM344] If development error detection for the Watchdog Manager module is
enabled, then the function WdgM GetGlobalStatus shall check whether the parameter
Status is a NULL pointer (NULL PTR). If Status is a NULL pointer, then the function
shall raise the development error WDGM E INV POINTER (i.e. invalid pointer) and
return. ()
There are optional checks that are executed if and only if WdgMDevErrorDetect is
enabled.

[WDGM258] If the configuration parameter WdgMDevErrorDetect [WDGM301 Conf]
is enabled, the routine shall check if NULL pointers are passed for OUT parameters. In
case of an error the service shall not be executed, the error shall be reported to the De-
velopment Error Tracer with the error code WDGM E INV POINTER and the routine
shall return the value E NOT OK. (BSW00323)

C.2.2 Problem description

The requirements [WDGM344] and [WDGM258] describes the same actions, with
one difference: one is optional, the other mandatory.

C.3 Logical supervision results

C.3.1 Problem description

AUTOSAR does not specify if it is possible to overwrite logical supervision results from
the same supervised entity.
I.e.

WdgM CheckpointReached (SEx, Bad CP) −> i n c o r r e c t r e s u l t f o r SEx
WdgM CheckpointReached (SEx, Good CP) −> Correct r e s u l t f o r SEx

C.4 Incorrect spelling

C.4.1 Requirement description

SWS Item [WDGM344 CONF]

Name WdgMInternallCheckpointFinalRef

Description This is the reference to the final Checkpoint(s) for this Supervised Entity.

54

[WDGM315] If the current global status is WDGM GLOBAL STATUS OK or WDGM
GLOBAL STATUS FAILED then for each Supervised Entity that is deactivated in the
new mode (passed to function WdgM SetMode as parameter), the function WdgM
SetMode shall change the state of the Supervised Entity to
WDGM LOCAL STATUS DEACTIVATED; It shall set its Results of Active , Deadline
and Logical Supervision to correct; It shall also clear its failed reference cycle counter to
0.

C.4.2 Problem description

Requirement [WDGM344 CONF] has miss-spelled its name WdgMInternallCheck-
pointFinalRef. This differs from references in other requirements, for example in [WDGM329].

C.5 Retain state

C.5.1 Requirement description

[WDGM182] If the current global status is WDGM GLOBAL STATUS OK or WDGM
GLOBAL STATUS FAILED then for each Supervised Entity that is activated in the new
mode (passed to function WdgM SetMode as parameter), the function WdgM SetMode
shall retain the current state of the Supervised Entity . Switching to the mode where a
Supervised Entity is deactivated clears also errors that had resulted with the WDGM
GLOBAL STATUS FAILED status. ()

C.5.2 Problem description

The problem is that it is unclear what the supervised entity state should contain. We
know that the status, the results of alive, deadline and logical supervision and some
counters should be part of this state. Should the supervision functions be part of the
state?
This could be problematic because then there is a need to map out which supervision
function should be retained (exists in the new mode as well as the old mode), which
should be discarded (does not exist in the new mode) and which should be created
(exists in the new mode but not the old).
If it is not part of the state, then all supervisions functions should be discarded and the
new supervision functions should be added. This could also be problematic because,
what if there exist a supervision function which has the status WDGM INCORRECT
and the only thing that keeps the supervised entity from setting the status
WDGM LOCAL STATUS EXPIRED is a call to WdgM MainFunction. Then a call
to WdgM SetMode with the same mode could reset all supervision functions and the
expired state would not happen.
Another question arises; should internal logical supervision functions count? They are
mode independent, but if the supervised entity is deactivated, the internal logical super-
vision should not be able to do anything.

55

	Introduction
	Background
	The Development within automotive industry
	Extent of software in modern vehicles
	Introduction of standards
	Testing

	Purpose
	Objective
	Scope

	Theory
	Software Testing
	Random Testing
	Property Based Testing
	Model Based Testing
	Model Checking
	Model Checking vs Testing

	Formal Methods and Verification
	Industrial Standards
	IEC 61508 and ISO 26262
	AUTOSAR (AUTomotive Open System ARchitecture)

	Verification Methods
	QuickCheck

	Method
	Existing verification tools
	SPIN
	Parasoft C/C++test

	Specification
	Testing
	Choice of AUTOSAR module to test
	The Watchdog Mangar (WdgM)
	The state machine
	Important Functions

	Implementation
	Formal Notation
	Independence of the Erlang implementation
	Iterative strategy

	Conflicts and Bugs
	Advantage of having the Actual C-code

	Implementation structure
	Evaluation of the Implementation
	Verifying the tests
	Finding better test cases

	Configurations
	Calling the API-commands
	Model State
	Minimizing counter examples

	Result
	Achieving good test cases
	Negative Testing
	Positive Testing
	Prioritized supervision algorithms
	Tweaking the generators

	Configurations
	BSI
	Freescale
	Example

	Statistics
	Coverage
	Erlang module
	C-code

	Functional Safety analysis
	AUTOSAR
	Fulfilled ISO 26262 requirements
	Confidence interval
	Measurements of the state space

	Discussion
	Future work

	Conclusion
	Bibliography
	Introductions to QuickCheck
	The General Idea
	Testing C-code
	QuickCheck Modules
	eqc
	eqc_gen
	eqc_c
	eqc_statem
	car_xml
	Other modules

	The Watchdog Manager (WdgM)
	Supervision, Checkpoints and Graphs
	Global Status
	Local Status
	API functions
	WdgM_Init
	WdgM_DeInit
	WdgM_GetVersionInfo
	WdgM_SetMode
	WdgM_GetMode
	WdgM_CheckpointReached
	WdgM_GetLocalStatus
	WdgM_GetGlobalStatus
	WdgM_PerformReset
	WdgM_GetFirstExpiredSEID.
	WdgM_MainFunction

	Ambiguities in AUTOSAR
	Incorrect reference
	Requirement description
	Problem description

	Optional or mandatory
	Requirement description
	Problem description

	Logical supervision results
	Problem description

	Incorrect spelling
	Requirement description
	Problem description

	Retain state
	Requirement description
	Problem description

