
Chalmers Publication Library

Modeling and automatic calculation of restart states for an industrial windscreen
mounting station

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

IFAC Symposium on Information Control in Manufacturing

Citation for the published paper:
Bergagård, P. ; Falkman, P. ; Fabian, M. (2015) "Modeling and automatic calculation of
restart states for an industrial windscreen mounting station". IFAC Symposium on
Information Control in Manufacturing

Downloaded from: http://publications.lib.chalmers.se/publication/213356

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://publications.lib.chalmers.se/publication/213356


Modeling and automatic calculation of restart states
for an industrial windscreen mounting station ?

Patrik Bergagård ∗ Petter Falkman ∗ Martin Fabian ∗

∗ Department of Signals and Systems, Chalmers University of Technology
(e-mail: {patrikm, falkman, fabian}@ chalmers.se)

Abstract: The production in an automated manufacturing system will not always progress as intended.
A wide variety of possible faults may cause errors that lead to an unsynchronization between the
control system and the physical system that consequently lead to production stoppages. The common
industrial practice to deal with such non-intended progress is to extend the control system with tailor-
made solutions to account for errors. This extension is both time consuming and there is no guarantee
that all relevant errors are handled.
This paper models the control system to enable automatic derivation of restart states applied to an
existing station for automatic mounting of windscreens onto car bodies. These restart states are states in
the control system where it is correct to resynchronize the control and the physical systems so that
the automated production can be resumed. This aids the preparation phase by letting the developer
focus on modeling the nominal production and on specifying (un-)desired behavior during the restarted
production, and then automatically retrieve the restart states for all control states. The online restart
process is then reduced to a semi-automatic process where an operator can be supported with instructions
for how to correctly resynchronize the control and the physical systems in a selected restart state.

Keywords: Restart, Error recovery, Unforeseen errors, Robot cell.

1. INTRODUCTION

To assure high utilization of manufacturing systems, much time
is typically spent on development to handle various types of
non-nominal behavior, such as errors. However, the common
industrial practice to implement an error recovery mechanism
typically lacks a systematic approach to take the global system
behavior into consideration. The common practice is to extend
the control system with tailor-made solutions to account for
foreseen errors and known non-nominal processes. Consider-
able effort is spent during the development to enable that error
messages and error codes from the resources in the manufac-
turing system will be displayed in the human machine interface
for the operators. Restart points are typically added in robot
programs to enable robots to reexecute when the production
must be restarted.

Altogether, these solutions demand a lot from the operators to
perform the restart online. The operators has to manage the
restart without a global system knowledge only supported by
the error messages and the existing restart points. This type of
operator handled restart is sufficient after foreseen errors but
can result in long production stoppages after unforeseen errors.

In a station for automatic mounting of windscreens onto car
bodies at Volvo Car Corporation (VCC) Torslanda, Sweden, see
Figure 1, the development time for the control system related
to the non-nominal behavior was roughly double compared to

? This work has been carried out at the Wingquist Laboratory VINN Excel-
lence Centre within the Production Area of Advance at Chalmers. It has been
supported by VIRTCOM-Virtual preparation and commissioning of production
systems including PLC logics, reference number 2014-01408, Vinnova, FFI
within Sustainable production technology. The support is gratefully acknowl-
edged.

the time related to the nominal production (Lagergren, 2014).
Despite this effort, or perhaps as a consequence of the com-
mon practice, the average time that production is undesirably
stopped due to errors, has been above the five minutes target
time during its first months of usage (Augustsson, 2014). In
many cases, the stoppages have been caused by unforeseen
errors from which neither the control system nor the operators
know how to efficiently restart the automated production. This
station is now used in a project where formal methods are
applied, aiming at supporting VCC’s offline and online work
with restart after unforeseen errors.

Fig. 1. The windscreen mounting station.

1.1 The contribution of this paper

In earlier work, Bergagård and Fabian (2013, 2014) proposed a
method that enables restart after unforeseen errors in automated
manufacturing systems, like the windscreen mounting station.



By exploiting supervisory control theory synthesis (Ramadge
and Wonham, 1987), the restart states for an automata repre-
sentation of the control system are calculated. Restart states are
states from where it is valid to restart the production after a,
possibly unforeseen, error such that the production can be com-
pleted. Both nominal requirements and possible reexecution
requirements are respected in the restarted production. Based
on this set of restart states, an operator can be supported to
correctly restart the production without any reduced start-up
pace.

There are two main contributions in this paper. Firstly, to model
the control system using variables, describing important and
distinguishable aspects of the products and the resources in the
physical system, and operations, that by updating the variables
describe the sub-processes in the production. Secondly, to rep-
resent the variables and the operations by automata such that
the calculation part of the method proposed in Bergagård and
Fabian (2013, 2014) can be applied. The restart states can then
be retrieve automatically. The modeling approach used in the
earlier work requires explicitly given sequential relations be-
tween each pair of operations. In this way, this paper contributes
to shorten the development time for the control system related
to restart and to provide an operator with support based on the
global system behavior during the restart phase.

