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Abstract
Highly relativistic runaway electrons are of great concern in the area of fusion
energy research, since their presence in tokamak plasmas have the potential
to hinder the successful and stable operation of the device, and potentially
cause severe structural damage. In this thesis, runaway electron generation
dynamics is investigated using the newly developed efficient computational
tool CODE. A particular emphasis is given to the synchrotron radiation emit-
ted by the runaways, as this is an important source of information about their
properties. The synchrotron emission spectrum is studied, as well as the ef-
fects of radiation back-reaction on the electron distribution and the runaway
electron dynamics.

Synchrotron emission back-reaction is found to have a significant impact on
the runaway distribution, leading to an increase in the critical electric field
for runaway generation, as well as the appearance of non-monotonic features
in the runaway tail for electric-field strengths above a certain threshold, po-
tentially acting as a source of bump-on-tail instabilities. Both of these effects
may contribute to reduce the severity of the runaway problem, although their
importance is largest at high temperatures and low densities, likely making
the impact in a tokamak disruption scenario limited. It is also found that
the previously used approximation of considering only the emission from the
most strongly emitting particles when modeling the synchrotron spectrum
from runaway distributions can produce highly inaccurate results, and that
the use of the full runaway distribution in this context is necessary.

Keywords: runaway electrons, synchrotron radiation, critical electric field, fu-
sion plasma physics, tokamak
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Numerical calculation of ion runaway distributions.
Submitted to Physics of Plasmas.
http://arxiv.org/abs/1502.06739
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1 Introduction

In plasma physics, many interesting phenomena occur that are outside our
everyday experience. One of these is the generation of so-called runaway
electrons (or simply runaways) – electrons that under certain conditions get
continuously accelerated by electric fields [1, 2]. The dynamics of the process
are such that the runaways quickly reach relativistic energies; they move with
speeds very close to that of light. Runaways appear in a variety of atmospheric
and astrophysical contexts, as discussed in Sec. 2.5. Apart from their intrinsic
interest, these highly energetic particles are also a cause for concern in the
context of fusion reactors [3].

Generating electric power using controlled thermonuclear fusion reactions is a
promising concept for a future sustainable energy source [4, 5, 6], but stable
and controllable operating conditions are required for a successful fusion power
plant. The presence of runaway electrons in the plasmas of fusion reactors
under certain circumstances is one of the main remaining hurdles on the road
to realization of fusion power production [7], as the runaways carry with them
the potential to severely damage the machine when they get transported out of
the plasma and strike the wall [8]. There is therefore a great need to improve
the understanding of the mechanisms that generate and suppress runaway
electrons, and to better describe their dynamics.

The runaway electrons are created in the middle of a plasma with a tem-
perature in excess of 1 million Kelvin, and there is no way to measure or
diagnose them in situ. One way to further the understanding about the rele-
vant processes is to instead look at the radiation generated by the runaways.
Of particular interest is the synchrotron radiation the runaways emit as a con-
sequence of their spiraling motion around the field lines of the strong magnetic
field used to confine the plasma in the fusion reactor. Synchrotron emission
represents a unique tool, as it provides information about the runaway pop-
ulation in the middle of the plasma, and not only once the runaways have
escaped confinement and are lost to the wall (as is the case with for instance
hard x-ray emission [9]).
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Chapter 1.
Introduction

In this thesis, the dynamics of runaway electrons are studied using a new effi-
cient numerical tool (CODE, described in Chapter 3). Runaway acceleration
is only possible if the electric field in the plasma exceeds a certain value [10],
and special attention is given to properties of the runaways in cases where the
field is close to this critical field. The spectrum of the synchrotron radiation
emitted by the runaways is also studied in detail, as well as the back-reaction
on the runaway population associated with its emission.

We begin by a general introduction to the runaway electron phenomenon.
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2 Runaway electrons

In short, a runaway electron is an electron in a plasma which experiences a net
accelerating force during a sustained time – enough to give it a significantly
larger momentum than the thermal electron population. How to categorize
runaways is not always clear, and the use of this slightly vague definition is
discussed in Sec. 4.3.

The accelerating force on the electron is supplied by an induced electric field E,
so that FE = −eE, where e is the elementary charge. Meanwhile, Coulomb in-
teraction with the other particles in the plasma (commonly denoted collisions)
introduces a friction force FC(v). The origin of the runaway phenomenon is
that FC,‖, the component of the friction force parallel to the magnetic (and
electric) fields, is a non-monotonic function of the particle velocity, with a
maximum around the electron thermal speed (vth), see Fig. 2.1. Therefore
∂FC,‖/∂v < 0 for particles that are faster than vth – the friction force on
these particles decreases with increasing particle velocity. The physical ori-
gin of this effect is that the faster particles spend less time in the vicinity of
other particles in the plasma; the impulse delivered to the fast particle in each
encounter decreases as the particle speed increases. This implies that if the
accelerating force is sufficiently strong to overcome the friction at the current
velocity v0 of the particle, |FE| > FC,‖(v0), it will be able to accelerate the
particle for all v > v0, i.e. the particle will get continuously accelerated to
relativistic energies as long as the electric field persists.

The picture is complicated by the fact that apart from Coulomb collisions, sev-
eral other forces can contribute to the dynamics, in particular radiation reac-
tion forces associated with synchrotron and bremsstrahlung emission. In these
cases, the force balance is altered, ultimately preventing the electrons from
reaching arbitrarily high momenta. Radiation reaction due to synchrotron
emission is studied in Paper B and discussed in Sec. 4.3, and its effect on the
runaway distribution is investigated in Paper C.
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Figure 2.1: Friction force on an electron due to collisions, as a function of
its velocity (schematic).

2.1 Runaway generation mechanisms

There are two main mechanisms for generating runaways, referred to as Dre-
icer [1, 2] and avalanche [11, 12, 13] generation. In the former, initially
thermal electrons become runaways by a gradual diffusion through momen-
tum space until they reach a velocity where they may run away. Once some
runaways exist, they may impart a large fraction of their momentum to a ther-
mal electron in a single event, known as a knock-on collision. This generates
a second runaway if both electrons still belong to the runaway region after
the collision. This process is also called secondary runaway generation, as it
requires the presence of a primary runaway seed, and leads to an exponential
growth of the runaway population (hence the name avalanche).

