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ASPECTS OF EFFICIENT 
PARAMETER ESTIMATION FOR 
DIESEL OXIDATION CATALYSTS 
Björn Lundberg 
Department of Chemistry and Chemical Engineering 
Chalmers University of Technology 
SE-412 96 Göteborg, Sweden 

ABSTRACT 
In this thesis the objective was to tune the model parameters of diesel 

oxidation catalysts (DOC) to measurement data from engine rig experiments 

in an efficient manner. The scope was however not limited to the algorithm of 

parameter search alone but instead included the whole process starting with 

the design of experiments.  

Different aspects of efficient parameter estimation of a full scale DOC were 

evaluated. This included different kinetic models, mass transfer resistance 

evaluation, experiments at both engine rig and lab-scale, and parameter 

estimation algorithms. A specially developed detailed kinetic model, a method 

for parameter estimation using Multivariate Data Analysis, and a method for 

full scale engine rig experiments were all important products. In addition to 

these outputs some relevant conclusions were made based on the studies 

• Including internal mass transport parameter in the tuning improved the 

possibilities of achieving a good fit for the catalyst model 

• If internal mass transport is to be modeled the kinetic model cannot 

include parameters mimicking the effects of transport resistance 

• A detailed kinetic model improves the conditions for separating 

kinetics and mass transport but also increases the need for experi-

mental diversity at the same time as model instability may increase 

 

Keywords: Exhaust Aftertreatment Modeling, DOC, Full Scale, Design of 

Experiments, Parameter Estimation, Engine Test Bench,  MVDA, Kinetic 

Modeling, Mass Transport Modeling  
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1 INTRODUCTION 

1.1 HEAVY DUTY DIESEL ENGINES 
ENVIRONMENTAL ISSUES 

The complete combustion of fossil fuel and air results in emission of CO2 and 

H2O. However the combustion in heavy duty diesel (HDD) engines, and other 

internal combustion engines, will never be complete which leads to the 

formation of CO, un-burnt hydrocarbons (HC), and also particulate matter 

such as soot in addition to CO2 and H2O [1]. The high temperatures in the 

engine during combustion will also lead to the formation of nitrogen oxides 

from oxygen and nitrogen in the intake air [2].   

All of CO, CO2, HC, NOx, and particulate matter are major contributors to 

air pollution and in today's cars and trucks all of them except CO2 are reduced 

in the after treatment system. The environmental issues associated with diesel 

engine exhaust are both numerous and diverse. CO poisoning is the most 

common type of fatal air poisoning worldwide [3] as it, even in small 

concentration, can severely hinder the delivery of oxygen to organs and tissues 

[4]. NOx contributes to the acidification of land and lakes [5], has toxic effects 

on the respiratory system and can also in combination with HC produce 

ground level ozone [3]. Some of the different hydrocarbons produced by 

combustion are also considered carcinogenic to humans [6]. Exposure to urban 

particulate matter can lead to increased risk of a variety of respiratory diseases 

and adverse health effects such as lung cancer, bronchitis and asthma [7].  

 The current European emission standard for HDD, which regulates 

emissions of CO, HC, NOx, and particulate matter, is called Euro VI and was 

introduced in 2013. Neither date nor details of the next upcoming European 
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emission standard are yet defined but the new limitations will with certainty 

further increase the need for the understanding of the aftertreatment system.  

1.2 HETEROGENEOUS CATALYSIS 
The common structure of a catalyst in the automotive industry is a monolith of 

flow through type with a shape that is generally cylindrical with quadratic 

channels, see figure 1. The catalyst can be divided into two parts; the porous 

washcoat that carries the active material where the reaction takes place (B in 

figure 1) and the solid substrate that gives the catalyst its’ structure (A in 

figure 1). The substrates in the current study were made of cordierite that is a 

ceramic material with low density (ca 400 kg/m3), high heat conduction and 

stable thermal properties [8]. To attain an efficient mass and heat transfer 

between the gas phase (exhaust gas) and solid phase (the washcoat) a large 

interfacial area is favorable. This is achieved by making the number of 

channels per catalyst cross sectional area large and as an example all catalyst 

configurations used in the current study had 62 channels per cm2 (400 cells per 

square inch, cpsi). 

 

FIGURE 1 Monolith and washcoat [9] 

The washcoat is coated on the inside of the walls of the substrate and forms 

a thin porous layer through which the exhaust needs to diffuse to react with 

the active material. Again to attain a high interfacial area between the exhaust 

gas diffusing through the washcoat and the active material, a large washcoat 

area per washcoat volume is desirable. High surface area materials such as γ-

alumina are therefore commonly used as the primary washcoat material for 

oxidation catalysts. The active material is often a noble metal such as platinum 

or palladium. 
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1.2.1 MODELING SCALES 
A full scale catalyst monolith is a highly dynamic system where different 

phenomena at several different length scales must be taken into account, see 

figure 2. At the largest scale a full scale catalyst of a HDD has length and 

diameter in the size range of decimeters and contains several thousands of 

channels. Inside the channels, that have an inside diameter of about a 

millimeter, heat and mass is transferred between the gas phase and the 

washcoat surface. The rate of transfer depends on several different variables 

such as the flow rate, composition and temperature in the gas phase, and 

composition and temperature at the washcoat surface. The catalyst washcoat is 

highly porous with pore sizes ranging from macropores of the order of 100 nm 

down to micropores of the order of 5-10 nm [10].   

  
FIGURE 2 Scales of heat and mass transport in full scale catalyst.  

The active material is finely dispersed on the pore walls as small clusters of 

atoms that contain the active sites. For a catalyzed reaction to take place at 

least one reacting molecule must chemisorb on an active surface. The rate of 

the chemisorption is governed by the properties of the adsorbing molecule and 

is also affected by the availability of vacant active sites. After a reaction has 

finally taken place on the active sites the product may desorb from the site and 

be transported back to the gas bulk. 

Depending on the conditions, both the transport of reactants to the active 

sites and the reactions taking place on the active sites may limit the conversion 

over the catalyst. To model a full scale catalyst both kinetics, and heat and 

mass transfer therefore need to be taken into consideration. 
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1.3 THE ROLE OF THE DOC IN THE 
AFTERTREATMENT SYSTEM 

The diesel oxidation catalyst (DOC) is a well established technology to reduce 

CO and hydrocarbon (HC) emissions from diesel engines that has been in use 

since the 1970s. Strengthened emission standards have made the importance of 

the DOC even greater in recent years since it has become an indispensible 

component for enhancing the performance of diesel particulate filters (DPF) 

and selective catalytic reduction (SCR) catalysts by utilization of oxidation of 

NO to NO2. 

Three reactions are desirable in the DOC; the oxidation of CO to CO2, the 

oxidation of HC to CO2 and the oxidation of NO to NO2. In other words, the 

DOC does not remove NOx but adjusts the NO2/NOx ratio which is important 

later in the aftertreatment system. 

 

FIGURE 3 Typical layout of an aftertreatment system used for heavy duty diesel 
vehicles [11] 

Figure 3 shows a typical layout of an aftertreatment system used for heavy 

duty diesel vehicles based on urea-SCR for controlling NOx emissions. At ideal 

conditions both HC and CO have been fully oxidized in the DOC and the only 

pollutants left are NOx and particulate matter (PM). The PM is trapped by the 

DPF and depending on if the DPF is passively or actively regenerated (PM 

oxidation) the DOC plays different roles. If active DPF regeneration is used 

the temperature will be periodically increased so that PM can be reduced by 

O2, [12]. In this case the DOC is used to combust the temporarily increased 

HC content which generates the temperature increase. If passive DPF 
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regeneration is used, on the other hand, the DOC will be needed to provide 

NO2 that enables PM oxidation at lower temperatures [12].  In fuel efficiency 

perspective the passive DPF is preferable since extra fuel injection is needed to 

perform the active DPF regeneration. 

In the SCR, NOx will be reduced to N2 with NH3 from the decomposition of 

injected urea. The desirable reaction here is the so called fast SCR reaction 

where equal amounts of NO and NO2 are consumed [13]. The reactions in the 

SCR will therefore be dependent on the NO2/NOx fraction out from the DOC. 

The final component in the depicted aftertreatment system in figure 3 is the 

ammonia slip catalyst (ASC). The ASC reduces NH3 that was not consumed in 

the SCR catalyst to N2 and NOx where N2 is the preferred product. 

It can be speculated that future legislations will also include CO2 limits [14]. 

This may make a more complete combustion in the engine necessary which 

will increase the production of NOx further and thereby increase the demand 

for NOx reduction in the aftertreatment system. To conclude the DOC is an 

integral part of the aftertreatment system today and will with certainty 

continue to be so in the future.  

1.4 OBJECTIVES 
As the title of this thesis indicates the objective was to tune the model 

parameters of a DOC to measurement data in an efficient manner. The scope 

is however not limited to the algorithm of parameter search alone but instead 

includes the whole process starting with the design of experiments.  

The design of experiments should be carried out in a manner in which the 

total experimental time is low (since especially engine rig experiments are very 

costly to perform) but at the same time the generated experimental data 

should be information rich and make it possible to estimate parameters as 

accurately as possible. This means that both the conditions of the gas reaching 

the catalyst and what catalyst configurations are used are of highest 

importance. To perform parameter estimation a suitable catalyst model is of 

course essential. The model used needs to be detailed enough to describe the 

reactions and transport phenomena in a full scale catalyst but it should at the 

same time be robust and simple to avoid too long simulation times. To find a 

good trade-off between model accuracy and computational time is therefore 
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an important part of the objective. This does not only include the model 

definition but also extends to the parameter search algorithm and utilization of 

computational resources. It should however not be forgotten that the most 

important objective is improved understanding of the process of parameter 

estimation where a good fit to measurement data is an indication of the 

applicability of the evaluated methods.  

1.5 METHOD OVERVIEW 
Two different approaches for efficient parameter estimation of a full scale 

DOC were evaluated. The two approaches have several features in common 

but differ in experimental complexity and in detail of the kinetic model. The 

first approach used only full scale experiments from a standard engine rig and 

a global kinetic model whereas the second approach used both lab-scale and 

full scale experiments and a detailed kinetic model. The first approach will 

therefore be denoted the Engine rig only approach throughout this dissertation 

and the second approach will be denoted the Multi-scale experimental 

approach. In many ways the second approach is an attempt to build on the 

conclusions from the first approach but it is also more complex and includes a 

wider set of experimental conditions at different scales. The suitability of the 

two approaches is therefore a function of the resources at hand as well as the 

detail level of the modeling. 1.5.1 THE ENGINE RIG ONLY APPROACH 
To estimate kinetic parameters and to develop kinetic model structures, 

laboratory scale experimental data is generally used [15]. In laboratory scale it 

is possible to use essentially any combination of exhaust gas composition and 

temperature which makes it possible to estimate parameters over a wide range 

of conditions. However the validity of these parameters in full scale models is 

often limited and therefore the parameters commonly need to be re-tuned. It is 

this re-tuning of parameter values from lab-scale to full scale that was the aim 

with the first approach and therefore experiments were performed only in a 

standard engine rig.  
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The method can be summed up in four items 

1. Design of Experiments (DoE) 

2. Engine rig experiments 

3. Multivariate data analysis (MVDA) 

4. Parameter estimation 

Items 1, 2 and 4 were applied in the first parameter estimation performed in 

Paper I and was extended with MVDA (item 3) in Paper II. Paper I can, in a 

sense, be viewed as a reference to how parameter estimation is normally 

performed and Paper II was an attempt to improve it. The full method 

therefore includes all four points even though they have not been applied in all 

of the parameter estimation performed in these papers. All of the points will 

be discussed in detail in upcoming sections and this section will only give a 

brief introduction. 

 

FIGURE 4 Method overview of the Engine rig only approach 

The possible variation of the available variables (exhaust composition, flow, 

and temperature) of a full scale engine rig is severely limited by the operating 

points of the engine which is only governed by the engine torque and speed. 

The values of the different variables at different operating points are described 

by an engine map which also indicates what torque and speed combinations 

that are possible. To ensure that the variables are varied as much and as 

independently as possible an analysis of the map is performed. From this 
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analysis a set of suitable operating points are selected with Design of 

Experiments. To further increase the experimental space a number of different 

catalyst configurations were also used. 

In item 2 the designed experiments are performed in an engine rig where 

the exhaust composition, flow, and temperature are measured before and after 

the catalyst. Item 3 and item 4 are strongly connected and the process after the 

experiments have been performed will here be described as a whole. In the 

traditional way of performing parameter estimation a gradient search method 

is used to minimize the residual sum square of all variables in all experimental 

data points. The method generally gives good results since all experimental 

data is used but there are some drawbacks such as, long simulation time, risk 

of finding a local minimum far from the global minima, risk of being 

dominated by certain parameters, and high parameter correlations. In the 

method presented in Paper II a balanced set of data points were selected for 

parameter estimation with the gradient search method. This aimed to give a 

more even influence on the residual from the estimated parameters and to 

reduce the risk of early convergence to a local minimum.  1.5.2 MULTI-SCALE EXPERIMENTAL APPROACH 
The global kinetic model used in the first approach turned out to have 

parameters mimicking internal transport resistance which severely complicated 

the separation of mass transfer and kinetics. The parameters in question were 

part of an expression used in the global kinetic model to describe inhibition as 

a function of temperature and concentrations without modeling surface 

coverage.  Improved conditions for modeling the distinction between kinetics 

and mass transport was therefore desirable to improve on the results from the 

first two studies (Paper I and II). 

To generate good experimental data for modeling it is important to have 

measurements of both transient and stationary character. Due to the high 

thermal mass of an engine rig a change in engine loading point will generate 

transients lasting several minutes before a new stationary point is reached. It 

will thereby be time consuming to generate a wide range of different stationary 

points. Since experimental time was limited the diversity in the data generated 

from the engine rig in the Engine rig only approach was therefore not as high 
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as could be desired. A modified experimental method in full scale allowing 

more complex data to be generated was therefore identified as another 

potential improvement.  

 

As a first step in the Multi-scale experimental method  a pre-study in lab-scale 

was performed where a new kinetic model was constructed suitable for the 

application of full scale parameter estimation. The construction of the kinetic 

model included both deriving a model structure and estimating the parameters 

to lab-scale data. For the lab-scale study some of the catalysts were designed 

with an extra layer of inert washcoat to enhance the mass transport effects. 

This did not necessarily change the method presented in previous section but 

adds an input of a kinetic model to the inputs to the parameter estimation part. 

