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Abstract

The growing demand for power in today’s society require large power grids containing high
power electronic devices, of which ABB is a leading manufacturer. In these devices power losses
inevitably occur, leading to heat generation. The heat eventually causes the device to fail, hence
cooling such devices are of great importance. A way to cool such a system is by liquid cooling
with phase change (subcooled nucleate boiling) as an energy transport phenomenon. To develop
such cooling systems, a mathematical model with a numerical solution procedure is needed to
predict the physical properties.

To achieve this, a literature study has been carried out to formulate a closed mathematical
system, describing this problem. The formulated model is based on previously verified models
for boiling properties, such as bubble diameters, wall super heat, heat flux, mass transfer due to
evaporation and condensation. These models were combined with a new approach to calculate
wall temperature. The new wall temperature was introduced to save computational time, since
this often is an issue when implementing these types of models.

A case with existing experimental data, found in the literature study, was simulated and
the results were compared with varying agreement. The vapour content proved to be under
predicted by the model and the introduced wall temperature model gave over predicted results.
Good agreement could be seen of the evaporation heat fluxes with some dependency of the bub-
ble diameter in the system. Despite over and under predictions, the trends of several properties
agreed with the reference data. The developed solver also performed stable computations and
was well documented, preparing it for future development.
KEYWORDS: CFD, OpenFOAM, subcooled nucleate boiling flow, wall tempera-
ture, bubble diameter model, heat flux partitioning, cooling
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1 INTRODUCTION

1 Introduction

1.1 Context

Phase changing phenomenon are present in many engineering applications today. One such
phenomena is boiling, where a medium changes from liquid phase to gas phase. This phenomena
can be encountered in a variety of systems, like power systems and heat transfer systems [14]. In
power systems it occurs in, for example, conventional power plants with boilers and evaporators
or in boiling water reactors in nuclear power plants. In heat transfer systems it can be found in
different heat exchangers like evaporators and heat pipes.

With the growing demand for power in today’s society the need for robust power transmission
systems capable of handling large amounts of power are needed .The electrical devices in such
systems have to sustain high loads. This results in large development of heat in the components
of such devices, causing power losses and possible damage to the system. Cooling such systems
properly is therefore of great importance. Prototypes of systems of this complex nature can
be both time and cost consuming. Therefore, a proper procedure to model and simulate such
systems can be highly beneficial.

One way to use boiling, in particular subcooled nucleate boiling section 2.4, as a cooling
system could be to have a liquid flow over a heated surface with conditions, like liquid and
pressure, adjusted so that boiling can start at the surface. When phase change occur, a large
amount of heat energy is transported, between the phases, in the process. The developed vapour
forms bubbles that detaches from the surface and drifts into the bulk, where they condensates
back to liquid phase. To model this, a solid mathematical model and a numerical solution to
such a model need to be formulated and solved.

1.2 Background

ABB is a large manufacturer and developer of power electronic devices. Many of these devices
generate a large amount of heat when they are in service. To cool these components a number
of different methods can be considered.

ABB collaborates with professor Henryk Anglart at the department for Nuclear Reactor
Technology at KTH in the development of simulation tools for cooling systems. Professor Anglart
works with boiling models associated with heat transfer in nuclear reactors. His research includes
development of accurate and robust models for subcooled nucleate boiling. In this collaboration,
ABB is investigating how to use these models to develop cooling systems for their products. An
important part of this investigation is to develop a good model of subcooled nucleate boiling for
systems with similar conditions found in their cooling systems. The existing models are usually
developed for the nuclear power industry. A variety of models for different physical phenomena
have been developed and validated in the past. A lot of research has been done to develop models
of bubble diameters, vapour propagation, mass transfer due to evaporation and condensation to
name a few. However, these models are often only valid for water and simple geometries, like
vertical cylinders. Therefore, to obtain a proper model for ABB’s intentions, parts of the existing
models need to be changed.

The implementation of such models have been done in different CFD-softwares. One such is
OpenFOAM, which is an open source software suitable for developing new solvers. OpenFOAM
contains two-phase solvers adjusted to handle materials of several phases like liquid and gas
in the same system. In the latest version 2.3.0 of OpenFOAM the twoPhaseEulerFoam-solver
has been updated with new approaches to calculate some of the two-phase variables, but lack
implementation of the phase change.

1



1.3 Purpose 1 INTRODUCTION

1.3 Purpose

To develop a robust model and solver for a general liquid and a general geometry is a great task.
The purpose of this thesis is therefore restricted to introducing ABB to the theory of subcooled
nucleate boiling and to implementation of a such model in OpenFOAM with professor Anglart
as the expert in the field.

The developed model will use existing models for all the different aspects of subcooled nucleate
boiling except for two parts. The wall temperature and the point where boiling phenomena are
initiated will be modelled with a new approach, suggested by professor Anglart. The purpose of
the new approach is to reduce the amount of computational resources needed to model this to
parts.

The model will be restricted to using water as a liquid and the geometry will be a verti-
cal cylindrical pipe. The result will then be compared to empirical data, to verify if the new
modelling, of the ONB, works.

The implementation of the solver will be based on the new twoPhaseEulerFoam-solver. The
implementation will be carried out in way that makes future adjustments and development, like
switching liquid and geometry, easy.

1.4 Limitations

The simulated cases will be restricted to be as simple as possible. As mentioned above the model
will only be valid for water as the liquid and the geometry being a vertical cylindrical pipe. The
geometry will also be restricted to a 2-D approximation in the form of a wedge of a cylinder to
save computational time. Many physical properties will be assumed to be constant, even though
they change with temperature, to keep the work load and computation time from growing out
of proportion.

2



2 THEORY

2 Theory

In this section basic theory about single-phase fluid mechanics and turbulence are presented.
From the theory of single-phase flow the theory about multi-phase flow is developed, according
to the Euler method. Basic concepts of heat transfer and a description of the finite volume
method are also presented.

2.1 Single-Phase Fluid Mechanics

The main objective of fluid mechanics is to describe and predict physical properties of gas and
liquid flows. Systems with such flows possess different properties like pressure, temperature,
velocity, density, turbulent/laminar etc. Systems are described by a set of partial differential
equations called governing equations derived from basic physical principles. Different approaches
can be employed to derive the governing equations and can be found in any basic text on the
subject such as [1, 7, 12, 29]. In the following sections the governing equations are derived by
defining a so-called control volume.

2.1.1 Continuum Mechanics

To describe the physics of a system it can be modelled by continuum mechanics [18] which was
first introduced by the french mathematician Augustion-Louis Cauchy. It models materials as a
continuous mass instead of discrete atoms. Hence, it is assumed that the material completely fills
the volume it occupies. This approximation gives accurate results, in most systems in engineering
applications, due to the large difference between the application scales and the atomic scales.

In addition to the above assumptions three conservation principles are applied, to a closed
system, to derive the governing equations. A closed system refers to a system where there is
no transfer of matter, momentum or energy with the outside of the system. The conservation
principles regard the mass, momentum and energy of the closed system. From these conservation
principles three governing equations are derived known as the continuity equation, the momentum
equation and the energy equation [1].

2.1.2 Governing Equations

To derive the governing equations the concept of a control volume is introduced. A control
volume Ω is defined as a small arbitrary volume with a surface ∂Ω fixed in space through which
the fluid flows. By applying the conservation principles to Ω the governing equations can be
derived as done in [1].

Continuity Equation The continuity equation, also known as the balance equation for mass is
based on the physical principle that mass can be neither destroyed nor created [1]. This physical
principle states that the mass flow into a control volume equals the rate of change of mass inside
the control volume. Let Ω be an arbitrary control volume with the surface ∂Ω and let n be the
outward unit normal on a small area dS around a point P on ∂Ω. If u(u, v, w) and ρ is the local
velocity vector and density, respectively, then at point P the mass flow ṁ through dS can be
expressed

Ṁ = ρu · ndS (2.1)

The net flow of mass into Ω through ∂Ω is then given by

−
∫
∂Ω

(ρu · n) dS (2.2)

Applying the divergence theorem gives

−
∫
∂Ω

(ρu · n) dS = −
∫

Ω
∇ · (ρu)dV (2.3)
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2.1 Single-Phase Fluid Mechanics 2 THEORY

For an infinitesimal volume element dV inside Ω the mass is given by ρdV , hence the total
mass inside Ω is given by ∫

Ω
ρ dV (2.4)

and thus the total net change of mass is given by

∂

∂t

∫
Ω
ρ dV =

∫
Ω

∂ρ

∂t
dV (2.5)

Then by the mass conservation principle

−
∫

Ω
∇ · (ρu)dV =

∫
Ω

∂ρ

∂t
dV ⇔

∫
Ω

[∂ρ
∂t

+∇ · (ρu)
]
dV = 0 (2.6)

Since Ω can be chosen arbitrary it follows that

∂ρ

∂t
+∇ · (ρu) = 0 (2.7)

which is know as the continuity equation.

Momentum Equation The momentum equation, also known as the balance equation of mo-
mentum, is based on Newton’s second law of motion, that is, the sum of all forces acting on a
body is equal to the rate of change of momentum of it (mass × acceleration) [1]. The forces
acting on the body can be divided into to groups. The first is the body forces b acting inside
the body e.g. centrifugal or gravitational forces. The second group is the surface forces acting
on the surface of the body e.g. pressure or viscous forces.

Similarly to the continuity equation the rate of change of total momentum inside Ω is given
by

∂

∂t

∫
Ω
ρudV (2.8)

Since Ω depend on t, applying Leibniz’s integral rule and then the divergence theorem, Equa-
tion 2.8 can be rewritten according to

∂

∂t

∫
Ω
ρudV =

∫
Ω

∂(ρu)

∂t
dV +

∫
∂Ω

uρu · ndS =

∫
Ω

∂(ρu)

∂t
dV +

∫
Ω
∇ · ρuudS (2.9)

The forces acting on the surface ∂Ω is represented by the stress vector T. The stress vector is
obtained via the Cauchy stress tensor σ according to

T = n · σ (2.10)

hence the total contribution to the total momentum from the surface forces are given by∫
∂Ω

n · σdS (2.11)

where n is the outwards unit normal. Applying the divergence theorem to Equation 2.11 gives∫
∂Ω

n · σdA =

∫
Ω
∇ · σdV (2.12)

The total momentum due to body forces is given by∫
Ω
ρbdV (2.13)
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where b is the body force per unit mass. The governing equation for momentum can then be
expressed

∂ρu
∂t

+∇ · (ρuu) = ∇ · σ + ρb (2.14)

Assuming isotropic Newtonian viscous fluids [18] the stress tensor σ can be divided into two
parts, a hydrostatic part σhyd and a deviatoric part σdev. The hydrostatic stress represents
the stresses normal to the surface of the body , i.e the negative mechanical pressure P . The
hydrostatic stress is defined as one third of the trace of σ times the unit tensor:

σhyd =
1

3
tr(σ)I = −P (2.15)

The deviatoric stress consists of distorting stresses and are assumed to depend on the velocity
gradient through the rate of strain tensor D according to

σdev = 2µdev(D) (2.16)

where
D =

1

2

(
∇u+

(
∇u
)>) (2.17)

The operator dev is the deviatoric tensor operator defined as

dev
(
D
)

= D − 1

3
tr
(
D
)
I (2.18)

Expressed in terms of velocity and pressure gradients the Cauchy stress tensor then reads

σ = −PI + µ
(
∇u+

(
∇u
)> − 2

3

(
∇ · u

)
I
)

(2.19)

Combining Equation 2.19 with Equation 2.14 gives the following version of the momentum equa-
tion

∂ρu
∂t

+∇ · (ρuu) = −∇P +∇ · µ
(
∇u+

(
∇u
)> − 2

3
tr
(
∇u
)
I
)

+ ρb (2.20)

Energy Equation The energy equation, also known as the balance equation of energy, is based
on the conservation of energy principle. This principle states that energy can neither be created
nor destroyed, it can only change form. It follows from the first law of thermodynamics and
states that the rate of change of total energy is equal to the rate heat is added minus the rate of
work done [1].

The total energy is given by ∫
Ω
ρ
(
ein + ekin

)
dV (2.21)

hence the rate of change of total energy is given by

∂

∂t

∫
Ω
ρ
(
ein + ekin

)
dV =

∫
Ω

∂
(
ρ
(
ein + ekin

))
∂t

dV +

∫
Ω
∇ · uρ

(
ein + ekin

)
dV (2.22)

where ein is the internal energy per unit mass and ekin is the kinetic energy per unit mass.
The heat added to the system can be divided into two parts. The first part is the heat added

to the system through the surface ∂Ω and is given by

−
∫
∂Ω
qs · ndS = −

∫
Ω
∇ · qsdV (2.23)

where qs is the surface heat flux vector. The second part is the contribution from body heat
sources qb given by ∫

Ω
qbdV (2.24)
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The rate of work done on the system can also be partitioned into two parts. The first part is
work done due to surface forces, i.e. the pressure and viscous forces∫

∂Ω
P
(
u · n

)
dS −

∫
∂Ω

(
τ · u

)
· ndS =

∫
Ω
∇ ·
(
Pu
)
dV −

∫
Ω
∇ ·
(
τ · u

)
dV (2.25)

where τ is the shear stress tensor defined as dev(σ). The second part accounts for the body
forces b, e.g. to gravitation, and is given by∫

Ω
ρ
(
b · u

)
dV (2.26)

Hence the governing equation for the total energy can be expressed

∂
(
ρ
(
ein + ekin

))
∂t

+∇ · uρ
(
ein + ekin

)
= −∇ · qs + qb +∇ ·

(
Pu
)
−∇ ·

(
τ · u

)
+ ρ
(
b · u

)
(2.27)

The kinetic energy can also be obtained by taking the dot product of the momentum equation and
the velocity vector. Subtracting the obtained expression for the kinetic energy from Equation 2.27
yields an equation for the internal energy ein. Introducing the concept of enthalpy defined as

h = ein +
P

ρ
(2.28)

the energy equation can be expressed in terms of the specific enthalpy according to

∂ρh

∂t
+∇ ·

(
ρhu

)
= −∇ · qs + qb +

∂P

∂t
+ P∇ · u+ τ : ∇u (2.29)

where operator : is the double dot product [12, 18]. From the enthalpy, the temperature can be
obtained through

T =
h

Cp
(2.30)

assuming a calorically perfect gas [1].

2.1.3 Turbulence

In most engineering applications the flow of interest is turbulent, that is, properties can change
in a chaotic way and there can be very large velocity gradients, pressure gradients and time fluc-
tuations. There is no formal definition of a turbulent flow, but it has a number of characteristics,
see [7]:

Irregular The flow is irregular and chaotic but is governed by the momentum equation Equa-
tion 2.20. The flow consist of eddies which are not defined in detail but are assumed to have
three characteristic scales: length (diameter), velocity and time of existence. The largest
scales are restricted by the geometry in which the flow evolves. The largest eddies are as-
sumed to get their energy from the mean flow and pass it to smaller eddies in the so called
cascade process. The smallest scale eddies are assumed to be destroyed by dissipation.

Dissipation: The destruction of the small scaled eddies is called turbulent dissipation. After
the energy is transferred to the smallest eddies in the cascade process it is transformed into
thermal energy by the turbulent dissipation.

Three-dimensional: Turbulence always occurs in three dimension and is unsteady. If the
governing equations are time averaged it can be treated as two-dimensional.

Diffusivity: Turbulence increase the diffusivity in a flow. Hence it increases the exchange of
momentum in boundary layers and increases the wall friction and heat transfer.
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Continuum: The smallest turbulent scales are much larger than the atomic scales hence the
principles of continuum mechanics are valid.

High Reynolds numbers: Turbulence only occurs at high Reynold numbers. The Reynolds
number is a dimensionless quantity that can be viewed as a comparison of the inertial
forces to the viscous forces.

Reynolds Average Navier-Stokes Equations Solving all scales in a turbulent flow is only
possible in very simple cases with the computer power available today. For most practical
purposes it is enough to calculate the time-averaged properties of a flow. This can be solved
by solving a time-averaged version of the Navier-Stokes equations, the theory to derive such
an equation can be found in any basic book in the subject like [7, 29] that were used in the
following derivations. To do this a property ζ of a flow is divided into a time-averaged part ζ
and a fluctuating part ζ ′ according to

ζ = ζ + ζ ′ (2.31)

The first step is to expressing the properties in the continuity equation Equation 2.7 and momen-
tum equation Equation 2.20 according to Equation 2.31. Then taking the time average of each
equation yields the so-called Reynolds averaged Navier-Stokes equations (RANS). After some
algebra and dropping the time average bar the RANS equations states

∂ρ

∂t
+∇ · (ρu) = 0, (2.32)

∂ρu
∂t

+∇ · (ρuu) = −∇P +∇ · µ
(
∇u+

(
∇u
)> − 2

3
tr
(
∇u
)
I
)

+ ρb +∇ ·
(
− ρu′ ⊗ u′

)
(2.33)

where ⊗ is the outer product. The last term in Equation 2.33 is called the Reynold stresses
and account for the turbulent part of the flow. This term need to be modelled to get a valid
representation of a turbulent flow.