Primary runaways can also be produced by processes other than momentum
space diffusion, for instance by highly energetic γ-rays through pair produc-
tion, or in tritium decay (in fusion plasmas). There is a fourth primary run-
away mechanism – hot-tail generation [14, 15] – which relies on a rapid cooling
of the plasma. If the plasma cooling time scale is significantly shorter than the
collision time at which particles equilibrate, electrons that initially constituted
the high-energy part of the bulk distribution can form a drawn-out tail. If
a strong electric field is also present, some of these tail electrons may belong
to the runaway-region of momentum space and will therefore get accelerated.
Under certain circumstances, hot-tail generation can be the dominating run-
away generation mechanism – albeit for a short time – and may provide a
strong seed for multiplication by the avalanche mechanism. Of the primary

4



2.2 Critical electric field and critical momentum

runaway processes, only Dreicer generation will be considered in this thesis,
and we will occasionally use primary interchangeably with Dreicer (as is often
informally done).

Let us examine the two main mechanisms in greater detail, starting with the
general criteria for runaway growth.

2.2 Critical electric field and critical momentum

The critical electric field for runaway electron generation, Ec, is the weakest
field at which runaway is possible, see Fig. 2.2. The accelerating force due
to Ec is simply equal (and opposite) to the sum of all the friction forces
acting to slow the particle down, at the speed vmin where they are minimized:
−eEc = −min

(∑
iFf,i(v)

)
= −

∑
iFf,i(vmin). In the simplest case, the only

friction force is due to collisions with electrons (due to the mass difference,
the energy lost by the electrons in collisions with ions is neglected, as are all
other forces): eEc = Fee,‖(v = vmin). In this case, it is easy to obtain an
expression for Ec. The (arbitrary speed) friction force is given by [16]

Fee,‖(v) =
1 + γ

γv2
mec

3νrel =
1 + γ

γv2
nee

4 ln Λ

4πε20me
, (2.1)

where v is the speed of the particle, γ = 1/
√

1− v2/c2, me is the electron
rest mass, c is the speed of light, ne is the number density of electrons, ln Λ
is the Coulomb logarithm (see for instance Refs. [16, 17]), ε0 is the vacuum
permittivity and

νrel =
nee

4 ln Λ

4πε20m
2
ec

3
(2.2)

is the collision frequency for a highly relativistic particle. The collision fre-
quency is defined such that 1/ν is the average time for a particle to experience
a 90◦ deflection due to an accumulation of small-angle Coulomb interactions
(which are much more frequent than large-angle collisions in fusion plasmas).

Apart from the trivial solution at v = 0, the friction force in Eq. 2.1 is
minimized as v → c (we have already mentioned that Fee,‖ is monotoni-
cally decreasing for large velocities). We thus have that the critical field is
Ec = 1

eFee,‖(v → c) or

Ec =
nee

3 ln Λ

4πε20mec2
, (2.3)
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Figure 2.2: Forces corresponding to collisional friction against electrons
(Fee,‖), the critical field (Ec) and the Dreicer field (ED). The runaway
region in momentum space (Sr) associated with the electric field E is also
shown.

which was first obtained by Connor and Hastie in 1975 [10].

For any E > Ec, there exists some speed vc above which the electric field
overcomes the friction force. Particles with a velocity greater than this critical
speed will run away, and vc thus marks the lower boundary of the runaway
region Sr in velocity space. This is illustrated in Fig. 2.2. It is customary
to study runaways in terms of momentum rather than velocity. The critical
momentum is a simple function of the electric field strength if expressed in
terms of the relativistic mass factor γ or the normalized momentum p = γv/c,

γc =

√
E/Ec

E/Ec − 1
, pc =

1√
E/Ec − 1

(2.4)

(if the electron is assumed to move parallel to the magnetic field lines).

2.3 Dreicer field

The critical field Ec corresponds to the field balancing the minimum of the
collisional friction force. The Dreicer field, ED [1, 2], on the other hand, bal-
ances the maximum of the friction force, which is located around v = vth, with
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2.4 Secondary runaway generation

vth =
√

2Te/me the electron thermal speed and Te is the electron tempera-
ture1. For E & ED, the accelerating force can overcome the friction at all
particle velocities, and the whole electron population can thus run away. The
critical and Dreicer fields are related by the ratio of the thermal energy to the
electron rest mass-energy:

ED =
mec

2

Te
Ec =

nee
3 ln Λ

4πε20Te
. (2.5)

In practice, the electric field is almost always much smaller than the Dreicer
field.

Due to momentum space transport processes, new particles steadily diffuse
into the runaway region, increasing the runaway density. The growth rate of
the runaway population due to Dreicer generation [10, 18, 19, 20] is described
by

dnr

dt
= Cneνee ε

−3(1+Zeff)/16 exp

(
− 1

4ε
−
√

1 + Zeff

ε

)
, (2.6)

where ε = E/ED, nr is the runaway number density,

νee =
nee

4 ln Λ

4πε20m
2
ev

3
th

(2.7)

is the collision frequency, C is an undetermined constant of order unity [3], and
Zeff is the effective ion charge, which is a measure of the plasma composition
(Zeff = 1 is a plasma consisting of pure hydrogen, or otherwise singly charged
ions). Note that the growth rate depends on (and is exponentially small in)
E/ED, not E/Ec. This means that even if the field is significantly larger
than Ec, the runaway production rate may be very small if E � ED. The
importance of this effect, which is in essence a temperature dependence, is
discussed and quantified in Paper B. The runaway growth rate as a function
of E/ED is plotted in Fig. 2.3.

2.4 Secondary runaway generation

Secondary runaways are formed as already existing runaways collide with ther-
mal electrons, if the collision imparts enough momentum to the thermal elec-
tron to kick it into the runaway region while the incoming (primary) electron

1It is customary in plasma physics to let Te ≡ kBTe, so that the “temperature” actually is
the thermal energy, and to express it in eV.
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Figure 2.3: Normalized primary runaway growth rate as a function of nor-
malized electric field strength. Physically, the different curves correspond
to different temperatures (large E/Ec denotes the low-temperature limit).
A comparison of panels a) and b) shows that the presence of high-Z ions
(impurities) significantly reduces the runaway growth rate. Note also the
sharp cutoff at low E/ED for all values of E/Ec.

still remains a runaway itself. Such events are referred to as close or knock-on
collisions. To be able to contribute to the avalanche process, an incoming
runaway must thus have a momentum p > 2pc.