To generate full scale data with faster transient the engine rig was expanded 

with some additional equipment allowing the inlet composition to the DOC to 

be changed without changing engine load point. This meant that the 

experimental design was no longer performed on only the engine map and 

catalyst configurations. Instead the new engine rig set-up allowed a switch of 

focus of the experimental plan from the engine to the control of the extra 

equipment between the engine and the catalyst to be modeled. A schematic 

overview of the Multi-scale experimental approach is given in figure 5. 

 

FIGURE 5 Overview of Multi-scale experimental approach 

The Multi-scale experimental approach does not include MVDA as a part 

of the parameter estimation which should not be interpreted as an indication 
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of poor results when the algorithm was used. The reason for excluding MVDA 

will be discussed further in upcoming sections.  
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2 DESIGN OF EXPERIMENTS 
Experimental design is a tool used to systematically examine the behavior and 

properties of a certain system that in the current case is a catalyst of DOC 

type. If the experiments are performed without structure the results will as well 

be unstructured and the analysis and eventual parameter estimation will be 

further complicated. Therefore a good experimental plan is the foundation of 

successful parameter estimation and should be thoroughly evaluated before 

any experiments are performed [16, 17].  

A first important step in the experimental plan is to identify what variables 

can be investigated, what can be measured, and what the interesting responses 

are. For experimental measurements intended for catalyst modeling the gas 

composition, temperature and the flow rate both at the inlet and outlet should 

be monitored. The inlet conditions are changed by controlling equipment 

upstream of the catalyst such as the engine itself (Paper I, II and IV), a system 

of additional catalysts and valves (Paper IV) or individual mass flow 

controllers and heating (Paper III). For engine rig experiments there are more 

uncertainties and the catalyst inlet conditions should be measured but in the 

more controlled environment at lab-scale the system may be considered 

sufficiently well calibrated to follow a given set-point without being measured. 

Since the catalyst itself, which is to be modeled, has no influence on the inlet 

conditions all properties of the flow entering the catalyst must be variables. 

The outlet conditions on the other hand are a result of the catalyst 

performance and the response of the system is therefore the measured gas 

composition and temperature at the catalyst outlet. If the experiments would 

have been performed on a catalyst in powder form these variables and 
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responses may have been enough. In the current case significant mass 

transport resistance in the washcoat can, however, be expected which means 

that some variables should also be included that influence mass transport. The 

variables selected for this purpose in the current study are different catalyst 

configurations that will have different mass transfer properties.  

 

In the simplest case all the variables can be varied independently and the 

model is linear and time independent. At lab-scale the first property is actually 

true but for a system as complex as the engine rig none of these properties are 

applicable. When the engine operating point (load and speed) is the only 

parameter to control the inlet properties, the variables will be highly 

correlated. A change in operating point will thereby more or less affect all of 

the variables (concentrations, flow rate, and temperature). A method of 

reducing these correlations is, however, presented in Paper IV. The catalyst is 

also a highly non-linear system which is easily deduced by only investigating 

some of the simplest kinetic models describing the DOC and becomes even 

more obvious when considering that mass and heat transport resistances may 

also influence its operation.  

The large thermal mass of the catalyst also means that energy will be 

accumulated and thus the properties of the system will not only depend on the 

current inlet conditions but also on the inlet at earlier time points. For a full 

scale engine rig system this may be several minutes earlier if the temperature 

change is large. The temperature is however not the only variable with a 

dynamic behavior since also components can be accumulated in the washcoat 

as surface adsorbed species. Surface adsorbed species can generate dynamic 

behavior as a function of temperature, generally known as hysteresis, and will 

then give different reaction rates at identical inlet conditions as a result of 

different temperature history. The active sites may also be affected by more 

long term processes such as sintering and fouling. 

 

The dynamic behavior of the system means that transient experiments are of 

outmost importance [18] and should be the central point of any experimental 

plan for catalyst systems. This is especially true since the system has 

unobservable variables such as quantities of surface adsorbed species. 



13 
 

Different types of transient experiments have been used in the current work 

and the first two studies were based solely on the simple step change in the 

engine operating point. Even these simple transients significantly increase the 

parameter sensitivity of the model and thereby improves the conditions for 

parameter estimation [19] compared to only using stationary data.  

When input variables can be varied independently (applied to a linear 

model) it is possible to make an orthogonal design. In a system where the 

variables are inherently correlated the Design of Experiments should strive to 

make the design of experiments as orthogonal as possible. Also the parameters 

that are to be estimated may be correlated, this is however an issue that will be 

further discussed in sections 2.1 and 2.2.  

2.1 PRINCIPAL COMPONENT ANALYSIS 
Principal Component Analysis (PCA) is a mathematical method where large 

sets of observations of possibly correlated variables are transformed into new, 

linearly uncorrelated variables. The number of uncorrelated variables, usually 

referred to as principal components, can be chosen to be fewer or equal to the 

number of variables in the untreated data [20]. 

The PCA can be performed with several different purposes such as 

identification of classes of data and outliers, simplification, data reduction, 

variable selection, and prediction. A simple way of describing the method 

would be as an approximation of a data matrix where the more similarity 

within the objects result in fewer terms needed for a good fit. 

In the first step of transforming a set of data (M) according to PCA the 

direction that captures the largest variation in the data is identified via least 

squares. The normalized vector describing the identified direction will be the 

first principal component in the transformed set of data (see figure 6). Another 

principal component can be added by again identifying the direction that 

captures the largest variation in the data but now with the added criterion that 

the direction must be orthogonal to the first principal component (see 

figure 6). Components are usually added to the PCA-model until the increase 

in information with the added component is below a certain limit. The matrix 

containing the principal component vectors is called the loadings vector and 

can be used to analyze the relation between variables. 
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FIGURE 6 First (left) and second (right) principal components of an arbitrary 
data set with three variables 

The observations (rows) are projected onto the sub-space defined by the 

principal components which will result in a number of vectors (as many as the 

number of principal components) that are orthogonal but not normalized. The 

vectors are summarized in the scores matrix that can be used to analyze the 

relations between observations.  

In the current study PCA was used in Paper II to select the data points 

(observations) most suitable for parameter estimation which means that the 

scores matrix and not the loading matrix was the focus of the analysis. 

The scores matrix and the loading matrix together form a linear 

combination to model the data matrix M (size N×K) according to  

M = CL + E (1) 

 where (for a PCA model with A components) C (size N×A) is the scores 

matrix, L (size A×K) is the loading matrix, and E is the error. 

2.2 D-OPTIMAL DESIGN 
For linear models traditional experimental designs such as full factorial 

designs, fractional factorial designs, and response surface designs are suitable 

when the factors are relatively unconstrained. For non-linear models such as a 

for a full scale catalyst, on the other hand, less traditional models such as D-

optimal design may be more favorable.  

If there would be restrictions on the number of experimental runs a full 

factorial design could be used as a candidate set for a D-optimal design to 
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create a new design matrix (M) with fewer rows (note that the candidate set 

can have several different origins, for example it could also be a large set of 

data where a high variable correlation has limited the available variable 

combinations). The D-optimal design algorithm would then in an iterative 

process select different combinations of rows from the candidate set that 

minimizes covariance of the new design matrix by maximizing the determinant 

of MTM (hence the notation D-optimal as in determinant). This would 

maximize the orthogonality of the design matrix and as such create the design 

with the, in theory, best conditions for parameter estimation with the defined 

number of runs. Note that the iterative process in which D-optimal design is 

performed contains certain random factors which means that the D-optimal 

design performed on a large candidate set likely will generate different design 

matrices on different runs. 2.2.1 D-OPTIMAL ONION DESIGN 
Since the D-optimal selection is using a linear model, the regular D-optimal 

design will result in a selection where only the most extreme points are chosen. 

These points will maximize the diversity of the design matrix, according to the 

description in previous section, but may not be representative for the whole 

data. If the points are time points used for parameter estimation the result 

could even be a sub-optimization of the residual over the entire data set. In a 

D-optimal onion design, introduced by Olsson et al. [21, 22], the data set is 

divided into layers where every layer includes points in a specified range (such 

as parameter sensitivity in Paper II). The D-optimal design is then applied to 

every onion layer and a number of data points will thereby be selected in every 

range, resulting in a more balanced data point selection. 
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3 EXPERIMENTAL  
To use an engine as the exhaust source together with full scale catalysts results 

in comprehensive challenges for how the experiments should be performed. 

This is not only due to the fact that a full scale catalyst is a complex system but 

also because the engine itself severely limits the possibilities to vary the 

catalyst inlet conditions. In this section the different engine rig set-ups used in 

Paper I and II (section 3.2), and Paper IV (section 3.3) are introduced together 

with the possibilities for experimental design made available with these set-

ups. Even though the focus of the current work was parameter estimation from 

full scale experiments some lab-scale experiments were also performed for 

detailed kinetic modeling. The lab-scale set-up together with a description of 

the performed experiments is given in section 3.4. The importance of the 

catalyst configurations as a part of the experimental design has already been 

mentioned and the catalyst configurations in all studies will therefore be 

introduced before the different experimental set-ups where they were used.  

3.1 CATALYST CONFIGURATIONS 
As mentioned in the previous section the experimental design does not only 

include how the inlet conditions to the catalyst are controlled, the design of the 

actual catalyst is also a very important part. Catalyst properties such as, noble 

metal loading, washcoat thickness, catalyst volume, active surface area, and 

transport resistance will influence the reactions taking place in the catalyst. To 

achieve a variation in these properties a number of different model catalysts 

were custom made for the project. The same set of catalyst was used for all full 
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scale experiments but for the lab-scale experiments a different design was used 

to enhance mass transport limitations. 3.1.1 FULL SCALE CONFIGURATIONS 
The catalysts used were platinum only model catalysts of HDD dimensions 

and were provided by Johnson Matthey. The catalyst configurations are 

summarized in table 1. 

TABLE 1 Properties of full scale catalysts used in the project 

Configu-
ration 

Pt-loading 
[g/ft3monolith] 

Length 
[cm] 

Average washcoat 
thickness* 

[μm] 
a 15 10.2 110 
b 30 10.2 110 
c 15 2x10.2 110 
d 15 10.2 55 
e 5 10.2 110 

*Washcoat thickness is generally higher in the corners of the channel and may also vary 
axially 
 

Some catalysts were made with replicates making it possible to put them in 

series to allow catalyst configurations with increased catalyst volume and 

thereby also increased residence time for the exhaust in the catalyst. This 

possibility was used for catalyst configuration c in table 1 where two catalysts 

of configuration a were used in series. All catalysts were of monolith flow-

through type with 62 square channels per cm2 (400 cpsi), a total diameter of 

30.5 cm (12 inch), and a total length of 10.2 cm (4 inch).  3.1.2 LAB-SCALE CONFIGURATIONS 
To obtain a wide span of experimental data six different catalyst configurations 

with different platinum loadings and inert washcoat layer thicknesses were 

used. The purpose of the inert washcoat layer was to enhance mass transport 

resistance to improve the conditions for separating mass transport and kinetics 

in the model. All catalysts, shown in table 2, had an active washcoat loading of 

1 g/inch3, a monolith length and diameter of 1 inch and cell density of 400 cpsi. 

The catalysts were platinum only model catalysts provided by Johnson 

Matthey. 



19 
 

TABLE 2 Properties of lab-scale catalysts used in the project  

ID# Pt loading  
[g/ft3] 

Inert washcoat 
loading  
[g/inch3] 

Average inert 
washcoat 
thickness* 

 [μm] 

Average total 
washcoat 
thickness* 

[μm] 
1 1 0 0 35 
2 5 0 0 35 
3 1 1 37 72 
4 3 1 37 72 
5 5 1 37 72 
6 5 2 78 113 

*Washcoat thickness is generally higher in the corners of the channel and may also vary axially 

A visual display of the catalyst configurations are given in figure 7. The 

reason for only including one catalyst configuration with the highest inert 

washcoat loading was that conversions were assumed to be low for the selected 

experimental range for the lower platinum loadings of 1 g/ft3 and 3 g/ft3. 

   
FIGURE 7 Schematic description of catalyst configurations 

The lab-scale catalysts were samples taken from full scale catalysts 

produced specifically for the study. Several samples were thereby available 

which was important to improve the reliability of the performed dispersion 

measurements. 

3.2 ENGINE RIG EXPERIMENTS 
Two different engine rig experimental set-ups were used in this project. The 

first set-up, of more traditional type, was used for both Paper I and II and the 

experiments were performed at Johnson Matthey in Gothenburg.  3.2.1 SET-UP 
The traditional engine rig simply consisted of an engine connected to the 

catalyst that was to be investigated. The exhaust properties were varied by 
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controlling the engine operating point and the temperature, flow rate, and 

composition before and after the catalyst were measured.  

 

FIGURE 8 Traditional engine rig set-up. The red frames around the catalyst and 
the engine operating point indicate that these are controlled by experimental 
design.  

A Euro IV calibrated heavy duty diesel engine with disabled exhaust gas 

recirculation (EGR) was used as the exhaust source and Swedish MK1 diesel, 

a commercial low-sulfur (less than 10 weight ppm sulfur [23]) diesel, was used 

as fuel. The engine was equipped with a dynamometer control system enabling 

independent control of load and speed. 

The temperature and composition measurements were made according to 

figure 9 where the downstream catalyst position (Cat. 2) was left empty if only 

one catalyst was used.  

  

FIGURE 9 Catalyst measurement points where T indicates temperature and y 
composition 

The temperatures were measured with 3 mm thermocouples positioned at 

the center of the pipe and close to the catalysts. The inlet gas composition was 
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measured just before the pipe expansion and the outlet gas composition was 

measured directly downstream the pipe contraction. 3.2.2 EXPERIMENTAL DESIGN 
To obtain a widespread experimental range, five different catalyst 

configurations with different noble metal loading, lengths, and washcoat 

thicknesses were used. Not all the configurations in table 1 were used in all full 

scale studies. Configurations a to d were used in Paper I and II and 

configurations a, d and e were used in Paper IV. 

As mentioned in the introduction the available exhaust composition, flow 

and temperature is limited by the operating points of the engine. It also takes 

several minutes for the catalyst inlet conditions to stabilize when switching 

between operating points, which means that experimental time was a factor 

when deciding the number of different operating points when the full transient 

behavior was of interest. An important part of the current work was to 

investigate what experiments were suitable for parameter estimation and 

therefore both transient and steady-state data was desirable. Since the number 

of catalyst configurations was large and some replicates also were necessary 

only 8 different operating points were selected according to table 3.  