Turbulence Modelling To model the Reynold stresses several methods are available. In
this thesis the standard k − ε-model [7, 12, 29] will be used which is based on the Boussinesq
assumption [31], which reads

− u′ ⊗ u′ = νt
(
∇u+

(
∇u
)>)− 2

3

(
k + νttr

(
∇u
))
I (2.34)

where k is the turbulent kinetic energy and νt is a proportionality constant known as the eddy
viscosity. Both these properties have to be modelled. The turbulent kinetic energy is modelled
with the equation

∂ρk

∂t
+∇ · (ρku) = ∇ ·

(
ρ
(
ν +

νt

σk

)
∇k
)

+ 2ρνt
(
∇u+

(
∇u
)>) · ∇u− ρε (2.35)

where ε the dissipation mentioned in 2.1.3. The turbulent dissipation is calculated with the
governing equation

∂ρε

∂t
+∇ · (ρεu) = ∇ ·

(
ρ
(
ν +

νt

σε

)
∇ε
)

+ C1ε
ε

k
2ρνt

(
∇u+

(
∇u
)>) · ∇u− C2ερ

ε2

k
(2.36)

With k and ε obtained from Equation 2.35 and Equation 2.36 the eddy viscosity can be calculated
according to

νt = Cµ
k2

ε
(2.37)

The equations contain five adjustable constants Cµ, σk, σε, C1ε, C2ε which usually are set to
0.09, 1.00, 1.30, 1.44 and 1.92 respectively.
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Near Wall Treatment of Turblent Quantities The area close to the wall need to be
handled in a specific way to accurately predict the velocity. The region closest to the wall can
be divided into a number of smaller layers. The distance to the wall is usually expressed in the
non-dimensional unit y+ depending on the turbulent kinetic energy [7] according to

y+ =
C

1/4
µ k1/2y

ν
(2.38)

where Cµ is the constant mentioned in section 2.1.3 equal to 0.09. The velocity of significance
close to the wall region is the streamwise velocity denoted u+ which is defined in terms of y+.

In the region adjacent to the wall, approximately y+ . 5, the flow is considered laminar and
the turbulent quantities are set to zero and the velocity is approximated by u+ = y+. The region
30 . y+ . 3000 is called the log-law-region in which the velocity is approximated by

u+ =
1

κ
ln
(
Ey+

)
(2.39)

The constants E is usually set to 9.793 and κ is Von Karman’s constant which is equal to 0.4187
according to [8]. The region between the viscous region and the log-law region is called the
buffer layer. In this region there is a transition of the velocity from being well approximated by
u+ = y+ to being well approximated by Equation 2.39. At y+ ≈ 11 both these laws are equal
and a switch is usually carried out in the model.

2.2 Multi-Phase Fluid Mechanics

In multi-phase fluid mechanics flows consisting of materials in different phases are subject to
study. The phases can be gas, liquid , solid or materials of different chemical properties as water
and oil.

An example of a system with multi-phase flow is a pipe with heated walls where enough
heat is added for vapour bubbles to develop. Such a boiling system is classified as a two-phase
gas-liquid flow and the single-phase framework is no longer sufficient to describe it. The theory
presented in this section only concern two-phase flow but could easily be expanded to any number
of phases. The theory in this thesis will be based on the so-called Euler-Euler model [8].

2.2.1 Euler-Euler Model

The Euler-Euler model is an approach that describe a two-phase (or multi-phase) system were
each phase is represented by a complete set of governing equations. With the appropriate closure
equations and equations for turbulence modelling such a system can be described properly.
The governing equations are similar to Equation 2.7, Equation 2.20 and Equation 2.29, with
some modifications. The modifications introduces new concepts as void fractions and accurate
representation of the terms for exchange of mass, momentum and energy between the phases.

Void Fraction The void fraction αk is defined for each phase k as a number between 0 and
1 giving the fraction of space occupied by phase k. Consequently the sum of all void fractions
equal 1. The void fractions can be solved for each phase through the continuity equation. In
a two-phase flow system it follows that αk = 1 − αi, hence it is enough to solve for one void
fraction. The subscripts k and i represent the two separate phases.

Continuity Equation The adjusted continuity equation of each phase k according to [10, 11,
14, 20, 21] reads

∂αkρk
∂t

+∇ ·
(
αkρkuk

)
= Γki − Γik (2.40)
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where Γik account for the mass transferred from phase k to phase i and Γki the mass transferred
from i to k. How the mass transfer terms are defined depends on the physical system that is
modelled and the choice of model.

Momentum Equation Similarly to the continuity equation the momentum equation is also
adjusted by the void fraction. Additional terms are also added, to account for the exchange
of momentum due to phase transfer between the phases. A general version of the momentum
equation for a multi-phase flow with the Boussinesq assumption according to [10, 14, 20] reads

∂αkρkuk
∂t

+∇ ·
(
αkρkukuk

)
= −αk∇P +∇

(
αk
(
τk + τ tk

))
+ Γkiui − Γikuk +αkρkg+Fk (2.41)

The second term on the R.H.S. is the effect of the Reynolds viscous stresses and the turbulent
stresses. The term τk + τ tk is the combined Reynolds viscous and turbulent stresses given by

τk + τ tk = ρkν
eff
k

(
∇uk +

(
∇uk

)> − 2

3
I∇ · uk

)
− 2

3
Iρkkk (2.42)

where I is the identity tensor and k is the turbulent kinetic energy. The term νeffk is the effective
kinematic viscosity and is the sum of different viscosities of the flow. The third and the fourth
term accounts for the loss and gain of momentum due to the phase change. The fifth term is
gravitational term and the last term Fk on the R.H.S. accounts for the interfacial forces and is
subject for further modelling. The gravitation and the interfacial forces are assumed to be the
only body forces.

Energy Equation As with the single-phase flow the energy can be expressed in terms of
different quantities. The modified energy equation for the two-phase flow will also be given in
terms of enthalpy. If the effects of the shear stress to the energy conservation is neglected the
enthalpy equation states [14]

∂αkρkhk
∂t

+∇ ·
(
αkρkukhk

)
= −∇ · αk

(
qk + qtk

)
+ αk

∂P

∂t
+ αkuk · ∇P + Γkihi − Γikhk + qb (2.43)

The first term qk + qtk account for the sum of the molecular and turbulent heat fluxes of each
phase. The second and third term is the material derivative of the pressure. The fourth and fifth
term accounts for the contribution of enthalpy from phase change. The last term is a the source
term for body sources of enthalpy.

2.2.2 Interfacial Forces

In Equation 2.41 the interfacial forces account for the forces arising at the interface between the
phases. A number of such forces with varying impact on the solution can be considered for a
boiling flow. A few examples are

Drag force: The drag force is the most contributing force to the momentum. It is the force felt
by an object, like a bubble or drop, when it moves steadily through the surrounding fluid.
There exist several formulations of this force, including the so-called drag force coefficient
of this force. The formulations often focuses on how to model the drag force coefficient.

Virtual mass force: When an object accelerates through a fluid it accelerates some of the
surrounding liquid. This results in an interaction force called the virtual mass force.

Phase change force: The force due to phase change accounts for the effect on the momentum
at the interface when the state of a phase changes to another state.
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Wall lubrication force: In case of boiling at a heated wall the wall lubrication force acts
normal to the surface and preventing the generated vapour bubbles from accumulating.

Turbulent dispersion force: The turbulent dispersion force accounts for the effects from the
fluctuating turbulent velocities on the vapour bubbles.

Shear lift force: The shear lift force is a force that acts on bubbles moving in a flow and pushes
smaller bubbles to low-velocity regions, i.e. to the wall and larger bubbles to the regions
with higher velocities.

2.2.3 Interfacial Area Concentration

The interfacial area concentration ai is defined as the total interfacial area between two phases
divided by the total volume of the system, that is, for a boiling system the area of vapour bubbles
per unit volume. This quantity can be modelled with more advanced modelling including effects
of bubble break-up and bubbles merging. The advanced models can be carried out with a
separate transport equation, to be solved in parallel with the adapted model. Simpler models
can be adopted if these effects are neglected and the average bubble size is given. In this case
the interfacial area concentration can easily be obtained from the void fraction and the diameter
according to

ai = 6
αk
dk

(2.44)

where dk denotes the average bubble diameter for phase k.

2.3 Heat Transfer

In heat transfer the exchange of thermal energy in a physical system is the subject of study.
Heat exchange always occur when there exist a temperature difference in a medium or between
media. Heat transfer is categorized depending on the conditions in which it take place [13].

Conduction: Conduction refers to the heat exchange taking place in stationary mediums as
solids or fluids.

Convection: Convection describes the heat transfer between a surface and a moving fluid or
gas, if they are at different temperatures.

Radiation: Radiation is the heat transfer due to emitted energy in the form of electromagnetic
waves from a heated surface.

In convection heat transfer the fluid motion is the dominating mechanism that transfer the
heat. Convection can further be divided into free convection and forced convection. In a forced
convection system the fluid motion is maintained by external force, e.g. a pump or a fan whereas
in free convection it is maintained by buoyancy forces. The system that will be modelled in
this thesis consist of forced convection in a vertical pipe with heated wall. So far these terms
only describe heat transfer in single-phase systems, i.e. no phase mass transfer like boiling or
condensation is accounted for.

2.4 Boiling

If enough heat is added to a liquid in a system a phase transfer from the liquid phase to the gas
phase will occur. This phenomena is called boiling and can be divided into two categories:

Pool boiling: In pool boiling the fluid is at rest and the only motion taking place is due to free
convection and to bubbles growing and detaching. This corresponds to the single-phase
free convection conditions.
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Forced convection boiling: In forced convection boiling the fluid motion is induced by free
convection, bubbles growth and by external means. It corresponds to the single-phase
forced convection conditions.

The boiling heat transfer is divided into regimes depending on the behaviour of the boiling.
It is illustrated in Figure 2.1 on a log(q′′) − log(∆Tsup) plane where ∆Tsup is the wall super
heat defined as the difference between the temperature of the heated surface and the saturation
temperature for the system. The heat flux q′′ represent the heat transferred to the system at
different ∆Tsup.

In the first regime, up to point B, no boiling occurs and heat transfer only consist of con-
vection. After point B until point C small isolated vapour bubbles are developed at the heated
surface which detach and condense in the bulk liquid. This regime is referred to as subcooled
nucleate boiling and will be subject of study in this thesis. The point B at which boiling starts
is referred to as onset of nucleate boiling (ONB). Between point C and E increasing number of
larger bubbles develop and start to merge with each other and form columns of vapour. This
regime is called saturated nucleate boiling.

The next regime is the transition boiling, between point E and G. In this region bubbles grow
so fast that a film of vapour is created over the surface. Since the thermal conductivity of vapour
is much smaller than for the liquid the heat transferred to the system decreases in this regime.
After point G the stable film boiling regime starts. In this regime the surface is totally covered
by vapour and the heat is transferred though conduction and radiation through the vapour.

Figure 2.1: Boiling curve illustrating different boiling regimes as the wall super heat at different
heat fluxes from [12].
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2.5 Non-Dimensional Numbers

In the study of systems with turbulent flow and heat transfer there are many ways to estimate
basic concepts. For this purpose there exist a wide range of dimensional numbers that describe
the different properties of a system [13]. The theory in this thesis will make use of the following
dimensionless numbers:

Reynolds number: The Reynolds number (Re) is defined as the ratio between inertial forces
and viscous forces. It can be calculated by Re = ul/ν, were u is the mean velocity of the
fluid and l is the characteristic length, e.g. pipe diameter. The Reynolds number is often
used to estimate if a flow is turbulent or laminar.

Prandtl number: The Prandtl number (Pr) gives the ratio between momentum diffusivity, i.e.
kinematic viscosity, and thermal diffusivity. It can be calculated according to Pr = ν/χ =
Cpµ/λ.

Nusselt number: The Nusselt number (Nu) is defined as the ratio between convective and
conductive heat transfer across a boundary, that is, it is the dimensionless temperature
gradient normal to the heated surface. It can be calculated by Nu = Hl/λ where H is the
convective heat transfer coefficient and λ is the thermal conductivity.

Stanton number: The Stanton number (St) is defined as the ratio between heat transferred
into a fluid and the thermal capacity of the fluid. It can be calculated by St = H/(ρuCp)
where Cp is the specific heat capacity of the fluid.
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2.6 Finite Volume Method

The finite volume method is a technique to go from continuous differential equation to a discrete
algebraic equation[7, 29].The fundamental idea is to divide the computational domain into a
number of smaller control volumes of geometrical shapes like cuboid or tetrahedrons. This is
done by defining a number of node points in the domain and then divide the domain between
the node points resulting in a structure called mesh. In the solution procedure, the refinement
of the mesh is a compromise between the solution accuracy and the computational cost.

The differential equation is then discretized by integration over each control volume. The
integrations make use of Gauss theorem stating that∫

Ω
∇ ·ΨdV =

∮
∂Ω

Ψ · ndS (2.45)

With this technique the integrated terms of the differential equation only needs to be given at
the boundary of the control volume. The boundary is divided into faces defined as parts of the
boundary where the normal do not change. Since the values at the faces are normally not known
they are interpolated from the node points. This is done with an interpolation scheme of which
there exist a wide range to chose from depending on what is suitable for the equation to be
solved.

As an example, to solve the one-dimensional differential equation

d2ψ

dx2
+ S = 0 (2.46)

over a domain D first divide D into a suitable number of control volumes, see Figure 2.2. At
each control volume by Gauss theorem it follows that∫

Ω

[ d
dx

(dψ
dx

)
+ S

]
dV =

∫
Ω

[ d
dx

(dψ
dx

)]
dV +

∫
Ω
SdV =

∮
∂Ω

(dψ
dx

)
dS + S∆x =

(dψ
dx

)
e
−
(dψ
dx

)
w

+ S∆x = 0 (2.47)

The subscripts e and w corresponds to the faces between node P and node E andW respectively
and S is the average of S over the control volume. To achieve the finial discretized equation the
first order derivative terms need to be interpolated on the faces in terms of the node points. One
such scheme is the central differencing scheme which gives(dψ

dx

)
e

=
ψE − ψP
δxe

,
(dψ
dx

)
w

=
ψP − ψW
δxw

(2.48)

Inserting Equation 2.48 in the expression in Equation 2.47 and rearranging yields

aEψE − aPψP + aWψW = −Su (2.49)

where
aE =

1

δxe
, aW =

1

δxw
, aP = aE + aW .

Performing the previous discretization at each node gives a linear system of equation, with an
equation per node. Such a system of equation can be solved by existing algorithms like TDMA
and Gauss-Seidel.
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PW E

δxw δxe

∆x

Figure 2.2: An example of a one-dimensional control volume.
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3 Boiling Model

In this section a model of a subcooled nucleate boiling system is specified. The model that was
used to simulate the boiling is based on the model published by Kurul et al. [21]. It is based on
the two-fluid model Eulerian-Eulerian approach, where each phase is modelled with its own set
of transport equations. The two phases are distinguished by the subscripts L and V representing
Liquid and Vapour, respectively.

The system, subject for examination was a vertical pipe with an upward flow of water, heated
from the wall to the point where phase change, in the form of evaporation, started at the wall.
The evaporation was in the form of subcooled nucleate boiling. The vapour, in the form of
bubbles, detaching from the wall then condensates in the subcooled liquid.

The momentum of the fluid and the vapour was modelled with the momentum equation
section 3.2.2. Factors contributing to the momentum were interfacial forces and turbulence, as
described in section 3.3 and section 3.4.

The propagation of heat was calculated by the heat equation described in section 3.2.3.
The accurate temperature at the wall had to be calculated separately with the law-of-the-wall
explained in section 3.5.2.

The boiling phenomena was modelled to start at a certain global condition described in
section 3.5. Once boiling has started at the wall, the total heat flux from the wall is partitioned
into two parts as explained in section 3.6. One part that goes into a continued heating of the
liquid and one part that is consumed in the phase change from liquid to vapour.

The heat flux, going into the vapour phase, was calculated with the diameter of the vapour
bubbles detaching from the wall, the number of bubbles growing on the wall per unit area and
the frequency at which bubbles were developed. These models are described in section 3.7.

The mass transfer term describing the evaporation was calculated as a quantity depending
on the heat flux going into the vapour phase. The model for this mass transfer is described in
section 3.8.1.

When the vapour bubbles drifted into the subcooled bulk they were cooled down and con-
densed back to liquid. This phase change was modelled with the condensation mass transfer
term described in section 3.8.2.

The condensation rate was dependent on the size of the bubbles in the bulk flow. This
requires a model for the bubble diameter in the bulk, which is described in section 3.9.

In Figure 3.1 the internal flow in a vertical pipe with walls heated, to the point where boiling
starts, is depicted.

3.1 Assumptions and Simplifications

The model consist of two key parts. The first part is the model of the departure diameter of the
bubbles published by Ünal [32]. The second part is the model of the wall super heat according
to Jens-Lottes correlation [12].

To obtain a solvable model a number of assumptions were made to simplify it.

1. The liquid phase was considered incompressible. Though in reality the density changes
with temperature.

2. Properties like viscosity and thermal conductivity were also assumed to be constant, despite
the temperature differences.

3. The vapour phase was assumed to be at saturated conditions, that is, the vapour was
assumed to always be at saturated temperature and pressure. Consequently the vapour
phase was treated as incompressible. This also simplified the way the condensation was
modelled, since no cooling of the vapour inside the bubbles had to be considered.
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Heated wall

q′′

Figure 3.1: Graphical illustration of a vertical pipe with a wall, heated to the point that boiling
starts.

4. The vapour phase was assumed to be laminar, i.e. effects of turbulence inside the bubbles
were neglected

5. The bubbles were assumed to be perfect spheres to simplify the modelling of the bubble
dimensions.

6. Single bubbles were assumed, hence, no effects caused by bubbles merging or breaking up
were accounted for.

3.2 Governing Equations

The governing equations used in the model is based on the equations formulated in section 2.2.
With the above assumptions, the appropriate governing equations were formulated according to
the following sections.

3.2.1 Continuity Equation

Since the flow was assumed to be incompressible, the continuity equations were only used as
transport equations for the void fraction and for the pressure correction algorithm. The equations
read

∂ρLαL
∂t

+∇ · (ρLαLuL) = ΓL (3.1)

for the liquid phase and
∂ρV αV
∂t

+∇ · (ρV αV uV ) = ΓV (3.2)

for the vapour phase. The source term ΓV is given by evaporation rate subtracted by the
condensation rate Γevap − Γcond and ΓL = −ΓV .

To obtain the void fractions it was enough to solve the transport equation for αV . Since
there were only two phases αL could be obtained through

αL = 1− αV (3.3)
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Hence, the only equation to be solved for the void fraction were Equation 3.2.