The avalanche growth rate was first calculated by Rosenbluth & Putvinski
[13], who also derived an approximate operator for avalanche generation (see
Sec. 3.1). In a cylindrical plasma, the growth rate takes the form

dnr

dt
' nrνrel

(E − 1)

cz ln Λ

(
1− E−1 +

4(Zeff + 1)2

c2z(E2 + 3)

)−1/2
, (2.8)

where E = E/Ec and cz =
√

3(Zeff + 5)/π. In the limit where E � Ec and
Zeff = 1, this simplifies to

dnr

dt
'
√
π

2
nrνrel

(E − 1)

3 ln Λ
. (2.9)

The growth rate is proportional to the runaway density nr, meaning that the
growth is exponential (hence the name avalanche). We also note that the
dependence on E is linear in Eq. (2.9), and nearly so in the more general
expression (2.8), whereas it is exponential in Eq. (2.6) for the primary growth
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Figure 2.4: Contour plot of the analytical avalanche distribution function in
Eq. (2.10) for Te = 1 keV, ne = 1 · 1020 m−3, Zeff = 1.5 and E/Ec = 15.
The distribution is not valid for the bulk plasma, and is therefore cut off at
low momentum (in this case at p‖ = 5).

rate. Therefore, avalanche generation tends to dominate for weak fields (as
long as there is some runaway population to start with), but for strong fields
primary generation becomes more important.

Assuming secondary generation dominates, the quasi-steady-state runaway
distribution function (see Sec. 3.1) can be calculated analytically [21], and is
given by

fava(p‖, p⊥) =
nrÊ

2πczp‖ ln Λ
exp

(
−

p‖

cz ln Λ
− Êp2⊥

2p‖

)
, (2.10)

where Ê = (E/Ec − 1)/(1 + Zeff), and p‖ and p⊥ are the parallel (to the
magnetic field) and perpendicular components of the normalized particle mo-
mentum. Equation (2.10) is valid when γ � 1 and E/Ec � 1. An example
distribution is plotted in Fig. 2.4 – it is distinctly beam-like in appearance.
The distribution in Eq. (2.10) was used extensively in the calculation of syn-
chrotron spectra in Paper C, and also as a benchmark in Paper A.
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2.5 External circumstances – when is the
necessary electric field generated?

In order for runaways to be generated, a comparatively long-lived electric
field is required. Due to the natural tendency of the plasma to screen out
such fields, they are not normally present. However in certain situations, for
instance if a current running through the plasma changes quickly, an elec-
tric field is induced which may be sufficient to lead to runaway formation.
Runaway electrons do form in atmospheric plasmas – they have been linked
to for instance lightning discharges [22], impulsive radio emissions [23], and
terrestrial gamma-ray flashes [24] – and in the mesosphere [25]. In astrophys-
ical plasmas, they are expected to form in for instance solar flares [26] and
large-scale filamentary structures in the galactic center [27]. Under certain cir-
cumstances, also other plasma species may run away. Both ion and positron
runaway have been investigated in recent work (see Refs. [28, 29, 30], as well
as Paper E). Our main interest in this thesis is however electron runaway in
the context of magnetic confinement thermonuclear fusion.

During start-up of the most common type of fusion device, the tokamak [31],
a plasma is formed by the ionization of a gas. For this, a strong electric field is
usually needed. Runaways may form in this situation, however their formation
can usually be avoided by maintaining a high enough gas density. The case
of a changing current is more problematic. In a tokamak, a strong current
is driven through the plasma in order to generate the necessary confining
magnetic geometry. Very abrupt changes in plasma current occur during so-
called disruptions – large catastrophic events in which the plasma becomes
unstable, cools down, and eventually terminates [7, 32]. As the plasma cools,
the resistivity increases drastically, and a large electric field is induced which
tries to maintain the current. Near the magnetic axis of the tokamak, this
field is often strong enough to lead to runaway generation, and runaway beams
in the center of the plasma have been observed during disruptions in many
tokamaks. Runaways can also be generated in so-called sawtooth crashes [33],
and even during normal stable operation if the density is low enough (the
accelerating field in this case is due to the “loop voltage” which maintains
the plasma current). Some plasma heating schemes produces an elevated
tail in the electron velocity distribution, and can lead to increased runaway
production, should a disruption occur [34].

The main reason for the interest in runaway research is that the runaways pose
a serious threat to tokamak devices. During disruptions, a large portion of the
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2.5 External circumstances – when is the necessary electric field generated?

initial plasma current (which can be several megaampere) can be converted
into runaway current, but the runaways eventually become so energetic that
they are not well confined by the magnetic fields. Unless their generation is
successfully mitigated, the runaways eventually escape the plasma and hit the
wall where they can destroy sensitive components or degrade the wall material.

In present day tokamaks, runaways are a nuisance, but usually not a serious
threat. The avalanche multiplication of a primary runaway seed is predicted
to scale exponentially [13] with plasma current, however, and it is believed
that in future devices (such as ITER [35] and eventually commercial fusion
reactors), which will have a larger current, the problem will be much more
severe. In these devices, disruptions can essentially not be tolerated at all,
and much effort is devoted to research on runaway and disruption mitigation
techniques (see for instance Refs. [36, 37]).
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3 Simulation of runaway electron
momentum space dynamics

Although the single particle estimates considered in Chapter 2 can be useful in
understanding some of the phenomena associated with runaways, a complete
and thorough understanding of their dynamics can only be gained through
treating the full kinetic problem. Although in some idealized situations, the
equations can be solved analytically, in general the interplay between the
various processes involved in the momentum-space transport of electrons must
be studied using numerical tools.

Previously, the code ARENA [38], which uses Monte Carlo methods to model
momentum-space diffusion, has successfully been employed for this task, how-
ever in this case the Monte Carlo approach is not competitive when it comes to
the use of computational resources. In terms of fully kinetic continuum codes,
two comprehensive tools with extensive capabilities exist in LUKE [39, 40, 41]
and CQL3D [14, 42]. Both of these are however multipurpose tools with much
functionality which is not necessarily important to the runaway problem.