TABLE 3 Engine operating points and levels of variables, Med=medium 

Number Description 

NOx HC + CO O2 Temp. Flow 
1 Low High High Low Low 
2 Low High High Low Med 
3 High Med Med Med Low 
4 Med Low Med Med High 
5 High Low Low High Med 
6 Med Low Med Med High 
7 High Low Low High Med 
8 Med Low Low High High 

 

The operating points were selected manually but were later confirmed to be 

close to a D-optimal selection (see section 2.2) with a model based design 

analysis of the engine map in temperature, concentrations and flow. Figure 10 

shows an example of how the operating points spanned over the engine map 

for the case of exhaust temperature. 
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FIGURE 10 Temperature engine map and selected operating points 

The operating points were selected to make as large steps as possible in the 

different variables including concentrations of NO, NO2, HC, CO and O2 as 

well as temperature and flow rate with the purpose of making the 

experimental space as large (and orthogonal) as possible. Some of the 

variables, such as concentrations of NO and NO2 and concentrations of HC 

and CO, are closely correlated and it was difficult to create transients where 

they were changed independently. This was also the case for O2 and 

temperature, i.e. an operation point with low temperature would have high 

oxygen concentration and an operation point with high temperature would 

have low oxygen concentration. This meant that some of the input variables 

could not be varied independently. A good experimental plan would however 

ensure that the variables were varied as independently as possible. 

The operation points were run in the order 1, 7, 2, 8, 3, 4, 5, 6 for all catalyst 

configurations to make as large transient changes as possible in as many 

variables as possible. For some of the configurations several additional 

sequences were also run. To achieve steady state conditions all points were run 

for 15 minutes each. 

3.3 SCANIA ENGINE RIG 
When switching between two engine operating points it generally takes several 

minutes before the properties of the emissions have stabilized. The main 

reason is the large thermal mass between the engine and the investigated 

catalyst which will not only affect the transient behavior of the temperature 

but also of the concentrations. This not only makes the experiments time 



23 
 

consuming, but it also complicates the transient modeling of the DOC since 

the changes in inlet properties are far from ideal step functions. 

Kolaczkowski et al. [24] presented a method where a pollutant was injected 

between the studied DOC and the engine to achieve transient data without 

changing the engine load point. This method also presents the great benefit 

that the heat accumulation problem is avoided, since the engine load and 

thereby the temperature is constant, and thus very fast transients in 

concentrations can be achieved. Sjöblom [25] further extended this concept by 

also having the possibility to reduce the flow (increase residence time) and 

control the temperature. 

In the Scania engine rig (Paper IV) a set-up was presented where additional 

catalysts were inserted upstream the investigated catalyst. By using different 

bypass settings and injection of urea the catalyst inlet composition could be 

changed without changing the engine operating point resulting in faster 

transients.  3.3.1 SET-UP 
In the set-up of the Scania engine rig an extra DOC with the possibility for 

bypass flow and an SCR with urea injection were mounted before the 

investigated catalyst (DOC 2), as illustrated in figure 11. 

  
Figure 11 Experimental set-up. "DOC 2" is the test object to be studied 

The fraction of exhaust gas flow through DOC 1 allows variation in the 

conversion of HC and CO to CO2 and H2O, and the conversion of NO to NO2. 

By injecting different amounts of urea the conversion of NO2 and NO to N2 is 

controlled and the ratio of NO2 to NOx can be adjusted, the engine was also 

tuned to run with late fuel injection to achieve high HC and CO 

concentrations. A Vanadium based commercial SCR and a commercial 

platinum only DOC were used for exhaust gas property variation. 
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3.3.2 EXPERIMENTAL DESIGN 
The fast transients and the wide range of possible settings for the DOC bypass 

and urea injection made it possible to achieve a wide variation of exhaust 

compositions for every engine operating point in a short time span. Instead of 

searching for the best points in the engine map, the focus of the experimental 

design was instead put on finding the operation of the DOC bypass and urea 

injection that would generate the data best suited for parameter estimation.  

Three different experimental types with different operation of DOC bypass 

and urea injection were evaluated: 

1. Urea injection and SCR were removed from the configuration shown in 

figure 11. Valve 1 was switching between 20% and 90% open at the 

same time as valve 2 was switching between 80% and 10% open every 

20 seconds. 

2. Set-up was as in figure 11. Urea was injected for 20 seconds followed by 

20 seconds of no injection. Valve 1 and 2 were in locked positions. 

3. Set-up was as in figure 11. Valve positions were switching every 20 

seconds.  Urea injection was switched on/off every 20 seconds with a 10 

seconds delay relative to the valve positions switching. 

All experiments were run at more than 20 different engine operating points 

and to further expand experimental space several catalyst configurations were 

also used for the same experiments. 

3.4 LAB EXPERIMENTS 
The purpose of the lab experiments was to provide appropriate data for 

developing a detailed kinetic model where the conditions for the catalyst 

model to separate kinetics and mass transfer were favorable. To achieve these 

conditions catalysts with inert washcoats were used (see section 3.1.2) and 

temperature ramp experiments were performed, both with individual 

components and on a mixture.  3.4.1 SET-UP 
The inlet gas composition was controlled by mass flow controllers and the gas 

mixture temperature was controlled by an oven that also contained the 

monolith itself. The flow through the reactor was heat exchanged with the 
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monolith in a recirculating design according to figure 12. This design was 

chosen to achieve a more even temperature distribution in the monolith 

compared to what would be possible if the monolith would be heated only by 

the incoming flow. 

 
FIGURE 12 Illustration of the lab rig heating principle. Note that the incoming 
flow surrounds the monolith 

Gas temperature was measured with 1.5 mm thermocouples positioned at 

the center of the pipe close to the catalyst outlet. The gas phase concentrations 

were measured after the catalyst with separate analyzer units. The 

concentration of CO was measured with infrared spectroscopy, NO and NO2 

were measured with chemiluminescence, total hydrocarbons were measured 

with flame ionization and O2 was measured with an electrochemical cell. 

The gas composition entering the catalyst was adjusted to the demanded 

inlet conditions at low temperature before the heating ramp was applied; the 

inlet concentrations in the presented results are therefore considered equal to 

the set-points of the gas flow controller. 3.4.2 EXPERIMENTAL DESIGN 
To achieve good conditions for parameter estimation it is important to have 

experimental conditions that span the data range, where the model is aimed to 

be applied, as effectively as possible. In the lab-scale study the desired model 

application was simulation of full scale systems with heavy duty diesel engines 

which meant that the catalyst inlet temperature and concentrations should be 

in the range of what such an engine can produce. The experiments should 

include both a complete synthetic exhaust gas mixture as well as simpler ones 

that enable estimation of parameters where the reactions take place with or 

without competition between the different oxidation reactions. It was also 

important that conversions of the components also coved a wide span. To 
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achieve these desired properties of the data four different experiments were 

performed on every catalyst configuration. The inlet concentrations for these 

experiments were kept constant at the levels given in table 4 while the 

temperature was ramped from low to high and back to low. 

TABLE 4 Inlet concentrations for the performed experiments  

  
NO  

[ppm] 
NO2 

[ppm]
C3H6 

[ppm]
CO 

[ppm]

CO light-off - - - 100 
C3H6 light-off - - 50 - 
NO light-off 800 - - - 
Full gas mix 800 80 50 100 
 

In addition to the components in table 4 all gas mixtures also contained 5 % 

CO2, 5 % H2O, 14 % O2 and the balance N2. For all experiments a low initial 

temperature was chosen to avoid reaction at the starting point of the 

experiments. The maximum temperatures of the different experiments were 

chosen to achieve a conversion at or close to 100% for the catalysts with 

highest platinum loading and no inert washcoat layer (catalyst 2 in table 2).  

  



27 
 

 

 

 

 

 

 

 

4 MODELLING 

4.1 REACTOR MODEL 
A full scale catalyst monolith with varying inlet properties displays a highly 

dynamic behavior. This means that the catalyst outlet conditions will not only 

be influenced by the current inlet conditions but also those at previous time 

points. To describe this behavior a catalytic reactor model with accumulation 

terms is needed. The level of detail needed in the model is of course depending 

on its purpose. If all details of mass, heat and momentum transport are 

required and computational time is not an issue then a complete 3D CFD 

model (figure 13) may be the best option. In this work the model was used for 

parameter estimation which means that it was used in an iterative process to fit 

model parameters to measurement data and as such the simulation time is also 

a very important factor.  

As described in the introduction (section 1.2.1) both the heat and the mass 

transfer in a monolith catalyst occur over a wide range of inter-connected 

length scales. For reaction to occur the reactants first need to be convectively 

transported from the gas phase to the solid washcoat surface. From the surface 

they need to further diffuse into the washcoat with pores that have pore 

diameters less than a micro meter to finally react on the noble metal active 

sites. 
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FIGURE 13 Example of CFD model showing the computational mesh of the 
monolith 

A full scale catalyst of the size used in this project has over 40 000 channels. If 

all channels are to be modeled individually an extremely high resolution is 

needed if phenomena like concentration gradients in the washcoat (as a 

function of reaction rates and heat and mass transport), and radial 

temperature gradients are to be modeled. A model of such complexity is not 

feasible for parameter estimation and to reduce simulation time some 

significant simplifications are needed.  

Since the catalyst is cylindrical and thereby symmetrical around the axial 

axis it would be possible to simplify the model by only modeling one row of 

channels in the radial direction. A full scale catalyst with the specifications 

given in section 3.1.1 has a radial distance spanning 120 catalyst channels and 

the computational demand would be reduced with more than 2 orders of 

magnitudes if an axisymmetric modeling approach is taken. The flow upstream 

the catalyst is however turbulent which means that a one dimensional 

description of the heat and mass profile will not be able to fully replicate the 

true conditions. A model consisting of 120 catalyst channels is still a very 

complex system if modeled in three dimensions. A model with good accuracy 

would therefore be too computationally demanding to be used for parameter 

estimation. The simulation time with such a model would be in the range of 

hours to days and not minutes to hours  [26].  

The two significant transport phenomena for a full scale catalyst model are 

heat and mass. The porous properties of both the washcoat and the substrate 

make it possible for mass to be transferred between the channels. The large 
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transport resistance of the wall compared to the open channel does however 

severely limit the flow between channels and in the current study it is 

neglected. The distance from the engine to the catalyst is long and turbulent 

enough to be considered well mixed and thus the composition in the inlet to all 

channels can be assumed to be roughly the same.  

Heat transport resistance of the substrate and washcoat is not as large as the 

mass transport resistance which means that heat will not only be convectively 

transported with the flow but also conducted in the solid material both radially 

and axially in the monolith.  There will also be heat losses to the environment 

both in the piping leading to the catalyst and from the catalyst itself meaning 

that there will be radial temperature gradients both in the catalyst inlet and 

inside the catalyst. The magnitude of these gradients are largely dependent on 

the experimental set-up where insulation and heating can be used to 

significantly reduce the gradients. In a method presented by Štěpánek et al. 

[27] a full scale CFD-based model was used to solve the 3D temperature 

profile in the catalyst which in turn was coupled to a simple 1D model for 

reactions in the catalyst washcoat. A similar approach was taken by Stamatelos 

et al. [28] but the solid energy balance was solved for an axisymmetric 2D 

model.  

The most common type of model for simulation of monolith converters is 

however still significantly simpler 1D models for both heat and mass [29] 

where all channels are assumed to have the same inlet conditions, heat loss (if 

any), and flow rate. The advantage with these kinds of models is of course high 

simulation speed and the drawback is reduced accuracy [30]. 

 

In this work a 1D/2D single channel model, closely based on the model 

presented by Ericson et al.  [31], was chosen since it was considered a good 

compromise between accuracy and computational speed [32]. Due to surface 

tension effects during the washcoating process the washcoat usually is thicker 

in the corners of the channel and thinnest furthest from corners. In the current 

work the washcoat formulation was however simplified to a slab 

representation with constant washcoat thickness to avoid the need of a third 

dimension to model the washcoat.  
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The gas phase in the channel was assumed to have fully developed laminar 

properties and thereby a discretization in the axial direction only (1D) was 

assumed to be sufficient when combined with a film transport model between 

gas bulk and washcoat surface. 

The wide temperature range of vehicle exhaust together with the need to 

package maximum activity into a given volume of the converter for on-board 

space-efficiency, unavoidably leads to transport limitations. This means that 

large gradients in the washcoat are likely to occur which makes the washcoat 

discretization specifically important for a proper description of the behavior of 

the system. The washcoat was therefore chosen to be discretized both radially 

and axially (2D), see figure 14. The method used for discretization was tanks in 

series mainly selected for its robust properties in transient simulations.  

 
FIGURE 14 Illustration of the catalyst discretization principle of a single channel 

As mentioned above, there are some clear differences between heat and 

mass transfer and the modeling of the different phenomena are described 

separately below. For full details see Paper I. 4.1.1 MASS TRANSPORT 
For every tank and species the balance [in] – [out] ± [produced or consumed] = 

[accumulation] is made. In the gas bulk no reaction takes place which means 

that the balance only includes convective transport with the flow and transport 

to and from the washcoat. The diffusive transport in the gas bulk in the axial 

direction is not taken into account in the mass balance since it is considered 

negligible compared to the convective flow.  

The transport resistance between the gas bulk and the first washcoat layer is 

modeled as two parts; firstly it is the film transport resistance and secondly it is 

the diffusive transport resistance of half the washcoat layer thickness. This 
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configuration is chosen since it will represent the concentration in the center of 

the washcoat layer and thus a good estimate of the average concentration in 

the volume represented by the tank. The first two studies (Paper I and II) used 

the asymptotic value for the Sherwood number [33] but for the other studies it 

was replaced by the model for quadratic laminar channels introduced by 

Hawthorn [34] (see Paper III for full equation). Entrance effects were 

neglected for all studies.  

  
FIGURE 15 Mass transport discretization 

For further transport in the washcoat the resistance also consists of two 

parts which are the diffusive resistances of half the washcoat thickness of both 

layers. The axial transport in the washcoat is neglected since the axial transport 

distance is about 3 orders of magnitude larger than the radial transport 

distance. A description of the mass transport in the washcoat and its 

discretization is shown in figure 15.  

 

The model will have a very dynamic behavior which means that accumulation 

terms are needed for an accurate description. Accumulation terms do however 

generate a significant increase in the computational cost and if the transient 

time scales are small the model stiffness and instability may increase. 

Accumulation terms should therefore be carefully analyzed before inclusion in 

the model. In the case of gas phase concentration, the characteristic time 

constants are small which means that a new steady state point will be reached 
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within tenths of a second if the inlet concentrations are changed at constant 

temperature (see section 6.2 for example). The characteristic time constant for 

temperature is, on the other hand, large and will dominate the dynamic 

behavior of the gas phase concentrations and as a result accumulation of gas 

phase species both in the gas bulk and in the washcoat were neglected. In 

detailed kinetic models the adsorbed species influence all reaction rates and 

are also important accumulation terms necessary to describe certain transient 

phenomena such as hysteresis.  