3.2.2 Momentum Equation

For each phase a separate momentum equation was formulated. Since the vapour phase was
assumed to be laminar no turbulent quantities were included, in the corresponding momentum
equation. Moreover, since the liquid phase was treated as incompressible and the vapour phase
was assumed to be saturated and, hence, incompressible the density could be moved to the R.H.S
of the equations. The governing equation for the vapour phase reads as

∂αV uV
∂t

+∇ ·
(
αV uV uV

)
= −αV

ρV
∇P +

1

ρV
∇
(
αV τV

)
+ αV g +

1

ρV
FV (3.4)

where
τV = ρV νV

(
∇uV +

(
∇uV

)> − 2

3
I∇ · uV

)
(3.5)

For the liquid phase, which accounted for turbulent effects, the momentum equation stated

∂αLuL
∂t

+∇ ·
(
αLuLuL

)
= −αL

ρL
∇P +

1

ρL
∇
(
αL
(
τL + τ tL

))
+ αLg +

1

ρL
FL (3.6)

where
τL + τ tL = ρLν

eff
L

(
∇uL +

(
∇uL

)> − 2

3
I∇ · uL

)
− 2

3
IρLkL (3.7)

Both equations account for the stress due to pressure through the first term on the R.H.S. of
Equation 3.4 and Equation 3.6. The second term in Equation 3.4 represents the viscous stresses
and in Equation 3.6 it stands for the viscous and turbulent stresses. The third and fourth term
are the gravitational force and the interfacial forces. The last two terms needed further modelling
to achieve a closed system of equations.

3.2.3 Energy Equation

Since the vapour phase is assumed to be at saturated conditions no energy equations needs to be
solved for it. For the liquid phase the energy equation is stated in terms of the specific enthalpy
according to

∂αLhL
∂t

+∇ ·
(
αLuLhL

)
= − 1

ρL
∇ ·
(
αL
(
qL + qtL

))
+
αL
ρL

∂P

∂t
+
αL
ρL
uL · ∇P

+
ΓcondhV,sat − ΓevaphL

ρL
+
qwallAwall

ρL
(3.8)

Comparing to Equation 2.43, the source term has been specified as the wall heat flux in Equa-
tion 3.13. Using Fourier’s law

q = −λ∇T = − λ

Cp
∇h (3.9)

it follows that
qL = −λL∇TL = − λL

Cp,L
∇hL (3.10)

qtL = −λtL∇TL = −
λtL
Cp,L

∇hL (3.11)

where the turbulent thermal conductivity λtL can be obtained through the Prandtl number sec-
tion 2.5 according to

λtL =
ρLCp,Lν

t
L

PrtL
=
ρLCp,L(νeffL − νL)

PrtL
(3.12)
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where νeffL is the effective kinematic viscosity. The turbulent Prandtl number PrtL was set to
0.85, which is within the range of common values obtained form different empirical and analytical
relations as in [2, 15]. Inserting Equation 3.10, Equation 3.11 and Equation 3.12 in Equation 3.8
gives the following energy equation

∂αLhL
∂t

+∇ ·
(
αLuLhL

)
= ∇ ·

(
αL
( λL
ρLCp,L

+
1

PrtL

(
νtL − νL

)
∇hL

))
+
αL
ρL

∂P

∂t
+
αL
ρL
uL · ∇P +

ΓcondhV,sat − ΓevaphL
ρL

+
qwallAwall

ρL
(3.13)

3.3 Turbulence Model

Since turbulence was only taken into account for the liquid phase, only one set of turbulence
equations were needed. The turbulence equations were taken from the OpenFOAM’s multi-phase
version of the k− ε turbulence model. It is based on the original k− ε-model, adjusted with the
void fraction and suitable near wall treatment.

3.3.1 Multi-Phase Turbulence Model

The k − ε turbulence model in OpenFOAM can be derived from the standard k − ε-model by
first. The multi-phase turbulence can be modelled with the standard equations [17]

∂kk
∂t

+ (uL · ∇)kk = ∇ ·
((νeffL

σkk

)
∇kk

)
+G− εk (3.14)

∂εk
∂t

+ (uL · ∇)εk = ∇ ·
((νeffL

σεk

)
∇εk

)
+ C1εk

εk
kk
G− C2εk (3.15)

where νeffL = νL + νtL and G is the production of k caused by viscous forces and reads

G = νtL
(
∇uL : dev

(
∇uL +

(
∇uL

)>)) (3.16)

It is suggested that multi-phase turbulence can be solved with the equations [2]

∂ρLαLkL
∂t

+∇ · (ρLαLkLuL) =

∇ ·
(
ρLαL

(
ν +

νtL
σkL

)
∇kL

)
+ αLρLPL − αLρLεL (3.17)

for the turbulent kinetic energy and

∂ρLαLεL
∂t

+∇ · (ρLαLεLuL)

= ∇ ·
(
ρLαL

(
ν +

νtL
σεL

)
∇εL

)
+ C1εLρLαL

εL
kL
PL − C2εLρLαL

ε2L
kL

(3.18)

for the dissipation. Contributions to k and ε, due to inter-phase transfer, have been omitted in
this model. PL is the production term of turbulent kinetic energy due to viscous forces. It is
defined as

PL = νtL
(
∇uL +

(
∇uL

)>)∇uL − 2

3
∇uL

(
k + νtL∇ · uL

)
I (3.19)

where a factor 3 in the last term, due to frozen stress, has been neglected in accordance with [2].
The production term PL can be rewritten in terms of the production term G [17]. To do this it
is first noted that

G = νtL
(
∇uL : dev

(
∇uL +

(
∇uL

)>))
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= νt
(
∇uL +

(
∇uL

)>)∇uL − 2

3
νt∇uL

(
∇ · uL

)
I (3.20)

hence it follows that

PL = νtL
(
∇uL : dev

(
∇uL +

(
∇uL

)>))− 2

3
∇uLk = G− 2

3
∇uLk (3.21)

Inserting the obtained expressions for the product term PL into Equation 3.17 and Equation 3.18
gives the final version of the k − ε-equations used in the boiling model:

∂ρLαLkL
∂t

+∇ · (ρLαLkLuL) =

∇ ·
(
ρLαL

(
ν +

νtL
σkL

)
∇kL

)
+ αLρLG− αLρL

2

3
∇uLk − αLρLεL (3.22)

for the turbulent kinetic energy and

∂ρLαLεL
∂t

+∇ · (ρLαLεLuL) = ∇ ·
(
ρLαL

(
ν +

νtL
σεL

)
∇εL

)

+ C1εLρLαL
εL
kL
G− C1εLρLαL

εL
kL

2

3
∇uLk − C2εLρLαL

ε2L
kL

(3.23)

for the turbulent dispersion.

3.3.2 Near-Wall Treatment of Turbulent Quantities

The area close to the wall needs special attention to accurately predict the velocity as mentioned
in section 2.1.3. The near wall treatment used in this model was chosen from the existing models
in OpenFOAM. The kqRWallFunction was used for the turbulent kinetic energy, epsilonWall-
Function for the dissipation and nutkWallFunction for the eddy viscosity. By applying these
wall functions the velocity at the wall was implicitly modelled according to the approximations
explained in section 2.1.3.

3.4 Interfacial Forces

The same interfacial forces were considered as in the model by Kurul et al. [21]. The total force
consisted of the drag force, the virtual mass force and the force due to phase change. The term
FV in Equation 3.4 was then given by

FV = F dragV + F vmV + FΓ
V (3.24)

and FL in Equation 3.6 given by
FL = −FV

The suggested model ignored other momentum forces like the wall lubrication force and turbulent
dispersion force. The force due to phase change Γkiui − Γikuk is already given explicitly in
Equation 3.4 and Equation 3.6. It depends on the mass transfer terms, which will be described
later.

3.4.1 Drag Force

Kurul et al. [21] defined the drag force in Equation 3.24 according to

F dragV =
1

2
aiρLCD|uL − uV |

(
uL − uV

)
(3.25)
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and
F dragV = −F dragL (3.26)

where ai denote the interfacial area concentration and CD is the drag coefficient. The formulation
used in this model differs a bit from Kurul et al. and is based in the Ishii-Zuber formulation [2]
which reads

F dragV =
3

4
ρLαL

CD
dB
|uV − uL|

(
uV − uL

)
(3.27)

Where dB is the bubble diameter. The drag coefficient CD is calculated with the Reynold number
and states [16]

CD =

{
24

RedB

(
1 + 0.15Re0.687

dB

)
, RedB < 1000

0.44RedB , RedB > 1000
(3.28)

where RedB is the Reynolds number based on the bubble diameter and the vapour-liquid relative
velocity calculated by

RedB =
dB|uV − uL|

νL
. (3.29)

3.4.2 Virtual Mass Force

The virtual mass force from Equation 3.24 can be expressed as

F vmV = αV ρLCvm

[(∂uV
∂t

+ uV · ∇uV
)
−
(∂uL
∂t

+ uL · ∇uL
)]

(3.30)

according to [2, 21, 26] and
F vmV = −F vmL (3.31)

where Cvm is the virtual mass coefficient and was set to 0.5.

3.4.3 Force due to phase change

The force due to phase change in Equation 3.24 was calculated based on established models
[27, 10, 11, 20]. It was given by

FΓ
V = ΓevapuL − ΓconduV (3.32)

3.5 Onset of Nucleate Boiling

The local condition to decide if the flow still was in the single-phase convective heating regime or
had reached a two-phase boiling regime was modelled with a new approach suggested by professor
Anglart. The idea was to formulate an explicit limit for the local liquid wall temperature, Twall,L,
above which the flow was treated as a two-phase subcooled nucleate boiling flow. This approach
was adopted in an effort to reduce the need of computational power.

The idea was to model the limit of the wall super heat, ∆Tsup = Twall,L − Tsat, at which
subcooled nucleate boiling starts. Since the saturation temperature, Tsat, was known from tab-
ulated data [13] the modelled limit of ∆Tsup gave the corresponding limiting value of the wall
temperature, denoted T limitwall,L. Then the calculated local Twall,L was compared with T limitwall,L to
determine if phase-change (boiling) was to be calculated at the wall.

To close the system, ∆Tsup and Twall,L needed to be modelled. Many models for the wall
super heat have been presented and in this model the Jens-Lottes correlation [12] was adopted,
see below. The wall temperature was calculated from the temperature in the cell adjacent to
wall by a law-of-the-wall for temperature, see below.
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3.5.1 Jens-Lottes Correlation

The wall super heat ∆Tsup was modelled by the Jens-Lottes correlation. The correlation models
∆Tsup, at which subcooled nucleate boiling starts, according to

∆T J−Lsup = 25e−P/62
(q′′wall

106

)0.25
(3.33)

From Equation 3.33 the wall temperature the limiting value of the wall temperature was obtained
according to

T limitwall,L = Tsat + ∆T J−Lsup (3.34)

The local wall temperature, Twall,L, from the solution was compared to T limitwall,L and if Twall,L ≥
T limitwall,L, ONS was considered to be reached and boiling properties were calculated. Since Jens-
Lottes is a global correlation and does not give any detailed information about the behaviour of
the flow the condition was checked in each cell at each time step to determine if boiling occurred.

3.5.2 Wall Temperature

The law-of-the-wall from the CFD software Fluent was adopted in this model [8]. It is based on
the theories proposed by Jayatilleke [4], Lauder et al. [17] and Rubesin et al. [30]. According to
the theory, the law-of-the-wall is defined with respect to a point P next to wall. The dimensionless
distance to the wall is a scaling of y and defined as

y∗ =
ρL0.091/4k

1/2
P yP

µL
(3.35)

were yP is the distance from point P to the wall and kP is the turbulent kinetic energy at the
point P . Further more a temperature quantity T ∗ is defined as

T ∗ ≡
(
Twall − TP

)
ρLCpL0.091/4k

1/2
P

q′′wall
(3.36)

With Equation 3.35 the law-of-the-wall models T ∗ as

T ∗ =

{
Pry∗ , y∗ < y∗T

Prt
(

1
κ ln(9.793y∗) + P

)
, y∗ > y∗T

(3.37)

where Prt is the turbulent Prandtl number equal to 0.85, κ is the con Kármán constant equal to
0.4187 and P is defined as

P = 9.24
(( Pr

Prt

)3/4
− 1
)(

1 + 0.28e−0.007Pr/Prt
)

(3.38)

The variable y∗T is defined as the y∗ where the linear law and the logarithmic law intersect. With
the modelled T ∗ the wall temperature can be calculated from Equation 3.36.

To test that the modelling of the wall temperature was modelled accurately a rough estimate
of the wall temperature was calculated with the Dittus-Boelter equation [28]. The Dittus-Boelter
equation calculates the Nusselt number according to

Nu = 0.023Re4/5Pr2/5 (3.39)

With the definition of the Nusselt number and Newton’s law of cooling the Dittus-Boelter wall
temperature was calculated according to

TD−Bwall = Tbulk +
q′′wallD

NuλL
(3.40)
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3.6 Wall Heat Flux Partitioning

Kurul et al. suggested a partitioning of the total wall heat flux into different parts when boiling
occurs [21]; a single-phase part, a quenching part and a evaporation part. This model of the
heat flux partitioning was simplified to save computational resources. The heat flux was divided
into two parts, the evaporation heat flux q′′evap and the single-phase heat flux q′′single. The heat
not going to evaporation of the liquid was assumed to heat the liquid phase. Since the total heat
flux were given by q′′wall, the single-phase heat flux could be expressed

q′′single = q′′wall − q′′evap (3.41)

The heat flux q′′evap is one of the key components of boiling models and is used to define the mass
transfer from liquid to vapour.

3.7 Evaporation Wall Heat Flux

The evaporation heat flux q′′evap was modelled with the same expression as suggested by [21] and
read

q′′evap =
π

6
d3
DepρV LNf (3.42)

where dDep is the departure diameter of the vapour bubbles, N is the nucleation site density, f
is the bubble frequency and L is the latent heat of evaporation. The terms N, f and dDep needed
appropriate modelling to get a closed system.

3.7.1 Nucleation Site Density

The nucleation site density N was also modelled according to Kurul et al. [21] and read

N =
(
210(Twall,L − Tsat

))1.805 (3.43)

The nucleation site density depends on the wall temperature and the saturation temperature,
i.e, the wall super heat. The input temperatures has to be given in Kelvin or Celsius in order to
use Equation 3.43 and the result is given in m−2.

3.7.2 Bubble Detachment Frequency

The bubble detachment frequency is given as a relation between the gravity g, the bubble de-
parture diameter and the density of both phases [6]. It reads

f =

√
4

3

g
(
ρL − ρV

)
ρLdDep

(3.44)

Since both the bubble detachment frequency and the evaporation heat flux in the model depended
on the bubble detachment diameter a robust model for this quantity was of significant importance.

3.7.3 Bubble Departure Diameter

The calculation of the diameter of the departing bubbles was based on the theory presented by
Ünal [32]. He proposed a way to analytically derive the average bubble detachment diameter
and growth time. The theory was based on a number of assumptions [32]:

1. Subcooled nucleate boiling is a transition from the forced convection to the fully developed
boiling regimes.
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2. For constant operating conditions and geometry the bubbles emerging in the subcooled
nucleate boiling flow regime have diameters and growth times that stretches over a range
of values. A statistical approach is used and the result to get average values over the whole
population for both the bubble detachment diameter and growth time.

3. The spherical or ellipsoidal bubbles growing on the surface grows on a thin liquid film with
a partially dried section.

4. The instantaneous bubble volume is the same as a sphere with the same instantaneous
bubble diameter dinst.

5. The partially dried area, of the thin liquid film, is circle shaped.

6. The thin liquid film covers an area equal to πd2
inst(1 − dinst/ddry)/4 where ddry is the

diameter of the circle shaped dry area of the liquid film. The fraction dinst/ddry is assumed
to be constant for a given pressure.

7. Inertia-controlled bubble growth has been neglected.

8. Contribution to the bubble growth from the super heated liquid layer can be neglected due
to the large ratio between the maximum diameter and the thickness of the super heated
layer. Consequently it is justified to assume that the heat input from the liquid film layer
is large enough to neglect the contribution from the super heated layer.

9. Heat is assumed to dissipate to the liquid through condensation at the upper-half of the
bubbles surface. The bottom half is assumed not to face the cold liquid hence not con-
tributing to the dissipation of heat.

10. Bubble growth is assumed to be an isobaric process, i.e., it takes place at constant pressure.

11. Concerning bubbles with maximum diameter they can be divided into two groups. The
first group is the bubbles formed at high subcooling. They reach their maximum diameter
at the surface then slide along the heated surface without leaving it or collapses. The
second group is formed at low- and medium subcooling and leave the heated surface when
achieving maximum diameter. For both groups the diameter, at the point of detachment,
can be described by d(dinst)

dt = 0.

