
Chalmers Publication Library

Random Broadcast Based Distributed Consensus Clock Synchronization for Mobile
Networks

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

IEEE Transactions on Wireless Communications (ISSN: 1536-1276)

Citation for the published paper:
Wanlu, S. ; Ström, E. ; Brännström, F. et al. (2015) "Random Broadcast Based Distributed
Consensus Clock Synchronization for Mobile Networks". IEEE Transactions on Wireless
Communications

Downloaded from: http://publications.lib.chalmers.se/publication/213489

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://publications.lib.chalmers.se/publication/213489

1

Random Broadcast Based Distributed Consensus
Clock Synchronization for Mobile Networks

Wanlu Sun, Erik G. Ström,Senior Member, IEEE,Fredrik Brännström,Member, IEEE,
and Mohammad Reza Gholami,Member, IEEE

Abstract—Clock synchronization is a crucial issue for mobile
ad hoc networks due to the dynamic and distributed nature
of these networks. In this paper, employing affine models for
local clocks, a random broadcast based distributed consensus
clock synchronization algorithm is proposed. In the absence of
transmission delays, we theoretically prove the convergence of
the proposed scheme, which is further illustrated by numerical
results. In addition, it is concluded from simulations that the
proposed scheme is scalable and robust to transmission delays
as well as different accuracy requirements.

Index Terms—Mobile ad hoc networks, distributed synchro-
nization, consensus algorithm, random broadcast, convergence.

I. I NTRODUCTION

RECENTLY, ad hoc networks have emerged as an in-
teresting and important research area. As this type of

network consists of many small computing devices and its
communication services are based on self-organizing, clock
synchronization becomes critical for many applications. For
instance, coordination of actions across a distributed setof
nodes requires an accuracy of millisecond level; an order of
microsecond accuracy is needed for time-division multiple
access (TDMA) technique; and target localization requires
nanosecond accuracy. Meanwhile, there is also an increasing
demand for mobile networks (e.g., vehicular networks), where
the mobility complicates the clock synchronization due to the
time evolving topologies.

A. Related Work

There has been extensive research on clock synchronization
in the context of ad hoc networks during the last few years.
Depending on whether the reference nodes are needed or not,
existing protocols can be mainly classified into two categories:

Wanlu Sun, Erik G. Ström, and Fredrik Brännström are withthe Division
of Communication Systems, Department of Signals and Systems, Chalmers
University of Technology, SE-412 96 Gothenburg, Sweden. E-mail: {wanlu,
erik.strom, fredrik.brannstrom}@chalmers.se

Mohammad Reza Gholami is with the ACCESS Linnaeus Centre, Signal
Processing Department, KTH Royal Institute of Technology,SE-100 44
Stockholm, Sweden. E-mail: mohrg@kth.se

This work has been supported in part by SAFER-Vehicle and Traffic Safety
Centre, Project A19 and by the Swedish Research Council project 2011-5824.
Part of this work has been performed in the framework of the FP7 project
ICT-317669 METIS, which is partly funded by the EU. The authors would
like to acknowledge the contributions of their colleagues in METIS, although
the views expressed are those of the authors and do not necessarily represent
the project. The calculations were performed on resources provided by the
Swedish National Infrastructure for Computing (SNIC) at C3SE.

Part of this work was presented at the 2013 IEEE GLOBECOM workshop.

reference-based clock synchronization and distributed clock
synchronization. In reference-based clock synchronization [1],
[2], one node is elected as the reference node and a spanning
tree is built through the network. All the other nodes are
required to synchronize to the reference node by adjusting their
own clocks based on the timing messages received from their
parents. This mechanism is sensitive to changing topologies
and node failures, and therefore not suitable for mobile net-
works. On the other hand, in distributed clock synchronization,
all nodes implement the same algorithm individually without
relying on a network hierarchy [3]–[13]. The distributed nature
can often result in improved robustness to node failures and
mobility in dynamic networks.

In distributed clock synchronization, to utilize the broadcast
nature of wireless medium, nodes broadcast timing messages
which contain the timestamps recorded by the clock of the
transmitter. These messages are in turn used to adjust the
clocks of the receivers. We assume that the broadcasted
messages can only reach the neighbors of the transmitter, in
which case the network is not necessarily fully connected.

Distributed synchronization algorithms require timing mes-
sages from neighboring nodes, which can be used in two
different ways.

• Simultaneous update [7], [10], [11]: each node first
collects timing messages from its immediate neighbors,
and then adjusts its local clock by using these messages
simultaneously.

• Sequential update [3]–[6], [8], [9], [12], [14]: each node
sequentially update its clock whenever it receives a timing
message.

In this paper, we consider sequential updates with the
assumption of a random access mechanism. With a random
access mechanism, a node can broadcast at any time in any
order. A widely used random broadcast scheme is contention
based transmission, where nodes contend for transmission
opportunities at the beginning of each synchronization round
(SR). SRs are repeated with some predetermined periodicity,
and nodes are thereby granted some fairness in accessing
the wireless medium. Due to its applicability in distributed
networks, this mechanism is the technique specified for clock
synchronization in the IEEE 802.11 standard [3] and has been
used in some other works [4]–[8] as well. As described in
[3], the transmission protocol of timing messages assumes that
nodes are loosely synchronized to the beginning of each SR.
In this paper, we will also use a contention based transmission
protocol.

2

When assuming random broadcast mechanism for message
transmission, the authors in [3]–[6] propose different synchro-
nization schemes based on converge-to-max principle, where a
node eventually synchronizes to the nodes with faster clocks.
A simple converge-to-max protocol, called timing synchro-
nization function (TSF), is presented in [3]. Based on the TSF,
various modifications have been made to handle its limitation
of scalability and infeasibility in multihop networks [4]–
[6]. For example, the modified automatic selftime-correcting
procedure (MASP) scheme is proposed in [6], which outper-
forms the other methods. Nevertheless, as addressed in [15],
a common problem for all converge-to-max schemes is the
contradiction between thefastest node asynchronismand the
time partitioning1.

With a random broadcast mechanism, the authors in [8]
propose a distributed consensus based protocol for clock
synchronization, which is referred as ATS. In the ATS scheme,
an internal common time scale, which does not need to be the
maximum, is achieved in the network through communica-
tions among neighboring nodes. In practice, however, clock
frequencies may be over-adjusted due to the unawareness of
clock updates at the transmitter or receiver, and thus consensus
will not be achieved. Additionally, the authors in [14] propose
a consensus based clock synchronization (CoSyn) algorithm
for the random broadcast protocol, whereas the convergence
is not rigorously proved.