Since two different kinetic models were used in this dissertation, one global 

and one detailed, there is also two ways of describing the influence from 

adsorbed species. In the global kinetic model used in the first two studies the 

adsorbed species dependence is modeled by an inhibition term only as a 

function of temperature and the washcoat concentrations. The transient 

behavior of the adsorbed species is thereby not described by an accumulation 

term (the inhibition term is independent of previous temperature and 

concentrations) which will make this kinetic model less computationally 

demanding but also less suitable to describe transient behavior. The global 

kinetic model was applied to data where temperature, flow and species 

concentration could not be changed independently which made effects of 

adsorbed species accumulation difficult to identify. The detailed kinetic model 

derived from lab data used accumulation of adsorbed species which was 

necessary to model the hysteresis in the experiments. This made the model 

slower and less stable than the global one but also more accurate. 4.1.2 HEAT TRANSPORT 
The modeling of the heat transport in the gas bulk is analogous to the mass 

transport in the gas bulk; the discretization is only made axially, the thermal 

conduction is neglected, and the film resistance is calculated from correlations. 

The first two studies used the asymptotic value for the Nusselt number [33] but 

for the other studies it was replaced by the model for quadratic laminar 

channels introduced by Hawthorn [34] (see Paper III for full equation). The 

modeling of the heat transport in the washcoat on the other hand displays 

several differences from how the mass transport was modeled.  
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The main difference between modeling of mass and heat transport 

originates from the fact that the heat transport resistance is much lower (high 

heat conduction) than the mass transport resistance (low effective diffusivity). 

For the mass transfer modeling the long axial transport distance coupled with 

the high transport resistance meant that axial mass transport in the washcoat 

was neglected. In the case for heat transport the long axial distance is 

counterbalanced by the low transport resistance which means that axial heat 

transport cannot be neglected. The efficient heat transport in the washcoat 

also means that transport in the significantly shorter radial direction will be 

very efficient and as a result the radial heat transport resistance was neglected. 

Neglecting the radial heat transfer resistance means that the radial 

discretization of the washcoat that was necessary for mass transfer can be 

simplified to a single layer for heat transport. An illustration of the 

discretization can be seen in figure 16. 

  
FIGURE 16 Heat transport discretization 

The efficient heat conduction in the washcoat and substrate means that 

phenomena like heat loss to the environment and heat accumulated in 

surrounding materials such as insulation and canning will have a large 

influence on the behavior of the monolith if adiabatic conditions do not 

prevail. Since only one channel is modeled, a heat loss term and extra heat 

accumulation term is added to every washcoat channel segment to model the 

two aforementioned phenomena (at lab-scale these terms were however 
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neglected). Modeling the heat loss to the environment as equal for all channels 

is a rough simplification but the alternative of modeling more channels with 

different temperatures and heat losses was considered to require a too large 

increase in computational demand. 4.1.3 DISCRETIZATION 
The number of segments and layers are of utmost importance for the 

performance of the model. A too low number of segments and layers will 

make the simulation dependent on the discretization and a too high number of 

segments and layers will lead to unnecessarily long simulation times. For the 

parameter estimation performed in this project a model discretized as 10 

(axial) segments and 8 (radial) layers was considered a good tradeoff between 

model accuracy and simulation time. It should be noted that the number of 

axial segments is lower than what is theoretically necessary to model a tube 

reactor [35] which will result in an over representation of axial dispersion.  

A major influence on the model performance is not only the number of 

segments and layers but also how they are distributed. In general the faster a 

property changes in one direction a finer discretization is needed to fully 

resolve a concentration or temperature gradient. For a catalyst at high 

temperature, the reaction rate will be high which means that some components 

may be consumed before they have diffused radially through the washcoat. 

Also, the fact that diffusive flux of all components is set to zero at the 

washcoat-carrier material interface means that concentration gradients will 

approach zero close to the carrier material and be steeper at radial positions 

close to the surface. In other words a fine discretization close to the washcoat 

surface would be needed but not close to the carrier material. At low 

temperatures the reaction rate will be slow and concentration will not change 

much with radial position and thus there is little need for a fine radial 

discretization. With this in mind, a washcoat discretization that decreased 

linearly with radial position was chosen which is demonstrated for eight layers 

in figure 17. 
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FIGURE 17 Radial washcoat discretization for eight layers 

For axial discretization the same reasoning can be applied as for radial 

discretization; it is more likely that the axial gradients are larger close to the 

inlet than close to the outlet. This indicates that a discretization decreasing 

with axial position would be preferable also in this direction. However, a 

conversion close to 100 % - which would be the case for a steep concentration 

gradient close to the inlet is not generally desired since these kinds of 

experiments are less informative in a kinetic parameter estimation point of 

view. The dynamic behavior of the model also means that different parts may 

experience large gradients at different conditions. For example when the inlet 

temp is changing from high to low the outlet end of the monolith can have a 

higher temperature than the inlet end and as a result gradients can be steeper 

near the outlet. With this in mind an equidistant axial discretization was 

selected. 

4.2 KINETIC MODELS 
Large efforts have been made to construct kinetic models for the DOC both of 

global type [15, 36-38] and microkinetic type [39-41]. The microkinetic models 

describe all reactions divided into elementary steps, which makes it possible to 

derive estimated kinetic parameters from reaction rate theory. In the global 

models the elementary steps are assumed to be either rate-determining or in 

equilibrium, which makes it possible to derive rate expressions for the overall 

reactions with a significantly reduced number of parameters compared to the 
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microkinetic models [10]. These global rate expressions generally use only gas 

phase concentrations which are also used to account for inhibition, adsorption 

and desorption. This means that the accumulation of adsorbed species is 

neglected which is less of a concern for species with very low surface coverages 

but for others it is clearly detrimental for accurate predictions of transients.  

Since catalytic reaction mechanisms are often not understood down to the 

elementary step level the global rate expressions are rarely strictly derived 

from elementary reaction steps. Instead, they are often adjusted and 

sometimes expanded with additional semi-empirical expressions to better 

describe observed experimental data. In addition, reaction steps may be 

neglected and parameter values lumped all with the aim of reducing the kinetic 

model complexity and number of adjustable kinetic parameters.  These kinds 

of simplifications and modifications of rate expressions may also lead to the 

kinetic parameters having less of a physical nature and more importantly 

becoming more case-specific and less generally applicable [10]. Nevertheless, 

the far lower computational demands of global kinetic type models means that 

they are often the model-type of choice for aftertreatment design evaluations 

and control algorithms. It should be noted that exclusion of adsorbed species 

in the global models will make them less suitable to describe transient 

behavior even though it may not be an issue for species with low surface 

coverage.  

The simplest versions of the DOC kinetic models only describe the 

oxidation reactions of CO, HC, and NO. In addition HC is often represented 

as one molecular species, usually propene [15, 42, 43]. The exhaust 

composition is far more complex than just one type of hydrocarbon species 

and there are examples of kinetic models [28, 36] that have been expanded 

with several types of HC. Other additional reactions that may be added 

include H2 oxidation [28, 41] and HC reduction of NOx  [37, 44] or by NO2 [36]. 

In this work both a global kinetic model, with only three reactions, and a 

detailed kinetic model, with twelve reactions, have been used in the different 

studies. The detailed kinetic model is not microkinetic model with the 

definition given above but contrary to the global kinetic model, surface species 

are modeled and included in the reaction rates. 
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4.2.1 GLOBAL KINETIC MODEL 
The focus of the first two studies was developing the parameter estimation 

method rather than on the required model formulation or level of detail of the 

kinetic model. The kinetic model used in these studies was of Langmuir-

Hinshelwood type and was originally suggested in the classical work by Voltz 

et al [15] and later modified by Oh and Cavendish [42]. This model, which has 

been widely and frequently used in DOC modeling over the years, only 

includes three reactions of which one is an equilibrium reaction: 

CO + 12 O2 → CO2 

C3H6 + 92 O2 → 3 CO2 + 3 H2O 

NO + 12 O2 ⇌ 2 NO2 

The reaction rates were calculated according to equations 2 to 6. 

rଵ = kଵyେ୓y୓మG(y୧, Tୱ)  (2) 

rଶ = kଶyେయୌలy୓మG(y୧, Tୱ)  (3) 

rଷ = kଷy୒୓y୓మG(y୧, Tୱ) ቆ1 − K′K୮ቇ (4) 

Kᇱ = y୒୓మy୒୓y୓మ ½ (5) 

G(y୧, Tୱ) = Tୱ൫1 + Kସyେ୓ + Kହyେయୌల൯ଶ൫1 + K଺yେ୓ଶyେయୌల ଶ൯(1 + K଻y୒୓଴.଻) (6) 

where Kj is the reaction rate coefficient for the inhibition terms in the 

denominator G and Kp is the equilibrium constant for NO oxidation. At 

thermodynamic equilibrium, Kp will be equal to K' and reaction rate r3 will be 

equal to zero. Both reaction rate coefficients kj and Kj were described by 

Arrhenius expressions: 

k୨ = A୨exp ൬− E୅,୨RTୱ൰  (7) 
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The start values for estimation of kinetic parameters were taken from Wang 

et al. [43] where results from several studies [45-51] were compiled. The initial 

values for kinetic parameter estimation used in this study are shown in table 5.  

TABLE 5 Start values for kinetic parameters estimation 

Index Pre-exponential factor 
[mole K/(m2s)] 

Activation energy 
[kJ/mole] 

j A Ea 

1 1.00 ×1017 80.0 
2 4.00×1020 100.0 
3 4.50 ×1014 70.0 

Index Effective entropy  
of adsorption*  

 [-] 

Heat of adsorption 
[kJ/mole]* 

j A Ea 

4 65.5 -8.0 
5 2080 -3.0 
6 3.98 -96.5 
7 479000 31.0 

*For simplicity these parameters will be referred to as pre-exponential 
factors and activation energies in upcoming discussions even though they 
have a different physical meaning 

 
The kinetic parameters in equations 2 to 6 are highly correlated and since 

the parameter values in table 5 were taken from different studies, the fit of the 

model to experimental data was expected to be poor before any parameter 

tuning was performed. However, the parameters were successfully used as a 

starting point for parameter tuning of a DOC against engine rig data by Wang 

et al. [43] which was also the intended application in the present work.  4.2.2 DETAILED KINETIC MODEL 
The structure of the detailed kinetic model was derived by analyzing the 

experimental data and the parameter values were a result of parameter 

estimation. The parameter values will be presented in Results and Discussion 

but the structure will be presented here even though it also was a result of the 

study performed (Paper III). The final structure of the detailed kinetic model 

is given in table 6. 
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TABLE 6 Final structure of the detailed kinetic model 

# Reaction Rate 
1 O2(g) + 2* →  2O* r1=cO2θv2k1 
2 2O* →  O2(g) + 2* r2=θO2 k2 
3 NO2 →(g) + *   NO2* r3=cNO2θvk3 
4 NO2 →*   NO2(g) + * r4=θNO2k4 
5 →NO(g) + O*   NO2* r5=cNOθOk5 
6 NO2 →*   NO(g) + O* r଺=θNO2k଺ 
7 →CO(g) + *   CO* r7=cCOθvk7 
8 →CO*  * + CO(g) r8=θCOk8 
9 →CO* + O*   CO2(g) + 2* r9=θCOθOk9 

10 CO* + NO2 →*   NO(g) + CO2(g) + * r10=θCOθNO2k10 
11 C3H6 →(g) + 9O*   3CO2(g) + 3H2O(g) + 9* r11=cC3H6θOk11 
12 C3H6(g) + 9 NO2 →*   9NO(g) + 3CO2(g) + 3H2O(g) + 9* r12=cC3H6θNO2k12 

 

Reaction number 1-8 can be described as equilibrium reactions where even 

reaction numbers are desorption and uneven reaction numbers are adsorption 

while reaction 9-12 are oxidation reactions. The starting point in the 

development of the kinetic model was reaction 1-6 that represented a 

simplified version of the detailed kinetic model presented by Olsson et al. [52]. 

The simplification made was that surface NO was neglected based on the fact 

that no clear hysteresis for NO was found in the experimental data. A clear 

hysteresis was on the other hand found in the dedicated CO oxidation 

experiments which is exemplified in figure 18. The hysteresis is a result of 

competitive adsorption of CO and O where CO will dominate the surface 

coverage at the start of the experiment, thereby delaying the light-off. To 

capture this behavior CO was needed to be included in the model as a surface 

species which introduced reaction 7-9 in the model.  
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FIGURE 18 Hysteresis for CO oxidation in lab-scale experiments 

In the experiments with a more complex gas mixture (full gas mix in table 

4) a reduction of NO2 to NO was measured at low temperatures at the same 

time as CO was oxidized, see figure 19. The NO oxidation reaction would at 

these conditions react towards a thermodynamic equilibrium with less NO and 

more NO2 and the reaction mechanism must thereby be more complex than 

the first nine reactions in table 6. Reaction 10 was therefore included in the 

kinetic model to describe reaction between adsorbed CO and adsorbed NO2. 

 
FIGURE 19 Full gas mix experiment for catalyst 4 

The hysteresis for propene was deemed not prominent enough to warrant 

an inclusion of propene as a surface species in the model. As a result, propene 

oxidation was modeled as a reaction between adsorbed O and gas phase 

propene. From the gas mix experiments it is difficult to conclude if propene is 
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oxidized by O2 and NO2 or by O2 alone. The fact that oxidation by NO2 was 

observed at similar conditions [53] and that NO2 showed strong oxidizing 

properties for CO was, however, strong enough arguments for including the 

reaction in the kinetic model. 

All reaction rate coefficients, kj, were described by Arrhenius expressions 

according to equation 7. The reaction rate description for reaction 7 also 

includes a temperature dependent pre-exponential giving that rate expression 

an additional factor of T0.5. The reaction rates are all in the unit of mole/(s 

×kgPt). 
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5 PARAMETER ESTIMATION 
With the experimental plan carried out and the catalyst and kinetic models 

selected the parameter estimation can finally be performed. The standard 

procedure of parameter estimation for automotive catalysts is to use all 

experimental data points to estimate kinetic parameters only. In the current 

project the estimation of kinetic parameters were complemented by estimation 

of heat and mass transport parameters to better describe the dynamic behavior 

of the catalyst. A method improving the final fit by performing parameter 

estimation on sub-sets of the data selected by Multivariate Data Analysis 

(MVDA) was also evaluated (Paper II). 

