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Testing numerical implementations of strong-field electrodynamics
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We test current numerical implementations of laser-matter interactions by comparison with exact analytical
results. Focusing on photon emission processes, it is found that the numerics accurately reproduce analytical
emission spectra in all considered regimes, except for the harmonic structures often singled out as the most
significant high-intensity (multiphoton) effects. We find that this discrepancy originates in the use of the locally
constant field approximation.
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I. INTRODUCTION

The study of classical and quantum electrodynamical
(QED) processes in strong background fields is currently a
highly active research area, as advances in technology now
allow fundamental physics to be tested using intense laser
light [1–7]. The basic QED processes in strong backgrounds
were thoroughly investigated soon after the invention of the
laser itself [8,9], using simple laser field models. However,
there is a limit to the field complexity and the number of
reacting particles which can be considered before analytical
calculations become too unwieldy. Numerical investigation
offers one route out of this impasse.

An increasingly common numerical model of QED in
intense fields is based on particle-in-cell (PIC) codes. There are
a number of such codes in use [10–12], and while they differ
in the details, they share a common implementation of laser-
matter interactions; particles in an intense field are propagated
classically thorough discrete time steps, and statistical event
generators are used to determine, at each step, the likelihood
and result of various QED processes [13–17] (for reviews see
Refs. [18,19]).

In this article we attempt to assess the accuracy of these
numerical techniques in the high-intensity regime appropri-
ate to modern laser systems which reach, and will soon
exceed [20–22], focal intensities of 1022 W/cm2 [23]. For
some previous comparisons of theory and simulation, see
Refs. [18,24].

While existing analytical results are largely confined to
scattering probabilities (i.e., asymptotic results) in simple
field configurations and for small numbers of initial and final
state particles, the aim of numerical codes is to simulate, in
real time, many-particle interactions in focused, structured
laser pulses. Despite these differences, we show that it
is indeed possible to make a direct comparison between
numerical predictions and exact analytical results, and thereby
test the assumptions that go into the numerical model. Our
interest here is not in providing phenomenological results for
comparison with experiment, but in addressing the question of
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whether the currently employed statistical modifications to PIC
simulations can reproduce well-known and well-understood
intensity effects in QED. We can therefore employ a simple
beam model in order to have a reliable analytical prediction.
Furthermore, we restrict our attention to multiple-photon
emissions from an electron in an intense field and consider
the best-known signatures of intensity and multiphoton effects
from the literature.

The article is organised as follows. We begin in Sec. II by
briefly reviewing the main features of the photon emission
spectrum in nonlinear Compton scattering. There follows a
review of commonly used numerical schemes. In Sec. III we
describe the observables of interest and compare the analytical
and numerical calculations of these for a variety of laser and
electron parameters. An analysis of some differences is given
in Sec. IV and we conclude in Sec. V.

II. APPROACHES TO STRONG-FIELD QED

We consider an electron moving in an electromagnetic field,
and its emission of photons. We model the background as a
plane wave, a decision motivated not by phenomenological
interest but rather by a desire to perform as rigorous a
comparison as possible; everything we need can be calculated
exactly in plane waves.

The restriction to photon emission implies neglecting,
e.g., pair production from emitted photons [25–29] or pair
production via trident [30–34]. Here it is useful to recall the two
standard parameters important in this analysis, a0 = eE/mω

(for electron mass and charge m and e, external field strength
and frequency E and ω, where � = c = 1), which quantifies
the classical nonlinearity, and χe = e|F · p|/m3 ∼ γE/Ecr,
where γ is the electron’s gamma factor and Ecr = m2/e [35–
37], which quantifies the quantum nonlinearity [38]. For χe �
1 quantum effects generally become probable and photon-
seeded pair production is more likely to occur. One finds
(using the constant crossed field model) that electron-seeded
pair creation via a virtual photon can be neglected when
a0 � 1 [31,34], as can secondary photon emission via a
virtual electron [39]. Further, radiation reaction effects become
important only when αa0χeNc ≈ 1, where Nc is the number
of cycles in the field [7,40].