In Paper A, a new lightweight and efficient tool for calculating runaway dy-
namics is developed. It is called CODE (COllisional Distribution of Electrons),
and is a kinetic continuum code constructed specifically with the runaway
problem in mind. It solves the kinetic equation, including electric field and
collisions, in 2D momentum space in a uniform plasma (no magnetic field cur-
vature or plasma parameter gradients). In this section, we will look at the
formulation of the problem and how it is solved in CODE.

3.1 Kinetic equation

When it comes to describing plasma phenomena, several theoretical frame-
works of varying degrees of complexity (and explanatory power), have been

13



Chapter 3.
Simulation of runaway electron momentum space dynamics

developed. Fluid theories, although tractable, numerically efficient, and use-
ful in other contexts, are based on the assumption that the plasma particles
are everywhere thermally distributed, and can be described by Maxwellian
distributions. In order to describe the runaway electron phenomenon, such a
model is inadequate, as the runaways by definition constitute a high-energy
(non-thermal) tail of the particle distribution. It is therefore necessary to re-
sort to the use of kinetic theory, where the distribution of particle positions
and velocities is the prime object of study.

The so-called kinetic equation describes the evolution of a distribution of
plasma particles of species a, fa(x,p, t), according to

∂fa
∂t

+
∂

∂x
(ẋfa) +

∂

∂p
(ṗfa) = Ca{fa}+ S, (3.1)

where x and p denote the position and momentum, respectively, and ṗ de-
scribes the macroscopic equations of motion (given for instance by the Lorentz-
force due to the presence of macroscopic electric and magnetic fields). The
collision operator Ca describes microscopic interactions between the plasma
particles (collisions), which are normally treated separately from the macro-
scopic interactions. S represents any sources or sinks of particles, such as
ionization and recombination of neutral atoms or fueling in laboratory plas-
mas. Under certain conditions, the collisions can be neglected, in which case
Eq. (3.1) (with S = 0) is known as the Vlasov equation. With a generally valid
collision operator, it is the Boltzmann equation, although in practice several
assumptions must be made to be able to treat the collisions. When only two-
particle interactions are considered, and it is assumed that the momentum
transfer in each collision is very small, the Boltzmann collision operator sim-
plifies to the Fokker-Planck collision operator, and Eq. (3.1) is correspondingly
called the Fokker-Planck equation [43]. This operator is sufficient to treat pri-
mary runaway generation, but is not able to describe the knock-on avalanche
process in which the momentum transfer to the secondary particle is signif-
icant. Avalanche generation is instead treated by including a special source
term Sava, detailed in Sec. 3.2.

In general, the distribution fa is a six-dimensional quantity and is very de-
manding to treat in its entirety. Various approximations are routinely em-
ployed to reduce the kinetic equation to a manageable number of dimensions
(see for instance Ref. [16]). When studying runaway formation, the mo-
mentum space dynamics is the prime interest, and for many purposes, the
plasma can be assumed to be spatially homogeneous. In addition, one of the
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3.2 Collision operator and avalanche source term

momentum-space dimensions (describing the rapid gyro-motion around the
magnetic field lines) can be averaged over if a sufficiently strong magnetic
field is present (so that the gyro-radius is ignorable in comparison to the typ-
ical length scale of the gradients in the plasma and the gyration time is short
compared to the time scales of other processes). CODE therefore solves the
kinetic equation in two momentum-space dimensions only, which allows for
fast calculation while retaining most of the relevant physics. The assump-
tion of spatial homogeneity is the most severe one, especially in systems such
as fusion devices where magnetic field curvature is non-negligible in practice.
LUKE and CQL3D both retain a radial dependence (as they were developed
specifically for modeling tokamak plasmas), which allows for the study of for
instance electron trapping effects on runaway dynamics [44]. Nevertheless,
close to the tokamak magnetic axis (where the majority of runaway electrons
are formed), the assumption of spatial homogeneity is well justified.

The two momentum-space dimensions are conveniently described by the co-
ordinates (p,ξ), where p = γv/c is the normalized momentum and ξ = p‖/p
is the cosine of the particle pitch angle (which characterizes the pitch of the
helix that describes the particle orbit around a magnetic field line). In these
coordinates, the kinetic equation can be expressed as

∂fe
∂t
−
eE‖

mec

(
ξ
∂fe
∂p

+
1− ξ2

p

∂fe
∂ξ

)
︸ ︷︷ ︸

electric field

+
∂

∂p
· (Fradfe)︸ ︷︷ ︸

radiation reaction

= Ce{fe}+Sava, (3.2)

where the second term describes the acceleration due to the electric field and
the third term describes the effects of synchrotron emission back-reaction (see
Sec. 4.3 and Eq. 4.12). In CODE, this equation is solved for the electron
distribution. CODE can calculate the time evolution of fe, starting from some
initial (usually Maxwellian) distribution, but can also determine the (quasi)
steady-state distribution directly in the absence of sources.

3.2 Collision operator and avalanche source term

Accurate treatment of runaway electron dynamics requires a fully relativis-
tic formulation of the equations. A generally valid momentum-conserving
Fokker-Planck collision operator exists [45, 46], but its use would complicate
the numerical implementation substantially. CODE instead employs a col-
lision operator derived in Ref. [47] using asymptotic matching between the
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highly relativistic operator in Ref. [48] (derived from the operator in Ref.
[45] in the limit of a non-relativistic Maxwellian background plasma) and
the corresponding well-known non-relativistic operator (see for instance [16]).
The collision operator in Ref. [47] is valid for arbitrary energies, but consists
of only the so-called test-particle part of the full operator (describing colli-
sions between the distribution f and a background Maxwellian population of
electrons). It is therefore not momentum-conserving. This approximation is
justified in the case of runaway studies, since momentum-conservation has a
significant effect on the plasma bulk (influencing for instance the conductiv-
ity), but is much less important in the tail of the distribution. Collisions with
ions are modeled such that they only contribute to pitch-angle scattering of
the electrons; the energy transfer in the collisions is neglected due to the mass
difference between the particle species.