5.1 ADJUSTABLE PARAMETERS 
At lab-scale the heat losses to the environment can usually be kept at 

negligible levels (insulation or heating of the monolith are two common 

measures) and also the mass transport resistance can be reduced by using thin 

washcoat layers or even using powder of a crushed monolith [54]. In the case 

of full scale catalysts heat- and mass transfer limitations are more likely to 

have an important influence on the results, as has been discussed above. The 

parameters affecting the heat- and mass transfer resistance are difficult to 

measure and the best option may be to instead use simplified models where a 

few parameters are tuned to experimental data.  

The parameter estimation is performed with parameters in scaled and 

centered forms [55]. Which means that the estimated parameter is equal to an 

original value from literature or previous estimation plus/minus the adjustable 
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parameter, p, times a weight factor, w. For example the activation energy is 

estimated by  

E୅,୨ = E୅,୨୭ + w୉ୟ,୨p୉ୟ,୨ (8) 

where the superscript “o” indicates that this is the original value. The value of 

the weight factor is selected to make the parameter sensitivity more balanced. 5.1.1 KINETIC PARAMETERS 
When tuning kinetic parameters it is important to be well aware of the 

properties of the chosen kinetic model. The global kinetic model is generally 

more robust in its construction and may for example contain factors to ensure 

that thermodynamic restriction are always fulfilled; for detailed kinetic models 

this is however not likely to be the case.  

If the model contains both the forward and backward reaction in an 

equilibrium reaction it would not be a good choice to tune the parameters of 

both reactions since this would lead to very high correlation. For the detailed 

kinetic model this means that several of the kinetic parameters presented in 

table 6 should not be tuned if computational efficiency is important. The 

choice was therefore made to mainly estimate the desorption reactions while 

the adsorption reactions were kept constant. The global kinetic model does 

contain one equilibrium reaction in the NO oxidation reaction but in effect this 

reaction only goes in one direction with a driving-force factor that approaches 

zero as thermodynamic equilibrium is approached. All the pre-exponential 

factors and activation energies for the global kinetic model were therefore 

tuned to experimental data. 

For reactions governed by thermodynamic limitations, such as the NO 

oxidation, it is also important that the thermodynamic limitations are not 

violated when the kinetic parameters are estimated. For reasons previously 

stated this is not an issue for the global kinetic model but for the detailed 

model additional restriction need to be applied. The parameters A6 and EA,6 

(table 6) were not directly tuned but were continuously updated to maintain 

the thermodynamic limitations of the NO oxidation reaction according to 

equations 9 and 10. 
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E୅,଺ = 12 ൫E୅,ଵ − E୅,ଶ൯ + ൫E୅,ସ − E୅,ଷ൯ + ൫E୅,଺ − ∆H୬ୣ୲൯ (9) 

A଺ = ൬AଵAଶ PRT୰ୣ୤൰భమ AସAଷ Aହexp ൬−∆S୬ୣ୲R ൰ (10) 

where equation 9 maintains the overall enthalpy change of NO oxidation and 

equation 10 maintains the overall entropy change.  

 

The parameter estimation of activation energies is a linear amplification of the 

original activation energies as already shown in equation 8. The parameter 

estimation of pre-exponential factors is performed in three steps [56]. As a first 

step the reaction rate coefficients are centered on a reference temperature 

with the purpose of reducing the correlation between activation energies and 

pre-exponential factors. 

k୰ୣ୤,୨୭ = A୨୭exp ቆ− E୅,୨୭RT୰ୣ୤ቇ (11) 

The reaction rate coefficient kref,j is scaled according to equation 12. 

ln൫k୰ୣ୤,୨൯ = ln൫k୰ୣ୤,୨୭൯ + w୅,୨p୅,୨ (12) 

The tuned rate constant at a reference temperature is then used to calculate 

the pre-exponential factor  

A୨ = k୰ୣ୤,୨exp ൬ E୅,୨RT୰ୣ୤൰  (13) 

When equation 13 is inserted into the expression for the reaction rate 

coefficient in equation 7, the following expression for the tuned reaction rate 

coefficient is obtained 

k୨ = k୰ୣ୤,୨exp ൭− E୅,୨R ൬ 1Tୱ − 1T୰ୣ୤൰൱ (14) 

This transformed expression of the reaction rates will reduce the temperature 

dependence of the pre-exponential factor and increase the temperature 

dependence of the activation energy, thus reducing parameter correlation. The 

method was first introduced by Hawthorn et al. [34].  

It has been shown that the catalyst active surface area could be used as a 

single parameter in a global model [57]. In addition to the pre-exponential 
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factors and the activation energies, an activity scaling factor was therefore also 

evaluated as an adjustable parameter in the first two studies as a compliment 

to the global kinetic model. The activity scaling factor was simply a scale factor 

for all reaction rates on a certain site on a certain catalyst (parameters were 

tuned to several different catalyst samples simultaneously). This means that 

the catalyst active surface area was tuned for each catalyst sample since only 

one single site was used in the kinetic model. 5.1.2 HEAT TRANSPORT PARAMETERS 
The heat loss term and extra heat accumulation term that was added to every 

washcoat channel segment in the full scale models (see section 4.1.2) represent 

two parameters that are difficult to measure. Instead these parameters were 

fitted to measurement data together with a superficial environmental 

temperature.  

The temperature in the catalyst has a very large influence on the reaction 

rates and conversion of the different components. For a full scale DOC in an 

engine rig the influence on the temperature from the reaction rate will be of 

less significance mainly since the concentrations of reacting species is low. To 

be able to perform a good parameter estimation of kinetic and mass transport 

parameters it is therefore important to have good accuracy in the heat transfer 

model but not necessarily the other way around. With this in mind the heat 

transport parameters were estimated before the other parameters which meant 

that original parameter values were used for kinetic- and mass transport 

parameters. By estimating the heat transport parameters separately the high 

correlation between reaction rates and heat transport parameters is reduced. 

When the heat loss parameters are estimated it will be against the residual of 

outlet temperature alone and when kinetic- and mass transport parameters are 

estimated it will only be against concentration residuals. The risk that heat 

transport parameters are estimated to improve the fit of outlet concentrations 

is thereby avoided. It should again be noted that the catalyst model used to 

perform parameter estimation against lab-scale data did not include a heat loss 

model and no such parameters were thereby tuned. 
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5.1.3 MASS TRANSPORT PARAMETERS 
In a system where both mass transport rate limited and reaction rate limited 

conditions will prevail the transport in the washcoat will be of great 

importance for the behavior of the catalyst system as a whole. The transport 

resistance in the washcoat is influenced by the diffusivity at different length 

scales and the structure of the washcoat. Several different correlations are 

available to determine the diffusivities but the influence of the washcoat 

structure is more complicated to identify. In this study the transport resistance 

in the washcoat has therefore been tuned with the aim of reducing the 

correlation between mass transport and kinetic parameters. The method used 

is presented below. 

The species used in the kinetic model are O2, NO, NO2, CO, and HC (only 

propene at lab-scale) which means that these also are the species whose mass 

transport is significant for the behavior of the model. In the catalyst model 

presented in [58], on which the current catalyst model is based, an expression 

for the effective diffusivity was derived according to equation 15. 

Dୣ୤୤,୧,୩ = fୈଵୈ౟,ౡ + ଵୈ୏౟,ౡ (15) 

Where fD is a factor that takes into consideration the porosity and the 

tortuosity of the porous material, DKi,k is the Knudsen diffusivity, and Di,k is 

the gas diffusivity. 

This expression describes the transport resistance in the catalyst washcoat 

but provides only a rough estimate. Firstly the fD factor itself should account 

for both the tortuosity and the porosity of the washcoat by just one constant 

which makes it difficult to estimate. Secondly the structure of the pores may 

contain cracks and other discrepancies which would make the resistances in 

parallel suggested by the model (denominator of 1/Di,k+1/DKi,k in equation 15) 

far from reality.  

The mass transport was tuned by adjusting a scaling factor for the effective 

diffusivities for the species taking part in the reactions. 

fୈ౩ౙ౗ౢ౛,୧ = fୈ౩ౙ౗ౢ౛,୧୭ + wୈ౩ౙ౗ౢ౛,୧pୈ౩ౙ౗ౢ౛,୧ (16) 

This will change the expression for the effective diffusivity according to 
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Dୣ୤୤,୧,୩ = fୈଵୈ౟,ౡ + ଵୈే,౟,ౡ fୈ౩ౙ౗ౢ౛,୧ (17) 

The value for fDscale,i
o is typically around 1.  

 

The species were divided into two groups, where the first group contained O2, 

NO, NO2, and CO and the second group contained HC. In the first group all 

species are well defined with similar diffusivities and could be expected to have 

similar mass transport properties in the washcoat with presumably the same 

bias from their true values. To reduce the number of parameters to tune, the 

same scale factor was used for all species in this group. The second group 

contained HC which was represented as C3H6 but in the case of real engine 

exhaust is a wide range of hydrocarbons with different mass transport 

properties. The scale factor for the second group was in other words expected 

to be influenced both by the hydrocarbon composition and the washcoat 

structure while the scale factor for the first group mainly accounted for only 

washcoat structure. 

5.2 STANDARD METHOD OF PARAMETER 
ESTIMATION 

The most common way to perform parameter estimation is probably to use all 

time points in the data to which the model is to be fitted and applying a 

gradient search method algorithm. This method was used in Paper I as a 

reference to compare to the results from Paper II where parameter estimation 

with PCA and D-optimal Design was used together with the gradient search 

method. 5.2.1 GRADIENT SEARCH METHOD 
The gradient search method is very efficient for linear systems but can also be 

applied for non-linear systems such as catalyst models. For a non-linear system 

the residual function is first linearized for all parameters by the use of finite 

differences. The resulting matrix is an approximation of the so called Jacobian 

matrix that is commonly denoted as only the Jacobian (J). The Jacobian is 

defined according to equation 18 
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J(x, p) = df(x, p)dp  (18) 

where x is the variables, p is the parameter values and f is the residual. The 

approximation of the Jacobian is then evaluated to determine a step in the 

parameter space in the direction of the steepest descent. This process is 

repeated until the change in residual is below a certain tolerance or until a set 

value of steps in parameter space has been performed. The method is 

thoroughly described in, for example [17], but a short description of how the 

step in parameter space is calculated will also be given here.  

The function to be minimized is the residual sum of squares according to minp f(x, p)ଶ = (y୭ୠୱୣ୰୴ୣୢ − y୫୭ୢୣ୪(x, p))ଶ (19) 

where y is the measured and simulated responses. If a specific set of data is 

considered the variable dependence can be dropped and equation 19 can be 

rewritten according to  minp S(p) = ‖y୭ୠୱୣ୰୴ୣୢ − η(p)‖ଶ = ‖z(p)‖ଶ (20) 

To calculate the size of a step taken in parameter space the objective function, 

S(p), is first approximated by a Taylor expansion: 

  ܵ(p) ≈ S(p଴) + ∂S(p)∂p ቤ୮బ (p − p଴)
+ (p − p଴)୘ 12 ∂2S(p)∂p ∂p୘ቮ୮బ (p − p଴) =

(21) 

=
۔ۖەۖ
ۓ ω = ߲ௌ(୮)߲୮ ቚ୮బΩ = ߲2ௌ(୮)߲୮߲୮౐ቤஒబδ = p − p଴ ۙۘۖ

ۖۗ = S(p0) + ωδ + δT 12Ωδ 

 

The approximation of S(p) described in equation 21 will have a minima when 

the gradient is zero: 

ω +  Ωδ = 0 (22) 
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which gives the parameter step size according to δ = Ω-1ω. For the function 

S(p)=(y-η)T(y-η) the gradient ω and Hessian Ω is given by ω = −2J୘z 
(23) Ω = 2J୘J − 2 ∂J∂p z 

When setting the second term of the Hessian to zero the Gauss-Newton 

method is obtained, where the parameter step size only depend on the 

Jacobian J and residual z. 

It is worth noting that the linearization of the system is the most time 

consuming part of the gradient search method. The effect of small steps in all 

directions (parameter values) must be calculated by the catalyst model for all 

time points before a step in the steepest decent can be made. For every step 

made, the catalyst model will in other words be called np+1 times where np is 

the number of parameters that are to be estimated. 

The gradient search method in this work was the trust-region-reflective 

method [59]. This is the standard method for over-determined non-linear least 

square problems in Matlab, the software used in this project. This method is 

implemented in the Matlab function lsqnonlin.  

5.3 DEFINITION OF THE RESIDUAL 
When parameter estimation is performed according to the gradient search 

method the target function is to minimize the residual sum of squares. The 

definition of the residual is therefore very important for the performance of 

the parameter estimation algorithm. In the case of kinetic- and mass transport 

parameters the residuals will be calculated from the concentrations in the 

outlet. How the concentrations are best used in the calculation is not trivial 

and several definitions of the residual have been evaluated in the current 

study.  

Both mole fractions and temperature have been used in the residual 

calculations in the different studies but since temperature parameters were 

tuned only once, and then as the only residual, this chapter will focus on the 

mole fractions.  
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The modeled outlet flow will contain a number of different components but 

it may be more or less suitable to select them in the definition of the residual. 

The selected components should give enough information to describe the 

influence of the modeled reactions on the outlet concentrations but 

redundancy should also be avoided. For example if CO oxidation by O2 is the 

only reaction, only one of the components taking part in the reaction should be 

used in the residual calculation since only the conversion of one component is 

necessary to calculate the others. In all the studies in this dissertation only NO, 

CO and HC were therefore necessary for residual calculation. This was based 

on two assumptions; firstly that NOx reduction could be neglected and 

secondly that O2, NO, NO2, CO, and HC were the only reacting components.  5.3.1 CONCENTRATION RESIDUAL 
The most straight forward formulation of the residual would be to define it as 

the difference between simulated outlet concentration and measured outlet 

concentration. If the same absolute fit to measurement data would be 

desirable for all components this would be a useful definition. If the 

concentration levels differ a lot between components a similar relative fit 

would probably be of higher prioritization. For the current work the NO 

concentrations can be about one order of magnitude higher than the 

concentrations of CO and HC which means that the same absolute fit for NO 

and CO and HC is not desirable.  

To get a residual that had a more relative than absolute character a 

weighting method was applied in Paper I. The basis of the method was that the 

difference between modeled and measured outlet concentration was calculated 

in the selected points and then weighted depending on the component. The 

weighting was calculated as the inverse of the average outlet molar fraction 

over the entire data series. The residual was then given according to equation 

24. 

res୧ = yො୧,୭୳୲ − y୧,୭୳୲yത୧,୭୳୲  (24) 

where yො୧,୭୳୲ is the modeled outlet mole fraction of component i, y୧,୭୳୲  is the 

measured outlet mole fraction and yത୧,୭୳୲ is the average outlet mole fraction. 