Thus, in order to study photon emissions without additional
effects, one should be in a regime where χe is less than unity.
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We require however a0 � 1 so that we have strong nonlinear
effects, and γ may still be large, provided χe � 1. We therefore
restrict ourselves to this regime. We stress though that our
analysis can be extended, as will become clear, both into
the quantum regime and to, e.g., stimulated pair production,
which exhibits an emission spectrum similar to that of photon
emission [25–29].

A. Nonlinear Compton scattering

With “nonlinear Compton scattering,” we refer to the
emission of a photon from an electron in a plane wave
background. For simplicity of calculation and presentation
we consider a circularly polarized, monochromatic plane wave
traveling in the positive z–direction. The electromagnetic fields
are therefore composed of photons of four-momentum kμ,
where k · x = ω(t − z), and take the form, writing φ = k · x

from here on,

Emono.(x) = E(cos φ, sin φ,0),
(1)

Bmono.(x) = E(−sin φ, cos φ,0).

The intensity parameter a0 characterizes the strength of
interaction between the wave and the electrons.

Consider an electron with initial momentum pμ and final
momentum p′

μ after emitting a photon of momentum k′
μ.

The probability of emission P is calculated as usual from
the appropriate S-matrix element. Due to the periodicity
and infinite duration of the wave, this probability is infinite.
However, dividing out this infinite factor, the emission rate W

per unit φ (lightfront time) is finite and can be written as a sum
over partial rates Wn [8,9],

W =
∞∑

n=1

Wn, (2)

where Wn describes emissions in a finite kinematic range
that correspond to a “harmonic.” (Comprehensive discussions
can be found in any of Refs. [3,7–9,41–44]; we review here
only the relevant details.) The total and partial rates can be
expressed as integrals over differential rates in the outgoing
photon frequency and momentum. Although it is common to
plot the spectrum as a function of frequency, a variable arising
naturally in the QED calculation is the “lightcone momentum
fraction” x,

x = k · k′

k · p′ = k · k′

k · p − k · k′ . (3)

Defining the effective mass squared m2
∗ = m2(1 + a2

0) [45,46],
it can be shown that the kinematically allowed range of the nth
harmonic is (see, e.g., Ref. [41])

0 � x � yn, yn ≡ n
2k · p

m2∗
. (4)

The nth harmonic rate Wn vanishes outside of this range. The
harmonic decomposition (2) is due to the periodicity of the
beam, but in fact any stretch of uniformly periodic field leads
to such effects and provides the experimental signature of, e.g.,
the intensity-dependent effective mass [47]. Further, harmonic
generation has been searched for and observed in several
experiments [48–50].

Note that a given frequency is not necessarily found in a
single harmonic range, as these can overlap or be disjoint in
frequency space depending on initial conditions and harmonic
number [41]. The allowed scattered photon frequencies ω′

n in
the nth harmonic obey, assuming a head-on collision between
the electron and laser to illustrate,

ω′
n = nω

1 + jn(1 − cos θ )
, (5)

where θ is the photon scattering angle relative to the electron
direction and

jn = nω/m − γβ + a2
0γ (1 − β)/2

γ (1 + β)
. (6)

The behavior of jn characterizes much of the spectrum.
When jn < 0 (jn > 0) the emission frequency is maximal
for backscattering, θ = π (forward scattering, θ = 0). From
Eq. (5) we see that ω′

n(θ = 0) = nω, so that for jn < 0 the
scattered frequencies ω′

n are blue-shifted relative to n× the
laser frequency, and if jn > 0 they are red-shifted.

The emission spectrum acquires some particularly dis-
tinctive features for initial conditions such that jn = 0 for
some n. In that case ω′

n loses its θ dependence and the
nth harmonic range collapses to a single point ω′

n = nω.
Neighboring harmonics also collapse to very narrow peaks,
resulting in a line-spectrum region (a comblike structure)
within the full spectrum. Setting jn = 0 in order for the nth
harmonic to collapse, we find that a0 and γ must be related
by

a2
0,crit(n) ≡ 2(γβ − nω/m)

γ (1 − β)
. (7)

The behavior of jn gives us a useful separation of the
system into three parameter regimes: “subcritical,” a0 < a0,crit;
“supercritical,” a0 > a0,crit; and “critical,” a0 ≈ a0,crit. These
three cases are examined numerically below.