He formulated a linear first order differential equation for the instantaneous bubble diameter,
which read

d(dinst)

dt
= Daωt

−1/2 −DcΦDbdinst (3.45)

where t is the bubble growth time. Solving Equation 3.45 lead to the expression

dinst(t) =
2Daωt

1/2(1 + 1
3DbDcΦt)

1 +DcΦDbt
(3.46)

Since d(dinst)
dt = 0 and dinst(tdep) = ddep at the time of departure tdep he showed that the bubble

departure diameter could be expressed as

dDep =
2.42× 10−5P 0.709Da

(DbΦ)1/2
(3.47)

where Φ depend on the bulk velocity according to

Φ =


(

uL
0.61

)0.47
for uL < 0.61m/s

1 otherwisw
(3.48)
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The term Db was defined

Db =
Tsat − Tbulk

2(1− ρV /ρL)
(3.49)

and

Da =
(q′′wall −Hsingle(Tsat − Tbulk))1/3λL

2D
1/3
c LρV

√
πλL/ρLCpL

√
λsurfCsurfρsurf

λLρLCpL
(3.50)

where Hsingle is the single-phase forced convection heat transfer coefficient for heated surface.
The terms λsurf , Csurf and the ρsurf is the thermal conductivity, specific heat and density of
the heated surface, respectively. In Equation 3.50 λL is the thermal conductivity of the liquid
and CpL is the specific heat of the liquid. The coefficient Dc was given by

Dc =
LµL

[ CpL

0.013LPr1.7
]3√

σ
(ρL−ρV )g

(3.51)

were σ is the surface tension.
The single-phase heat transfer coefficient Hsingle was modelled in terms of the local Stanton

number according to [21]
Hsingle = StρLCp,LuL (3.52)

The Stanton number was calculated with the same method as Michta [20]. In that method the
St is calculated in terms of the Fanning friction factor Cf according to

St =
C2
f

1− 1.783Cf
(3.53)

where the friction factor is defined implicitly through

Cf =
1

ln(ReLCf )
0.435 − 5.05

(3.54)

and obtained by iteration of Equation 3.54 given a starting value of 0.062 for Cf . In Equation 3.54
ReL is the global Reynolds number for the liquid phase calculated according to

ReL =
dpipe||uL||

νL
(3.55)

This model has a limited range of applicability and is not valid in the general case. To
accurately predict ddep the following conditions, of the physical system, must be fulfilled:

0.1 < P < 17.7 MPa

0.47 < q′′wall < 10.64 MW/m2

0.08 < uL < 9.15 m/s

3 < Tsat − Tbulk < 86 K

0.08 < dDep < 1.24 mm
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3.8 Interfacial Mass Transfer

3.8.1 Evaporation

The interfacial mass term due to evaporation was defined in the same manner as in [11]. Since
the transition from liquid to vapour only took place at the heated wall, of the pipe, it is a mass
flux boundary condition. However, to implement such a boundary condition was out of the scope
of this thesis. Instead the evaporation was defined as a production term and was defined as zero
in the whole domain, except at the boundary cells adjacent to the heated wall [11, 20].

Since the heat flux, going to the evaporation, was known (according to section 3.7) it could
be defined as

Γevap =
q′′evap

L+ Cp,L(Tsat,L − Tbulk)
Awall,i
Vwall,i

(3.56)

where Awall,i and Vwall,i are the wall area and volume of the i’th wall cell. The fraction Awall,i

Vwall,i

transforms the expression into a volumetric source term for the evaporation.

3.8.2 Condensation

Since the vapour was assumed to be at saturated conditions there were no temperature gradients
within the vapour bubbles. Consequently, the heat transfer to the liquid phase could only take
place in form of condensation at the interface between the phases [5, 13].

The mass flow rate per unit volume due to condensation for an arbitrary geometry can be
described by [13]

Γcond =
ṁcond

V
(3.57)

where ṁcond is the mass flow rate due to condensation and V is the volume of the system.
Moreover the mass flow rate can be defined as

ṁcond =
q

L
(3.58)

where q is the heat transfer rate given in W . Using Newtons law of cooling expressed as

q = HifAif
(
Tsat − TL

)
(3.59)

where Aif is the total interfacial area between the two phases of the system it follows that

ṁcond =
HifAif

(
Tsat − TL

)
L

(3.60)

By definition ai = Aif/V , hence the interfacial mass transfer rate per unit volume due to
condensation can be expressed as[11, 20]

Γcond =
Hifai

(
Tsat − TL

)
L

(3.61)

where ai was given by Equation 2.44.
The term Hif in Equation 3.61 is the interface heat transfer coefficient and was calculated

with the bubble Nusselt number Nub according to

Hif =
NubλL
dB

(3.62)

where dB is the bubble diameter in the bulk of the liquid. The bubble Nusselt number was
obtained with the Ranz-Marchall correlation [25] as

NudB = 2 + 0.6Re1/2
dB
Pr

1/3
L (3.63)
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where the bubble Reynold number was calculated based on the relative velocity between the
phases according to

RedB =
‖uV − uL‖dB

νL
(3.64)

An alternative way to calculate Hif , that was used by Michta [20], reads

Hif = ρLCp,L

√
π

4

‖uV − uL‖
dB

λL
ρLCp,L

1

1 + λtL/λL
(3.65)

3.9 Bubble Diameter in Bulk

The condensation term depended on an accurate description of the bubble diameter in the liquid
bulk. This could be done in several ways. Kurul et al. [21] developed the following correlation
for the bulk bubble diameter

db = 10−4
(
TL − Tsat

)
+ 0.0014 (3.66)

Another way to calculate the diameter of the bubbles is implicitly through the interfacial area
concentration Equation 2.44. Since the void fraction was solved with the continuity equation the
bulk diameter could be calculated in the bulk cells if ai was known.

The interfacial area concentration can be modelled by solving a separated differential equa-
tion. Ishii et al. [19] suggested the transport equation

∂ai
∂t

+∇ · (aiuV ) =
2

3

ai
αV

(∂αV
∂t

+∇ · (αV uV )
)

+

1

3ψ

(αV
ai

)2(
RTI +RRC +RWE

)
+RNUC (3.67)

for ai where ψ accounts for the shape of the particles of interest. The terms RTI , RRC and
RWE are sink and source terms accounting for break up due to turbulence, coalescence due to
turbulence and coalescence due to acceleration of a bubble in the wake of a preceding bubble,
respectively. Due to the assumptions in the model, these three terms were neglected. The last
source term RNUC was not present in [19], it accounts for the contribution for ai from the bubbles
developing at the wall. It was in [27] and read

RNUC = πd2
DepNf

Awall,i
Vwall,i

(3.68)

The definitions of RTI , RRC and RWE were taken as they were defined in [19].

3.10 Summary of Model

In Figure 3.2 an the boiling system depicted in Figure 3.1 is evolved to account for different parts
of the presented boiling model.

In the magnified picture of the detaching bubble, the modelled heat flux partition in Equa-
tion 3.41 is depicted with the arrows (a), (b) and (c). The total wall heat flux is represented by
(a) and the single phase heat flux is illustrated with (c). The arrow (b) represents the evaporation
heat flux going into the vapor phase in the form of evaporation, modelled by Equation 3.56. The
bubble detachment diameter, modelled with Equation 3.47, is depicted with the dashed arrow
(d).

The magnified image of the bulk bubble depicts the condensation rate, modelled according
to Equation 3.61, with (e). The interfacial area concentration, Equation 2.44, is represented by
(f) and the bulk bubble diameter dB is illustrated with (g).
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The heated wall, heating the fluid, is represented by (h). The point (i) illustrates the bulk of
the flow, where the properties αL, αV , hL and TL are solved by the governing equations Equa-
tion 3.1, Equation 3.2, Equation 3.13 and Equation 2.30, respectively. Properties defined at the
surface of the wall is represented by (j). The properties Twall, ∆Tsup, N , f and q′′evap are calcu-
lated according Equation 3.36, Equation 3.33, Equation 3.43, Equation 3.44 and Equation 3.42,
respectively, at the wall surface. At the point (k), the ONB is illustrated.

In the magnified picture in the lower left corner, the interfacial forces are illustrated by
the arrow around the bubble (l). In this region the flow is influenced by the interfacial forces
F dragV , F vmV and FΓ

V calculated according to Equation 3.25, Equation 3.30 and Equation 3.32,
respectively. The vapor velocity uV , calculated by Equation 3.4, is illustrated at (m).

The region surrounding (n) represents the velocity profile of uL, given by Equation 3.6. The
turbulent properties kL, calculated according to Equation 3.22, and εL, calculated according to
Equation 3.23 , are illustrated at (o). The references to properties on Figure 3.2 are listed in
Table 3.1

(a) : q′′wall (i) : αL, αV , hL and TL
(b) : q′′evap (j) : Twall, ∆Tsup, N , f and q′′evap
(c) : q′′single (k) : ONB
(d) : dDep (l) : F dragV , F vmV and FΓ

V

(e) : Γcond (m) : uV
(f) : ai (n) : uL
(g) : dB (o) : kL and εL
(h) : wall

Table 3.1: Node references for Figure 3.2.
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Heated wall

(h)

(i) (j)

(k)

Detaching bubble

(a)
(b)

(c)
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(g)

(e)

(f)

Interfacial forces

(l)
(m)

(n)
(o)

1

1

2

2

3
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Figure 3.2: Graphical illustration of a vertical pipe with a wall, heated to the point that boiling
starts. The major processes present in a boiling system, like evaporation, condensation, bubbles
and interfacial forces, are illustrated with a magnified image to show more details.
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In summary the model consist of 7 independent transport equations

• 2 equation for the mass conservation of both phases, Equation 3.1 and Equation 3.2

• 2 equations for the momentum conservation of both phases, Equation 3.6 and Equation 3.4

• 1 equation for the enthalpy of the liquid phase, Equation 3.13

• 2 equations for the turbulent quantities, Equation 3.22 and Equation 3.23

With the closure laws and correlations the complete model depends on 7 variables

• the void fraction αV

• the velocities of the vapour and the liquid uV and uL

• the liquid enthalpy hL

• the turbulent kinetic energy k

• the turbulent dissipation ε

• the pressure P

This defines a closed system of equations suitable for modelling subcooled nucleate boiling.
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4 Methods and Materials

This section covers the implementation of the model into a solver in the CFD software Open-
FOAM. First, a general description of the structure of OpenFOAM is given. Basic concepts of
developing solvers and setting up cases are presented. Then an explanation of how the different
parts of the solver were implemented is given with derivations of more stable formulations of
some equations that were better suited for numerical reasons.

4.1 OpenFOAM

OpenFOAM is a CFD software consisting of a large library of different functionalities, imple-
mented in the C++ programming language. OpenFOAM is preferably used in a Linux environ-
ment. It is an open-source software and hence free of charge and the user is able to adjust the
software in any way. This was an important reason for choosing OpenFOAM since most other
software available on the market lack the possibility to adjust the solvers to the extent needed
in this thesis [23].

4.1.1 General about OpenFOAM

The OpenFOAM software contains tools for both pre-processing along with the solver tools.
Useful features in the pre-processing tools are the meshing tool and the utilities to create a
wedge shaped mesh, see Appendix A for more details on the procedure to create such a mesh.

In the solving procedure in OpenFOAM there are two main parts. The first is the applications
which are executables referred to as solvers and utilities. The solvers are algorithms for solving
systems of differential equations mainly with the finite volume method. The utilities are functions
for data manipulation [22, 23].

To solve a problem in OpenFOAM, the problem is defined in an entity called case. In a case,
the details of the problem are given to OpenFOAM together with information about which solver
to be used and, hence, which differential equations to be solved [22, 23]. The cases and solvers
will be described in more detail in the following sections.

OpenFOAM does not include any post-processing software so that functionality has to be
provided by another software. A common tool to use with OpenFOAM is the software ParaView
[23]. In this thesis ParaView and Matlab have been the main post-processing tools.

4.1.2 Solvers

The core of a solver is defined in a .C-extension file in which the solution algorithm is imple-
mented. It is often supported by header files, so called .H-extensions to obtain good readability
of the code. The solvers can also call other .C-extensions for functions defined in separate classes.
Each solver needs a Make folder containing the two files options and files that incorporates paths
to libraries and files that are necessary for the solver to work. An example of a file structure of
a solver named newApp can be seen in Figure 4.1 [23]

The solvers are implemented so that they solve a specific set of differential equations. For
example, the laplacianFoam-solver solves the heat equation

∂T

∂t
= χ∆T (4.1)

The syntax used to implement differential equation makes it very readable for the user. For
example Equation 4.1 is implemented with

solve
(

fvm : : ddt ( T ) − fvm : : laplacian ( chi , T )
) ;
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Figure 4.1: An example of a directory structure in a OpenFOAM solver [23].

Compilation of the solver files are executed conveniently with the command ./Allwmake which
compiles all the code needed to get the executable file to run cases with [22, 23].

4.1.3 Cases

When solving a problem, the solvers provide the general parts of the problem like the system of
equation. The cases provide the details that defines the specific problem to be solved. A case
is set up as a folder with an appropriate name containing the three sub folders constant, system
and 0 [23].

The constant-folder contains the mesh and several other problem specific files defining con-
stant properties of the case [23]. In this folder the mesh is stored in a directory named polyMesh.
The other files, that depend on the specific problem, can be turbulenceProperties or transport-
Properties. For example, in this thesis the turbulence model for the phases were defined in files
called turbulenceProperties.liquid and turbulenceProperties.vapor.

The system directory contains files relevant to the solver and usually includes controlDict,
fvSchemes and fvSolution. The file controlDict includes controls for the solution like the solver
to be used, starting time, ending time, time step and Courant number. The schemes used to
discretize the derivatives in the differential equations are given in the file fvSchemes. The file
fvSolution contains instructions for the solution algorithm like pressure correction procedures
and relaxation [23].

In the directory 0 initial conditions and boundary conditions for all the fields in the problem
are defined. The commonly used boundary condition types are predefined in OpenFOAM and
can easily be set with keywords. For example a homogeneous von Neaumann condition has the
keyword zeroGradient [22, 23].

4.2 Implementation

The implementation of the model was based on the existing solver twoPhaseEulerFoam which
solves a two-phase flow according to the Euler-Euler approach. To this solver the physical
quantities representing the subcooled nucleate boiling were added. An overview of how the new
solver called myTwoPhaseEulerFoamBoiling was structured can be seen in Figure 4.2.
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createFields.H
-Initiate twoPhaseSystem field called "fluid"
-Initiate dB, N, f, dDep, q′′evap,Γcond,Γevap and other fields

boilingModels.H
-Reset fields, calculate RedB ,NudB , χ,PrL and set pipe diameter

condensationModel.H
-Calculate Γcond

evaporationModel.H
-Calculate N, f, dDep, q′′evap and Γevap

fluid.solve()
-Solves the αV -equation

rho = fluid.rho()
-Calculate the densities

fluid.correct()
-Solves the ai-equation and calculates dB

EEqn.H
-Solves the energy equation

UEqns.H
-Solves the momentum equations

pEqn.H
-Pressure-correction algorithm

DDtU.H
-Calculates derivatives for the interfacial forces

fluid.correctTurbulence()
-Solves the k − ε-equations
-Corrects the solution for turbulence

R
un

ti
m
e
lo
op

O
ut
er

co
rr
ec
ti
on

lo
op

P
im

pl
e-
lo
op

Figure 4.2: Graphic overview the algorithm implemented in the solver. The order in which the
key parts are solved and the different loops used in the solver are presented.
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4.2.1 Continuity Equation

The implemented continuity equation was a reformulated version of Equation 3.2. The refor-
mulation was necessary to obtain a stable expression [10]. Due to the incompressibility of both
phases, the continuity equation for phase k can be written

∂αk
∂t

+∇ · (αkuk) =
Γk
ρk

(4.2)

Introducing the relative velocity ur = uV − uL and the combined velocity uc = αV uV + αLuL,
the velocities of each phase can be expressed uL = uc − αV ur and uV = uc + αLur. Inserting
these expressions in Equation 4.2 gives

∂αV
∂t

+∇ · (αV uc) +∇ · (αV αLur) =
ΓV
ρV

(4.3)

∂αL
∂t

+∇ · (αLuc)−∇ · (αV αLur) =
ΓL
ρL

= −ΓV
ρL

(4.4)

To guarantee boundedness of αV [10], Equation 4.3 and Equation 4.4 are summed. Since αL +
αV = 1, the resulting expression reads

∇ · uc =
ΓV
ρV
− ΓV
ρL

(4.5)

Rewriting
∇ · (αkuc) = αk∇ · uc + uc · ∇αk (4.6)

in Equation 4.3 and inserting Equation 4.5 gives

∂αV
∂t

+ uc · ∇αV +∇ · (αV αLur) = αV

(ΓV
ρL
− ΓV
ρV

)
+

ΓV
ρV

(4.7)

Applying Equation 4.6 again gives the following representation of the continuity equation

∂αV
∂t

+∇ · (αV uc)− αV (∇ · uc) +∇ · (αV αLur) =

αV

(ΓV
ρL
− ΓV
ρV

)
+

ΓV
ρV

(4.8)

In accordance with the void fraction originally implemented in the twoPhaseEulerFoam-solver,
the L.H.S of Equation 4.8 is rewritten a second time in the same way. The resulting equation
then reads

∂αV
∂t

+∇ · (αV uc) +∇ · (αV αLur) =

2αV (∇ · uc) + 2αV

(ΓV
ρL
− ΓV
ρV

)
+

ΓV
ρV

(4.9)

which is the finial version that was implemented in the solver. The only terms to implement
were the source terms due to the mass transfer ΓV = Γevap − Γcond.

When solving for a state variable ψ, the source term S is usually divided into an explicit part
and an implicit part

S = SPψP + Su. (4.10)

The implicit part only contains negative entries and is added to the coefficient matrix of ψP and
the explicit part is added to the source vector. Since both Γevap and Γcond were positive, the
source term could be rewritten according to

2αV

(ΓV
ρL
− ΓV
ρV

)
+

ΓV
ρV

= 2αV

(Γevap − Γcond
ρL

− Γevap − Γcond
ρV

)
+

Γevap − Γcond
ρV
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= SpαV + Su (4.11)

where
SP = −2

Γcond
ρL

− 2
Γevap
ρV

− Γcond
ρV αV

and
Su = 2αV

(Γevap
ρL

+
Γcond
ρV

)
+

Γevap
ρV

The terms SP and Su were implemented as the implicit and explicit source terms, respectively.
The modifications made in the code to add the source terms can be found in Appendix D.

4.2.2 Momentum Equation

The momentum equations used in the solver differed from the formulations Equation 3.6 and
Equation 3.4 in the model. A rewritten form of the L.H.S. of the equations were used in the
original solver. These formulations were kept in the solver.