The weighting method also meant that the residual increased if the number of 
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points where the conversion was 100% was high, which was the case for HC 

and CO in the first two studies.  5.3.2 CONVERSION RESIDUAL 
In Paper II an algorithm that continuously changed the selected data points 

used for parameter estimation was introduced which is further described in 

section 5.4. The point selection made the weighting against inverse of the 

average outlet molar fraction over the entire data series less suitable. The 

reason for this was that both HC and CO had a conversion at 100% for a 

majority of the data set giving the residuals for these components a high 

weight. With the new algorithm the points selected for parameter estimation 

were generally not the ones with 100% conversion giving a large difference 

between the average outlet mole fractions in the selected data points and in 

the entire data set. The residuals for HC and CO would therefore dominate 

the residual sum of squares since NO had considerably fewer data points with 

100% conversion, due to thermodynamic limitations.  

To decrease the difference between the components and to make the 

residual definition more adaptable to a changing selection of data points a 

different residual definition was introduced. With this definition the modeled 

conversion was compared to the simulated conversion limiting the residual to a 

value between -1 and 1 for every data point.  The residual equation is given by 

equation 25 where considerations were also taken to the fact that the NO 

conversion can be limited by thermodynamic constraints. 

res୧ = ቆ− yො୧,୭୳୲ − y୧,୭୳୲y୧,୧୬ − y୧,୧୬,୪୧୫ቇ 1√n୧ (25) 

In equation 25 ni is the number of data points used for component i and 

yi,in,lim is the mole fraction of component i at the thermodynamic limit at inlet 

conditions (0 for HC and CO). The number of points selected for residual 

calculation may differ between the components and the ni
-0.5 factor is included 

to give components with few points increased weight. For a complete 

derivation of the equation see Paper II. 5.3.3  CONVERSION RESIDUAL WEIGHTED BY AVERAGE CONVERSION 
The conversion residual described above worked well for the engine rig data 

with MVDA point selection where  points with varying conversion was 
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selected for residual calculation for all components. In the lab-scale data 

(Paper III) the temperatures for most experiments were lower than in the 

engine rig and the MVDA method was not applied. The data for parameter 

estimation therefore contained a majority of points where the NO conversion 

was close to zero which was not the case for CO and HC. Relatively low 

residuals for NO could therefore be achieved by just setting the reaction rates 

to zero. To increase the NO residuals equation 25 was expanded with an extra 

weight according to equation 26 

res୧ = ቆ− yො୧,୭୳୲ − y୧,୭୳୲y୧,୧୬ − y୧,୧୬,୪୧୫ቇ 1X୧√n୧ (26) 

where Xi is the mean absolute conversion in the ni data points for component i. 

The increased NO residual was mainly motivated by the objective of 

improving the kinetic modeling of NO2 as an oxidizing agent.  

5.4 PARAMETER ESTIMATION AIDED BY 
PCA AND D-OPTIMAL DESIGN 

The traditional way of performing parameter estimation generally gives good 

results since all experimental data is used. Long simulation time, risk of finding 

a local minima far from the global minima, risk of being dominated by certain 

parameters, and high parameter correlations are however all possible 

drawbacks with the method. The method with MVDA described in the current 

work was applied to reduce these drawbacks but with similar or better end 

results than for the traditional method. The methodology was an extension of 

the work performed by Sjöblom et al. [55]. 5.4.1 METHOD 
The method used for parameter estimation with MVDA is an iterative process 

divided into a number of sub-operations that are schematically summarized in 

figure 20. 
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FIGURE 20 Summary of the MVDA method of parameter estimation 

The first step in the method is the calculation of the parameter sensitivity 

matrix, often referred to as the Jacobian (previously introduced in equation 

18). The Jacobian is not solved analytically since the system is too complex; 

instead it is estimated by finite differences. In the current application the 

Jacobian has N rows and K*P columns where N is the number of observations 

(time points), K is the number of responses (residual types) and P is the 

number of parameters. 

In the second step a PCA, see section 2.1 and equation 1, is performed on 

the Jacobian matrix to generate a scores matrix describing the similarity in 

parameter sensitivity for the time points. This step is not strictly necessary 

since a D-optimal design could be performed directly on the Jacobian even 

though that would be far more time consuming. 

By performing a D-optimal design on the scores matrix it was possible to 

identify the time points where the influence from parameter changes on the 

different residuals were most noticeable, that is the parameter sensitivity was 
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high. These time points were thereby good candidates to use if the number of 

time points were to be reduced. Previous studies did however reveal that a 

pure D-optimal design did tend to select only the most extreme points that 

were not very representative for the data set and thus did not improve the 

parameter estimation. The remedy for this problem was to instead use the 

D-optimal onion design, introduced in section 2.2.1, and to select a larger 

number of data points (approximately 1% of the total time points). The 

number of points per onion layer was selected to increase exponentially with 

decreasing sensitivity which resulted in a majority of the points being selected 

at high sensitivity. An example of the sectioning of the data set into layers and 

the relative parameter sensitivity of the data points in the layers is shown in 

figure 21. 

  
FIGURE 21 D-optimal onion layer thickness colored by relative sensitivity. The 
relative sensitivity is an indication of how sensitive the data point is to changes in 
parameter value relative to the rest of the data set.  

The time points selected with D-optimal onion design were used for 

parameter estimation with a limited number of steps in parameter space (1 or 

5) to avoid changing the parameters too far from the values where the 

Jacobian was calculated in the first step of the method. The resulting 

parameter set was then used to calculate a new Jacobian for the entire data set 

which puts the method back to the top square in the method overview in figure 

20. 
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To summarize the principle of the method is that parameter estimation should 

be performed only on a limited number of time points that have a high 

sensitivity for parameter change and that gives a more equal influence from 

the different parameters on the residual. To achieve these conditions an 

analysis is continuously made on the system to update the point selection when 

new parameter values are found to ensure favorable statistical properties. 

5.5  COMPUTATIONAL EFFICIENCY 
Parameter estimation on highly dynamic systems such as a full scale catalyst is 

a computationally demanding process. The focus of this project was to 

evaluate different methods of parameter estimation and to make them as 

efficient as possible which means that a lot of computational power has been 

needed. Without an efficient use of the available computational resources the 

project would simply not be where it is today. The measures taken to improve 

the computational efficiency are described in the following sections.  5.5.1 PARALLELIZATION  
The software used for all simulations, parameter estimations, and data analysis 

is numerical computing environment Matlab including Matlab Statistical 

toolbox and Matlab Parallel Computing toolbox.  

The default setting for Matlab is to perform calculations on a single 

processor core which, in the case of a multi-core computer, means that the full 

computational power is not used. Matlab Parallel Computing toolbox, 

however, makes it possible to run computations in parallel over a number of 

processor cores, sometimes referred to as workers, on one local computer. 



57 
 

 
FIGURE 22 A Matlab computation can be distributed over several processor 
cores (workers) by creating a parfor loop 

To make parallel computation possible the computations performed on 

each core need to be independent of the calculations on the other cores. For 

example it would not be possible to calculate the washcoat concentration of 

NO on one core and the washcoat concentration of CO on another core since 

both concentrations will influence each other’s rate of reaction.  

One calculation that can be divided into sub-sets of independent 

calculations is the Jacobian estimation with finite difference. This means that 

the residual changes of a finite step in one parameter can be calculated 

independently of the residual changes of a finite step in a different parameter. 

The parallelization of the Jacobian calculation has made parameter estimation 

according to figure 23 possible.  

 
FIGURE 23 Parallelized computation during parameter estimation illustrated by 
parallelization over the Jacobian calculation for three parameters (p1, p2, and p3) 
where δ is finite difference and f is the residual function. 

In figure 23 the principle for estimating three parameters parallelized was 

shown where the number of available cores for optimal computational time 
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was equal to the number of parameters plus one. In theory the reduction in 

total estimation time would be of the same order as the number of cores used 

but in reality it is somewhat lower due to shared computational resources 

between the cores.  5.5.2 CLUSTER COMPUTATION 
The number of available cores per cluster computer used in the current work 

was 16. This means that the optimal number of parameters to estimate would 

be 15 since one core is needed to calculate the residuals for the unmodified 

parameter values. For the final study the number of parameters was 18 but to 

evaluate the optimization possibilities an algorithm where three random 

parameters at a time were omitted from the Jacobian calculation was created. 

The algorithm achieved a faster reduction in residual than the traditional 

method but was not evaluated enough to determine if an equally good final fit 

could be achieved.  
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6 RESULTS AND DISCUSSION 
The results and discussion is divided into two sections where the first section 

presents the studies in Paper I and II and the second section presents the 

results from Paper III, IV and from the parameter estimation from Scania 

engine rig data. As presented in the introduction (section 1.5) these two 

sections represent two approaches to engine rig parameter estimation. The 

first approach used only full scale experiments from a standard engine rig and 

a global kinetic model whereas the second approach used both lab-scale and 

full scale experiments and a detailed kinetic model. The results are only briefly 

summarized to serve as a basis for discussion, for a more thorough 

presentation the reader is referred to the enclosed papers. 

6.1 ENGINE RIG ONLY APPROACH  
The two studies performed with the Engine rig only approach used the same 

experimental data but differ in objectives. The first study (Paper I) focused on 

the modeling of mass transport in the washcoat and the necessity of including 

it in the model while the second study (Paper II) evaluated the possibilities of 

improving the fit of the model by including MVDA in the parameter 

estimation process. 

The experimental set-up and experimental plan including catalyst 

configurations and engine operating points were described in section 3.2. The 

catalyst model and discretization were described in section 4.1 and the global 

kinetic model used was described in section 4.2. It should here be stressed that 

the parameter estimation performed in these studies involved a retuning of 
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kinetic parameters taken from previous studies. It was not an estimation from 

theoretical parameter values based on elementary reactions.  

The heat transfer parameters thermal mass, environmental temperature, 

and lumped heat transfer coefficient were tuned before any additional 

parameter tuning was performed in the first study. The resulting parameter 

values were used in the second study as well. 6.1.1 EVALUATION OF INTERNAL MASS TRANSPORT MODELING 
Two of the catalyst configurations in the experimental plan had the same 

platinum loading (15 g/ft3) but different washcoat thicknesses, see table 1. It 

should thereby be possible to distinguish effects of transport resistance in the 

measurement data directly. To do this the conversion of NO, HC and CO were 

plotted against temperature and compared. No clear indications were found 

for HC and CO which was probably the result of a lack of data, especially at 

low conversions. For NO the trends were clear which can be seen in figure 24 

where NO conversion in relation to conversion at thermodynamic equilibrium 

is shown for the two catalyst configurations.  

  
FIGURE 24 Measured degree of achieved equilibrium for NO for two catalyst 
configurations (see table 1) with same platinum loading but different washcoat 
thickness. Time intervals are taken from the total experimental data. 

The time intervals in the legend of figure 24 are taken from the total 

experimental data and configurations a is the catalyst with the thicker 

washcoat and catalyst d is the catalyst with the thinner washcoat.   
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The thinner washcoat of catalyst configuration d results in lower internal 

transport resistance than for catalyst configuration a. This results in a higher 

conversion for catalyst configuration d if internal mass transport limits the 

reaction rate. When the three different temperature transients in figure 24 are 

compared it is apparent that the conversion was indeed higher for catalyst 

configuration d at certain temperatures. At lower temperatures the conversion 

was limited by kinetic reaction rate which means that only the platinum 

loading was of influence and not the transport resistances. As the temperature 

increased the influence of internal transport resistance also increased which 

can be seen as a difference in conversion between the two catalyst 

configurations for all three transients at temperatures above 200 °C. This 

difference was most pronounced for the transients taken between 900 s and 

1800 s but was also clear for the two other transients. At even higher 

temperatures the reaction rates increased to a point where the thermodynamic 

limits were reached giving a more equal conversion for the catalyst 

configurations. The fact that the conversions were equal at low temperatures is 

a good indication that the difference in conversion when the temperature was 

increased is not attributed to a difference in dispersion but rather to internal 

transport resistance. Similar effects due to internal mass transport limitations, 

but for NO conversion during SCR, has been reported by Metkar et al. [60] 

and Nova et al. [61]. 

 

Three different modeling approaches, called modes in the study, were used for 

parameter tuning. The three modes were defined to evaluate the effects of 

including internal transport resistance in the catalyst model and the effect of 

tuning mass transport parameters, the modes are summarized in table 7. 

TABLE 7 Short description of the modes of parameter estimation 

Nr. Modes of parameter 
estimation 

Number of 
parameters 

Discretization 
Segments Layers 

1 
Negligible internal mass 
transfer resistance 17 10 8* 

2 Fixed effective diffusivity 17 10 8 

3 Tuned effective diffusivity 19 10 8 

*Since no concentration gradients in the washcoat were expected two layers would have been enough for 
this case, however eight layers were used for computational consistency 
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Mode 1 represents a case where the effective diffusivities were set to very 

high values (1000 times initial estimates) which, in effect, makes it a case with 

negligible internal transport resistance. Mode 2 and Mode 3 differ only by the 

fact that the latter had enabled estimation of the effective diffusivity whereas 

the former had not. For Mode 2 the effective diffusivities were fixed at the 

initially estimated values. Mode 3 used one effective diffusivity scaling factor 

for small molecules and one for large molecules where all components except 

HC were considered small (see section 0 for more details on mass transfer 

parameter estimation).  

 

The result of the parameter tuning is shown as residual sum of squares for NO, 

HC, CO and NO2 in table 8 where the definition of the residuals was according 

to section 5.3.1. 

TABLE 8 Residual sum square (×105) of every component together with  the 
summation of residual sum square (rightmost column) for the different modes.  

NO HC CO NO2 Sum 
Mode 1 0.67 3.10 4.46 0.83 9.05 
Mode 2 2.09 2.44 6.89 2.64 14.1 
Mode 3 0.77 2.41 3.49 0.97 7.65 

 

The most striking result from table 8 is that the fit of the model with no 

internal transport resistance gave a residual sum of square that was not very 

far from the model where the transport resistance was tuned. There may be 

several reasons for this but the most important one is likely associated with the 

structure of the global kinetic model used.  