B. Contributions

In this paper, based on a practical random broadcast mech-
anism, a novel distributed consensus clock synchronization
algorithm is proposed for dynamic networks. It is fully dis-
tributed in the sense that all the nodes independently execute
the same algorithm without the need of a network hierarchy,
and is thus robust to node failures and changing topologies.
The key feature of the proposed scheme is that it distin-
guishes between two different updates—partial updates and
complete updates—for different situations. In this way, the
proposed scheme can both avoid the problem of frequency
over-adjustment and improve the speed of synchronization
error decrease. In the absence of transmission delays, we
theoretically prove the convergence of the proposed method,
which is further demonstrated by numerical results. Moreover,
by utilizing a threshold for the clock update, the proposed
scheme reveals robustness even when transmission delays are
present.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Notation

Lowercase and uppercase letters, e.g.,x andX , represent
scalars, lowercase boldface letters, e.g.,x, designate column

1Since a node only synchronizes to a faster node, the clock value of
the fastest node (a node with the greatest clock value in the network) will
keep drifting away from other nodes, unless it becomes the transmitter. This
problem is called the fastest node asynchronism problem, which can be
reduced by giving higher priority to the transmissions of the node with a faster
clock. Nevertheless, different priorities might result inthe time partitioning
problem, where the clock values in two groups of nodes can keep on drifting
away from each other, even though they are connected.

vectors where[x]i indicates theith element, and uppercase
boldface letters, e.g.,X, denote matrices where[X]ij denotes
the (i, j)th element. Also,1 and 0 represent the all-ones
column vector and zero column vector, respectively. The
superscript(·)T stands for transposition. Sets are denoted by
calligraphic lettersX and their cardinalities are denoted by
| X |.

B. Network Model

We consider a network represented by a directed graph
G(`) = (V , E(`)), where the vertex setV = {1, 2, ..., N}
containsN mobile nodes and the edge setE(`) is defined
as the set of available directed communication links at the
discrete time index̀ , i.e., (i, j) ∈ E(`) if node j sends
information to nodei during the `th SR. ∀i ∈ V , we use
the convention that(i, i) ∈ E(`) for all `. The notation
Vi(`) = {j|(i, j) ∈ E(`)} denotes the set of neighbors of
nodei during the`th SR.

C. Clock Model

Each node in the network is equipped with a physical clock
that has its frequency and offset. Here, we assume an affine
function for the physical clock model. In this way, the physical
clock of nodei is

Ti(t) = fit+ θi, ∀i ∈ V , (1)

where t is the perfect time,fi indicates the physical clock
frequency, andθi denotes the physical clock offset. Note that
fi andθi are both determined by the physical clock and cannot
be measured or adjusted.

Remark 1. Here we assumefi is constant over time. In
practice, however,fi can vary over time due to the drifts
introduced by aging effects and environmental factors such
as temperature [16]. Nevertheless, as pointed out in [5], [17],
[18], the drift resulted from aging usually acts much slower
than the update rate of synchronization schemes, and thus can
be safely ignored. On the other hand, we will evaluate the im-
pact of the drift induced by temperature variation by numerical
simulations. If the environmental factors do cause significant
instability to physical clock frequencies, the synchronization
procedures should be implemented more frequently to keep
track of the clock parameters.

Besides, each nodei also maintains a logical clock, whose
value is denoted byCi(t) and can be modified. The logical
clockCi(t) represents the synchronized time of nodei, which
is a function of the current physical clock valueTi(t). In this
paper, we use an affine model forCi(t):

Ci(t) = αiTi(t) + βi (2)

= αifit+ αiθi + βi (3)

= f̂it+ θ̂i, (4)

whereαi (αi > 0) andβi are control parameters updated by
the synchronization algorithm, and

f̂i , αifi (5)

3

θ̂i , αiθi + βi (6)

represent the logical clock frequency and logical clock offset.
The initial values ofαi andβi are set toαi = 1 andβi = 0,
respectively. In this way, the goal is to synchronize the clocks
in the entire network such that the logical clocks of different
nodes have the same (or very close) values for any instant of
perfect timet.

D. Problem Formulation

In this study, rather than synchronizing all clocks to a real
reference clock, we aim at attaining an internal consensus
between logical clocks through local interactions between
nodes. Namely, we say that the consensus is achieved if

lim
t→+∞

Ci(t)

Cv(t)
= 1, ∀i ∈ V , (7)

where

Cv(t) = fvt+ θv, fv > 0, (8)

denotes the virtual consensus clock. For each nodei, the
asymptotic consensus (7) is equivalent to concurrently achiev-
ing the following two consensus equations:

lim
t→+∞

f̂i = fv, (9)

lim
t→+∞

θ̂i = θv. (10)

Note thatfv and θv do not need to be the average value of
{f1, f2, ..., fN} and{θ1, θ2, ..., θN}, respectively. Their values
are decided byE(`), {f1, f2, ..., fN} and {θ1, θ2, ..., θN}
together. In fact, the values offv and θv are not important,
since what really matters is that all clocks converge to one
common function of time.

E. Transmission of Synchronization Messages

In this paper, we consider a widely used random broadcast
scheme, i.e., the contention based broadcast mechanism. More
specifically, each node [3]:

1) at the beginning of each SR, calculates a random delay
that is uniformly distributed in the range between zero and 2
× aCWmin× aSlotTime (which are constants and specified
in [3]);

2) waits for the period of the random delay while decre-
menting the random delay timer;

3) cancels the remaining random delay and the pending
transmission if a timing message arrives before the random
delay timer has expired or;

4) sends a timing message when the random delay expires.

Remark 2. Due to the hidden node problem, it is possible
for one node to receive multiple messages during one SR. In
this case, the node will just keep the first received packet and
discard the later packets. In other words,| Vi(`) | can only be
1 or 2 for all i ∈ V .

Remark 3. The use of the random broadcast mechanism,
where the information flow is in one direction, explains why
we consider a directed graphG(`) in Section II-B. Note that
G(`) might not be connected at each SR.

Remark 4. As in most of the literature (e.g., [1], [2], [7]–
[13]), MAC layer time stamping is utilized to largely reduce
the effects of transmission delays. Here, MAC layer time
stamping means that the current timestamp is written into the
message payload right before the first bit of the packet is sent
to the physical layer at the transmitter, and the timestamp at
the receiver side is recorded right after the first bit has arrived
at the MAC layer.

III. T HE PROPOSEDSYNCHRONIZATION ALGORITHM:
RBDS

In this section, we propose a novel Random Broadcast based
Distributed consensus clock Synchronization (RBDS) scheme,
where the logical clock is adjusted by partial updates or
complete updates to achieve consensus. We take convergence
as well as error decrease speed into account for the algorithm
design. Section III-A derives the basic design principles of
the RBDS scheme. Then the complete procedures of the
RBDS scheme are summarized in Section III-B. Finally, the
convergence analysis is elaborated by Theorem 3 in Section
III-C.

A. Design Principles of the RBDS Scheme

We first introduce some graph theory terminology [19],
which will be used in this paper.

• A vertex i of a directed graph is aroot of a graph if for
each other vertexj of this graph, there is a path fromi
to j.

• A rooted graph is a graph which possesses at least one
root.

• By the composition of two directed graphsG(p), G(q)
with the same vertex setV , we mean the graphG(p)◦G(q)
with the same vertex setV and edge set defined such that
(i, j) is an edge ofG(p) ◦ G(q) if and only if for some
vertex r, (r, j) is an edge ofG(q) and (i, r) is an edge
of G(p).

• A finite sequence of directed graphsG(1), G(2),..., G(q)
with the same vertex set isjointly rooted if the compo-
sition G(q) ◦ G(q − 1) ◦ · · · ◦ G(1) is rooted.

• An infinite sequence of graphsG(1), G(2), ... with
the same vertex set isrepeatedly jointly rooted by
sequences of lengthq if there is a positive finite integer
q for which each finite sequenceG(qm+1), G(qm+2),
..., G(qm+ q) for all m = 0, 1, ..., is jointly rooted.