B. The numerical approach

Two limitations on what can be achieved using exact
analytical methods are as follows. The first is that the
external fields in which scattering amplitudes can currently
be calculated exactly do not include the spatial focusing of
laser fields employed in experiments. The second limitation is
that the complexity of S-matrix elements grows rapidly with
the number of initial and final particles. A complete analytical
description of a cascade [13–17], for example, is extremely
challenging. We therefore turn now to the numerical models
which offer a route to potentially overcome these limitations.
We outline the shared general principles of currently employed
codes, reviewed in Refs. [18,19], beginning with the use of the
locally constant field (LCF) approximation.

In the high-intensity limit a0 � 1 the size of the radiation
formation region is of the order λ/a0 	 λ, where λ = 2π/ω

is the laser wavelength [38]. Thus the laser field varies on a
scale much larger than the formation region and so can be
approximated as locally constant and crossed [8], allowing
us to determine the probability of photon emission using
the expression for the constant crossed field rate � per unit
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time,

d�

dχγ

= αm√
3πγχe

[(
2 + x2

1 + x

)
K2/3(χ̃ )−

∫ ∞

χ̃

dy K1/3(y)

]
,

(8)

where Kν is the modified Bessel function, χγ = e|F · k′|/m3

for the emitted photon with momentum k′
μ, note that x =

χγ /(χe − χγ ), and χ̃ = 2x/(3χe). Although d�/dχγ diverges
at small χγ , the total rate of photon emission �, given by
integrating Eq. (8) over all χγ ∈ [0,χe], is finite. (This apparent
softening of the usual infrared divergence in QED is explained
in Ref. [51].) The rate (8) incorporates an averaging over
electron spin and photon polarization as typical numerical
codes do not resolve these degrees of freedom. As such,
we compare numerical results with the appropriate spin and
polarization-averaged analytic results. (Note that polarization
could be included in the codes using, e.g., the results of
Ref. [24].)

In numerical simulations, the electron is evolved along a
classical trajectory over discrete time steps. After each step
t the following statistical routine is used to calculate the
probability of photon emission and to correct the electron’s
momentum. A uniform random number r ∈ [0,1] is generated
and emission is deemed to occur if the condition r � �t is
satisfied, under the requirement �t 	 1. Note that d�/dχγ

(and �) are time-dependent quantities in the simulation, due
to the temporal variation of the laser pulse and electron
motion. Given that an emission event occurs, a second uniform
random number ζ ∈ [0,1] is generated and the photon’s χγ

(and therefore its frequency) is determined as the root of the
sampling equation1

ζ = �(t)−1
∫ χγ

0
dχγ

d�(t)

dχγ

. (9)

The photon momentum is then determined by χγ together with
the assumption that the electron emits in the forward direction
at high γ . In reality the emissions will be concentrated in
a cone of opening angle γ −1 [41,53]. Finally, the emitted
photon momentum is subtracted from the electron momentum,
i.e., the electron is recoiled, imposing the conservation law
χe → χe − χγ [38], and the simulation proceeds by propa-
gating the electron (via the Lorentz equation) and the photon
(on a linear trajectory) to the next time step. In this way,
multiple emissions are described as sequential single-photon
emissions, as in Eq. (8), occurring at discrete time intervals.
Analytical discussions of double-photon emission are given in
Refs. [54,55].