The collision operator is:

Ce{f} =
1

p2
∂

∂p
p2
[
CA

∂f

∂p
+ CFf

]
+
CB

p2
∂

∂ξ
(1− ξ2)

∂f

∂ξ
, (3.3)

where

CA =
Γ

v
Ψ(x),

CB =
Γ

2v

[
Zeff + φ(x)−Ψ(x) +

δ4x2

2

]
, (3.4)

CF =
Γ

Te
Ψ(x),

δ = vth/c, x = v/vth, φ is the error function, Ψ = (2x2)−1 [φ− xdφ/dx] is
the Chandrasekhar function and Γ = 4πnee

4 ln Λ.

The knock-on collisions are modeled using an operator derived by Rosenbluth
and Putvinski [13]. It assumes that the incoming primary electron has infinite
momentum, and therefore experiences no momentum loss in the knock-on
collision. Due to this assumption and the kinematics of the problem, the
source is a δ-function in ξ – secondary particles are generated only along a
specific curve in momentum space, corresponding to ξ = ξ2 ≡ p/(1+

√
1 + p2).

This is illustrated in Fig. 3.1. The source is given by

SRP(p, ξ) =
nrνrel

4π ln Λ
δ(ξ − ξ2)

1

p2
∂

∂p

(
1

1−
√

1 + p2

)
. (3.5)
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Figure 3.1: Contour plots of electron distributions with only primary run-
away generation (black, solid) and with both primary and avalanche gen-
eration (gray, dashed) calculated using CODE. The plotted quantity is
log10(f/nr). The avalanche source in Eq. (3.5) generates runaways along
ξ = ξ2, which leads to an increased particle density close to ξ2, compared
to the case with only primary generation. The feature is easily seen at
high momentum, and is smeared out due to momentum-space transport
processes.

The Rosenbluth-Putvinski source is proportional to the runaway density, and
thus leads to exponential growth, as intended. It does however assume that
all runaways move with the speed of light (or equivalently have infinite mo-
mentum). This means that it tends to overestimate the magnitude of the
source, especially at high energies (in reality there are very few primary run-
aways that have enough energy to generate a secondary runaway with high
energy). A less approximate avalanche source can be derived based on the
Møller cross-section for electron-electron scattering [49, 50]. Such a source is
implemented in CQL3D [14, 42].

3.3 CODE – numerical scheme

The main purpose of CODE is to be a fast and efficient numerical tool for
studying the runaway electron distribution function. The numerical method
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was chosen with this in mind, and is a significant improvement over some of
the existing tools. In particular, in the absence of the secondary runaway
source, the quasi-steady-state (time-asymptotic) electron distribution can be
calculated with the inversion of a single matrix, which makes the computation
extremely fast.

The two momentum-space dimensions (p,ξ) in CODE are treated differently –
the momentum is discretized using fourth order finite differences, whereas the
pitch-angle coordinate is spectrally decomposed into Legendre polynomials
Pl(ξ). The distribution function at momentum-space coordinates (pn, ξ) is
then represented by the sum

f(pn, ξ) =

lmax∑
l=0

fl(pn)Pl(ξ). (3.6)

The Legendre polynomials have favorable properties for formulating the ki-
netic equation as a system of linear equations which can be solved using ef-
ficient standard matrix inversion techniques. Although faster results could
surely be obtained using a lower-level language, CODE is written in Mat-
lab to take advantage of the ease of use and the excellent matrix-handling
capabilities of that language. For a detailed description of the numerical im-
plementation, see Paper A.

The finite-difference discretization in p allows for the use of non-uniform mo-
mentum grids. As the momentum difference between the plasma bulk and the
far runaway tail can be very large, this is a very useful feature as it allows
for the use of the necessary high resolution close to the bulk but at the same
time makes it possible to cover an extensive momentum range without using
a prohibitively large amount of grid points.

In Paper A, distributions from CODE are compared to the analytical avalanche
distribution in Eq. (2.10) with excellent agreement in the region of mutual ap-
plicability, and CODE runaway growth rates are also found to agree perfectly
with an early numerical study [51]. For the work related to Papers B and
C, CODE was extended via the inclusion of a term describing synchrotron
radiation back-reaction (see Sec. 4.3).

In terms of speed, CODE was compared to ARENA on the same computer
hardware, and showed an improvement in computation time of roughly 7
orders of magnitude for the same level of convergence!
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4 Synchrotron radiation

Charged particles in accelerated motion emit radiation [52]. In the presence
of a magnetic field, the particles in a plasma follow helical orbits as a con-
sequence of the Lorentz force. In other words, they are continuously accel-
erated “inwards” – perpendicular to their velocities. The radiation emitted
by electrons due to this motion is known as cyclotron radiation if the parti-
cle is non-relativistic (or mildly so) and synchrotron radiation if it is highly
relativistic (the names come from the types of devices where the radiation
was first observed [53]). Synchrotron radiation has many applications in the
study of samples in condensed matter physics, materials science, biology and
medicine, where it is used in for instance scattering and diffraction studies,
and for spectroscopy and tomography [54]. The radiation is usually produced
using dedicated facilities (synchrotrons), but is also emitted in some natural
processes, in particular in astrophysical contexts, where it can be used as a
diagnostic tool.

From the distinction between cyclotron and synchrotron radiation, it is evi-
dent that in a non-relativistic plasma (with a temperature significantly below
511 keV), only the far tail of the electron distribution may emit synchrotron
radiation. The only plasma particles that reach highly relativistic energies are
the runaway electrons. The study of the synchrotron emission from a plasma
is thus a very important source of information about the runaways, and their
dynamics.

The theory of synchrotron radiation was first derived by Schott in 1912 [55],
but was rediscovered, and to a large extent reworked, by Schwinger in the 40’s
[56]. In the rest frame of the particle, the synchrotron radiation is emitted
almost isotropically, however the transformation to the lab frame introduces a
strong forward beaming effect, see Fig. 4.1. Since the motion of the particle is
predominantly parallel to the magnetic field lines (the runaways are assumed
to be accelerated by E‖), the synchrotron radiation will be emitted in this
direction as well, even though it is their perpendicular motion that is the
cause of the emission. The (half) opening angle of the synchrotron beam
is given by α ' 1/γ [56], and can thus in principle serve as an estimate
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Figure 4.1: The shape of the emitted radiation in the case of cyclotron (left,
low energy) and synchrotron (right, highly relativistic) emission, respec-
tively. After R. Bartolini/Wikimedia Commons/Public Domain.

for the energy of the emitting particle. Since the synchrotron radiation is
directed, its observation requires detectors in the right location and with the
right field of view. In many tokamak experiments this necessitates the use of
dedicated cameras for the study of synchrotron emission from runaways, and
the number of such set-ups around the world is limited. Detailed discussions
of the properties of synchrotron radiation can be found in Refs. [54, 57, 52].
Some recent images of runaway synchrotron emission in tokamaks are given
in Refs. [58, 59].