The crucial result upon which the algorithm design depends
is [19, Theorem. 1], which is restated here.

Theorem 1. Letx(0) be fixed. For any trajectory of the system
determined by the following equation (11)

x
(`+1)
i =

1

| Vi(`) |

∑

j∈Vi(`)

x
(`)
j

 , (11)

wherex(`)
i represents information state associated with node

i and ` is a discrete-time index, along which the sequence of

4

graphsG(1), G(2), ..., G(`), ... is repeatedly jointly rooted by
sequences of lengthq, there is a constantxss for which

lim
`→+∞

x(`) = xss1, (12)

where the limit is approached exponentially fast, andx(`) =
[

x
(`)
1 , ..., x

(`)
N

]T

is a vector collecting the information state of
all nodes.

In our settings, suppose nodei ∈ V receives a timing
message from one neighbor nodej ∈ V . Based on Theorem
1, in the absence of delays, if the ’repeatedly jointly rooted’
condition is satisfied and if nodei updates its logical frequency
and logical offset as

f̂
(`+1)
i =

1

2

(

f̂
(`)
i + f̂

(`)
j

)

, (13)

θ̂
(`+1)
i =

1

2

(

θ̂
(`)
i + θ̂

(`)
j

)

, (14)

respectively, then the consensus (9) and (10) will be achieved
with exponential speed. Note that, as explained in Remark 2,
we only have the access to at most one neighbor node in the
update procedure.

In practice, however, the implementation of (13) and (14)
is not straightforward. There are mainly two difficulties.

Firstly, due to the lack of information aboutfi and θi, we
can neither obtain̂fi or θ̂i nor tune them directly. What we
can do is to modify the control parametersαi and βi by
utilizing the logical clock values, which will then adjust̂fi
and θ̂i automatically through (5) and (6).

Secondly, in order to execute the update of the logical
frequency as in (13), the following two requirements are
sufficient: 1) node i receives at least two timing messages
from nodej; 2) logical clocks of both nodei and nodej are
not adjusted between the two receptions. We will show this
sufficiency later. Obviously, the conditions can be satisfied
if we make nodei not to adjust its logical clock (i.e., not
update its control parameters) until it receives the second
message from nodej. However, this method will result in
fairly slow convergence speed, especially for dense networks.
Therefore, in our algorithm, we propose a novel update rule,
by distinguishing two different updates, to guarantee that(13)
is satisfied even when the nodei’s logical clock have been
updated between two consecutive messages from nodej.
Nonetheless, this new update rule will give rise to the result
that the update rule (14) cannot be perfectly satisfied in the
proposed scheme, which will be proved later by Theorem 2.

In the following, we will explain the proposed algorithm
from the perspective of nodei. For easier reading, the ex-
planations of some used symbols are summarized in Table I.

If node i does not receive any timing message during the
`th SR, there is no update in its logical clock, i.e.,

{

α
(`+1)
i = α

(`)
i (15)

β
(`+1)
i = β

(`)
i , (16)

and we define∆(`)
i , 0 for this case. Otherwise, i.e., the

nodei receives timing messages from its neighbors during the

Table I
EXPLANATIONS OF THE USED SYMBOLS

Symbol Parameter
fi Node i’s physical frequency
θi Node i’s physical offset

α
(`)
i

Node i’s control parameterαi at the beginning of̀ th SR

β
(`)
i

Node i’s control parameterβi at the beginning of̀ th SR

f̂
(`)
i

Node i’s logical frequency at the beginning of`th SR

θ̂
(`)
i

Node i’s logical offset at the beginning of̀th SR

`th SR, it will update eitherβi or bothβi andαi according to
one of two update rules: the partial update rule or the complete
update rule.

Suppose nodei receives a timing message at the timet`+δ`.
Here,t` is the perfect time when the message was sent during
the `th SR andδ` is the transmission delay, which includes
the PHY layer delay and the propagation delay. We denote the
transmitting node bỹj(`). Hence, the received time stamp at
the timet`+δ` is Cj̃(`)(t`). For simplicity of presentation and
analysis, we ignoreδ` for the time being. However, the final
algorithm will be adjusted to be robust against non-negligible
transmission delays. Note that, for simplicity of presentation
and analysis, we assumeδ` = 0 for the time being. However,
the final algorithm will be adjusted to be robust against non-
negligible transmission delays.

Next we present the two update rules.
1) Partial Update Rule: It is clear that nodei cannot

make any meaningful update ofαi before receiving at least
two timing messages from the same node, sincef̂i basically
represents the slope of the linear logical clock model. The aim
of the partial update rule at timet` is to achieve the perfect
update (14) when̂fj̃(`) = f̂

(`)
i . That is

α
(`+1)
i = α

(`)
i (17)

β
(`+1)
i = β

(`)
i +

1

2

(

Cj̃(`)(t`)− Ci(t`)
)

, (18)

which implies that

θ̂
(`+1)
i = α

(`+1)
i θi + β

(`+1)
i (19)

= α
(`)
i θi + β

(`)
i +

1

2

(

Cj̃(`)(t`)− Ci(t`)
)

(20)

= θ̂
(`)
i +

1

2

(

f̂j̃(`)t` + θ̂j̃(`) − f̂
(`)
i t` − θ̂

(`)
i

)

(21)

=
1

2

(

θ̂j̃(`) + θ̂
(`)
i

)

+
1

2

(

f̂j̃(`) − f̂
(`)
i

)

t`
︸ ︷︷ ︸

,r
(`)
i

. (22)

Note that the rest termr(`)i equals to 0 only when̂fj̃(`) = f̂
(`)
i .

Nevertheless, we will later prove that, under some conditions,
the impact of the rest terms will diminish as` → +∞. For
convenience, we define∆(`)

i as

∆
(`)
i ,

1

2

(

Cj̃(`)(t`)− Ci(t`)
)

, (23)

which captures the logical clock adjustment of nodei.

5

t

Logical clock value

Ci(tn)

Ci(t`)

Cj(tn)
Cj(t`)

slopef̂ (n+1)
i = f̂

(n+2)
i = · · · = f̂

(`)
i

slopef̂j

∆
(n)
i

∆
(n+1)
i

∆
(`−1)
i

∑`−1
m=n ∆

(m)
i

tn tn+1 t`−1 t`

Figure 1. Evolution of a logical clock.

2) Complete Update Rule:Suppose nodei receives a times-
tamp from nodej = j̃(`) at timet`. Furthermore, suppose the
last time nodei received a timestamp from nodej was tn.
Hence,tn < t` and j = j̃(`) = j̃(n). Node i will perform a
complete update if the following two conditions are satisfied.

a) Node j has not performed a partial or complete update
in the interval(tn, t`].

b) Node i has not performed a complete update in the
interval (tn, t`].

Note that the conditiona) implies thatCj(t) is an affine
function of t, with slope f̂j , for t ∈ (tn, t`]. For notational
simplicity, here we usêfj and θ̂j without the explicit depen-
dence on the SR index. The conditionb) implies thatCi(t) is a
piecewise affine function oft, with slopef̂ (n+1)

i = f̂
(n+2)
i =

· · · = f̂
(`)
i , for t ∈ (tn, t`]. The situation is depicted in Fig. 1.