III. COMPARISON OF ANALYTICAL AND
NUMERICAL RESULTS

The numerical model described above is not equivalent
to the calculation of transition amplitudes in QED. In QED,

1In practice an infrared cutoff is used; i.e., the integral is performed
from a lower limit χγ ∼ 10−5, rather than zero, so that the codes do
not include the emission of large numbers of low energy photons,
which does not appreciably affect the electron’s dynamics [18,52].
For an alternative event generator, see, e.g., Ref. [18].

scattering amplitudes are determined using asymptotic in and
out states. No assumptions are made about the electron’s
trajectory in the laser. In the numerical method, on the other
hand, we constantly track the electron’s trajectory, and asymp-
totic scattering probabilities are combined with statistical
routines to determine the likelihood of local transitions. As
such the codes work at the level of the probability, or cross
section, rather than at the amplitude level. This suggests that
interference effects, which are an essential part of quantum
mechanics, may not be properly included in the codes. (Indeed,
this is why including higher-order processes such as trident is
conceptually difficult.) In short, it should be checked whether
the numerical model agrees with theory.

We calculate and compare analytical and numerical predic-
tions for the observable Nγ , the average number of emitted
photons. This is clearly something which can be easily
extracted from the numerics; we run the code many times,
always with the same initial conditions, and count the number
of photons emitted into a particular (binned) angle with a
particular (binned) frequency.

It may not be immediately obvious how to perform the ana-
lytical calculation, as we have described only the single-photon
emission probability and have already mentioned the difficulty
with going to higher orders. Fortunately, in the regime in which
we are working, knowing the one-photon emission probability
is enough because of the well-known infrared (IR) properties of
electrodynamics [56–59]; see Ref. [60, §6] for an introduction.

The “probability” P can only be interpreted as such when
it is much less than unity, due to neglected higher-order
corrections from multiple soft photon emissions.2 It is more
properly interpreted as the expected number of emitted photons
Nγ , which is why it easily exceeds unity [60]. Similarly,
the differential probability gives the differential number of
produced photons, so

P → Nγ =
∫

dωd�
d2Nγ

dωd�
. (10)

This allows us to consider multiple emissions using the
well-understood probability of single emission. This, and the
identification (10), holds for low energies, as can be confirmed
by calculating Nγ classically and comparing with the classical
limit of the QED emission probability, as in Ref. [63].

For the purposes of this study we use the single-particle
QED code SIMLA, which works in the typical manner [64,65].
While a monochromatic wave gives the easiest analytical
calculation of the emission spectrum, it is more difficult to
work with numerically since we cannot run the simulation
for an infinite period of time. However, the spectrum will be
very similar to that in a plane wave with a long super-Gaussian
time envelope, as demonstrated in Ref. [47]. For our numerical
simulations we therefore take a circularly polarized plane wave
with a 100-fs degree-8 super-Gaussian time envelope,

Esuper(x) = e−( 2φ

d
)8 ln 2Emono.(x), (11)

in which d = 100 fs is the full width at half maximum and
this is practically equal to the full duration of the pulse,

2IR effects in single- and multiple-photon emissions in background
fields are studied in Refs. [51,61,62].
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FIG. 1. (Color online) Comparison of the electric field strength
(normalized to peak field strength) in one of the polarization directions
for an infinite plane wave (dashed blue line) and a degree-8 super-
Gaussian wave of 100 fs in duration (solid red line) (λ = 0.8 μm).

i.e., the pulse has almost a flat top, as shown in Fig. 1.
We now investigate three parameter regimes and present
illustrative comparisons between theory and numerics. (In the
following plots the analytical amplitudes are normalized using
the numerical results.)

A. Supercritical

We begin with a supercritical setup, a0 > a0,crit(1) (which
gives a0 > a0,crit(n)∀ n ∈ N+). Specifically, we choose the
parameters a0 = 80 and γ = 10 such that a0 > a0,crit(1) ≈ 20.
The analytical and numerical spectra are plotted in Figs. 2
and 3. It can be seen in Fig. 2 that the frequency spectra
calculated using the two methods agree extremely well. Both
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FIG. 2. (Color online) Comparison of analytical and numerical
frequency emission spectra in the supercritical regime. The parame-
ters are a0 = 80 and γ = 10. The black line shows the analytical
calculation, and the blue (gray) line shows the statistical photon
distribution from several thousand numerical runs.
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FIG. 3. (Color online) Comparison of analytical and numerical
angular emission spectra in the supercritical regime. The parameters
are a0 = 80 and γ = 10. The black line shows the analytical
calculation, and the blue (gray) line shows the statistical photon
distribution from several thousand numerical runs.