Expanding the derivatives of the L.H.S. of the equation for the phase k gives

∂αkuk
∂t

+∇ ·
(
αkukuk

)
= αk

∂uk
∂t

+ uk
∂αk
∂t

+ αkuk∇ ·
(
uk
)

+ uk∇ ·
(
αkuk

)
⇒

∂αkuk
∂t

+∇ ·
(
αkukuk

)
−
(∂αk
∂t

+∇ ·
(
αkuk

))
uk = αk

∂uk
∂t

+ αkuk∇ ·
(
uk
)

(4.12)

The L.H.S of Equation 4.12 states the L.H.S of the implemented momentum equation for both
phases. The gravitation and pressure term were not implemented in the momentum equation,
instead these contributions were accounted for in the pressure equation, as implemented in the
original solver. The drag force was divided into two parts, one was implemented in the momentum
equation and one in the pressure equation, as in the original solver. This set up was kept and
the forces due to phase change were added to the momentum equations, see Appendix F for the
code.

4.2.3 Energy Equation

The energy equation was changed in a similar manner as the momentum equation with a rewritten
implementation of the L.H.S according to

∂αLhL
∂t

+∇ ·
(
αLhLhL

)
−
(∂αL
∂t

+∇ ·
(
αLhL

))
hL (4.13)

The remaining parts of the equation was implemented in a similar way as done by Michta [20] with
the effective kinematic viscosity calculated by the original equations in the turbulence models
provided in OpenFOAM, see Appendix E.

4.2.4 Pressure Correction

The pressure and velocity were solved in parallel with the iterative PIMPLE-algorithm in Open-
FOAM. The PIMPLE algorithm is a mixture between the well known SIMPLE algorithm and
the PISO algorithm [22, 23, 29]. The algorithm is based on a specific equation for the pressure
which is consistent with the continuity to calculate the pressure field.

The algorithm starts by solving the momentum equations without the pressure term, giving
initial guesses of the velocity fields which do not obey the continuity equation. Then an initial
guess for the pressure field is defined and the PIMPLE-loop is entered. In the loop the pressure is
updated by solving the pressure equation which ensures that continuity is obeyed. The momen-
tum equations are then solved with the updated pressure field to obtain better approximations
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of the velocity fields. The PIMPLE-loop is then restated with the obtained velocity and pressure
fields. This process is iterated until convergence is achieved.

In the pressure equation, implemented in the original twoPhaseEulerFoam-solver, the con-
tribution from the mass transfer terms in the continuity equation had to be added. According
to [10] the continuity constraint was taken for the mixture since there are two phases present.
The pressure equation can be derived from the Equation 4.5 by replacing the velocity with the
combined flux φc according to

∇ · φc = −αV
ρV

D(ρV )

dt
− αL
ρL

D(ρL)

dt
+

ΓV
ρV
− ΓV
ρL

(4.14)

The flux is defined in OpenFOAM as φ = S · uf , where S is the surface area vector and uf
is the velocity interpolated on the cell faces [22]. In the original solver code the corresponding
equation without the mass terms was implemented as

pEqnComp1() + pEqnComp2() + pEqnIncomp()=0 (4.15)

where pEqnIncomp() corresponds to ∇ · φc, pEqnComp1() to αV
ρV

D(ρV )
dt and pEqnComp2() to

αL
ρL

D(ρL)
dt . Adding the mass transfer terms to the same row as Equation 4.15 were the only

adjustment needed.

4.2.5 Boiling Terms

The boiling terms of the model were implemented in the solver straight forward. The constant
values like material properties and relaxation factors were implemented to be read from the case
files. The only concern were the evaporation terms that only should be calculated at the wall
cells of the mesh. This called for access to specific cells of the fields in the solver which is not
the intended way to use OpenFOAM. It was done in a similar manner as done by Michta [20].
The code can be seen in Appendix C. The bulk temperature and velocity was calculated by
integration over the cross-section of the pipe. This was done since the methods of taking the
bulk values from a certain distance from the wall could cause large jumps in values due to the
course mesh that was used.

The implementation of the ai-equation already existed in the original solver. The only differ-
ence was that it was implemented in terms of the interfacial curvature κi, defined as κi = ai/α,
and hence κi = 6/dB. The only adjustment needed was correcting an error in the implementation
highlighted in a bug report [9] and adding the source term due bubble development at the wall
Equation 3.68.

Evaporation The evaporation term was calculated with a for-loop that steps through each
wall cell and calculates the boiling terms in each wall cell, leaving the remaining cell values as
zero. At each cell the wall temperature was calculated according to the law-of-the-wall explained
in section 3.5.2. If ONB was achieved the boiling parameters N, f, qevap, dDep and Γevap were
calculated according to the model. The evaporation term was relaxed to achieve a stable solu-
tion by an explicit relaxation term, given in the case input file phaseProperties. The code for
the previous parameters can be found in the file evaporationModel.H in Appendix C.2 and in
departureDiameters.H in Appendix C.3.

Condensation The condensation was implemented straight forward according to the theory
in the model. To achieve a stable solution the condensation was relaxed, in the same way as the
evaporation, to avoid divergence. The code for the condensation term was implemented in the
file condensationModel.H, see Appendix C.1.
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Input Parameters The new boiling parameters were read from the case files. The relaxation
factors were given as input from the fvSolution-file in the system-directory. The other proper-
ties of the wall material and the fluid were given as input from the phaseProperties-file in the
constant-directory. The different interpolation schemes for the derivatives and other terms were
set according to fvSchemes in the system-directory. For more details about the interpolation
schemes in OpenFOAM see [22]

4.3 Test Cases

4.3.1 Geometry

The geometry was similar to the one used by Kurul et al. [21], a vertical cylindrical pipe with
diameter 0.0154 m and length 2.85 m. The length was not given and was set so that the flow
achieved the desired conditions according to energy balance. To save computational time a wedge
with symmetric center line, 0.0077 m radius and an angle of 5◦ was used instead of a full cylinder.

The mesh refinement was limited to having cell dimensions no larger than the maximum
vapour bubble diameter. Since the the bubble diameter was defined as a field variable at each
cell, it would not be physically consistent to have a bubble diameter in a cell larger than the cell
itself. Hence a to refined mesh would lead to vapour volumes in cells larger than the cells actual
volume. Due to this restriction, a uniform cell distribution was used.

Considering the conditions for Ünal’s model the mesh was created with 8 cells in radial
direction and 3033 in vertical direction. A close up of the mesh can be seen in Figure 4.3.

Figure 4.3: Close up of the mesh that was used in the simulations from the software ParaView.

4.3.2 Case

The case was the same as in Kurul et al. [21]. It was originally based on the experimental set
up in [3]. The wall surface material was assumed to be stainless steal ANSI 316 which has the
physical properties given in Table 4.1 The heat flux at the heated wall was set to 570 000 W/m2.

The liquid flowing into the bottom of the pipe was water with a temperature of 440K at
45bar. The pressure field given to the solver was set to 0 while the real pressure field used in the
model was adjusted by a reference pressure of 45bar. The inlet mass flux was 900kg/m2/s which
corresponded to an average inlet velocity of 0.9978m/s with the density taken at for water at
the inlet temperature, see Table 4.3.
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Property Value
ρsurf 8030.0kg/m3 %
Cp,surf 500.0J/kg/K %
λsurf 17.08W/m/K %

Table 4.1: Material properties of the heated surface.

To avoid strange values of the wall heat, which was modelled with the turbulent kinetic energy,
a single-phase non-heated case was simulated until fully developed conditions were achieved. The
inlet values for the boiling case of U, k, ε and νt were taken from the outlet of the fully developed
flow. The single-phase case had the boundary and initial conditions described in Table 4.2.

Field Initial Inlet Outlet Wall Centerline
U [m/s] (0 0.9978 0) (0 0.9978 0) zeroGradient (0 0 0) symmetryPlane
p[kg/ms2] 0 zeroGradient 0 zeroGradient symmetryPlane
T [K] 440 440 zeroGradient zeroGradient symmetryPlane

k[m2/s2] 0.002233961 0.002233961 calculated wallFunction symmetryPlane
ε[m2/s3] 0.0160944670 0.0160944670 calculated wallFunction symmetryPlane
νt[m2/s] 2.7907261 · 10−5 2.7907261 · 10−5 calculated wallFunction symmetryPlane

Table 4.2: Initial and boundary conditions for the single-phase case used in the mesh sencitivity
test an to obtain input values for the boiling case .

With the above mentioned values the boiling case was set up with appropriate boundary and
initial conditions. The case set up can be seen in Table 4.3. The initial and inlet value for κi
were set 6000 to give a initial and inlet bulk diameter equal to 0.001 m. Since αV was 0 at the
inlet and in the initial stage, the condensation and the interfacial forces would be zero despite
the non zero bulk diameter. In addition, κi = 75000⇔ dB = 0.00008 was tested to determine if
this had any effect on the solution.

Field Initial Inlet Outlet Wall Centerline
UL[m/s] (0 0.9978 0) (0 0.9978 0) zeroGradient (0 0 0) symmetryPlane
UV [m/s] (0 0 0) (0 0 0) pressure outlet (0 0 0) symmetryPlane
p[kg/ms2] 0 zeroGradient 0 zeroGradient symmetryPlane
TL[K] 440 440 zeroGradient zeroGradient symmetryPlane
κi[m

−1] 6000 6000 zeroGradient zeroGradient symmetryPlane
αV 0 zeroGradient 0 zeroGradient symmetryPlane

kL[m2/s2] 0.002233961 developed calculated wallFunction symmetryPlane
εL[m2/s3] 0.0160944670 developed calculated wallFunction symmetryPlane
νtL[m2/s] 2.7907261 · 10−5 developed calculated wallFunction symmetryPlane

Table 4.3: Initial and boundary conditions for the boiling case, developed values refers to values
taken from fully developed conditions .

Other constant physical properties of the flow were set according to Table 4.4. The properties
were set to conditions for pressure of 45bar and a saturation temperature of 530.5K[13], except
ρL and Cp,L. The liquid density was taken for the inlet conditions and Cp,L was calculated as
an average value, consistent with the energy balance.
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Property Value
ρL 902.0 kg/m3

ρV 22.69 kg/m3

Cp,L 4576.36 J/kg/K
Cp,V 3975.5 J/kg/K
λL 0.6125W/m/K
λV 0.05077W/m/K
PrL 0.85
PrtL 0.85
PrV 1.392
µL 103.85 · 10−6 Pa · s
µV 17.739 · 10−6 Pa · s
Tsat 530.5K
Pref 45.0bar
σ 0.02438N/m
L 1675570 J/kg

Table 4.4: Values of constant physical properties used in the model.
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4.4 Mesh Sensitivity Test

To test the solvers sensitivity to the mesh refinement a single-phase case was set up and simulated
on different refinements of the mesh. Since no phase-change was modelled the vertical dimension
of the computational domain was shortened to 1.59 m.

Using energy balance, the outlet bulk temperature T bulkout was calculated analytically to 492.771
K from

ṁcp
(
T bulkout − T bulkin

)
= q′′wallLπD, (4.16)

where ṁ is the total inlet mass flux, L is the pipe length and D is the pipe diameter. The
numerical outlet bulk temperature was calculated by integrating the output temperature over
the output cross sectional area. Then the heat flux based on the numerical output temperature
qnum

′′
wall was calculated and compared to the analytical heat flux. The tested meshes had 6, 8, 12
and 18 radial cells, respectively, with the number of cells in the vertical direction set to achieve
close to quadratic cells.
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5 Results

In this section the results obtained from the developed solver are presented. The result consist
of the solutions, the main case and a case with an alternative κi. Quantities are plotted with
reference data from Kurul et al. [21] and with experimental data from Bartolemei et al.. Addi-
tional quantities, without reference for evaluation, are also presented for analysis. The presented
data in this section is time-averaged over a period with the system in a stable state.

5.1 Temperatures and ONB

The evaporation heat flux is depicted in Figure 5.1. The resulting q′′evap from the simulation
is plotted along q′′evap from Kurul and Podowski [21]. The total heat flux into the system is
also plotted, with the dotted line, to illustrate the magnitude of the heat flux going into vapour
production.
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Figure 5.1: Plot of time-averaged q′′evap from the main simulation and the reference paper [21].
The total heat flux is given, as the dotted line, to illustrate the magnitude of the evaporation
heat fluxes.

In Figure 5.2, the temperature along the center line and the bulk temperature are both
depicted with the corresponding data from [21]. The first 0.85 m of the heated channel is not
depicted.

Figure 5.3 depicts Twall from the simulation and the corresponding data from [21] along the
pipe. To illustrate the behaviour of the law-of-the-wall for the temperature, the temperature in
the cells adjacent to the wall is plotted in the same plot. As in the previous plot, the first 0.85
m of the pipe is not included.

In Figure 5.4, the temperature profile (from simulation) at the outlet of the pipe is illustrated
along the radial axis from the center line to the wall.
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Figure 5.2: Left: Plot of the time-averaged temperature along the center line from the simu-
lation and the from [21]. Right: Plot of the time-averaged bulk temperature along the vertical
axis from the simulation and the from [21].
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Figure 5.3: Plot of the wall temperature along the pipe from the solution and [21]. The
temperature at the cells adjacent to the wall is also depicted to illustrate the behaviour of the
law-of-the-wall for the temperature.
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Figure 5.4: Temperature profile at the outlet from solution, illustrated along the radial axis
from the center line to the wall.
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5.2 Axial Diameters and Void Fraction

The left plot in Figure 5.5 depicts Ünal’s detachment diameter and the bulk bubble diameter,
in the cells adjacent to the wall, obtained from the κi-equation. The diameters are plotted
along the wall of the vertical pipe with the initial section, where no boiling occurs, left out.
The sudden increase and decrease of the diameters are caused by the initiation of boiling and,
hence, calculated diameters arise instead of the initial guesses. The plot to the right illustrates
the cross-sectional average void fraction of the vapour phase, along the vertical pipe, and the
corresponding reference data [21].
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Figure 5.5: Left: The time-averaged detachment diameters, from Ünal’s model, and the bulk
bubble diameters ,from the wall cells, calculated through the κi-equation. Right: Time-averaged
Cross-sectional average vapour void fractions along the vertical pipe from the results the corre-
sponding data [21]
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5.3 Cross-Sectional Profiles of Diameters and Void Fractions

The left plot in Figure 5.6 illustrates the radial bubble diameters at the outlet of the pipe and
detachment diameter at the outlet. The right plot depicts the vapour void fraction profile at the
outlet. Figure 5.7 shows the radial profile of ai at the outlet.
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Figure 5.6: Left: Time-averaged radial profile of the cross-sectional bulk diameter at the outlet
and the detachment diameter at the outlet, of the pipe. Right: Time-averaged radial profile of
the vapour void fraction at the outlet of the pipe.
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Figure 5.7: Time-averaged radial profile of ai, from the center line to the wall, at the outlet of
the pipe.
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5.4 Velocities

The velocity profiles of both phases are depicted in Figure 5.8. The illustrated velocities, in
the plots, are the superficial velocities, defined as ji = αiui. The left plot shows the superficial
velocity for the vapour phase from the results and from the reference data [21]. The right plot
depicts the corresponding data for the liquid phase. The profiles are taken at a distance of 2.45
m from the inlet.
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Figure 5.8: Left: Time-averaged superficial vapour velocity profiles, at 2.45 m from the inlet,
from the result and the reference paper Right: Time-averaged superficial liquid velocity, at 2.45
m from the inlet, from the result and the reference paper
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5.5 Results from Alternative Case Setup

The plots in this section are based on the results from the case with κi = 75000. In Figure 5.9,
q′′evap is depicted with the corresponding values from [21]. The total heat flux going into the
system is also illustrated with the dotted line.
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Figure 5.9: Plot of time-averaged q′′evap from the resulting simulation, with κi = 75000, and
from [21]. The total heat flux that is going into the system is plotted with the dotted line to
illustrate the magnitude of the evaporation heat fluxes.

Figure 5.10 depicts the same quantities as Figure 5.3; the temperature in the cells adjacent
to the wall, Twall from the simulation and Twall from [21]. In Figure 5.11 the data corresponding
to Figure 5.5 is illustrated for the alternative case. The plots in Figure 5.11 corresponds to
Figure 5.6 and depicts the cross-sectional profiles of the diameters and αV at the outlet.
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Figure 5.10: Plot of the wall temperature along the pipe from the solution, with κi = 75000,
and the reference paper. The temperature at the cells next to the wall is also depicted to illustrate
the behaviour of the law-of-the-wall for the temperature.
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Figure 5.11: Left: Time-averaged detachment diameters, from Ünal’s diameter model, and the
bulk bubble diameters from the wall cells, calculated through the κi-equation with κi = 75000.
Right: Time-average radial vapour void fraction profile along the vertical pipe from the results,
with κi = 75000, and the paper [21].
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Figure 5.12: Left: Radial profile of the time-averaged bulk diameter at the outlet and the
detachment diameter, from Ünal’s diameter model, at the outlet of the pipe with κi = 75000.
Right: Time-averaged radial profile of the void fraction at the outlet of the pipe with κi = 75000.
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5.6 Mesh Sensitivity of Single-Phase Solution

The results from the mesh sensitivity test can be seen in Table 5.1. The numerical bulk tempera-
ture, at the output, is given for each mesh along with difference in percent between the analytical
heat fluxes and the numerically calculated heat flux, as can be seen in the left column.

Radial cells T bulk
out,num Difference

6 489.084K 6.986%
8 490.333K 4.612%
12 491.505K 2.399%
18 492.287K 0.917%

Table 5.1: Output from the single-phase mesh sensitivt test with different mesh refinements.
The calculated output temperature and difference in the heat flux (calculated from energy bal-
ance) are both presented.