From Fig. 1, it is clear that

f̂j

f̂
(`)
i

=
Cj(t`)− Cj(tn)

Ci(t`)−
∑l−1

m=n ∆
(m)
i − Ci(tn)

, (24)

which is a quantity that will be very useful in the complete
update rule. Recall from (13) that we would like to achieve the
updatef̂ (`+1)

i =
(

f̂j + f̂
(`)
i

)

/2 by adjustingα(`)
i . Therefore,

using (5),

1

2

(

f̂j + f̂
(`)
i

)

= f̂
(`+1)
i = α

(`+1)
i fi (25)

=
1

2
f̂
(`)
i

(

1 +
f̂j

f̂
(`)
i

)

(26)

=
1

2
α
(`)
i fi

(

1 +
f̂j

f̂
(`)
i

)

. (27)

Correspondingly, the update ofα is

α
(`+1)
i =

1

2
α
(`)
i

(

1 +
f̂j

f̂
(`)
i

)

, (28)

where the right hand side (RHS) can be computed with the
help of (24).

Using (6), the desired update forθ̂i is according to (14),

1

2

(

θ̂j + θ̂
(`)
i

)

= θ̂
(`+1)
i = α

(`+1)
i θi + β

(`+1)
i (29)

= α
(`+1)
i

(

θ̂
(`)
i − β

(`)
i

α
(`)
i

)

+ β
(`+1)
i . (30)

Therefore, due to (30),

β
(`+1)
i =

1

2

(

θ̂j + θ̂
(`)
i

)

−
α
(`+1)
i

α
(`)
i

θ̂
(`)
i +

α
(`+1)
i

α
(`)
i

β
(`)
i

(a)
=

1

2

(

θ̂j − θ̂
(`)
i

f̂j

f̂
(`)
i

)

+
1

2

(

1 +
f̂j

f̂
(`)
i

)

β
(`)
i

(b)
=

Cj(t`)

2
−

f̂j

2f̂
(`)
i

(

f̂
(`)
i t` + θ̂

(`)
i

)

+
β
(`)
i

2

(

1 +
f̂j

f̂
(`)
i

)

(c)
=

1

2

(

Cj(t`)−
f̂j

f̂
(`)
i

Ci(t`)

)

+
1

2

(

1 +
f̂j

f̂
(`)
i

)

β
(`)
i (31)

where(a) holds by using (28),(b) and(c) follow because of
(4). Again, the RHS can be computed with the help of (24).

Remark 5. Even though the MAC layer time stamping can re-
duce the transmission delays to a large extent, there will still be
some delays remaining. When these remaining delays are also
taken into account, we can consider a threshold for the adjust-
ment to reduce the influence of delays. When nodei receives a
timing message at thèth SR, it will not use it for adjusting its
own logical clock unless|Ci(t` + δ`)− Cj̃(`)(t`)| > σ, where
σ is the threshold. The value ofσ is the tradeoff between the
speed of the synchronization error decrease and the robustness
against delays.

B. Procedures of the RBDS Scheme

Let Si be the change counter for nodei, which is incre-
mented every time nodei updates its logical clock (through a
partial or complete update).

In the following, let us consider the updates of the logical
clock of nodei. If nodei receives a timing message at the`th
SR, we assume this message comes from nodej̃(`). Hence,
the timing message is

[j̃(`), Sj̃(`), Cj̃(`)(t`)], (32)

wheret` is the transmission time, i.e.,t` = `ε+ τj̃(`),`, where
ε is the period of a SR, andτj,` is the random backoff time
drawn by nodej at the `th SR. Then nodei receives this
timing message after some delayδ` and samples its logical
clock at timet` + δ` asCi(t` + δ`).

To summarize, nodei should update its logical clock given
a sequence of the received timing messages in the form of
(32) and the corresponding samples of its own logical clock
Ci(t` + δ`) for ` = 1, 2, To keep track of the history, node
i maintains a matrixAi, whose rows are of the form

[j̃(`), Sj̃(`), Cj̃(`)(t`), Ci(t` + δ`)]. (33)

Here, the first three elements make up the received timing mes-
sage at thèth SR, and the fourth element is the corresponding
sample of the logical clock for nodei.

A flow diagram of the proposed scheme is described in
Fig. 2, and uses the three algorithms defined below.

2The correct receiving means that the message is received without collision.
On the other hand, we assume that any collision will lead to packet loss.

6

Yes

Yes

Yes

Yes

No

No

No

No

Initialization: `=0,
∀i ∈ V : α0

i = 1, β0
i = 0, Si = 0,

Ai=[] (empty).

Node i waits until start of̀ th SR
and contends for channel access.

Wins the contention?

Nodei correctly
receives2 a message from another node

after some delay?

Suppose received message is[j, Sj , Cj] at
time t` + δ`. Let Ci = Ci(t` + δ`), Ti = Ti(t` + δ`).

|Ci − Cj | > σ?

Execute
Algorithm 1 with
input Ai, j, Sj .

Result true?
Execute partial update
Algorithm 2.

Ai =

[
Ai

j, Sj , Cj , Ci

]

Execute complete update
Algorithm 3.
Ai = [j, Sj , Cj , Ci]

Si = Si + 1

Transmits at timet`
[i, Si(t`), Ci(t`)],

wheret` = `ε+ τi,`,

α
(`+1)
i = α

(`)
i

β
(`+1)
i = β

(`)
i

` = `+ 1

Figure 2. Flowchart of the RBDS scheme.

Algorithm 1 Test if conditions for a complete update are
satisfied

Input : Ai, j, Sj

Output : true, false
A = {m : [Ai]m1 = j} // the set of previous messages

from nodej
if A == ∅ then

return false //no previous message from nodej
else
m = max{n : n ∈ A}
if Sj > [Ai]m2 then

return false //nodej has changed its logical clock
since last timing message

else
return true //complete update possible

end if
end if

C. Convergence of the RBDS Scheme

As revealed in (24), the adjustment of the logical frequency
requires at least two timestamps, which cannot be implied by
the graphG(`). Therefore, we consider a new directed graph
F(`) = (V , Ẽ(`)). Regarding the edge set̃E(`), we define
(i, j) ∈ Ẽ(`) if nodei implements a complete update at the`th

Algorithm 2 Partial Update

Input :Cj , Ci, α
(`)
i , β(`)

i

Output : α(`+1)
i , β(`+1)

i

α
(`+1)
i = α

(`)
i // from (17)

β
(`+1)
i = β

(`)
i + (Cj − Ci)/2 // from (18)

Algorithm 3 Complete Update

Input :Ai, j, Cj , Ci, α
(`)
i , β(`)

i

Output : α(`+1)
i , β(`+1)

i

ρ = number of rows inAi

m = max{n : [Ai]n1 = j} // index of the last message
from nodej

∆tot =
∑ρ

n=m ([Ai]n3 − [Ai]n4)

κ = (Cj − [Ai]m3)/(Ci − [Ai]m4 −∆tot) // κ = f̂j/f̂
(`)
i

from (24)
α
(`+1)
i = α

(`)
i (1 + κ)/2 // from (28)

β
(`+1)
i = (Cj − κCi)/2 + β

(`)
i (1 + κ)/2 // from (31)

SR based on nodej’s information. Also,∀i ∈ V , it is assumed
(i, i) ∈ Ẽ(`) for all `. Besides, the set̃Vi(`) is defined as
Ṽi(`) = {j|(i, j) ∈ Ẽ(`)}, and|Ṽi(`)| indicates its cardinality.