have the same structures and shape and both decay at the same
rate. The only difference is that the numerical spectra falls off
for low ω′, but this is simply because of the IR cutoff in the
code and should not worry us. Note that the low-energy cutoff
is not sharp because it is defined in terms of a minimum χγ

rather than frequency.3

The angular emission rates are plotted in Fig. 3 where it
can be seen that there is also fairly good agreement. The peaks
for the numerical and analytical cases are in approximately the
same locations and the rates of falloff for angles larger than the
peak value are almost identical. Nevertheless the two spectra
disagree for small angles. The reason for this is likely to be due
to the fact that the code assumes that photons are emitted in
the direction of motion of the electron, whereas in reality they
would be emitted in a cone of opening angle 1/γ ∼ 0.1 rad.

B. Subcritical

The next setup we consider is the subcritical regime in
which much of the clearly identifiable structure in the emission
spectrum is found in the low-lying harmonics [41]. These,
being characterized by frequencies equal to multiples of the
laser frequency [with an intensity-dependent red-shift, see
Eq. (5)] are often located below the infrared cutoff imposed in
the codes. In order to lift these into the part of the spectrum
resolved by the code we choose γ = 9000 and again take
a0 = 20 (χe � 0.4). For these parameters all harmonics up to
n ≈ 109 are blue-shifted; due to the falloff of the spectrum we
can effectively say this applies to all harmonics. The frequency
spectra are plotted in Fig. 4 and the angular rates in Fig. 5. In
both cases there is, in general, a very good agreement between

3Additionally, there will be some noise at the low-frequency end of
the spectrum from when the electron is in the lower intensity rise and
fall of the super-Gaussian field.
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FIG. 4. (Color online) Comparison of the analytical (black) and
numerical (blue or gray) frequency spectra for the case of subcritical
a0. The parameters are a0 = 20 and γ = 9000.

the numerical and analytical results. However we see in Fig. 4
that the structures of individual harmonics, which in this case
sit at the lower frequency end of the spectrum, are missed by
the code; instead there appears to be a smooth interpolation
through them.

C. Critical

In the previous example we chose parameters to blue-shift
the low-lying harmonics to high frequency. This required
very high energy electrons, but even for moderate (readily
attainable) energies and laser intensities the emission spectrum
can naturally feature interesting structures which should be
reproduced by the codes, as they fall into resolved energy
regimes. One such feature is described by a collision at critical
parameters in which a harmonic in the middle of the spectrum
collapses.

FIG. 5. (Color online) Comparison of the analytical (black) and
numerical (blue or gray) angular emission rates for the case of
subcritical a0. The parameters are a0 = 20 and γ = 9000.
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FIG. 6. (Color online) Comparison of the analytical (black) and
numerical (blue or gray) frequency spectra for the case of critical a0.
The parameters are a0 = 30 and γ = 15.078.

We set the laser intensity to be a0 = 30 and take γ =
15.078. (There is a degree of fine-tuning here.) From Eq. (7)
we see that this corresponds to a collapse of the particular
harmonic n = 35 000 at ω′ = 0.054 15 MeV. The value of n

is irrelevant, what is important is the form of the spectrum;
a harmonic collapses to a peak at a single point in the
high-energy part of the spectrum, and neighboring harmonics
collapse to very narrow lines, resulting in a region of the
spectrum resembling a δ comb. Such combs occur for relatively
long driving pulses and correspond to multiphoton peaks;
these are seen in both photon emission [41,44] and in pair
creation [28]. Compare and contrast with the coherent combs
recently studied in Ref. [66] for photon emission.