4.1 Single-particle synchrotron power spectrum

The frequency of the cyclotron or synchrotron radiation emitted by a particle
is a multiple of the frequency with which it orbits the magnetic field line (the
cyclotron frequency or gyro frequency). In the case of cyclotron emission, the
fundamental and the first few harmonics dominate completely, whereas for the
high energy synchrotron emission, the high harmonics (up to some cut off) are
dominant. Since these are spaced very close together, synchrotron radiation
essentially has a continuous frequency spectrum [57]. The emission can span
a large part of the electromagnetic spectrum, from microwaves to hard x rays,
depending on the frequency of the gyro-motion.

In terms of quantities convenient for plasma physics [57], the synchrotron
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4.1 Single-particle synchrotron power spectrum

power spectrum can be expressed as

P(λ) =
1√
3

ce2

ε0λ3γ2

ˆ ∞
λc/λ

K5/3(l) dl , (4.1)

where Kν(x) is the modified Bessel function of the second kind of order ν,
and λc is a critical wavelength given by

λc =
4π

3

c

ωcγ2
=

4π

3

cmeγ‖

eBγ2
, (4.2)

with ωc the cyclotron frequency, γ‖ = (1 − v2‖/c
2)−1/2 and B the magnetic

field strength. The spectrum is plotted in Fig. 4.2 for a few different parameter
sets. There is a sharp cutoff at short wavelengths, but a much slower decay
towards longer wavelengths. In the conditions found in tokamak plasmas, the
synchrotron spectrum primarily peaks for micrometer (near-infrared) wave-
lengths, although for highly energetic runaway beams, emission in the visible
part of the electromagnetic spectrum is also observed.

In a toroidal magnetic field

Equation 4.1 considers the radiation emitted due to pure gyro-motion around
a straight field-line. In a tokamak, particle orbits are more complicated since
both the motion around the torus, that due to the helicity of the field lines,
and various drifts contribute. The synchrotron power spectrum for a particle
trajectory including the gyro motion, the motion along a toroidal magnetic
field, and vertical centrifugal drift was derived by I. M. Pankratov in 1999
[60], and is

P(λ) =
ce2

ε0λ3γ2

{ ˆ ∞
0

g(y) J0
(
aξy3

)
sin (h(y)) dy

− 4a

ˆ ∞
0

y J ′0
(
aξy3

)
cos (h(y)) dy − π

2

}
, (4.3)

where a = η/1 + η2, g(y) = y−1 + 2y, h(y) = 3ξ
(
y + y3/3

)
/2,

ξ =
4π

3

R

λγ3
√

1 + η2
, (4.4)

η =
eBR

γme

v⊥
v2‖
' ωcR

γc

v⊥
v‖
, (4.5)
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Figure 4.2: Synchrotron power spectrum for a single electron with kinetic
energy Ek and pitch described by tan θ = v⊥/v‖ (with θ the pitch angle).
Note that both the peak wavelength and the emitted power are sensitive to
both the particle energy and pitch. In particular, it is possible to produce
similar synchrotron spectra using significantly different parameter sets (see
also Sec. 4.2).

R is the tokamak major radius, Jν(x) is the Bessel function, and J ′ν(x) its
derivative with respect to the argument. The integrands in Eq. (4.3) are prod-
ucts of Bessel functions and trigonometric functions, and are highly oscillatory
with respect to the variable of integration (y). Because of this, numerical in-
tegration – although possible – is not straight-forward. The derivation in
Ref. [60] assumes that the frequency of the radiation is much larger than the
electron cyclotron frequency, ω � ωc (which is normally the case in tokamak
plasmas [60]). The calculation is also restricted to only consider highly rela-
tivistic electrons (p � 1) with p‖ � p⊥. Large aspect ratio is also assumed,
so that the results are valid close to the magnetic axis of a tokamak.

In Ref. [60], two asymptotic forms of Eq. (4.3) are also derived. These use
approximations for the integrals, meaning that they are more suited for nu-
merical implementation. In Paper D, the three formulas of Ref. [60], together
with Eq. (4.1), are studied and compared for a variety of tokamak parameters
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4.2 Synchrotron power spectrum from a runaway distribution

and it is concluded that the cylindrical limit (Eq. 4.1) is a good approxima-
tion to Eq. (4.3) in large devices, whereas in devices with small major radius,
one of the asymptotic expressions is more suitable in terms of approximating
Eq. (4.3). In general, however, the power spectra are similar.

4.2 Synchrotron power spectrum from a runaway
distribution

The total synchrotron power emitted by an electron in circular motion is [56]

Ptot =
e2

6πε0

ω0

ρ
β3
⊥γ

4, (4.6)

where ω0 is the angular velocity, ρ is the radius of curvature and β⊥ = v⊥/c.
In a magnetized plasma, the angular velocity and curvature radius are the
Larmor frequency and radius, respectively, ωc = eB/γme and rL = v⊥/ωc.
This gives

Ptot =
e2

6πε0

ω2
c

v⊥
β3
⊥γ

4 =
e4

6πε0m2
ec
B2β2

⊥γ
2 =

e4

6πε0m2
ec
B2p2⊥. (4.7)

The total emitted power thus scales as p2⊥ = γ2(v⊥/c)
2 ' γ2(v⊥/v‖)

2 =
γ2 tan2 θ ≈γ2θ2, with θ the particle pitch angle, meaning that the most ener-
getic particles with the largest pitch angles emit most strongly. It has therefore
been assumed that the emission from these particles completely dominate the
spectrum, and when interpreting synchrotron spectra and emission patterns
the simplification of considering a mono-energetic beam of electrons with a
single pitch has frequently been employed [58, 61, 62, 63].