Firstly, according to Theorem 1, the convergence is obvious
if the average update rules (13) and (14) can be achieved
in the synchronization scheme. However, as analyzed in the
two difficulties in Section III-A, it is not straightforwardto
efficiently implement these average operations. Here, we will
propose a theorem to discuss that if (13) and (14) can be
attained in the RBDS algorithm.

Theorem 2. Assume

a) all nodes can broadcast in any order as long as an infinite
sequence of graphsF(1), F(2), ... is repeatedly jointly
rooted by subsequences of lengthq;3

b) the transmission delays are negligible, i.e., the transmitter
and receivers record the timestamps from their local logical
clocks simultaneously.

Then, if each node updates its control parameters as (17) and
(18), or (28) and (31), depending on whether the conditions of
partial update rule or the conditions of complete update rule
are satisfied, the average of logical frequencies, i.e., Eq.(13),
can be achieved; however, the average of logical offsets, i.e.,
Eq. (14), is only achieved when̂fi = f̂

(`)
i .

Proof: Note that the logical frequency will only be
modified in the complete update. Suppose nodei receive
timing messages from nodej. By using (28) and̂f (`)

i = α
(`)
i fi,

we obtain

f̂
(`+1)
i = α

(`+1)
i fi =

1

2

(

f̂j + f̂
(`)
i

)

, (34)

which satisfies the average update (13).

3This assumption is realistic when a contention based transmission mecha-
nism is used. Moreover, the repeatedly jointly rooted property of F(1), F(2),
... implies the repeatedly jointly rooted property ofG(1), G(2),

7

On the other hand, the logical offset will be changed in both
complete update and partial update. In the complete update,
by the definition ofβ(`+1)

i in (29), we can calculate

θ̂
(`+1)
i = α

(`+1)
i θi + β

(`+1)
i =

1

2

(

θ̂j + θ̂
(`)
i

)

, (35)

which satisfies the average update (14). In the partial update,
however, when substituting (17) and (18) into (6), we will
obtain

θ̂
(`+1)
i =

1

2

(

θ̂j + θ̂
(`)
i

)

+
1

2

(

f̂j − f̂
(`)
i

)

t`, (36)

which is not consistent with (14) as long aŝfj 6= f̂
(`)
i .

Therefore, when we have mixed partial and complete updates
during certain time period, the average update (14) of the
logical offset cannot be attained in general.

Even though Theorem 2 proves that (14) is not satisfied in
general, the following theorem states that the proposed scheme
will achieve consensus asymptotically.

Theorem 3. Consider the same assumptions a) and b) as in
Theorem 2. Then, if each node updates its control parameters
as (17) and (18), or (28) and (31), depending on the conditions
of the partial update rule or the complete update rule being
satisfied, the asymptotical consensus (9) and (10) is achieved,
and therefore, (7) is achieved as well.

Proof: See Appendix A.

Remark 6. The proofs of the existing Theorem 1, and our
proposed Theorem 2 and Theorem 3 rely on the condition
that communication graphs are “repeatedly jointly rooted”, an
assumption which has also been used in some other works
[20], [21]. By introducing a probabilistic framework, the
authors in [22] prove that this condition can in fact be satisfied
with large probability for any nonzero transmission range
and nonzero motion speed, whenever the number of nodes
is large enough. Interested readers can find more details in
[22, Theorem. 1].

IV. SIMULATION RESULTS

In this section, simulation results are presented to compare
the performance of the proposed RBDS scheme with the
following three baseline methods.

1) ATS (with ρη = 0.2, ρo = 0.2 andρv = 0.2) in [8].
ATS includes the cascade of two consensus algorithms

where the first consensus synchronizes clock frequencies and
the second consensus synchronizes clock offsets. In the first
step, nodes broadcast their current estimates of the virtual
consensus clock frequency; receiving nodes combine this with
their local information to adjust their own virtual consensus
clock estimates. The same idea is then applied in the second
step to synchronize offsets.

2) MASP in [6].
Based on converge-to-max principle, MASP gives a faster

node, which has larger logical clock value, a higher priority to
send its synchronization messages. Besides, each node has a
self correction capability to compensate the clock oscillation
difference among nodes. Finally, slower nodes can synchronize
to the fastest node by periodically correcting its clock.

3) CoSyn in [14].
CoSyn is also a random broadcast based distributed syn-

chronization algorithm which can achieve the consensus of
both logical clock frequencies and offsets. However, it has
different conditions and rules for implementing partial and
complete updates compared with RBDS.

We consider a network withN mobile nodes, where nodes
are randomly placed in a square-shaped region. The size of
the area is1000 m × 1000 m. Unless otherwise specified,
every node has a fixed transmission range of250 m which is
the same as in [6]. Moreover, all nodes move according to the
random way-point model [23] with maximum speed of40 m/s
and0 pause time. The physical clock frequencies are uniformly
and randomly selected from the range[0.9999, 1.0001] Hz,
following IEEE 802.11 protocol requirements [3]. Also, the
initial clock values are uniformly and randomly chosen from
the range[−800, 800] µs. We would like to mention that we
have also investigated a wider range of initial clock values,
but since the performance of those cases follows the same
trends as the ones shown below, we have not included those
results, to save space. Besides, as defined in [3], the period
of one SR is0.1 s, and the backoff time in the contention
based protocol is uniformly distributed in the range[0, 1500]
µs, where the range is calculated with aSlotTime= 50 µs
and aCWmin= 15. Furthermore, as explained above, there
still remains some delays even though the MAC layer time
stamping is applied. In our simulations, these delays are
modeled by a uniform distribution within the range[0, 2d] µs,
and we set the thresholdσ = d.

To evaluate synchronization algorithms, we first define the
synchronization error between a pair of nodes for each time
instance as

eij(t) , |Ci(t)− Cj(t)|, ∀i, j ∈ V , andj 6= i. (37)

Then, based oneij(t), we adopt two performance metrics in
the simulations.

• 90th percentile of synchronization errors, i.e.,

e90%(t) , x, s.t. Pr{eij(t) ≤ x} = 90%. (38)

• Probability of unsynchronization with a given threshold
γ, i.e.,

Pγ(t) , Pr{eij(t) ≥ γ} . (39)

For each curve in Fig. 5 to Fig. 10, we average the results
over1000 different network realizations to obtain̄e90%(t) and
P̄γ(t).

Fig. 3(a) illustrates the convergence of the logical offsets
θ̂i for i = 1, . . ., N , and Fig. 3(b) shows logical frequencies
f̂i for the proposed RBDS scheme in the absence of delays.
It is shown that both logical offsets and logical frequencies
will converge to a common value, respectively, which supports
Theorem 3 from a numerical perspective. Moreover, conver-
gence can also be evaluated with respect to the number of
transmitted synchronization messages as well as the number
of partial/complete updates by using the corresponding relation
with time in Fig. 3(c). Due to the broadcast nature, the number
of partial/complete updates is usually higher than the number
of transmitted messages.