In Figure 5.13 the temperature along the vertical center line, for the different mesh refine-
ments, can be seen. The temperature is taken at the cell center of the cells closest to the center
line. Different mesh refinements will cause different distances between the cell center and the
center line. This will impose a difference in the temperature plots for the different meshes. In
Figure 5.14 the radial temperature profile, at a distance of 0.8 m from the inlet, for the different
mesh refinements can be seen. The same effect imposing differences i the plots of the center line
temperature will be present i the temperature profiles as well.
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Figure 5.13: Resulting temperatures along the center line from the single-phase mesh sensitivity
test. The results from four different mesh refinements are presented.
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Figure 5.14: Radial temperature profiles at a distance of 0.8 m from the inlet, for meshes with
different number of radial cells, from single-phase mesh sensitivity test.
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6 Discussion

In this section the results presented in the previous section are analysed. Results deviating from
the expected results presented by Kurul and Podowski [21] are discussed and suggestions for
future corrections, to improve results, are introduced.

6.1 Solver

The implemented solver is stable and does not crash with reasonable input data. The input
parameters, linked to boiling, are coded to be taken from case files. The boiling models have also
been implemented as selectable from input. This means that new models easily can be added to
the solver and selected from the case files, for example, the wall super heat model.

The code has been thoroughly documented with the intention of explaining what part of the
model the code segment implements. Since the the original twoPhaseEulerFoam-solver lacked
proper documentation, great effort has been spent on elucidating said codes purposes and doc-
umenting it for future projects.

6.2 Temperatures and ONB

The evaporation heat flux from the original case in Figure 5.1 seems to be underestimated
by the present solver. The overall shape follows the same trend as the reference data until
approximately 2.3 m from the inlet, where the increase suddenly declines. Note that this heat
flux was subtracted from the total heat flux, to get the heat source for the liquid phase, hence,
the temperature increase should slow down when q′′evap starts to develop. Comparing Figure 5.1,
Figure 5.3 and the data from [21] indicates that the ONB can be found at the same position
from the inlet as where q′′evap starts to grow.

Looking at Figure 5.3, the ONB can be seen in the data from [21] at approximately 1.4 m
from the inlet, where Twall stops increasing and where q′′evap starts to increase in Figure 5.1. The
wall temperature from the present solver does not seem to react at the same position, despite
the fact that q′′evap (from myTwoPhaseEulerFoamBoiling-solver) develops in the same manner at
the first section of boiling. The wall temperature increases until around 2.3 m from the inlet, at
which point it starts to decrease. The dotted line, which is the temperature in cells adjacent to
the wall, suggests that its increase is continuous as the heat flux starts growing.

The evaporation heat flux from the alternative case in Figure 5.9 shows much better agree-
ment with the reference data. Despite that, looking at Twall from the same case, neither the
wall temperature, nor the temperature in the cells adjacent to the wall, seem to react on the
development of q′′evap. The lack of difference of the temperature in the wall cells could indicate
a problem with how the heat equation was formulated or implemented. The high results for
Twall could be caused by the law-of-the-wall not working as expected. The dependence of the
turbulent kinetic energy could cause a problem since the k − ε-model might not be the optimal
turbulence model for the present type of problem.

Another factor that could influence the temperature development is the vapour content in the
system. As shown later in this chapter, the amount of vapour in the system is underestimated,
in comparison with the reference data. This could result in to low enthalpies from the energy
equation.

The temperature of the bulk and along the center line shows reasonable agreement with the
reference data. Both are a few degrees lower than the results by [21]. This could be caused by
the course mesh, that was adopted in the simulations.

The temperature profile at the outlet in Figure 5.4 looks like expected, with the highest
temperatures closest to the wall. Supporting the previous observations, Twall seems to be to
high at approximately 560 K, close to 20 K higher than in the reference paper.
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The overestimated Twall and lack of clear ONB are problematic. The continuously increasing
wall temperature causes a to high nucleation site density that could effect the evaporation heat
flux and the vapour content.

In previous work, a common approach to calculate Twall is through an iterative procedure
[20]. In this procedure, q′′wall is partitioned into different parts when boiling starts. The modelled
heat fluxes all depend on Twall and should sum up to the same value as q′′wall. To calculate Twall,
an initial guess for Twall is made. Based on this guess, the partitioned heat fluxes are calculated
individually and then summed. The resulting sum is then compared to q′′wall to check if the
resulting partitioning is consistent. If not, the procedure is repeated, with an adjusted Twall,
until a satisfying result is obtained. However, this procedure is not computationally efficient
which was part of the purpose by this model, hence, a different approach is preferable.

Another way to proceed with this solver (with the purpose of an efficient solver kept) could be
to investigate other law-of-the-wall’s for the temperature. Many of them depend on the turbulent
kinetic energy, hence, it would most likely need an investigation of other turbulence models. A
first candidate could be the SST k − ω model, which has a better treatment of the wall area
than the k− ε model. Since the turbulent kinetic energy is taken at the cell adjacent to the wall
and the diameter restriction on the mesh refinement prevents very refined cells, in this area, this
model could give better results for Twall.

A faulty energy equation is easily checked by just switching to another verified equation.
However, it seems more likely that the low vapour content, mesh refinement and turbulence
model are all the cause of the deviant temperatures.

6.3 Bulk Diameter Models and Interfacial Heat Transfer Coefficients

The implemented solver, with the diameter model from Equation 3.66, led to numerical problems.
Since the model would not give any positive values for the bulk diameter until the temperature of
a cell had reached 516.5 K, the bulk diameter needed a minimum value to avoid division by zero
in Equation 3.62 for Hif and in Equation 2.44 for ai. The vapour started to develop before the
temperature reached values of 516.5 K in any of the cells. This led to very large values of both
ai and Hif , hence a very large Γcond, causing a instabilities when boiling started. This could not
be resolved by relaxation of the condensation factor, due to the high magnitudes Γcond.

Switching to the expression Equation 3.65 for Hif resulted in a solution with a much lower
condensation rate. However, this solution showed problems with to high values of αV . The solver
proved sensitive to how the relaxation factors were set and often resulted in divergence of αV .

Another problem with both these models for Hif (in combination with the diameter model
by Kurul and Podowski) was that they underestimated q′′evap. To solve these issues the final
solver was implemented with the Hif -model in Equation 3.65 and the diameter calculated with
the κi-equation.

Because very small vapour contents imply small diameters, ai was sensitive to fluctuations in
αV or dB. This was most likely the problem with the bulk diameter model from [21]. Since the
vapour started to develop before temperatures got high enough for bulk diameters larger than
the minimum default, ai increased very fast leading to instabilities.

6.4 Diameters and Vapour Void Fraction

In the left plot of Figure 5.5, a difference can be seen between the diameter of the bubbles in
the wall cells, from the bulk diameter model and the detachment diameters from Ünal’s model.
The solver seems to predict the detachment diameters with reasonable values considering the
restrictions of Ünal’s model. The vapour void fractions in the right plot of Figure 5.5 shows that
the calculated void fraction curve is lower than the reference curve. The bulk diameter seem to
be over predicted in the early parts of the boiling section and approach reasonable values at the
output of the pipe.
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Observing Figure 5.6, the data supports the previous observation with a to high bulk diameter
at the outlet. However, the detachment diameters show a good overlap with the diameters from
the bulk diameter model.

The alternative case shows a completely different behaviour of the bulk diameter, in the left
plot of Figure 5.11. The bulk diameter shows good agreement with the detachment diameter in
the wall cells when boiling starts. Then it stays at an almost constant level to the outlet with
much lower values than the detachment diameter. This could cause too high values of Hif and
ai, as seen in Figure 5.7, and hence, to high condensation rates leading to under predicted αV .
In the right plot of Figure 5.11, the previous conclusion is supported by a very low result for αV .

Looking at the profiles of αV in Figure 5.12, it reveals that the the vapour content in the
bulk is very low. This supports that the condensation rate could be modelled to high. A range
of values of κi were tested but did not seem to improve the result in any satisfying way.

The condensation rate appears as if dependent on the initial bulk diameter used before boiling
starts. This is not optimal and the solver should be changed in a way that this parameter does
not influence the result in such large extent. One way to achieve this could be to start calculating
the condensation terms, when αV rises above a predefined small threshold, large enough to not
cause problems. The modelled bulk diameter will then have developed to accurate levels to get
a consistent condensation rates.

A subject for future investigation could be to introduce the effects of bubble break up due to
turbulent eddies, merging of bubbles due to random coalescence and coalescence due to acceler-
ation of bubbles in the wake of preceding bubbles [19].

6.5 Velocities

The superficial velocity profiles in Figure 5.8 follow the same trend as in the reference paper.
The vapour superficial velocity in the left plot is underestimated in the whole cross-sectional
region. This is most likely an effect of the underestimated αV .

The liquid superficial velocity in the right plot shows an underestimation in the outer most
region and in a larger section around the center line. In between, there is a section where it is
overestimated. These results could be caused by a combination of the underestimated αV and
the course mesh. The course mesh will effect the liquid velocities to a larger extent than the
vapour velocity, since it was the only phase assumed to be turbulent. The k−ε-model is sensitive
to course meshes which could explain the deviations from the expected results.

This could be solved by a better mesh and a more suitable turbulence model. However, there
are other factors to consider in order to improve the velocities. The interfacial forces, used in
the present model, do not consider all physical effects of boiling. Other forces that could be
interesting to introduce are the lift force, turbulent dispersion force and wall lubrication force
[14].

6.6 Mesh Sensitivity

As can be seen in Table 5.1 the error of the numerically calculated heat flux is declining with
an increasing number of cells. This convergence of the heat flux indicates that the solver is still
dependant of the mesh when it is coarse. However, the declining of the error indicates that the
solver in fact is independent of the mesh size when it is small enough, in the single-phase case.

The temperature along the center line for each mesh shows good alignment between the
meshes in Figure 5.13. The slight difference in temperature close to the outlet originates from
the method of obtaining the center line temperature.

The center line temperature and wall temperature shows good alignment between the meshes
in Figure 5.14. The difference close to the wall is also caused by the difference in cell size. It
causes the distance from the cell center of the cells closest to the wall to be smaller for the more
refined meshes. However, the areas of the temperature profile with large temperature gradients
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differs. This could affect the modelled wall temperature since it depends on the temperature at
cell adjacent to the wall. This suggest that a more refined mesh should be used to improve the
accuracy of the temperature.

6.7 Mesh Restriction

Despite the good results from the single-phase case the solver imposes restrictions on the mesh.
The cell sizes must be large enough to encapsulate the full size bubbles at the wall and in the
bulk. A to small cell size would lead to cell volumes smaller than the volumes of the bubbles
calculated in the cells. This would result in a volume of vapour, larger than cell volume, being
squeezed into the cell. That is, more vapour than would physically fit into the cell is squeezed
into it, which is not physically possible.

Since the results indicate that the turbulence causes problems and the turbulence model is
sensitive to mesh refinements. This calls for future attention on this issue, to generate a more
robust solver. To achieve this, a few terms need to be handled in a different manner. The
implementation of Γevap as a volumetric source term should, preferably, be reformulated into a
boundary condition for the αV -equation. This is not a trivial task, but ultimately needed to
improve the mesh independence of the solver. Attention should also be spent on how the bulk
diameters in each cell is modelled in a cell with smaller dimensions than the diameter.

Defining the diameter in cells smaller than the bubble itself is also a complicated task. The
diameter would need to be distributed over several cells, in some manner, and then a correct
way to calculate the volume occupied by vapour would be needed.
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7 Conclusion

The stability of the myTwoPhaseEulerFoamBoiling-solver and the preparation of the code (for
future development) was one of the main goals, hence, this part could be considered completed.
The code and this document should give an easy understanding of the code and how to implement
future changes.

Since the bulk diameter model seems to cause some problems with the solution, this part of
the solver should be subject to future improvements. This could be done by adding source and
sink terms to the ai-equation and finding an appropriate way to handle the small bulk diameter.

The restrictions on the mesh refinement imposed by the diameter models are also problematic.
In both the mesh sensitivity test and the center line temperature plots (Figure 5.2) this is evident.
The coarse mesh is also a possible source of error, when modelling the turbulence, and, hence,
when modelling the wall temperature. To avoid this restriction, a different approach is needed
for the mass transfer terms and the diameter models that do not define the diameter per cell.

The evaporation rate, Γevap, should preferably be defined as a boundary condition for αV
instead of a volumetric source term. This could be a complicated task since it includes formulating
an analytical expression for this boundary condition. The expression should include the related
the physical quantities that influence the evaporation, like detachment diameter and nucleation
site density, which makes it non-trivial. The condensation rate could still be a volumetric source
but the modelling of the bulk diameters should be grid-independent.

The independence of the wall cells would also remove the need to work with separate cells in
the mesh, making the solver more suitable for parallelization of the solution procedure.

Concerning the long time goals of ABB, two major parts of the solver need to be changed.
The first part is to make it independent of the geometry. To achieve this the methods to calculate
the bulk values of the velocity and the temperature need to be changed. Also, parts of the solver
that depends on geometric properties, like models including Reynold and Nusselt numbers, need
to be reworked. The second part consist of making the solver valid for other liquids than water.
To do this, all correlations that have been specifically determined for water, like Jens-Lottes
correlation, need to be replaced.

Despite many of the properties being over or under predicted, many of them follow the same
trends as was expected. This leads to the conclusion that the outcome of this project is useful
for future projects at ABB. The theory governing the fundamentals of a boiling model has been
introduced and the base for the solver has been developed. This will save time in the future
development of a robust solver, that can be used in ABB’s applications.
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A Create Mesh

The mesh used in this thesis was created with the blockMesh tool that comes with the OpenFOAM
installation. To create the wedge shaped mesh the utilities makeAxialMesh version 2.x and
collapseEdges were used. makeAxialMesh had to be downloaded from [24], extracted and placed
in the users utility folder.

The mesh was created in a separate case in containing the usual sub directories 0, constant
and system with the polyMesh folder in 0 and not in constant. A file blockMeshDict was created
in polyMesh with the mesh defintion of the mesh as a cuboid in the standard way, see [23]. The
constant folder was left empty.

The system directory contained the files fvSolution, fvSystem, controlDict, rotationDict,
meshQualityDict and collapseDict. The rotationDict contained the parameters for makeAxi-
alMesh to create a axial symmetric mesh, meshQualityDict and collapseDict was used by col-
lapseEdges to adjust edges and points in the wedge shaped mesh. For details about how to write
these files there exist examples of meshQualityDict and collapseDict in the collapseEdge folder
under utilities in the OpenFOAM 2.3.0 installation. An example case of makeAxialMesh is also
provided with the download of the utility.

To complete the mesh creation, blockMesh was first run in the case directory. Then makeAx-
ialMesh was executed and finally collapseEdges. To make sure that the mesh was not corrupted
during the creation one could run checkMesh. The final mesh was then located under the latest
time step directory in a folder named polyMesh. This complete folder was then copied into the
constant folder of the case to be simulated.

B myTwoPhaseEulerFoamBoiling.C

40 #inc lude "fvCFD .H"
41 #inc lude "twoPhaseSystem .H"
42 #inc lude "PhaseIncompress ibleTurbulenceModel .H"
43 #inc lude " pimpleControl .H"
44 #inc lude "IOMRFZoneList .H"
45 #inc lude " f ixedFluxPres sureFvPatchSca la rF ie ld .H"
46
47 // #inc l ude " bo i l ingMode l .H"
48
49 // #inc l ude " IFstream .H"
50 // #inc l ude "OFstream .H"
51
52
53 // ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
54
55 i n t main ( i n t argc , char ∗argv [ ] )
56 {
57
58 #include " setRootCase .H"
59
60 #include " createTime .H"
61 #include " createMesh .H"
62 #include " r eadGrav i t a t i ona lAcc e l e r a t i on .H"
63
64 #include " c r e a t eF i e l d s .H"
65 #include "createMRFZones .H"
66 #include " i n i tCon t i nu i t yEr r s .H"
67 #include " readTimeControls .H"
68 #include "CourantNos .H"
69 #include " s e t I n i t i a lD e l t aT .H"
70
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71 pimpleControl pimple ( mesh ) ;
72
73 // ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ //
74
75 Info<< "\ nStar t ing time loop \n" << endl ;
76
77 bool boilingOn = f a l s e ;
78
79 whi le ( runTime . run ( ) )
80 {
81 #include " readTimeControls .H"
82 #include "CourantNos .H"
83 #include " setDeltaT .H"
84
85 runTime++;
86 Info<< "Time = " << runTime . timeName ( ) << nl << endl ;
87
88 // Reset b o i l i n g p r o p e r t i e s and c a l c u l a t e s imp ler g l o b a l p r o p e r t i e s
89 #include " bo i l ingMode l s .H"
90
91 // Ca l cu l a t e the r e a l p re s sure f i e l d
92 volScalarField pReal = p + pAdd ;
93
94 // Ca l cu l a t e c a l c u l a t e the condensat ion ra t e
95 #include " condensationModel .H"
96
97 // Ca l cu l a t e b o i l i n g p r o p e r t i e s on ly de f ined at the wa l l
98 #include " evaporationModel .H"
99

100 // Pass b o i l i n g parameters to the twoPhaseSystem−c l a s s to be
101 // ab l e to acces s them from the diameterModel
102 N = Nsite ;
103 f = freqBub ;
104 dDep = diameterDep ;
105 Aw = wallCellArea ;
106
107 // Pressure−v e l o c i t y PIMPLE cor r e c t o r loop
108 whi le ( pimple . loop ( ) )
109 {
110
111 // Ca l l s the s o l v e f unc t i on in twoPhaseSystem .C and c a l c u l a t e s vo id ←↩

f r a c t i o n ( a lpha )
112 fluid . solve ( GammaCond , GammaEvap , SuAlpha , SpAlpha ) ; // , DDtRho1 , ←↩