Less approximate synchrotron spectra can be calculated by using the average
emission from the entire runaway distribution, according to

P (λ) =
2π

nr

ˆ
Sr

fr(p, ξ)P(p, ξ, λ) p2dp dξ , (4.8)

where fr is the runaway distribution function, P is one of the single parti-
cle emission formulas (i.e. Eqs. 4.1 and 4.3), and Sr is the runaway region
in momentum space. A numerical tool for efficiently performing this type
of calculation, SYRUP (SYnchrotron spectra from RUnaway Particles), was
developed in connection with Paper D, and the resulting spectra are studied
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in detail in the paper. The assumption of a mono-energetic runaway beam is
examined, and found to be very poor in many cases (in terms of agreement
with the spectrum from the entire runaway population), qualitatively as well
as quantitatively. Including the full runaway distribution in the calculation is
thus absolutely necessary to obtain accurate results, and in this sense SYRUP
constitutes a significant improvement over previous methods. The synchrotron
spectrum is very sensitive to changes in the plasma parameters and electric
field strength, something which can not be captured by the mono-energetic
approximation. This sensitivity is due to the dependence on the exact shape
of the runaway distribution. The sensitivity to certain changes typical of ki-
netic instabilities driven by runaways was also studied (in Paper D, as well
as in Paper F).

In the analysis in Paper D, analytical runaway distributions were used. The
analytical formula (Eq. 2.10) represents a steady-state limit, however, and is
not able to capture dynamical effects or describe the synchrotron emission in
the early stages of the runaway population evolution. In Paper A, numerical
distributions from CODE were used to study both dynamic phenomena and
distributions where the avalanche mechanism was not dominant. Excellent
agreement was also found between the numerical distribution and Eq. (2.10)
at sufficiently late times.

4.3 Radiation reaction force

As an electron emits a photon, it receives an impulse in the opposite direction
due to the conservation of momentum. There is therefore a radiation reaction
force Frad associated with the emission of synchrotron radiation, the parallel
component of which acts as an additional effective friction on the electrons,
in addition to that due to collisions. Synchrotron emission only becomes
important at relativistic energies, however, and contrary to collisional friction,
the radiation reaction force increases with particle speed, in accordance with
the estimate in the previous section. This completely changes the parallel
force balance for runaways at high momentum, as depicted in Fig. 4.3. Note
that, although in the following discussion it is convenient to consider only
the parallel force balance of single particles, in reality the problem involves
transport processes in two-dimensional momentum space and must in general
be treated using numerical tools, as discussed in Chapter 3.

Two effects in particular are of interest in Fig. 4.3. Firstly, the friction due
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Figure 4.3: Forces associated with total friction (Ff), collisional friction
(FC), synchrotron radiation reaction (Frad), the (classical) critical field
(Ec) and the critical field including synchrotron radiation reaction (E∗c ).
The two critical velocities v1 and v2 corresponding to the electric field E
are also shown, together with the runaway region (Sr), and the speed at
which the total friction force is minimized (vmin). C.f Fig. 2.2. Note that
the velocity scale is chosen for clarity – in practice both vmin and v2 lie close
to c.

to radiation emission effectively prevents runaways from reaching arbitrary
energies; for a given electric field E there are two speeds (v1 and v2) for which
the total friction force equals the accelerating force: Ff(v1,2) = |eE|. Runaway
is only possible for v1 < v < v2. Radiation back-reaction associated with both
synchrotron and bremsstrahlung emission has been considered previously as
a possible mechanism limiting the achievable runaway energy [12, 64].

Secondly, the minimum of the friction force is no longer found at v = c (see
Sec. 2.2), but at some intermediate speed vmin (which is still close to c) sat-
isfying v1 < vmin < v2. Crucially, the minimum field necessary for runaway
generation to occur – the critical field – is raised accordingly:

|eE∗c | = Ff(vmin), (4.9)

where E∗c is the critical field in the presence of radiation reaction forces and
E∗c > Ec, as depicted in Fig. 4.3. The importance of this and other effects
related to the critical field are examined in Paper B.

The introduction of an upper bound to the runaway region prompts us to
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reexamine what constitutes a runaway. Although formally, electrons with
v > v2 are not experiencing runaway acceleration, particles with speeds around
v2 will always be well separated from the bulk, and will therefore be a part of
the high-energy tail of the distribution (in fact they are likely to be the most
energetic particles of all). In addition, should they lose energy due to transport
processes, they would become runaways again, and thus get accelerated anew.
Pragmatically, a case can therefore be made for retaining the old definition of
the runaway region (Sr : p > pc).

In dynamic situations, a related issue is encountered. If the electric field drops
below the critical field E∗c after a substantial runaway tail has been generated,
a large population of fast particles is still present (and will remain so for some
time due to its low collisionality). These particles are potentially hazardous,
despite the fact that no “runaway region” exists.

An additional consequence of the existence of an upper bound to the run-
away region is that particles tend to accumulate in the vicinity of the speed
v2 in velocity space. Provided certain conditions are satisfied, this process
can even lead to the formation of a non-monotonic feature – a “bump” – on
the runaway tail, as illustrated in Fig. 4.4. This effect is investigated ana-
lytically in Paper C, and the results confirmed through a comparison with
CODE calculations. The distributions exhibiting this non-monotonic feature
are true steady-state solutions to the kinetic equation, unlike the case of a
“conventional” runaway tail which represents a quasi-steady state since there
is a continuous flow of particles from the thermal population into the runaway
region and to ever higher energies. In a true steady-state, the argument can be
made that the concept of electron runaway is no longer appropriate, since no
net acceleration occurs. Still, the particles that make up the non-monotonic
feature have speeds significantly larger than the bulk population, and this in
principle divides the distribution into a thermal bulk and a fast particle beam.
Again, the fast particles may cause damage to the machine, even though they
are not formally runaways.

The issues discussed here highlight that what constitutes a runaway is no
longer clear-cut (or even necessarily the relevant parameter to consider) when
several effective friction forces or dynamical processes are taken into account.