8

0 200 400 600 800 1000 1200
−2000

−1500

−1000

−500

0

500

1000

1500

Time t (s)

L
o

g
ic

al
o

ffs
et

(µ
s)

(a)

0 100 400 600 800 1000 1200
0.9999

0.99995

1

1.00005

1.0001

L
o

g
ic

al
fr

eq
u

en
cy

Time t (s)

(b)

0 200 400 600 800 1000 1200
0

1

2

3

4

5
x 10

5

Number of partial/complete updates

Number of transmitted
synchronization messages

N
u

m
b

er
o

f
m

es
sa

g
es

Time t (s)

(c)

Figure 3. Convergence evaluation of logical offsets (Fig. 3(a)), logical fre-
quencies (Fig. 3(b)), and the number of transmitted synchronization messages
as well as the number of partial/complete updates (Fig. 3(c)) in the proposed
RBDS scheme for50 nodes, withd = 0 (i.e., no delay).

The impact of frequency variation on the convergence of
the RBDS scheme is evaluated in Fig. 4. Inspired by [24],
we assume the physical clock frequencies of half of the
nodes are changed at400 s due to a temperature change.
We also consider a typical temperature coefficient−0.04
ppm/◦C for crystal oscillators and a temperature change of
−25◦C. As observed from Fig. 4, even though the logical
offsets experience a sudden spread after400 s due to the
frequency variation, the proposed RBDS scheme is able to
quickly recover and achieve convergence.

Fig. 5 shows the90th percentile of synchronization errors
versus time whenN = 50. In the absence of delay (Fig. 5(a)),
even though ATS and MASP exhibit fast decrease of synchro-
nization errors in the first150 s, there are floor effects for both

0 200 400 600 800 1000 1200
−2000

−1500

−1000

−500

0

500

1000

1500

Time t (s)

L
o

g
ic

al
o

ffs
et

(µ
s)

Figure 4. Impact of a frequency variation at400 s on convergence for50
nodes, withd = 0.

0 100 200 300 400
10

0

10
1

10
2

10
3

10
4

RBDS

CoSyn

ATS

MASP

Time t (s)

ē 9
0
%
(t
)

(µ
s)

(a)

0 100 200 300 400
10

0

10
1

10
2

10
3

10
4

ATS

CoSyn

MASP

RBDS

Time t (s)

ē 9
0
%
(t
)

(µ
s)

(b)

Figure 5. 90th percentile of synchronization errors versus time evolution with
N = 50. (a) d = 0; (b) d = 3 µs.

of them. These are because of the problem of over-adjusted
logical frequencies in ATS, as well as the contradiction be-
tween the fastest node asynchronism and the time partitioning
in MASP. On the other hand, CoSyn and RBDS present
similar trends regarding the decrease of synchronization errors.
Nevertheless, RBDS shows faster convergence due to its
increased opportunities of complete updates. Furthermore, the
effects of delays are considered in Fig. 5(b). It is depicted
that the error of ATS is boosted with time, which implies that
ATS becomes ineffective under the scenario with delays. Also,
the error decrease is very small in MASP. When it comes to
CoSyn and RBDS, they both show robustness against delays,
where RBDS outperforms CoSyn.

To illustrate the scalability of synchronization schemes,
Fig. 6 shows the90th percentile of synchronization errors
versus the number of nodesN at t = 400s. In general, asN
increases, so does the network connectivity and the message

9

30 40 50 60 70 80 90
10

0

10
1

10
2

10
3

10
4

ATS

MASP

RBDS

CoSyn

N

ē 9
0
%
(t
)

(µ
s)

Figure 6. 90th percentile of synchronization errors versusN at t = 400s,
with d = 0.

100 150 200 250
10

−2

10
0

10
2

10
4

MASP

ATS

CoSyn

RBDS

Transmission range (m)

ē 9
0
%
(t
)

(µ
s)

Figure 7. 90th percentile of synchronization errors versus transmission range
at t = 800s, with N = 50 andd = 0.

collision rate. The first effect is beneficial for convergence,
while the latter is harmful. As seen in Fig. 6, increasingN
from N = 30 is initially beneficial, but after some point, the
collision rate effect will start to dominate and convergence
performance will decrease asN is further increased. Regarding
the comparison among different synchronization algorithms,
CoSyn and RBDS reveal better scalability compared to ATS
and MASP, where RBDS slightly outperforms CoSyn.

The influence of transmission range, which varies from100
m to 250 m, is evaluated in Fig. 7. In general, decreasing
the transmission range leads to slower convergence due to
reduced network connectivity. When the transmission range
is quite small, e.g.,100 m, ATS shows superior performance
to other three schemes. Nevertheless, with increased transmis-
sion range, its performance improvement is limited. On the
other hand, according to our experience, the proposed RBDS
algorithm outperforms the other considered algorithms when
transmission range is larger than120 m.

Fig. 8 shows the90th percentile of synchronization errors
versus the delay leveld. The error of ATS is boosted with
increasingd, which again reveals its sensibility to delays.
Moreover, MASP exhibits a moderate increase of the syn-
chronization error, but the error is not close to zero even if
d = 0. Compared to ATS, MASP, and CoSyn, the proposed
RBDS has slower error increase withd, which indicates its
robustness against different delay levels.

Fig. 9 shows the probability of unsynchronization as a
function of time when settingγ = 10 µs. When d = 0
(Fig. 9(a)), after400 s, we can see the floor effects for
ATS and MASP, where the probabilities attain roughly steady
states at0.08 and0.18 for ATS and MASP, respectively. The
probability of unsynchronization for CoSyn and RBDS, on

0 2 4 6 8
0

200

400

600

800

ATS

MASP

CoSyn

RBDS

d (µs)

ē 9
0
%
(t
)

(µ
s)

Figure 8. 90th percentile of synchronization errors versus the delay level d
at t = 400s, with N = 50.

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

MASP
ATS

CoSyn

RBDS

Time t (s)

P̄
γ
(t
)

(a)

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

ATS

MASP

CoSyn

RBDS

Time t (s)

P̄
γ
(t
)

(b)

Figure 9. Probability of unsynchronization versus time evolution with γ = 10
µs andN = 50. (a) d = 0; (b) d = 3 µs.

the other hand, decreases smoothly with time, and RBDS ex-
hibits slightly better performance. After introducing delays, as
shown in Fig. 9(b), probability of unsynchronization for ATS
increases significantly, which again reveals its sensitiveness to
delays. The performance of MASP is also degraded, and its
probability of unsynchronization stays around0.65. While, for
both CoSyn and RBDS, the probability of unsynchronization
decay with time.

From Fig. 10, we can see how the probability of un-
synchronization changes with different thresholds. Here the
thresholds vary from10 µs to 460 µs, which correspond to
different accuracy requirements of synchronization. As shown
in Fig. 10, in both scenarios ofd = 0 andd = 3 µs, RBDS
exhibits superiority over other three algorithms.