DDtRho2) ;
113
114 // Ca l cu l a t e mixture d en s i t y
115 rho = fluid . rho ( ) ;
116
117 // Update bu l k d iameters
118 fluid . correct ( ) ;
119
120 // Save the diameters f o r output when diameterModel i s cons tant
121 // diameter = phase1 . d ( ) ;
122
123 // So lve the energy equat ion eq . (3 . 13 )
124 #include "EEqns .H"
125
126 // So lve the momentum equat ions , eq . ( 3 . 4 ) and eq ( 3 . 6 )
127 #include "UEqns .H"
128
129 // Pressure co r r e c t o r loop
130 whi le ( pimple . correct ( ) )
131 {
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132 // So l v e s the pre s sure equat ion exp l a ined in sec ( 4 . 2 . 4 )
133 #include "pEqn .H"
134 }
135
136 // Ca l cu l a t e the mate r ia l d e r i v a t i v e s o f the v e l o c i t i e s
137 #include "DDtU.H"
138
139 // Correct f o r t u r bu l ence
140 i f ( pimple . turbCorr ( ) )
141 {
142 fluid . correctTurbulence ( ) ;
143 }
144
145 }
146
147 // Saving mass t r a n s f e r r a t e s f o r r e l a x a t i o n
148 GammaEvapOld=GammaEvap ;
149 GammaCondOld=GammaCond ;
150
151 // Ca l l s wr i t e f unc t i on
152 #include " wr i t e .H"
153
154 Info<< "ExecutionTime = "
155 << runTime . elapsedCpuTime ( )
156 << " s \n\n" << endl ;
157 }
158
159 Info<< "End\n" << endl ;
160
161 return 0 ;
162
163 }
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C Boiling Terms

C.1 condensationModel.H

11 // Ca l cu l a t i n g the t r u b u l e n t thermal c ondu c t i v i t y through the e f f e c t i v e ←↩
k inemat ic

12 // v i s c o s i t y : lambdaT = Cpv2∗rho2 ∗( nuEff − nu2 )/Pr2T
13 volScalarField lambdaT = Cpv2∗rho2 ∗( phase2 . turbulence ( ) . nuEff ( )−mu2/rho2 ) /←↩

Pr2T ;
14
15 // Ca l cu l a t e the i n t e r f a c i a l heat t r a n s f e r c o e f f i c i e n t accord ing to eq . ←↩

(3 . 65 )
16 hC = rho2∗Cpv2∗Foam : : sqrt (4 . 0/3 . 14159∗ Foam : : mag (U1−U2 ) /diameter∗thermCond2 /(←↩

rho2∗Cpv2 ) ∗1 .0/(1 .0+ lambdaT/thermCond2 ) ) ;
17
18 // Ca l cu l a t e temporary condensat ion ra t e . Ca l cu l a t ed accord ing to eq . (3 . 61 )
19 volScalarField GammaCondTemp = Foam : : max ( hC ∗(6 . 0∗ alpha1/diameter ) ∗( Tsat−←↩

thermo2 . T ( ) ) /latHeatEvap , hC ∗(0 . 0∗ alpha1 /( diameter ) ) ∗( Tsat−thermo2 . T ( ) ) /←↩
latHeatEvap ) ;

20
21 // Set the time−r e l a x ed condesat ion ra t e
22 GammaCond = condRelaxFactor∗GammaCondTemp+(1.0−condRelaxFactor ) ∗GammaCondOld←↩

;
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C.2 evaporationModel.H

15 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ In t e g r a t e output temperature ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
16 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Used to ge t output bu l k temperature ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
17
18 // Locat l a b e l o f output boundary
19 label patchOutlet=mesh . boundaryMesh ( ) . findPatchID ( " ou t l e t " ) ;
20
21 // Get output patch
22 const fvPatch& thePatchItselfOutlet=mesh . boundary ( ) [ patchOutlet ] ;
23
24 // Get su r f a c e areas
25 const surfaceScalarField& magSf = mesh . magSf ( ) ;
26
27 // I n i t i a t e output bu l k temperature parameters
28 scalar areaCellOut = 0 . 0 ;
29 scalar totAreaOut = 0 . 0 ;
30 scalar ToutBulk = 0 . 0 ;
31
32 // Loop through the c e l l s on the output patch to i n t e g r a t e ToutBulk
33 forAll ( thePatchItselfOutlet , iface )
34 {
35 label icell = thePatchItselfOutlet . faceCells ( ) [ iface ] ;
36 areaCellOut = magSf . boundaryField ( ) [ patchOutlet ] [ iface ] ;
37 totAreaOut += areaCellOut ;
38 ToutBulk += areaCellOut∗thermo2 . T ( ) [ icell ] ;
39 }
40
41 // Divide wi th the t o t a l area o f output pacth to acheve mean va lue .
42 ToutBulk = ToutBulk/totAreaOut ;
43
44 // Print r e s u l t s to output
45 Info<< " ToutBulk " << ToutBulk << "\n\n" << endl ;
46
47
48
49
50
51 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Manipu lat ions o f data on ly ∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
52 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ in the wa l l c e l l s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
53
54 // Get l a b e l o f the boundary " wa l l s "
55 label patchWall=mesh . boundaryMesh ( ) . findPatchID ( " wa l l s " ) ;
56
57 // Get the " wa l l s " patch
58 const fvPatch& thePatchItselfWall=mesh . boundary ( ) [ patchWall ] ;
59
60 // Get f a c e s o f the mesh
61 const faceList & ff = mesh . faces ( ) ;
62
63 // Get po in t s o f the mesh
64 const pointField & pp = mesh . points ( ) ;
65
66
67
68
69
70 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Loop to damp the heat f l u x in the f i r s t c e l l s ∗∗∗∗∗∗∗∗/
71
72 // // Set f a c t o r s to damp the heat f l u x at the f i r s t n c e l l s as the nominator
73 // // and denominator o f a f r a c t i o n
74 // s c a l a r heatFluxDamp = 100 .0 ;
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75 // s c a l a r iHFD = 0 . 0 ;
76 // f o rA l l ( t h ePa t ch I t s e l fWa l l , iFace )
77 // {
78 // // Get l a b e l o f wa l l c e l l
79 // l a b e l i C e l l = t h ePa t c h I t s e l fWa l l . f a c eC e l l s ( ) [ iFace ] ; / / Ce l l index f o r ←↩

each face in the " wa l l s"−boundary
80 //
81 // // Ca l cu l a t e damped heat f l u x
82 // wa l lHeatF lux [ i C e l l ] = qTot . va lue ( ) ∗(iHFD/heatFluxDamp ) ;
83 //
84 // // Update damping f a c t o r
85 // i f (iHFD<heatFluxDamp )
86 // {
87 // iHFD++;
88 // }
89 // }
90
91 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
92
93
94 // S ta r t loop f o r c a l c u l a t i n g b o i l i n g p r o p e r t i e s
95 forAll ( thePatchItselfWall , iFace )
96 {
97
98 // Get l a b e l o f wa l l c e l l
99 label iCell = thePatchItselfWall . faceCells ( ) [ iFace ] ;

100
101 // Get c e l l c en te r o f wa l l c e l l
102 vector iCellCentre = mesh . cellCentres ( ) [ iCell ] ;
103
104 // Define po in t c l o s e to cen te r l i n e at the same po s i t i o n as the wa l l c e l l ←↩

in y−d i r e c t i o n
105 vector centerLinePoint ( 1 . 0 e−6,iCellCentre . y ( ) , 0 . 0 ) ;
106
107 // L i s t l a b e l s o f bu l k c e l l s
108 label centerCell = mesh . findCell ( centerLinePoint ) ;
109
110
111
112
113
114 /∗∗∗∗∗∗∗∗∗∗∗∗∗ Ca l cu l a t e bu l k temperature and v e l o c i t y ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
115
116 // Loop to i n t e g r a t e bu l k temperature and y−v e l o c i t y component
117 f o r ( i n t wallCellLabel = centerCell ; wallCellLabel < ( iCell + 1) ; ←↩

wallCellLabel++)
118 {
119 vol [ iCell ] += mesh . V ( ) [ wallCellLabel ] ;
120 Tbulk [ iCell ] += thermo2 . T ( ) [ wallCellLabel ] ∗ mesh . V ( ) [ wallCellLabel ] ;
121 Ubulk [ iCell ] += U2 [ wallCellLabel ] . y ( ) ∗mesh . V ( ) [ wallCellLabel ] ;
122 }
123
124 // Divide wi th the t o t a l area o f output pacth to acheve mean va lue .
125 Tbulk [ iCell ] /= vol [ iCell ] ;
126 Ubulk [ iCell ] /= vol [ iCell ] ;
127
128
129 /∗∗∗∗∗∗∗∗∗∗∗ A l t e rna t i v e bu l k temperature , taken at yPlus=250∗∗∗∗∗∗∗∗∗∗/
130 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗Not used ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
131 // s c a l a r xBulk = 250∗Foam : : s q r t (xDim/2/(Foam : : mag(U2 [ i C e l l ] . y ( ) )+s ca l a r (1 .0 e←↩

−12) )∗mu2 [ i C e l l ] / rho2 [ i C e l l ] ) ;
132 // vec t o r bulkPointT (Foam : : max( pipeRadius . va lue ( )−xBulk , 1 . 0 e−6) , iCe l lCen t r e . y ( )←↩

,0) ;
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133 // L i s t l a b e l s o f bu l k c e l l s
134 // l a b e l bu l kCe l lT = mesh . f i n dC e l l ( bulkPointT ) ;
135 // Tbulk [ i C e l l ] = thermo2 .T() [ bu l kCe l lT ] ;
136 // Tbulk [ i C e l l ] = thermo2 .T() [ b u l kC e l l ] ;
137 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
138
139
140
141
142
143 /∗∗∗∗∗∗∗∗∗∗ Ca l cu l a t e c e l l dimensions and wa l l c e l l area ∗∗∗∗∗∗∗∗∗∗/
144
145 // Get dimensions o f wa l l c e l l
146 const cell & cc = mesh . cells ( ) [ iCell ] ;
147 labelList pLabels ( cc . labels ( ff ) ) ;
148 pointField pLocal ( pLabels . size ( ) , vector : : zero ) ;
149 forAll ( pLabels , pointi )
150 {
151 pLocal [ pointi ]=pp [ pLabels [ pointi ] ] ;
152 }
153 scalar xDim = Foam : : max ( pLocal & vector ( 1 , 0 , 0 ) ) − Foam : : min ( pLocal & vector←↩

( 1 , 0 , 0 ) ) ;
154 scalar yDim = Foam : : max ( pLocal & vector ( 0 , 1 , 0 ) ) − Foam : : min ( pLocal & vector←↩

( 0 , 1 , 0 ) ) ;
155 scalar zDim = Foam : : max ( pLocal & vector ( 0 , 0 , 1 ) ) − Foam : : min ( pLocal & vector←↩

( 0 , 0 , 1 ) ) ;
156
157 // Ca l cu l a t e area/volume fo r the wa l l c e l l
158 wallCellArea [ iCell ]= 1/xDim ;
159
160 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
161
162
163
164
165
166
167 /∗∗∗∗∗∗∗∗∗∗ Ca l cu l a t e wa l l temperature from law−of−the−wa l l ∗∗∗∗∗∗∗∗∗∗/
168 /∗∗∗∗ accord ing to the model in senc t i on ( 3 . 5 . 2 ) o f the r e f e r ence ∗∗∗∗∗/
169
170 // Define von Karman cons tant
171 scalar karman = 0 .4187 ;
172
173 // Define cons tant E
174 scalar E = 9 . 7 9 3 ;
175
176 // Define C_mu
177 scalar Cmu = 0 . 0 9 ;
178
179 // Get d i s t ance from c e l l c en te r to wa l l
180 yP [ iCell ] = xDim /2 ;
181
182 // Reset d imens ion l e s s wa l l temperature
183 Tstar [ iCell ] = 0 ;
184
185 // Ca l cu l a t e wa l l area
186 scalar wallArea = yDim∗zDim ;
187
188 // Ca l cu l a t e d imens ion l e s s wa l l d i s t ance accord ing to eq . (3 . 35 )
189 yStar [ iCell ] = rho2 [ iCell ] ∗ Foam : : pow ( Cmu , 0 . 2 5 ) ∗Foam : : pow ( k2 [ iCell ] , 0 . 5 ) ∗yP [←↩

iCell ] / mu2 [ iCell ] ;
190
191 // Guess i n i t a l yStarT
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192 yStarT [ iCell ] = 0 . 5 ;
193
194 // Loop to c a l c u l a t e yStarT where law−of−the−wa l l changes d e f i n i t i o n
195 scalar error = 1000 ;
196 scalar nrIter = 0 ;
197 whi le ( ( error > 1) & ( nrIter < 100) )
198 {
199 nrIter++;
200 scalar TstarLin = Pr2 [ iCell ] ∗ yStarT [ iCell ] ;
201 scalar TstarLog = Pr2T ∗( Foam : : log (E∗yStarT [ iCell ] ) /karman + 9.24∗ ( Foam : :←↩

pow ( Pr2 [ iCell ] / Pr2T , 0 . 7 5 ) −1.0) ∗(1+0.28∗ Foam : : exp (−0.007∗Pr2 [ iCell ] /←↩
Pr2T ) ) ) ;

202 error = Foam : : mag ( TstarLin − TstarLog ) ;
203 yStarT [ iCell ] += 0 . 2 5 ;
204 }
205
206 // I f s ta tment to s e l e c t c o r r e c t law−od−the−wa l l d e f i n i t i o n
207 i f ( yStar [ iCell ] > yStarT [ iCell ] )
208 {
209 // Ca l cu l a t e Tstar wi th the l o ga r i t hm i c d e f i n i t i o n
210 Tstar [ iCell ] = Pr2T ∗( Foam : : log (E∗yStar [ iCell ] ) /karman + 9.24∗ ( Foam : : pow (←↩

Pr2 [ iCell ] / Pr2T , 0 . 7 5 ) −1.0) ∗(1 .0+0.28∗ Foam : : exp (−0.007∗Pr2 [ iCell ] /←↩
Pr2T ) ) ) ;

211
212 } e l s e
213 {
214 // Ca l cu l a t e Tstar wi th the l i n e a r d e f i n t i o n
215 Tstar [ iCell ] = Pr2 [ iCell ] ∗ yStar [ iCell ] ;
216 }
217
218 // Ca l cu l a t e the wa l l temperature
219 TwallWater [ iCell ] = Tstar [ iCell ] ∗ qTot . value ( ) /( rho2 [ iCell ] ∗ Cpv2 [ iCell ] ∗ Foam←↩

: : pow ( Cmu , 0 . 2 5 ) ∗Foam : : pow ( k2 [ iCell ] , 0 . 5 ) ) + thermo2 . T ( ) [ iCell ] ;
220
221 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
222
223
224
225
226
227
228 /∗∗∗∗∗∗∗∗∗∗∗∗∗Wall temperature accord ing to Dit tus−Boe l t e r ∗∗∗∗∗∗∗∗∗∗∗∗∗/
229
230 ReyNr [ iCell ] = rho2 [ iCell ] ∗0 . 9978∗2∗ pipeRadius . value ( ) /mu2 [ iCell ] ;
231
232 TwallWaterDB [ iCell ]= Tbulk [ iCell ] + qTot . value ( ) /( thermCond2 [ iCell ] ∗ 0 . 023∗←↩

Foam : : pow ( ReyNr [ iCell ] , 0 . 8 ) ∗Foam : : pow ( Pr2 [ iCell ] , 0 . 4 ) /(2∗ pipeRadius .←↩
value ( ) ) ) ;

233
234 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
235
236 // Ca l cu l a t e wa l l super heat i c co rd in g to s e l e c t i o n from input
237 #include "wallSuperHeat .H"
238
239 // I f s ta tement to check i f b o i l i n g occures in the c e l l accord ing to eq . ←↩

(3 . 34 )
240 i f ( TwallWater [ iCell ]<(Tsup [ iCell ]+Tsat [ iCell ] ) )
241 {
242
243 // Ca l cu l a t e heat f l u x to phase2 , the t o t a l heat f l u x goes to hea t ing ←↩

s ince
244 // no b o i l i n g occures
245 qWall2 [ iCell ] = wallHeatFlux [ iCell ] ∗ wallCellArea [ iCell ] ;
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246
247 } e l s e
248 {
249
250 // Ca l cu l a t e the nuc l ea t i on s i t e d en s i t y accord ing to eq . (3 . 43 )
251 Nsite [ iCell ] = Foam : : pow (210∗( TwallWater [ iCell ]−Tsat [ iCell ] ) , 1 . 8 05 ) ;
252
253 // Ca l cu l a t e the bubb l e detachment diameter accord ing to Unals model
254 #include " departureDiameters .H"
255
256 // Ca l cu l a t e the bubb l e detachment f requency accord ing to eq . (3 . 44 )
257 freqBub [ iCell ] = Foam : : sqrt ( ( 4 . 0 / 3 . 0 ) ∗ ( ( Foam : : mag (g [ 2 ] . y ( ) ) ∗( rho2 [ iCell←↩

]−rho1 [ iCell ] ) ) ) /( diameterDep [ iCell ] ∗ rho2 [ iCell ] ) ) ;
258
259 // Set d iameters be low the l im i t o f what i s v a l i d in Unals model to zero
260 i f ( diameterDep [ iCell ] < 0 .00008)
261 {
262 diameterDep [ iCell ] = 0 . 0 ;
263 }
264
265 // Ca l cu l a t e the heat f l u x going to evapora t ion accord ing to eq . (3 . 42 )
266 qEvap [ iCell ] = Foam : : min ( ( 3 . 1 4 159/6 . 0 ) ∗Foam : : pow ( diameterDep [ iCell ] , 3 ) ∗←↩

rho1 [ iCell ] ∗ latHeatEvap . value ( ) ∗Nsite [ iCell ] ∗ freqBub [ iCell ] ,←↩
wallHeatFlux [ iCell ] ) ;

267
268 // Ca l cu l a t e a temporary evapora t ion ra t e accord ing to eq . (3 . 56 )
269 scalar GammaEvapTemp = qEvap [ iCell ] ∗ wallCellArea [ iCell ] / ( latHeatEvap .←↩

value ( )+Cpv2 [ iCell ] ∗ ( Tsat [ iCell ]−Tbulk [ iCell ] ) ) ;
270
271 // Set time−r e l a x ed evapora t ion ra t e
272 GammaEvap [ iCell ] = evapRelaxFactor∗GammaEvapTemp+(1.0−evapRelaxFactor ) ∗←↩