If the activation energies of the starting parameters (section 4.2.1) are 

studied it can be noted that EA,7 stands out since it has a positive sign opposite 

to the other activation energies in the denominator. This means that the 

inhibition by NO will increase with temperature and that this factor will result 

in a reduction of the reaction rate with temperature. In other words, it is the 

same kind of phenomena that transport resistance would cause and gives the 

kinetic model the ability to model the effect of mass transport even if it is not 

included in the catalyst model definition. It is not physically realistic for an 

adsorption enthalpy to be endothermic, thus it is questionable whether the 

term K7yNO
0.7 truly accounts for NO inhibition. The starting kinetic parameters 
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were collected from lab-scale data, where the transport resistance was assumed 

to be negligible. It may be speculated that the difficulties encountered when 

tuning a model where the transport resistance is not neglected could indicate 

that the original parameters were in fact influenced by transport resistance, a 

phenomena observed previously [62]. In a model that clearly separates mass 

transport and kinetics, it is in other words both important to have original 

parameters uninfluenced by transport resistance and that the kinetic model 

itself is not constructed to mimic internal transport effects.  

Mode 3 that included parameters to tune the internal mass transport 

resistance did, however, give the best fit to measurement data. This shows that 

including internal mass transport in the model still gave the best conditions for 

parameter estimation but only if parameters to tune the mass transport 

resistance were also included.  6.1.2 MVDA METHOD 
To evaluate if a better fit to measurement data could be achieved with the 

MVDA method, introduced in section 5.4, than a traditional method a new 

parameter estimation was performed. The data was the same as in previous 

section and the model corresponded to the previously introduced Mode 3 

which meant that internal mass transport resistance was modeled and also 

tuned by two parameters. 

Two approaches to the MVDA method were evaluated in the study. The 

first approach (referred to as “1 step”) selected new time points after every 

step in parameter space while the second approach (referred to as “5 steps”) 

took five steps in parameter space before new time points were selected.  The 

difference in performance between the two approaches were, however, small 

and to reduce complexity only the first is included in this summary.  

As discussed in section 5.3.1 the residual definition was changed from being 

based on concentration to be based on conversion to better suit the 

continuously changing selection of data points on which parameter estimation 

was performed. A large fraction of the data was close or equal to 100% 

conversion, especially for HC and CO, since many of the engine operating 

points chosen had high temperatures. It is not desirable to fit parameters to 

data points with close to 100% conversion, since the kinetic parameter 
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sensitivity for these points is very low. Therefore it was necessary to set the 

residuals to zero for certain components at such points in the data set which 

was another update to improve the parameter estimation compared to the 

preceding study (Paper I).  

 

The data point selection with D-optimal onion design was updated as the 

parameters were estimated according to the method described previously. 

Figure 25 shows one example of a selection from which it is clear that certain 

areas were frequently selected from the onion layers with high sensitivity, 

whereas other areas were mainly selected from the onion layers with low 

sensitivity. The relative sensitivity depicted in figure 25 is an indication of how 

sensitive the data point was to changes in parameter value relative to the rest 

of the data set. A value of 0.9 for example, means that the data point had a 

higher sensitivity than 90% of the data set. 

 
FIGURE 25 Measured outlet mole fraction of NO for an example of a selected 
data set colored by relative sensitivity. The order of the engine operating points 
is 1, 7, 2, 8, 3, 4, 5, 6 which were run sequentially for catalyst configurations a, b, 
c and d (separated by blue vertical lines).  

The points selected were similar for the different catalyst configurations 

even though points from catalyst configuration c (data points 28818 to 43240) 

were less frequently selected for the depicted case. The points selected were 

taken from both transient and stationary sections of the data. As expected the 
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data points selected in layers with high sensitivity were mainly taken from 

transient areas while data points selected in layers with low sensitivity were 

mainly taken from more stationary areas.   

 

In figure 26 the evolution of the residual sum of squares of the gas phase 

components (NO, HC, and CO) for the whole data set is shown. The figure 

also shows the final residual sum of squares for a reference case where 

parameter estimation was performed the standard way but with the updated 

residual definition.  

    
FIGURE 26 Residual sum of squares for every set of parameters for the MVDA 
method. The dashed line is the residual sum of squares for the final set of 
parameters from the reference method. The lower frame is a magnification of the 
upper frame. 

The residual sum of squares for the whole data set was only calculated after 

a completed parameter estimation in the time points selected by D-optimal 

onion design.  
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For the reference case, the parameter estimation came to a halt after about 

5×103 core hours of simulation with a residual sum of squares of 3580. The 

reference parameter tuning method was then approaching parameter values 

where the catalyst model was unable to find a stable solution and thereby 

converging to a local minimum. After 5×103 core hours of simulation the 

MVDA method had a residual sum of squares of 8919. It is therefore not 

possible to conclude that the MVDA method enabled a faster residual 

reduction. Instead the advantage with the MVDA methods appears to be a 

reduced risk of converging to a local minimum. Even after the comprehensive 

parameter tuning already performed, the residuals in figure 26 still show a 

declining trend even when the method has reached a residual sum of squares 

below 2500. Although the rate of decline appears to be decreasing, no clear 

optima appeared to have been reached.   6.1.3 COMPARISON TO MEASUREMENT DATA 
The parameter values that gave the lowest residual sum of squares shall be 

regarded as the final tuning results of the method. A compilation of the 

residual sum of sqares for the final results and the starting paramter values are 

shown for every gas phase component in table 9. The results from Mode 3 in 

the first study have been used to recalculate the residual sum of squares with 

the residual definition used in the MVDA study to allow direct comparison. 

TABLE 9 Residual sum square of each component and complete data set 
together with the summation of residual sum square (rightmost column) for the 
different methods.  

NO HC CO Sum 
Start 18986 9736 16954 45675 
1 step 515 1161 730 2405 
Ref*  1238 1173 1169 3580 
Mode 3 1124 1103 895 3123 
* reference case where parameter estimation was performed the standard way 
but with the residual definition used in the MVDA study 

The first notable observation from table 9 is that a better fit was achieved with 

the standard method of parameter estimation if the residuals were defined 

with concentrations (as described in 5.3.1) instead of conversions (as described 

in 5.3.2). This again confirms the importance of defining the residuals 

according to the modeling purpose. In the first case the residuals were 
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designed to suit the standard method while the latter case was mainly designed 

to suit the MVDA method.  

From these results it appears that HC was the most difficult component to 

fit to measurement data for the MVDA method which may have several 

different reasons. Firstly HC and CO concentrations are highly correlated in 

the exhaust of a HDD engine which means that it can be difficult to generate 

experimental data, let alone subsets of data, where the parameters that 

influence each component can be distinguished. Since both components have 

high concentrations at similar time points, the larger residual for CO at the 

starting parameters may have influenced the parameter estimation to initially 

focus more on reducing the CO residual at the cost of decreased sensitivity for 

HC concentration. HC also differs from NO and CO since it was modeled as 

an average of a wide range of hydrocarbons. The physical properties are more 

difficult to model and the HC composition at the catalyst inlet will even change 

between different engine operating points.  

An example of the final results of the tuning of the kinetic and mass 

transport parameters for the different parameter estimation methods are 

shown in figure 27. 

 
FIGURE 27 Measured and simulated outlet concentrations of NO (a), C3H6 (b), 
CO (c) and temperature (d) for a change in operating point from 1 to 7 for 
catalyst configuration c. 

Figure 27 shows that the MVDA method has the best fit for NO with a wide 

margin but that the fit for HC was best for the parameter estimation 
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performed in the preceding study (Mode 3). The NO production before the 

change in engine operating point was likely a result of NO2 reduction by CO or 

HC. These reactions were not included in the kinetic model and could 

therefore not be captured by any of the models. The transients in figure 27 was 

one of four different transients for one of the four different catalyst 

configurations which means that it was only 1/16 of the total data set used for 

parameter estimation. The figure does, however, represent residuals from the 

entire data set shown in table 9 quite well, with the improved fit of NO being 

the main strength of the parameter set estimated with the MVDA method.  6.1.4 FINAL PARAMETER VALUES 
Some interesting features of the final parameters will be discussed here but for 

specific values the reader is referred to Paper II which includes all parameters 

for the simulations in the previous section. As previously observed the sign of 

EA,7 in the starting parameters (see section 4.2.1) made the NO inhibition term 

mimic internal transport resistance since an increase in temperature reduces 

the reaction rate for all reactions. The sign of EA,7 was still positive for all 

evaluated methods but for the MVDA method EA,5 has changed from a 

negative starting value to a positive final parameter value. This means that the 

MVDA model had two terms mimicking internal transport resistance, one as a 

function of NO concentration and the other as a function of HC concentration, 

compared to that for the reference case.  

These values together with the decreased mass transport resistance due to 

increased diffusivity scaling parameters meant that the actual transport 

resistance in the model was reduced and replaced by a fictitious one connected 

to the kinetics. The result of the parameter tuning with MVDA shows the 

importance of having a well formulated model and also displays how an 

efficient parameter tuning method can tune the parameters to less realistic 

values, and still achieve a good fit, even if the model formulation is deficient.  

 

In general the parameter values from the preceding study (Mode 3) were 

closer to the values of the MVDA methods than the reference case (Ref). In 

addition to the residual difference a ten times higher parameter weighting for 

kinetic parameters (see equations 8 and 12) was used in the second study to 
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make the Jacobian less sensitive to numerical noise. It appears that this 

increased parameter weighting has resulted in estimated parameter values 

further away from the original ones for the reference case with an overall 

poorer fit. This could be an effect of some parameters having a large influence 

on the fit at an early stage of the parameter estimation which makes them 

change fast and thereby reach values where the sensitivity for the other 

parameters were low. In other words the risk of finding a local minimum may 

have increased by the increased parameter weighting. One of the aims of the 

MVDA method was to make the influence of parameters more equal and it 

appears that this has prevented the parameters from reaching extreme values 

for the method even though the parameter weighting was high. 

6.2 MULTI-SCALE EXPERIMENTAL 
APPROACH 

In this section the results of the Multi-scale experimental approach on efficient 

parameter estimation is presented. The first section includes the results from 

the development of a catalyst model from lab-scale experiments (Paper III) 

and the second section includes results from the Scania engine rig experiments 

(Paper IV). Both these studies have been introduced in previous sections (3.3, 

and 3.1.2, 3.4 and 4.2.2) including some results and the results presented here 

will therefore be brief. To conclude the Multi-scale experimental approach 

some parameter estimation results are presented where the parameters from 

the lab-scale pre-study were re-tuned to the Scania engine rig data. 6.2.1 LAB-SCALE PRE-STUDY 
The objective of the lab-scale pre-study was to develop a kinetic and transport 

model for a DOC that obtained a satisfactory compromise between accuracy, 

computational demands and robustness for simulation of transient full-scale 

operation. Specifically the model should account for surface concentrations of 

key species needed to capture transient kinetic features for typical lean 

exhaust engine conditions. In addition, the model should properly account for 

transport limitations and distinguish them from reaction kinetics. 

The structure of the kinetic model has already been presented in section 

4.2.2 and was a very important output of the study. For the parameter 
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estimation half of the experimental data was used in the parameter estimation 

process and half of the data was used for verification. The experiments used 

for parameter estimation were selected with the principle that the three 

different inert washcoat loadings (table 2) should be represented for every 

experimental type (table 4). The tuned catalyst model showed good agreement 

with measured conversion levels for the light-off experiments and inert 

washcoat thicknesses indicating a successful separation of mass transport and 

kinetics. The main purpose of the model was however to be used for more 

complex gas mixtures. To demonstrate the performance of the model at more 

engine like conditions the simulation of one of the so called full gas mix 

experiments is shown in figure 28. 

 
FIGURE 28 Experimental and simulation results for full gas mix for catalysts 6 
(see table 2) with 5 g/ft3 platinum loading and 2 g/inch3 inert washcoat loading. 
The inlet concentrations were 100 ppm CO, 800 ppm NO, 50 ppm HC and 80 
ppm NO2. 

Overall the fit is very good even though the simulated CO concentration is 

somewhat higher than the measured values around 2000 s. To evaluate the 

kinetic model the surface coverages and the reaction rates for oxidation of CO 

and HC are shown in figure 29. 
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FIGURE 29 Simulation results of full gas mix experiment with catalyst 6 a) 
coverages b) reaction rates for oxidation of CO and HC 

 As the analysis of the experimental data suggested in section 4.2.2, NO2 is 

initially the most active oxidant giving it a dominant surface presence at low 

temperature. This is also seen in panel b) in figure 29 where CO oxidation by 

NO2 (r10) is the fastest reaction during the first (and last) 3000 s. Due to the 

high NO2 coverage, the CO coverage will remain low throughout the 

experiment and thereby negate any CO poisoning effects. As the temperature 

increases the oxygen coverage increases as reactions with oxygen as oxidizing 

species (r9 and r11) take over as the fastest reactions. The role of HC oxidation 

by NO2 (r12) is difficult to identify from the measurement data but from the 

simulation results it appears that the reaction becomes active at the same 

temperature as the regular oxidation of HC by oxygen (r11). Since CO is 

oxidized only by oxygen at the temperatures where r12 is active, the reaction 

may be necessary to achieve NOx concentrations that agree with the 

experimental data. 
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6.2.2 SCANIA ENGINE RIG 
In this section two examples of results from experimental types 2 and 3 

described in section 3.3.2 are shown as a demonstration of the exhaust gas 

compositions made possible by the Scania engine rig set-up.  

  
FIGURE 30 NO and NO2 concentrations, and temperature in the test object inlet, 
and urea dosage for one experiment of type 2. Green dashed lines show the 
thermodynamic equilibrium concentrations for the NO oxidation reaction. 
Yellow marking show NO concentrations close to zero.  

In figure 30 one experiment of type 2 is shown. In this type of experiment 

the SCR and urea injection makes it possible to achieve a wide range of 

NO2/NOx ratios and concentrations. Two cycles with increasing urea dosage 

(0%, 30%, 60% and 90% of stoichiometric NOx reduction) were performed in 

the experiment. For the results shown in figure 30 valve 2 was closed and valve 

1 was fully open (see figure 11 for engine rig layout). A NOx composition 

containing close to 100% NO2 can be observed at high urea dosages for some 

cases (see yellow marking in figure 30). CO and HC concentrations are not 

shown since the conversions of these components were always close to 100 %.  
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FIGURE 31 HC and CO concentrations, valve 1 position, and set-point for urea 
dosage for one experiment of type 3 

Figure 31 and figure 32 show the results of one experiment of type 3. Figure 31 

shows sequences where the CO concentration was high at the same time as the 

HC concentration was close to zero. This behavior is even more pronounced 

for experiments performed at engine operating points with higher exhaust 

temperatures. Figure 31 also shows that both HC and CO were unaffected by 

the urea injection. 