The resulting emission spectra are plotted in Figs. 6–8. In
Fig. 6 the peaked and rapidly oscillating comblike structure
can be very clearly seen. Away from this part of the spectrum,
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FIG. 7. (Color online) A zoom-in of the collapsed part of the
spectrum in Fig. 6 (a0 = 30, γ = 15.078). The inset shows a further
zoom into an individual harmonic.
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FIG. 8. (Color online) Comparison of the analytical (black) and
numerical (blue/gray) angular emission rates for the case of critical
a0. The parameters are a0 = 30,γ = 15.078.

the analytical and numerical results agree very well once again.
In the region of the comb structure however, and as can be seen
clearly in the zoomed-in plot in Fig. 7, the numerical spectrum
again does not resolve the harmonic peaks in the analytical
spectrum; instead it appears to average over them. As can be
seen in Fig. 8, though, the analytical and numerical angular
rates agree extremely well.

It is instructive to also consider parameters that are slightly
“off critical” in order to demonstrate how sensitive the
spectrum is to initial conditions. We take a0 = 30 and γ = 16,
so that the comblike part of the spectrum is shifted just out
of the region we are considering. The frequency spectrum is
shown in Fig. 9. Here the individual harmonics join together
to produce a continuous spectrum, and we can see that the
numerical results once again agree extremely well with the
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FIG. 9. (Color online) Comparison of the analytical (black) and
numerical (blue or gray) angular emission rates for the case of near-
critical a0. The parameters are a0 = 30 and γ = 16.

analytical calculation. (To shift the critical harmonic beyond
0.2 MeV in Fig. 9 one needs to increase γ to 15.123. The
spectral range in a plane wave is infinite, but the spectrum
decreases exponentially at high frequency.)

IV. ANALYSIS

Although the numerical model captures the coarse details
of the emission spectra considered, it fails to reproduce
any of the harmonic signatures that characterize emission in
monochromatic waves. We have found that this discrepancy
is best explained in terms of the LCF approximation. In
accordance with earlier discussions we analyze this in the
classical limit.

While the extension to quantum expressions is apparent,
we postpone a detailed analysis to future work.

The total number of emitted photons, Nγ , can be calculated
either from standard expressions [53, §14] or from the classical
limit of the nonlinear Compton scattering probability calcu-
lated in QED, as in Ref. [63]. Since Nγ is given by an integral
over the mod-square electromagnetic current generated by the
electron [53], it can be written as a double integral over the
external-field phase φ,

Nγ =
∫

dφdφ′ d2Nγ

dφdφ′ . (12)

We define σ = φ + φ′ and τ = (φ′ − φ)/2, respectively,
double the average of, and half the time between, emissions
at different points on the electron trajectory. In a circularly
polarized monochromatic plane wave, the integrand above is
independent of σ and therefore (as already discussed) infinite.
However, the rate W = Nγ /

∫
dσ is finite, which gives

W =
∫

dτ
dW

dτ
. (13)

In order to compare with our numerical results we require
the differential rate with respect to a kinematic variable, and
for this we choose the low-energy (classical) limit of the
variable (3), which is

s = k · k′

k · p
= χγ

χe

, (14)

as can be checked by reintroducing � and expanding in powers
of the photon momentum. The differential rate (summed over
all harmonics) we consider is

∂W

∂s
= − α

2πb0

∫ ∞

−∞

dτ

τ

(
sin

τs

b0
− sin

τsμ

b0

− 2τ 2a2
0 sinc2τ sin

τsμ

b0

)
, (15)

in which τ is as above, b0 = k · p/m2 and μ is the ratio of
Kibble’s mass M2 to m2 [67] in a monochromatic wave being
equal to

M2(τ )/m2 = μ(τ ) = 1 + a2
0(1 − sinc2τ ). (16)

Note that the asymptotic limit of M2 is the effective mass
squared, m2

∗, introduced above. Since the integrand in Eq. (15)
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is even in τ , we are dealing with integrals of the form∫ ∞

0
dτ f (τ )ei�(τ ), (17)

where the phase

�(τ ) = sτ

b0

[
1 + a2

0

(
1 − sinc2τ

)]
(18)

has no extrema on the real line. The LCF approximation
corresponds to expanding �(t) to next-to-lowest order in τ ,
giving