V. CONCLUSIONS

In this paper, we have proposed a novel and fully distributed
consensus clock synchronization scheme—RBDS—for mobile

10

0 100 200 300 400
10

−4

10
−3

10
−2

10
−1

ATS

MASP

CoSyn

RBDS

Thresholdγ (µs)

P̄
γ
(t

=
5
0
0

s)

(a)

0 100 200 300 400
10

−4

10
−3

10
−2

10
−1

10
0

ATS

MASPCoSyn

RBDS

Thresholdγ (µs)

P̄
γ
(t

=
5
0
0

s)

(b)

Figure 10. Probability of unsynchronization versus threshold γ at t = 500
s, with N = 50. (a) d = 0; (b) d = 3 µs.

ad hoc networks in which timing massages are broadcast in
a random manner. In the absence of transmission delays, we
theoretically prove the consensus of the logical frequencies and
the consensus of the logical offsets for the RBDS approach.
Furthermore, as illustrated in the simulations, the RBDS algo-
rithm shows convergence, scalability, and robustness against
different transmission delays as well as different accuracy
requirements.

APPENDIX A
PROOF OFTHEOREM 3

Firstly, as proved in Theorem 2, the adjustment of the
logical frequency follows the average update rule. Therefore,
according to Theorem 1, the consensus (9) can be achieved
with exponential speed. It is equivalent to

∣
∣
∣[r(`)]i

∣
∣
∣ ≤ we−λε`ε`, ∀i ∈ V , (40)

for someλ > 0 andw > 0, where
[
r(`)
]

i
, r`i from (22).

Note that
[
r(`)
]

i
= 0 if nodei implement the complete update

or no update at thèth SR.
Then we will move on to the proof of the consensus (10)

of the logical offsets. Assume the initial state of the logical
offsets of all theN nodes is given by a vectorθ(0). At the
`th SR, the transfer matrix is defined asP `. Note thatP ` is
a stochastic matrix, where a stochastic matrix is defined as a
nonnegative square matrix with the property that all its row
sums are+1. Hence, based on equations (35) and (36), the
update ofθ in vector form is given by

θ(1) = P1θ
(0) + r(1), (41)

θ(2) = P2θ
(1) + r(2) = P2P1θ

(0) + P2r
(1) + r(2), (42)

...,

θ(M) =
M∏

`=1

P`θ
(0) +

M−1∑

`=1

M∏

q=`+1

Pqr
(`) + r(M). (43)

Note that we assumeM is an even number here, but it is
straightforward to extend the proof for the odd number case.

In order to show the convergence of the logical offsets, it
is enough to show the following three items:

a). limM→+∞

∏M
`=1 Pkθ

(0) = c1, where c is a finite
constant;

b). limM→+∞ r(M) = 0;
c). limM→+∞

∑M−1
`=1

∏M
q=`+1 Pqr

(`) = c̃1, where c̃ is a
finite constant.

Before the proof of the three items, we firstly re-formulate
Theorem 1 in vector form and present several lemmas which
will be used later.

Each graphG(`) satisfying the conditions in Theorem 1
can be represented by a transfer matrixP̃`. Note thatP̃` is a
stochastic matrix. In this way, the vector form of the update
rule (11) is

x(`+1) = P̃kx
(`), (44)

where[P̃k]ij is defined as

[P̃`]ij =

{
1

|Vi(`)|
, if j ∈ Vi(`)

0, otherwise
. (45)

Lemma 1. If Sk is a stochastic matrix for allk = 1, 2, ...,
thenS̄n ,

∏n
k=1 Sk is still a stochastic matrix for anyn ≥ 1.

Proof: See [8].

Lemma 2. If S1, S2, ... is a sequence of stochastic matrices,
and the sequence of their associated graphsG(1), G(2), ... is
repeated jointly rooted by sequences of finite lengthq, then,

lim
n→+∞

n∏

k=1

Sk = 1cT, (46)

for a finite constant vectorc , [c1, c2, ...cN]
T.

Proof:

lim
n→+∞

n∏

k=1

Sk = lim
n→+∞

n∏

k=1

SkI (47)

= lim
n→+∞

[
n∏

k=1

Ske1,

n∏

k=1

Ske2, ...,

n∏

k=1

SkeN

]

(48)

= 1 [c1, c2, ...cN] = 1cT (49)

whereei is the ith column of the identity matrixI. The first
equality in (49) holds according to Theorem 1.

Lemma 3. If S is a stochastic matrix and|[φ]i| ≤ c, then
|[Sφ]i| ≤ c for all i = 1, 2, ..., N .

Proof:

|[Sφ]i| =
∣
∣
∣

N∑

j=1

[S]ij [φ]j

∣
∣
∣ ≤

N∑

j=1

[S]ij |[φ]i| (50)

11

≤
N∑

j=1

[S]ijc = c, (51)

where the inequality in (50) holds sinceS is a nonnegative
matrix and the equality in (51) holds sinceS is a stochastic
matrix.

Lemma 4. For all k = 1, 2, ... and i = 1, ..., N , if Sk is a
stochastic matrix, and

∣
∣[φ(k)]i

∣
∣ ≤ we−λkk for someλ > 0

and w > 0, then,
{

an ,
[∑n

k=1 Skφ
(k)
]

i

}

is a convergent
series.

Proof: By Cauchy’s criterion, it suffices to prove{an}
is a Cauchy sequence, i.e., for everyε > 0, there is a natural
numberK, such that for alln,m > K we have that|an −
am| < ε [25].

Without loss of generality, we assumen > m and setz ,

n−m. So, for alln > m,

|an − am| =

∣
∣
∣
∣
∣

[
n∑

k=1

Skφ
(k)

]

i

−

[
m∑

k=1

Skφ
(k)

]

i

∣
∣
∣
∣
∣

(52)

=

∣
∣
∣
∣
∣
∣

[
m+z∑

k=m+1

Skφ
(k)

]

i

∣
∣
∣
∣
∣
∣

≤
m+z∑

k=m+1

∣
∣
∣

[

Skφ
(k)
]

i

∣
∣
∣ (53)

≤
m+z∑

k=m+1

we−λkk ≤ lim
z→+∞

m+z∑

k=m+1

we−λkk (54)

=
wme−λm

eλ − 1
+

weλ(1−m)

(eλ − 1)2
, g(m), (55)

where the first inequality in (54) follows due to Lemma 3,
and the equality in (55) follows from algebraic manipulations.
Moreover, it is easy to show thatlimm→+∞ g(m) = 0. Hence,
for every ε > 0, there exists anM such that|g(m)| < ε
wheneverm > M . SetK as the smallest integer satisfying
K ≥ M . Then,∀n > m > K, we have|an−am| ≤ g(m) < ε,
which concludes our proof.

Lemma 5. For all k = 1, 2, ... and i = 1, ..., N , if Sk is a
stochastic matrix, and

∣
∣[φ(k)]i

∣
∣ ≤ we−λkk for someλ > 0

andw > 0, then,

lim
n→+∞

∣
∣
∣

[n−1∑

k=n

2 +1

Skφ
(k)
]

i

∣
∣
∣ = 0. (56)

Proof:

lim
n→+∞

∣
∣
∣

[n−1∑

k=n

2 +1

Skφ
(k)
]

i

∣
∣
∣ ≤ lim

n→+∞

n−1∑

k=n

2 +1

∣
∣
∣

[

Skφ
(k)
]

i

∣
∣
∣

(57)

≤ lim
n→+∞

n−1∑

k= n

2 +1

we−λkk = 0, (58)

where the inequality in (58) holds due to Lemma 3, and the
equality in (58) follows from algebraic manipulations.

Now, we are in the position to prove the above three items.