GammaEvapOld [ iCell ] ;
273
274 // Ca l cu l a t e heat source wi th evapora t ion heat f l u x su b t r a c t e d
275 qWall2 [ iCell ] = ( wallHeatFlux [ iCell ]−qEvap [ iCell ] ) ∗wallCellArea [ iCell ] ;
276
277 // Check t ha t mesh i s not to r e f i n e d f o r bubb l e d iameters a t the wa l l
278 i f ( ( diameterDep [ iCell ]>xDim ) | | ( diameterDep [ iCell ]>yDim ) )
279 {
280 Info<< "ERROR : Mesh to r e f i n e d to f i t bubble departure diameter in c e l l←↩

" << "\n\n" << endl ;
281 Info<< " Ref ine mesh at wa l l " << "\n\n" << endl ;
282 Info<< "diameterDep [ i C e l l ] = " << diameterDep [ iCell ] << "\n\n" << endl ;
283 Info<< "xDim = " << xDim << "\n\n" << endl ;
284 Info<< "yDim = " << yDim << "\n\n" << endl ;
285 Info<< "============================== qEvap [ i C e l l ] = " << qEvap [ iCell ] ←↩

<< "\n\n" << endl ;
286 Info<< "============================== qWall2 [ i C e l l ] = " << qWall2 [ iCell←↩

] << "\n\n" << endl ;
287
288 re turn 1 ;
289 }
290
291 }
292
293 }
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C.3 departureDiameters.H

15 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Ca l cu l a t i n g the s i n g l e−phase fo rced convec t ion ←↩
∗∗∗∗∗∗∗∗∗∗∗∗∗∗

16 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ heat t r a n s f e r c o e f f i c i e n t f o r the heated su r f a c e ∗∗∗∗∗∗∗∗∗∗∗∗←↩
∗/

17
18 // Ca l cu l a t e fan ing Reynold numbers accord ing to eq . (3 . 55 )
19 ReynoFan [ iCell ] = ( rho2 [ iCell ] ∗ 2 . 0 ∗ pipeRadius . value ( ) ∗Foam : : mag ( U2 [←↩

centerCell ] ) ) /mu2 [ iCell ] ;
20
21 // I n i t i a l guess f o r fan c o e f f i c i e n t
22 Cf [ iCell ] = 0 . 0 6 2 ;
23
24 // I t e r a t e to g e t the fan f r i c t i o n c o e f f i c i e n t accord ing to eq . (3 . 54 )
25 f o r ( i n t i=0; i <10; i++)
26 {
27 Cf [ iCell ]=1 .0/( Foam : : log ( max ( ReynoFan [ iCell ] ∗ Cf [ iCell ] , 1 . 0 ) ) /0 .435+5.05) ;
28 }
29
30 // Ca l cu l a t e Stanton number accord ing to eq . (3 . 53 )
31 Stanton [ iCell ] = Foam : : pow ( Cf [ iCell ] , 2 . 0 ) /(1.0−1.783∗ Cf [ iCell ] ) ;
32
33 // Ca l cu l a t e s i n g l e−phase heat t r a n s f e r c o e f f i c i e n t accord ing to eq . (3 . 52 )
34 h1F [ iCell ] = Stanton [ iCell ] ∗ rho2 [ iCell ] ∗ Cpv2 [ iCell ] ∗ Foam : : mag ( U2 [ centerCell←↩

] ) ;
35
36
37 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Ca l cu l a t i n g c o e f f i c i e n t s i s Unals model ∗∗∗∗∗∗∗∗∗∗∗∗∗∗
38 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ and depar ture diameter ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
39
40 // Ca l cu l a t e f a c t o r B from Unals model , g i ven in eq . (3 . 49 )
41 scalar B = ( Tsat [ iCell ]−Tbulk [ iCell ] ) /(2 .0∗(1 .0− rho1 [ iCell ] / rho2 [ iCell ] ) ) ;
42
43 // Ca l cu l a t e f a c t o r C from Unals model , g i ven in eq . (3 . 51 )
44 scalar C = ( latHeatEvap . value ( ) ∗mu2 [ iCell ] ∗ ( Foam : : pow ( Cpv2 [ iCell ] / ( 0 . 0 1 3∗←↩

latHeatEvap . value ( ) ∗Foam : : pow ( Pr2 [ iCell ] , 1 . 7 ) ) , 3 . 0 ) ) )
45 /( Foam : : sqrt ( fluid . sigma ( ) . value ( ) /( Foam : : mag (g [ 2 ] . y ( ) ) ∗( rho2 [ iCell ]−←↩

rho1 [ iCell ] ) ) ) ) ;
46
47 // Ca l cu l a t e f a c t o r A from Unals model , g i ven in eq . (3 . 50 )
48 scalar A = Foam : : pow ( Foam : : max ( wallHeatFlux [ iCell ]−h1F [ iCell ] ∗ ( Tsat [ iCell ]−←↩

Tbulk [ iCell ] ) , 0 . 0 ) , 1 . 0 / 3 . 0 ) ∗thermCond2 [ iCell ] ∗ Foam : : sqrt ( ( rhoSurf . value←↩
( ) ∗CpSurf . value ( ) ∗lambdaSurf . value ( ) ) /( thermCond2 [ iCell ] ∗ rho2 [ iCell ] ∗←↩
Cpv2 [ iCell ] ) )

49 / (2 . 0∗ Foam : : pow (C , 1 . 0 / 3 . 0 ) ∗latHeatEvap . value ( ) ∗rho1 [ iCell ] ∗ Foam : : sqrt←↩
(3 .14159∗ thermCond2 [ iCell ] / ( rho2 [ iCell ] ∗ Cpv2 [ iCell ] ) ) ) ;

50
51 // Ca l cu l a t e f a c t o r Theta from Unals model , g i ven in eq . (3 . 48 )
52 scalar D = 1 . 0 ;
53 i f ( Ubulk [ iCell ] > 0 . 61 )
54 {
55 D = Foam : : pow ( Ubulk [ iCell ] / 0 . 6 1 , 0 . 4 7 ) ;
56 }
57
58 // Ca l cu l a t e the depar tur diameter accord ing to eq . (3 . 47 )
59 diameterDep [ iCell ] = Foam : : max ( ( ( 2 . 4 2 e−5)∗Foam : : pow ( pReal [ iCell ] , 0 . 7 0 9 ) ∗A ) /(←↩

Foam : : sqrt (B∗D ) ) , 0 . 0 ) ;
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C.4 boilingModel.H

12 // Reset f i e l d s
13 Tbulk = Tbulk ∗ 0 . 0 ;
14 Ubulk = Ubulk ∗ 0 . 0 ;
15 vol = vol ∗ 0 . 0 ;
16 qWall2=qWall2 ∗0 ;
17 GammaEvap=GammaEvap ∗0 ;
18 GammaCond=GammaCond ∗0 ;
19 SpAlpha=SpAlpha ∗0 ;
20 SuAlpha=SuAlpha ∗0 ;
21 Nsite = Nsite ∗0 ;
22 freqBub=freqBub ∗0 ;
23 diameterDep = diameterDep ∗0 ;
24 Nu=Nu ∗0 ;
25 hC=hC ∗0 ;
26 qEvap=qEvap ∗0 ;
27 ReynoBub = ReynoBub ∗0 ;
28 ReynoFan = ReynoFan ∗0 ;
29 ReyNr=ReyNr ∗0 ;
30 TwallWater=TwallWater ∗0 ;
31 Stanton=Stanton ∗0 ;
32
33 // Get boundBox to ge t mesh s i z e
34 const boundBox meshSize = mesh . bounds ( ) ;
35
36 // Get p ipe rad ius
37 dimensionedScalar pipeRadius
38 (
39 "pipeRadius " ,
40 dimensionSet ( 0 , 1 , 0 , 0 , 0 , 0 , 0 ) ,
41 scalar ( meshSize . max ( ) . x ( ) )
42 ) ;
43
44 // Ca l cu l a t e the Prandt l numbers f o r phase 2
45 Pr2 = mu2∗Cpv2/thermCond2 ;
46
47 // I n i t i a t e the f r i c t i o n c o e f f i c i e n t
48 volScalarField Cf = ReynoFan ;
49
50 // Ca l cu l a t e the thermal d i f f u s i v i t y o f phase 2 [m^2/s ]
51 thermDiff2 = mu2/Pr2/rho2 ;
52
53 // Ca l cu l a t e Reynold numbers based on bubb l e diameter , eq . (3 . 64 )
54 ReynoBub = rho2∗diameter∗Foam : : mag (U2−U1 ) /mu2 ;
55
56 // Ca l cu l a t e the l o c a l Nusse l t numbers accord ing to the Rans−Marsha l l ←↩

co r r e l a t i on , eq . (3 . 63 )
57 Nu = 2 + 0.6∗ Foam : : sqrt ( ReynoBub ) ∗Foam : : cbrt ( Pr2 ) ;
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D Void fraction equation

510 forAll ( dgdt_ , celli )
511 {
512
513 // Ca l cu l a t e the source terms f o r the alpha−equat ion due to the ←↩

evapora t ion and condensat ion . The
514 // source term i s d i v i d ed in t o a imp l i c i t and e x p l i c i t par t accord ing to←↩

the theory in sec ( 4 . 2 . 1 ) .
515 // A minimum of 1.0 e−8 i s needed f o r a lpha1 to be cons idered non−zere , ←↩

hence condensat ion w i l l occur .
516 i f ( alpha1 [ celli ] > 1 .0 e−8)
517 {
518 SpAlpha [ celli ] = −cond [ celli ] / phase1_ . rho ( ) [ celli ] / alpha1 [ celli←↩

]−2.0∗ evap [ celli ] / phase1_ . rho ( ) [ celli ]−2.0∗ cond [ celli ] / phase2_ .←↩
rho ( ) [ celli ] ;

519
520 SuAlpha [ celli ] = evap [ celli ] / phase1_ . rho ( ) [ celli ]+2.0∗ alpha1 [ celli ] ∗ evap←↩

[ celli ] / phase2_ . rho ( ) [ celli ]+2.0∗ alpha1 [ celli ] ∗ cond [ celli ] / phase1_ .←↩
rho ( ) [ celli ] ;

521
522 } e l s e
523 {
524 SuAlpha [ celli ] = evap [ celli ] / phase1_ . rho ( ) [ celli ] ;
525 }
526
527
528 // Update the source terms f o r the alpha1−equat ion
529 i f ( dgdt_ [ celli ] > 0 .0 && alpha1 [ celli ] > 0 . 0 )
530 {
531 Sp [ celli ] += (−dgdt_ [ celli ] ∗ alpha1 [ celli ]+SpAlpha [ celli ] ) ;
532 Su [ celli ] += ( dgdt_ [ celli ] ∗ alpha1 [ celli ]+SuAlpha [ celli ] ) ;
533 }
534 e l s e i f ( dgdt_ [ celli ] < 0 .0 && alpha1 [ celli ] < 1 . 0 )
535 {
536 Sp [ celli ] += ( dgdt_ [ celli ] ∗ ( 1 . 0 − alpha1 [ celli ] )+SpAlpha [ celli ] )←↩

;
537 Su [ celli ] += SuAlpha [ celli ] ;
538 }
539
540 }
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E EEqns.H

16 {
17 // Implementation o f energy equat ion , eq . (3 . 13 )
18 fvScalarMatrix he2Eqn
19 (
20 fvm : : ddt ( alpha2 , he2 ) + fvm : : div ( alphaPhi2 , he2 )
21
22 // Compress ib i ty co r r e c t i on
23 − fvm : : Sp ( fvc : : ddt ( alpha2 ) + fvc : : div ( alphaPhi2 ) , he2 )
24 + (
25 he2 . name ( ) == thermo2 . phasePropertyName ( "e" )
26 ? fvc : : ddt ( alpha2 ) ∗p + fvc : : div ( alphaPhi2 , p )
27 : −alpha2∗dpdt
28 ) /rho2
29
30 − fvm : : laplacian ( alpha2 ∗( thermCond2/Cpv2/rho2+(phase2 . turbulence ( ) . nuEff ( )←↩

−mu2/rho2 ) /Pr2T ) , he2 )
31 ==
32
33 // Adding the heat f l u x as a source term at the near wa l l c e l l s .
34 // The t o t a l heat f l u x i s mu l t i p l i e d wi th the wa l l area per un i t
35 // volume o f each near wa l l c e l l
36 qWall2/rho2// ∗wa l lCe l lArea /rho2
37
38 // Adding term due to phase change
39 + ( GammaCond∗Cpv1∗thermo1 . T ( )−GammaEvap∗he2 ) /rho2
40 ) ;
41
42 he2Eqn . relax ( ) ;
43 he2Eqn . solve ( ) ;
44
45 thermo2 . correct ( ) ;
46 }
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F UEqns.H

10 mrfZones . correctBoundaryVelocity ( U1 ) ;
11 mrfZones . correctBoundaryVelocity ( U2 ) ;
12 mrfZones . correctBoundaryVelocity (U ) ;
13
14 fvVectorMatrix U1Eqn (U1 , U1 . dimensions ( ) ∗dimVol/dimTime ) ;
15 fvVectorMatrix U2Eqn (U2 , U2 . dimensions ( ) ∗dimVol/dimTime ) ;
16
17 // Gets drag c o e f f i c i e n t
18 volScalarField dragCoeff ( fluid . dragCoeff ( ) ) ;
19
20 {
21 // Gets c o e f f i c i e n t s f o r f o r c e s
22 volScalarField virtualMassCoeff ( fluid . virtualMassCoeff ( ) ) ;
23 volVectorField liftForce ( fluid . liftForce ( ) ) ;
24 volVectorField wallLubricationForce ( fluid . wallLubricationForce ( ) ) ;
25 volVectorField turbulentDispersionForce ( fluid . turbulentDispersionForce ( ) ) ;
26
27 {
28 // Implementation o f momentum equat ion f o r phase 1 , eq . ( 3 . 4 )
29 U1Eqn =
30 (
31 fvm : : ddt ( alpha1 , U1 )
32 + fvm : : div ( alphaPhi1 , U1 )
33 − fvm : : Sp ( fvc : : ddt ( alpha1 ) + fvc : : div ( alphaPhi1 ) , U1 )
34 + phase1 . turbulence ( ) . divDevReff ( U1 )
35 ==
36 // Gravi ty term g t r an s f e r e d to pre s sure equa t i o
37 − fvm : : Sp ( dragCoeff/rho1 , U1 ) // E x p l i c i t par t inc luded in pEqn
38 − alpha1∗alpha2/rho1
39 ∗(
40 liftForce
41 + wallLubricationForce
42 + turbulentDispersionForce
43 )
44 − virtualMassCoeff/rho1
45 ∗(
46 fvm : : ddt ( U1 )
47 + fvm : : div ( phi1 , U1 )
48 − fvm : : Sp ( fvc : : div ( phi1 ) , U1 )
49 − DDtU2
50 )
51 + GammaEvap∗U2/rho1−fvm : : Sp ( GammaCond/rho1 , U1 )
52 ) ;
53 mrfZones . addCoriolis ( alpha1 + virtualMassCoeff/rho1 , U1Eqn ) ;
54 U1Eqn . relax ( ) ;
55 }
56
57 {
58 // Implementation o f momentum equat ion f o r phase 2 , eq . ( 3 . 6 )
59 U2Eqn =
60 (
61 fvm : : ddt ( alpha2 , U2 )
62 + fvm : : div ( alphaPhi2 , U2 )
63 − fvm : : Sp ( fvc : : ddt ( alpha2 ) + fvc : : div ( alphaPhi2 ) , U2 )
64 + phase2 . turbulence ( ) . divDevReff ( U2 )
65 ==
66 // Gravi ty term g t r an s f e r e d to pre s sure equa t ion
67 − fvm : : Sp ( dragCoeff/rho2 , U2 ) // E x p l i c i t par t inc luded in pEqn
68 + alpha1∗alpha2/rho2
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69 ∗(
70 liftForce
71 + wallLubricationForce
72 + turbulentDispersionForce
73 )
74 − virtualMassCoeff/rho2
75 ∗(
76 fvm : : ddt ( U2 )
77 + fvm : : div ( phi2 , U2 )
78 − fvm : : Sp ( fvc : : div ( phi2 ) , U2 )
79 − DDtU1
80 )
81 + GammaCond∗U1/rho2−fvm : : Sp ( GammaEvap/rho2 , U2 )
82 ) ;
83 mrfZones . addCoriolis ( alpha2 + virtualMassCoeff/rho2 , U2Eqn ) ;
84 U2Eqn . relax ( ) ;
85 }
86
87 }
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G pEqn.H

198 // So l v e s the pre s sure equa t in in eq . (4 . 15 ) wi th the added source term "(←↩
GammaEvap−GammaCond) ∗(1/ rho1 −1/rho2 )"

199 // Since the s o l v e r was assumed incompres s i b l e , the on ly term to take in t o ←↩
account i s pEqnIncomp which

200 // i s de r i v ed from the c on t i nu i t y equat ion v ia d i v ( ph ic ) , ph ic = alpha1 ∗ phi1←↩
+alpha2 ∗ phi2 . De t a i l s about

201 // how s im i l a r pre s sure equa t i ons are de r i v ed can be found in Alber to ←↩
Ghiones t h e s i s from 2012

202 // "Development and v a l i d a t i o n o f a two−phase CFD model us ing OpenFOAM"
203 solve
204 (
205 pEqnComp1 ( ) + pEqnComp2 ( ) + pEqnIncomp −(GammaEvap−GammaCond ) ∗(1/←↩

rho1 −1/rho2 ) , // − Source ,
206 mesh . solver (p . select ( pimple . finalInnerIter ( ) ) )
207 ) ;
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