�(τ ) � �LCF(τ ) = sτ

b0

[
1 + a2

0τ
2

3

]
. (19)

Since the condition for neglecting the next term in this
expansion is τ 2 	 15/2, we see that using the expansion
in Eq. (19) assumes that only a finite range t ∈ [0,τmax]
contributes to photon emission and that the total integral can
be approximated as∫ ∞

0
dτf (τ )ei�(τ ) ≈

∫ τmax

0
dτf (τ )ei�LCF(τ ). (20)

Recall that τ measures the correlation of radiation emitted
from different points on the electron trajectory. If only small
τ is included, then emission is assumed to be “local.” Writing
x− = t − z, we note that τ = k · (x ′ − x)/2 = π (x ′− − x−)/λ
for the external field wavelength λ and observe that the small-τ
limit can be understood as the large-λ limit, thereby demon-
strating the equivalence of the LCF approximation and the
constant crossed field limit in the current problem. When the
LCF approximation is applied to Eq. (15), we recover the con-
stant crossed field expression upon performing the τ integral,

∂WLCF

∂s
= − α

b0

(
Ai1(z) + 2

z
Ai′(z)

)
, (21)

where z = (s/a0b0)2/3. Now, if the LCF assumptions approxi-
mate the original integral well, the majority of the full integral
in t must be included in the assumption (20), which implies
sτmax/b0 � 1. If τmax ∼ O(1), this condition can be fulfilled
for s/b0 � 1. However, s is not always confined to this range,
as is most evident for the first harmonic for which, from Eq. (4),
s/b0 � 1/(1 + a2

0) < 1. Therefore the LCF assumptions break
down here; this is demonstrated in Fig. 10, where the LCF
approximation misses the first harmonic structure, precisely
as is seen in the numerical simulation in Fig. 4.

In fact we can show explicitly that information pertaining
to the first harmonic is contained in the large τ (i.e., large-
distance) expansion of the integrand, in particular in the
asymptotic expansion of the effective mass. To do so we
simply replace M2 with its asymptotic limit m2

∗ in Eq. (15)
and evaluate [68, §3.828-3]

∂W

∂s
→ αa2

0

πb0

∫
dτ

τ
sin2τ sin

2sτ

y1
= αa2

0

2b0
θ (y1 − s), (22)

(where θ (·) is the Heaviside function with θ (0) = 1/2) which
is precisely the range of the first harmonic and also gives the
jump discontinuity clearly visible in the emission spectrum,
marked in Fig. 10. The LCF approximation knows nothing
about the large-distance expansion of the effective mass and is
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FIG. 10. (Color online) The full spectrum for a monochromatic
field (blue solid line) and the LCF approximation to it (red dashed
line, marked ‘LCFA’). a0 = 20 to illustrate. The vertical black line
marks the boundary of the first harmonic.

blind to harmonic structure, in particular, the first harmonic;
the LCF approximation to the emission spectrum, used either
analytically as in Fig. 10 or numerically as in Fig. 4, goes
smoothly through the jump at the edge of the first harmonic
range.

V. CONCLUSIONS

We have tested current numerical implementations of
strong-field electrodynamics by comparing their predicted
spectra with known analytical results. Focusing on photon
emission from an electron, we have found that common
PIC-based models correctly reproduce many features of the
emission spectra. The high-energy tails of the distributions
are well matched, as are the angular distributions, especially
in the highly relativistic limit where the electrons emit almost
entirely forward, matching the assumption that goes into the
codes.

What the numerical model fails to reproduce is the
harmonic structure of the photon distribution in frequency
space. The well-known peaks and troughs associated with
(higher) harmonic generation, which are the distinct, indeed
measured, signals of intensity and multiphoton effects,
are missed. It has been shown that this discrepancy can be
attributed to the use of the locally constant field approximation,
which is the standard way of including strong-field QED
processes in numerical models.

Despite the good overall agreement between theory and
numerics, our investigation prompts further enquiry. By
extending our numerical and analytical results to the quantum
regime, other processes such as pair production can also be
scrutinized.
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