Firstly, consider item1), where each recursion satisfies the
update rule (44). Thus, according to Lemma 2, we have

lim
M→+∞

M∏

`=1

P`θ
(0) = 1cTθ(0) = c1, (59)

wherec , cTθ(0).
Then, consider item2). Based on the inequality in (40), we

can obtain

lim
M→+∞

∣
∣
∣[r(M)]i

∣
∣
∣ ≤ lim

M→+∞
we−λεM εM = 0. (60)

Finally, consider item3). By Lemma 1, we know thatP ′
` ,

∏M
q=`+1 Pq andP ′′

` ,
∏M

2

q=`+1 Pq are stochastic matrices. In
this way, we have

lim
M→+∞

M−1∑

`=1

P ′
`r

(`)

= lim
M→+∞

M

2∑

`=1

P ′
`r

(`) + lim
M→+∞

M−1∑

`=M

2 +1

P ′
`r

(`) (61)

= lim
M→+∞

M

2∑

`=1

P ′
`r

(`) (62)

= lim
M→+∞

M∏

k=M

2 +1

Pk

M

2∑

`=1

P ′′
` r

(`) (63)

= lim
M→+∞

M∏

k=M

2 +1

Pk × lim
M→+∞

M

2∑

`=1

P ′′
` r

(`) (64)

= lim
M→+∞

M∏

k=M

2 +1

Pkb = 1c̃Tb = c̃1, (65)

where c̃ , c̃Tb, the equality in (62) holds according to
Lemma 5, the equality in (63) holds by the definitions of
P ′

` and P ′′
` , the equality in (64) holds by the limit rule of

product [25] combined with Lemma 2 and Lemma 4, the
first equality in (65) holds by defining a bounded vector
b , limM→+∞

∑M/2
`=1 P ′′

` r
(`), and the second equality in

(65) holds according to Lemma 2. The proof of Theorem 3 is
concluded bỹc , c̃Tb in (65).

REFERENCES

[1] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync protocol
for sensor networks,” inProc. International Conf. on Embedded Net-
worked Sensor Systems, November 2003, pp. 138–149.

[2] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi, “The floodingtime
synchronization protocol,” inProc. International Conf. on Embedded
Networked Sensor Systems, November 2004, pp. 39–49.

[3] Wireless LAN Medium Access Control (MAC) and Physical Layer(PHY)
specification, IEEE Std 802.11 Std., 2012.

[4] D. Zhou and T. H. Lai, “A scalable and adaptive clock synchronization
protocol for IEEE 802.11-based multihop ad hoc networks,” in Proc.
IEEE Mobile Adhoc and Sensor Conf., November 2005, pp. 558–565.

[5] ——, “An accurate and scalable clock synchronization protocol for IEEE
802.11-based multihop ad hoc networks,”IEEE Trans. on Parallel and
Distributed Systems, vol. 18, no. 12, pp. 1797–1808, December 2007.

[6] H. K. Pande, S. Thapliyal, and L. C. Mangal, “A new clock synchro-
nization algorithm for multi-hop wireless ad hoc networks,” in Proc.
IEEE International Conf. on Distributed Computing Systems, December
2010.

12

[7] R. Solis, V. S. Borkar, and P. R. Kumar, “A new distributedtime
synchronization protocol for multihop wireless networks,” in Proc. IEEE
Decision and Control Conf., December 2006, pp. 2734–2739.

[8] L. Schenato and F. Fiorentin, “Average timesynch: A consensus-based
protocol for clock synchronization in wireless sensor networks,” Auto-
matica, vol. 47, no. 9, pp. 1878–1886, September 2011.

[9] M. K. Maggs and S. G. Okeefe, “Consensus clock synchronization for
wireless sensor networks,”IEEE Sensors Journal, vol. 12, pp. 2269–
2277, June 2012.

[10] P. Sommer and R. Wattenhofer, “Gradient clock synchronization in wire-
less sensor networks,” inProc. IEEE International Conf. on Information
Processing in Sensor Networks, April 2009, pp. 17–48.

[11] Q. Li and D. L. Daniela, “Global clock synchronization in sensor
networks,” IEEE Trans. on Computers, vol. 55, no. 2, pp. 214–226,
February 2006.

[12] A. C. Pinho, D. R. Figueiredo, and F. M. G. Franga, “A robust gradient
clock synchronization algorithm for wireless sensor networks,” in Proc.
IEEE International Conf. on Communication Systems and Networks,
January 2012.

[13] W. Su and I. F. Akyildiz, “Time-diffusion synchronization protocol for
wireless sensor netowrks,”IEEE/ACM Trans. on Networking, vol. 13,
no. 2, pp. 384–397, April 2005.

[14] W. Sun, M. R. Gholami, E. G. Ström, and F. Brännström,“Distributed
clock synchronization with application of D2D communication without
infrastructure,” inProc. IEEE Global Communications Conf. (GLOBE-
COM) Workshop, December 2013.

[15] J. So and N. Vaidya, “MTSF: A timing synchronization protocol to sup-
port synchronous operations in multihop wireless networks,” University
of Illinois at Urbana-Champaign, Tech. Rep., January 2004.

[16] W. Sun, E. G. Ström, F. Brännström, and D. Sen, “Long-term clock
synchronization in wireless sensor networks with arbitrary delay distri-
butions,” in Proc. IEEE GLOBECOM, December 2012.

[17] I. Skog and P. Händel, “Synchronization by two-way message ex-
changes: Cramér-Rao bounds, approximate maximum likelihood, and
offshore submarine positioning,”IEEE Trans. Signal Processing, vol. 58,
no. 4, pp. 2351–2362, Apr. 2010.

[18] C. H. Rentel, “Network time synchronization and code-based scheduling
for wireless ad hoc networks,” Ph.D. dissertation, Carleton University,
2006.

[19] M. Cao, A. S. Morse, and B. D. O. Anderson, “Reaching a consensus
in a dynamically changing environment: convergence rates,measure-
ment delays, and asynchronous events,”SIAM Journal on Control and
Optimization, vol. 47, no. 2, pp. 601–623, March 2008.

[20] W. Ren and R. Beard, “Consensus seeking in multiagent systems under
dynamically changing interaction topologies,”IEEE Transactions on
Automatic Control, vol. 50, no. 5, pp. 655–661, May 2005.

[21] M. Cao, D. A. Spielman, and A. S. Morse, “A lower bound on
convergence of a distributed network consensus algorithm,” in Proc.
IEEE CDC, December 2005, pp. 2356–2361.

[22] G. Tang and L. Guo, “Convergence of a class of multi-agent systems
in probabilistic framework,”J. Syst. Sci. Complex, vol. 20, no. 2, pp.
173–197, June 2007.

[23] J. P. Sheu, C. M. Chao, and C. W. Sun, “A clock synchronization
algorithm for multi-hop wireless ad hoc networks,” inProc. IEEE
International Conf. on Distributed Computing Systems, March 2004, pp.
574–581.

[24] B. J. Choi, H. Liang, X. Shen, and W. Zhuang, “DCS: Distributed
asynchronous clock synchronization in delay tolerant networks,” IEEE
Transactions on Parallel and Distributed Systems, vol. 23, no. 3, pp.
1045–9219, March 2012.

[25] R. Courant,Differential and Integral Calculus Vol I, 1961.