 
FIGURE 32 NO and NO2 concentrations, temperature, and urea dosage for one 
experiment of type 3. Green dashed lines show the thermodynamic equilibrium 
concentrations for the NO oxidation reaction. Purple markings show time range 
where CO concentration exceeds NOx concentration. 

Figure 32 shows that NO and NO2 were affected by both the urea injection 

and the DOC bypass ratio. At high urea injection all NO2 and most NO were 

consumed.  
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6.2.3 PARAMETER ESTIMATION 
With the kinetic model presented in the lab-scale pre-study (section 6.2.1) a 

new parameter tuning was performed on a selection of the experiments from 

the engine rig set-up presented in section 3.3. The results presented in this 

section are preliminary and the parameters shown represent the best fit at the 

printing of this thesis. The parameter tuning process has not converged and the 

most favorable settings for the parameter estimation, such as residual 

definition and experimental selection, may not have been found. Nevertheless 

some results are presented to conclude the Multi-scale experimental approach. 

 

For the parameter tuning, four experiments of each type (see section 3.3) were 

used giving 12 experiments in total. The result from one experiment of type 2 

is shown in figure 33. 

  

FIGURE 33 Parameter estimation result of one type 2 experiment with a full scale 
5 g Pt/ft3 catalyst with no inert washcoat layer (catalyst e in table 1) 

The model showed a good fit to experimental data for NO and NO2 even 

though the model appears to have overestimated the NO conversion to NO2 

somewhat. To also evaluate the fit of HC and CO one experiment, of type 3 is 

shown in figure 34 and one experiment of type 1 is shown in figure 35. 
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FIGURE 34 Parameter estimation result of one type 3 experiment with a 5 g Pt/ft3 
catalyst. Measured Tout is considered to describe the temperature transients in the 
catalyst adequately since it is within 2°C from both simulated Tout and measured 
Tin. 

Panels b) and d) in figure 34 show that the model overestimated both the 

HC and CO conversion. The measured CO showed a decreasing conversion 

with time at high CO levels. This could be an effect of decreasing temperature 

since the temperature was close to the light-off temperature observed in the 

lab-scale experiments, see figure 18. There is, however, also a possibility that 

the trend was a result of competitive adsorption. Neither of these phenomena 

was described well enough by the model at the current stage of the parameter 

tuning process.  

The low temperature in figure 34 means that NO oxidation in the upstream 

DOC was low and thereby the effect of the urea dosage was less than in the 

experiment shown in figure 32. The model also has difficulties reproducing the 

behavior of the NO conversion where the model predicted a near constant NO 

conversion while the measurement switched between zero conversion and 

what was predicted by the model, see panel a). The low measured conversion 

of NO coincides with high concentrations of both HC and CO which indicates 

that these components may have inhibited the NO oxidation. The source of the 

inhibition could be both competitive adsorption and NO2 reacting as oxidizing 

agent. 
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FIGURE 35 Parameter estimation result of one type 1 experiment with a 5 g Pt/ft3 
catalyst. Measured Tout is considered to describe the temperature transients in the 
catalyst adequately since it is within 2°C from both simulated Tout and measured 
Tin. 

The CO conversions in panel d) in figure 35 show a similar trend to what was 

observed for the experiment of type 3 in figure 34 that had similar 

temperature. Both the HC conversion and the NOx concentrations are, on the 

other hand, distinctively different. NO was formed and NO2 was consumed for 

all time points (panels a) and c)) and the measured HC conversion was higher 

than the modeled (panel d)). The kinetic model was able to reproduce this 

behavior but the fit is not as good as in previously presented simulations.  

For the model to reproduce the measured outlet concentrations when the 

inlet NO2 concentration was at the higher levels almost all HC and CO would 

need to be oxidized by NO2. This was clearly not the case since the modeled 

HC conversion was close to 0% when the NO2 inlet concentration was high. 

The reaction between NO2 and HC did however take place in the model at the 

lower NO2 inlet concentrations and was also the reason why the simulated 

conversion of HC was higher than in the experiment in figure 34. Even though 

the fit to measurement data could be improved the data clearly indicates the 

necessity of including both oxidation of CO and HC by NO2 in the model. 

  

The final parameter values of the parameter tuning are shown in table 10 

together with the parameters from the lab-scale pre-study. 
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TABLE 10 Final parameters from full scale parameter tuning compared to 
parameters from lab-scale pre-study 

Tuned parameters 
 Pre-study Full scale  Pre-study Full scale 

A2 2.08×107 5.10×106 EA.2 5.61×104 5.07×104 
A4 1.32×108 3.09×107 EA.4 5.02×104 4.93×104 
A5 1.70×105 3.15×105 EA.5 3.39×104 3.08×104 
A6 1.33×1010 1.16×1010 EA.6 1.25×105 1.24×105 
A8 6.15×1016 1.14×1015 EA.8 1.61×105 1.50×105 
A9 2.05×1014 2.18×1018 EA.9 9.91×104 1.31×105 
A10 30.5 4.39×102 EA.10 3.32×103 1.38×104 
A11 2.44×108 6.56×102 EA.11 5.08×104 5.00×103 
A12 1.38×1013 3.82×1010 EA.12 1.03×105 8.34×104 

fDscl,S
† 14.4 6.96 fDscl,L

† 12.4 5.35 
 Fixed parameters  

A1 2.49×106 EA.1 2.10×104 
A3 2.86×107 EA.3 0 
A7 5.44×103 EA.7 0 

† EffecƟve diffusivity scaling for small (S) and large (L) molecules 

If the pre-exponential factors and activation energies are studied it can be 

concluded that most tuned parameters are close to the original values from the 

pre-study. The most noteworthy exceptions are the parameters influencing 

reaction 10 and 11. Reaction 10 is the oxidation of CO by NO2 and in the lab-

scale pre-study it was concluded that the experimental data available did not 

give the best conditions for modeling this reaction. This was also confirmed by 

large confidence intervals. It is therefore not surprising that the parameters 

have changed significantly when tuned to a different data set. 

Reaction 11 is the oxidation of HC by O2 and compared to the parameters 

from lab-scale the tuned parameters have considerably lower pre-exponential 

factor and activation energy. This is likely a result of a lack in complexity in 

the experimental data chosen for parameter tuning. The experimental data 

where the conversion for HC is high also has high conversion for CO and a 

production of NO from NO2. This means that it is difficult to distinguish if the 

produced NO is a product of CO or HC being oxidized. From the tuned kinetic 

model it appears that HC is mainly oxidized by NO2 while CO is oxidized by 

both O2 and NO2. For the experiment in figure 35 oxidation of HC by both O2 

and NO2 does however appear to be necessary which indicates that further 

parameter estimation may increase the importance of O2 oxidation of HC. 
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7 CONCLUSIONS 
The conclusions will be divided into three parts where the first part is the 

conclusions from the Engine rig only approach and the second part is the 

conclusions from the Multi-scale experimental approach. The third part is a 

short summary of lessons learned along the way that did not end up in any of 

the scientific results.  

7.1 ENGINE RIG ONLY APPROACH  
Several conclusions could be drawn from the parameter estimation performed 

in Paper I and II both regarding modeling and parameter estimation. The most 

important conclusion from Paper I was that the best fit with a catalyst model 

with internal transport resistance could be achieved if some parameters 

affecting the internal mass transport (in this study effective diffusivity) were 

tuned in addition to the kinetic parameters. This indicated that internal 

transport limitations is of importance for a DOC in a heavy-duty vehicle 

aftertreatment system.  

The study also showed that it is still possible to obtain a good fit for a model 

with negligible internal transport resistance since kinetic parameters could 

compensate for transport limitations. This highlighted the inherent difficulties 

using kinetic models with high parameter correlation and also showed the 

importance of using a kinetic model that has an intrinsic kinetic structure.  

The parameter estimation performed with the MVDA method presented in 

Paper II displayed a better overall fit for all components resulting in a residual 

sum of squares 32% below what was achieved with a conventional method 

used as reference. The method displayed less tendencies to converge to local 
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minima and to reach areas where the catalyst model was unstable, however, 

the method was more computationally expensive than the reference method. 

7.2 MULTI-SCALE EXPERIMENTAL 
APPROACH 

The conclusions from the lab-scale pre-study were either based directly on the 

experimental results or were a product from the process of creating a detailed 

kinetic model.  

The light-off experiments and the gas mix experiment with different catalyst 

configurations showed that NO2 is a stronger oxidizing agent than O2 and plays 

an important role at low temperature (<120°C). The experimental data also 

showed a clear effect of increased transport resistance for HC and CO but it 

was also observed for NO. 

From the modeling the most important conclusion was that a good fit to 

measurement data could be achieved with a model using surface adsorbed 

atomic oxygen, CO and NO2, but not hydrocarbons and NO. The use of 

different thicknesses of an inert washcoat layer closest to the gas bulk also 

appeared to improve the conditions for separating kinetics from transport 

phenomena 

 

The most apparent advantage with the experimental set-up of the Scania 

engine rig was the possibility to achieve fast transients in concentration with 

only small variations in temperature. Furthermore the experimental data has 

also shown that the following engine rig exhaust gas features were enabled by 

the experimental set-up that would not be possible with a standard engine rig: 

• High CO concentrations with HC concentrations close to zero 

• NO concentrations close to zero with significant NO2 concentration 

The reduced correlation between temperature and concentrations, but also 

between individual concentrations, significantly widen the possible 

experimental conditions available and may be of great aid in full scale 

parameter tuning and catalyst modeling.  

 

The goal with the Multi-scale experimental approach was to improve the 

conditions for effective parameter estimation mainly by providing new 
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possibilities for kinetic model development. A more detailed kinetic model 

with less correlation between parameters and better separation of kinetics and 

mass transport replaced the global kinetic model from the Engine rig only 

approach. The full scale data was also generated by a more refined set-up 

allowing variables (concentrations) to be varied more independently than in 

the standard engine rig used in the Engine rig only approach. The conclusions 

from the two individual studies are given above but final results and conclusion 

from the final study cannot be given since the parameter estimation is only 

initiated and not completed. Some observations can however already be made. 

• The model fit for NO and NO2 was very good in the absence of CO 

and HC 

• Oxidation of CO and HC  with both O2 and NO2 appeared to be 

important to include in the kinetic model 

7.3 LESSONS LEARNED 
One of the assumptions with the catalyst model used in all studies was that all 

catalyst channels have the same inlet conditions and that radial temperature 

gradients were neglected. It was therefore very important to reduce 

temperature gradients both in the inlet and in the catalyst itself when 

performing experiments. For the first experiments (Paper I and II) the 

gradients were notable but for the study in Paper IV extra insulation before 

the catalyst proved to reduce the gradients significantly. Even at lab-scale 

there were some indications of radial temperature gradients that could 

contribute to the hysteresis of NO in the light-off experiments. This problem 

could most likely have been prevented if the temperature transients of the lab-

scale experiments were slower. 

 Detailed kinetic models are more suited for models where mass transfer 

and kinetics are to be separated but will also lead to extra stability issues for 

the catalyst model. Since the reactions are more correlated, through the 

surface coverage, than for a global model it is more challenging to find 

parameters that make the model stable but at the same time provide 

reasonable conversions. A large effort was put into evaluating different sets of 

starting parameters in Paper III before one was found that gave reasonable 

conversions for all components. In retrospect it would probably have been 
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more feasible to first make a comprehensive parameter screening instead of 

relying on the parameter estimation algorithm to tune initial parameters giving 

very poor fit to measurement data. This is also one of the weaknesses with the 

gradient search method. When the fit of a model is poor the parameter 

sensitivity is often low which means that the algorithm may encounter 

difficulties finding a direction in which the parameters should be changed to 

reduce the residual. The large computational effort put into finding good 

starting parameters also meant that not enough resources were available to 

evaluate the MVDA method for the parameter estimation performed in the 

Multi-scale experimental approach.  

 

The experimental work in this study has been performed by the industrial 

partners (Johnson Matthey and Scania). This meant that the experiments were 

planned in detail far in advance to fit in the experimental schedules of the 

facilities. The advantage was that the project could focus on the modeling at 

the same time as the experimental work was professionally carried out. The 

drawback was, however, little flexibility to change the experiments as results 

were generated and a resulting long waiting time to perform complementary 

experiments.    

An important lesson learned was therefore to include the need for 

complementary experiments in the experimental plan and to avoid trying to do 

all experiments for a study at one occasion. The result of not using this 

approach was that a considerable amount of the data had a high conversion 

both for lab and engine rig experiments which is not desirable for parameter 

estimation. In general lower platinum loadings would therefore have been 

better, especially in the engine rig experiments.  
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NOMENCLATURE 

ABBREVIATIONS 

ASC Ammonia slip catalyst 
CFD Computational fluid dynamics 
cpsi Cells per square inch 
DOC Diesel oxidation catalyst  
DoE Design of experiments 
DPF Diesel particulate filter 
EGR Exhaust gas recirculation 
HC Hydrocarbons 
HDD Heavy duty diesel 
MVDA Multivariate data analysis 
PCA Principal component analysis 
PM Particulate matter 
Pt Platinum 
SCR Selective catalytic reduction  

VARIABLES 

A Pre-exponential factor 
C Scores matrix 
D Gas diffusivity 
Deff Effective diffusivity 
DK Knudsen diffusivity 
E Error matrix 
EA Activation energy 
f Residual function 
fD Washcoat pore factor 
fD,scale Scale factor for fD 
G Inhibition term in global kinetic model 
J Jacobian matrix 
k Reaction rate coefficient 
K Reaction rate coefficient for inhibition term 
Kp Equilibrium constant for NO oxidation 
kref Centered reaction rate coefficient 
L Loading matrix 
M Data matrix 
n Number of data points used for residual calculation 
p Parameter vector 
P Pressure 
pA Parameter value for A tuning 
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pD,scale Parameter value for fD,scale tuning 
pEa Parameter value for EA tuning 
r Reaction rate 
R Ideal gas constant 
res Residual 
S Residual sum of squares 
T Temperature 
Tref Reference temperature 
Ts Solid temperature 
wA Parameter weight factor for A 
wD,scale Parameter weight factor for fD,scale 
wEa Parameter weight factor for EA 
x Variables vector 
X Mean absolute conversion 
y Mole fraction 
ymodel Simulated response 
yobserved Observed response 
z Residual function  
ΔHnet Overall enthalpy change for NO oxidation reaction 
ΔSnet Overall entropy change for NO oxidation reaction 

SUPERSCRIPTS AND INDEXES 

i Component 
j Reaction number 
k Segment (axial tank) 
o Original parameter value 
T Transposed 
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