Operator for synchrotron radiation reaction

To understand the full role of radiation reaction effects on plasma dynamics,
the single particle treatment considered above is insufficient. Fully kinetic sim-

26



4.3 Radiation reaction force

p||

0 10 20 30 40 50

lo
g
1
0
(f
C
O
D
E
)

-20

-15

-10

-5 

0  

a)

With synchrotron radiation reaction
Without synchrotron radiation reaction
Maxwellian

b)

p||

0 5 10 15 20 25 30

p
⊥

-6

-4

-2

0

2

4

6

lo
g
1
0
(f
C
O
D
E
)

-15

-14

-13

-12

Figure 4.4: Steady-state electron distribution function calculated using
CODE in the absence of avalanche generation. In a), the distribution for
p⊥ = 0 is shown, with and without synchrotron radiation reaction included.
In b), momentum-space contours of the distribution with radiation reaction
included are shown. The plotted quantity is the base 10 logarithm of the
normalized distribution in CODE (see Paper A for details). The parame-
ters Te = 5 keV, ne = 2 · 1019 m−3, Zeff = 1.2, E/Ec = 2, and B = 2.5 T
where used. In this case, the “bump” is located around p‖ = 10, which
corresponds to a kinetic energy of 4.6 MeV.
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ulations are necessary to capture the interplay between the various processes
affecting the momentum-space transport. Such calculations can be performed
using CODE, but for this application an operator describing the radiation
reaction is needed.

The radiation reaction can be calculated from the Abraham-Lorentz-Dirac
force affecting a charged particle [65],

Frad =
q2γ2

6πε0c3

[
v̈ +

3γ2

c2
(v · v̇) v̇ +

γ2

c2

(
v · v̈ +

3γ2

c2
(v · v̇)

2

)
v

]
,

where q is the charge and v the velocity of the particle. Assuming that the
magnetic force dominates, so that the particle is only accelerated perpendic-
ular to its velocity (v · v̇ = 0), the expression simplifies to

Frad,p = −
γp
(
1− ξ2

)
τr

(4.10)

Frad,ξ = −pξ
√

1− ξ2
γτr

, (4.11)

where τr = q4B2/6πε0(mec)
3 is the radiation damping time scale. The radi-

ation reaction force enters the kinetic equation, Eq. (3.2), as an operator on
the form (∂/∂p) · (Fradfe), and using Eqs. (4.10) and (4.11), the explicit form
is

∂

∂p
· (Fradfe) =

1− ξ2

γτr

(
−
[

2

(1−ξ2)
+ 4p2

]
fe − γ2p

∂fe
∂p

+ ξ
∂fe
∂ξ

)
. (4.12)

The force acts to limit both the particle energy and pitch, which is to be
expected as the emitted synchrotron power is proportional to Ptot ∼ γ2θ2

(see Sec. 4.2). Equations (4.10) and (4.11) were derived in Ref. [64], the first
paper to properly consider the role of radiation reaction in runaway dynamics,
but in that paper a high energy limit was used which lead to an incorrect (or
rather incomplete) expression in place of Eq. (4.12), as pointed out in [66].
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5 Summary

The runaway phenomenon is a fascinating one; friction that decreases with
speed is outside our everyday experience. Still, since the vast majority of the
matter in the universe is in a plasma state, runaway electrons appear in many
astrophysical contexts, as well as in atmospheric phenomena here on Earth.

The work described in this thesis has focused on runaway electrons in the
context of magnetic confinement thermonuclear fusion devices, since for this
application the runaways are of particular interest because of their destruc-
tive potential. The ability to avoid substantial runaway formation – or achieve
controlled mitigation of runaway beams, should they form – is of utmost im-
portance in future fusion devices such as ITER. To facilitate the establishment
of operational limits and the development of control and mitigation systems,
increased theoretical understanding of runaway dynamics, together with im-
proved techniques for diagnosing the runaway population in experiments, is
needed. The work presented here has implications in both these areas.

In Paper A, CODE, an efficient numerical tool for studying the electron dis-
tribution function in 2-D momentum space in the presence of electric fields
and collisions, is developed. It allows for detailed study of both steady-state
and dynamical properties of runaway electron populations. CODE is then
used in Paper B to investigate factors that influence the critical electric field
for runaway generation (Eq. 2.3), and is extended to include an operator
for synchrotron radiation back-reaction (Eq. 4.12). It is shown that the
temperature of the plasma strongly influences the normalized effective field
E/Ec needed for significant runaway production, and that the inclusion of
synchrotron radiation-reaction effects can reduce the runaway growth rate
strongly for weak electric fields, leading to a de-facto increase in the critical
field. Recent experimental observations, in which the critical field in the toka-
mak DIII-D was determined to be a factor 3–5 higher than Ec [67], are also
examined, and it is found that the apparent increase in the critical field can
for the most part be attributed to shortcomings of the method used to assess
the runaway growth.
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Chapter 5.
Summary

Paper C examines the steady-state runaway distribution function analytically
in the presence of synchrotron radiation-reaction, and describes the formation
of a non-monotonic feature on the distribution tail. Analytical estimates for
the location of this feature in momentum space, as well as criteria for its
formation, are derived and validated through comparison with CODE calcu-
lations. Such a feature could give rise to a bump-on-tail instability, which
would lead to dissipation of the runaways, and can thus potentially greatly
influence the runaways dynamics.

The synchrotron radiation emitted by relativistic particles in a magnetized
plasma is an important source of information, as it provides information in situ
about several properties of the otherwise inaccessible runaways. The emitted
synchrotron spectrum is studied in detail in Paper D using analytical dis-
tributions of steady-state avalanche-dominated runaway populations, and in
Paper A using CODE distributions. The use of numerical distributions in this
context allows for analysis of the time evolution of the synchrotron spectrum.
The work has important implications for the interpretation of experimental
synchrotron spectra, as it is shown that a commonly used assumption – that
the synchrotron spectrum is completely dominated by the emission from the
most strongly emitting runaway electrons – can be highly inaccurate. The
sensitivity of the spectrum to the background plasma parameters and pertur-
bations to the electron distribution are also highlighted, and various formulas
describing the single-particle synchrotron emission spectrum are examined.

Although parameter values relevant for fusion plasmas have been used through-
out this work, the results in Papers A–C are generally applicable since no
effects specific to fusion plasmas (such as a toroidal magnetic field geometry)
have been included. In parts of Paper D, the focus on tokamaks is more pro-
nounced, as various expressions accurately describing synchrotron emission in
toroidal plasmas specifically, are investigated.
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