1.2 The windscreen mounting station

The modeling approach proposed in this paper and the succeed-
ing calculation of restart states will be illustrated on the mount-
ing of the rear windscreen onto the tailgate. The windscreen
mounting station is shown in Figure 1.

The studied part of the station contains two robots, one glue
dispatcher, and one exchange table where windscreens enter
and may exit the station. The station is crosscuted by a conveyer
carrying the cars.

The windscreen is mounted onto the tailgate after the wind-
screen has had glue applied to it and the tailgate has been
measured. To meet tolerance requirements, the mounting of
the windscreen is adjusted to the exact position of the tailgate,
given by the measurement. One robot carries the windscreen
and the other robot measures the tailgate.

2. RELATED WORK

It is quite common in graph based restart methods to include
additional error states and/or augmentations for recovery proce-
dures, see for example Zhou and Dicesare (1989); Tittus et al.
(2000); Odrey (2008); Lee and Tilbury (2008). Augmentations
will most likely increase the state-space of the models. The
models used throughout this paper have no explicit error states.
The purpose of the models for the offline analysis is only to
capture how the control states can be updated and not why, thus
no additional states are necessary.

Some methods assume foreseen faults, like machine break-
downs, that can be included into the control system. In contrast
to the systems considered in this paper, these methods are typi-
cally targeting material handling systems where it is reasonable
to include specifications for the faulty behaviors to reroute the
unaffected products to avoid the temporarily faulty machine(s),
see for example Wen et al. (2008); Sülek and Schmidt (2014);
Shu (2014). Specifications related to the faulty behavior resem-
ble the reexecution requirements used in this paper.

Restart related to robot stations in the automotive industry, like
the windscreen mounting station, are among others presented
in Tittus et al. (2000); Andersson et al. (2010). Similarly to
the method used in this paper, the production is restarted from
restart states in the control system. The methods are however
limited to specific control architectures only enabling straight
operation sequences. This is in contrast to the modeling with
variables and operations proposed in this paper that enables
alternative operation sequences.

3. ONLINE RESTART OF A MANUFACTURING SYSTEM

During nominal production the control system and the physical
system will operate in synchrony, with the actual state of the
physical system at all times corresponding to the intended state
of the control system. This nominal production, from an initial
control state qi to a complete control state qc, is illustrated in
the lower plane in Figure 2. The plane represents all states in
the control system. The striped areas represent states where the
nominal requirements are broken and must be avoided. The
thin and the thick solid and dashed lines show the intended
and the actual progress in the control and the physical systems,
respectively. The active state in the control system is updated
when an operation is started or completes.

When a fault occurs, the intended progress deviates from the
actual progress, so that the control and the physical systems
become unsynchronized. This is illustrated by the thick dashed
line in the lower plane. The control state qe that is active
when the error is detected is referred to as the error state. The
physical state pe at the time has no corresponding state in the
control system and is thus located outside of the plane (outside
of the model). The error is thus unforeseen.

qi

qc

qe

pe

qr

qcq′r

Fig. 2. The online restart process. The control and the physical
systems are resynchronized in the restart state qr. The
nominal and the restarted productions are pictured in the
lower and the upper planes, respectively.

The error induced unsynchronization between the control and
the physical systems bring on that there are operations that have
been executed in the control system but where the actual exe-
cution in the physical system has been performed incorrectly
or not at all. To compensate for the unperformed execution, the
overall idea in Bergagård and Fabian (2013, 2014) is therefore
to restart the production from a control state, a so called restart
state, from where it is correct to resume the production such
that it can be completed, respecting both the nominal and the
reexecution requirements.

The upper plane in Figure 2 shows the restarted production.
Horizontally striped areas illustrate control states that break
reexecution requirements and are thus to be avoided, together
with the vertically striped areas. Under the assumption that the
restart states for each control state have been precalculated, the



online restart is reduced to a semi-automatic process. At first,
the operator selects a restart state from the set of restart states
for the error state qe. In Figure 2, this set of restart states is
{qr, q′r}, from which qr is selected. Based on the selection,
the operator places the physical system in the physical state
corresponding to this restart state, illustrated by the dashed line
from pe to qr. In the succeeding automatic part of the restart,
the active control state is updated to the selected restart state
qr, illustrated by the line from qe to qr. After this automatic
part, the control and the physical systems have now been
resynchronized and the production can be resumed.

4. MODELING NOMINAL PRODUCTION

A robot is modeled by a single variable capturing its crucial
poses. There are two types of poses; waiting poses and motion
poses. As the names signal, a robot is static waiting in a waiting
pose and is in motion between two waiting poses in a motion
pose. A product is modeled by one variable capturing its form
and, in some cases, one variable capturing its carrier. For
other systems, variables capturing other aspects might be more
appropriate.

One of the values for each variable is set as initial. This
initial value captures the active value of the variable when the
production starts. At least one of the values for each value is set
as marked. The production may complete when the active value
for all variables are marked.

Processes and tasks that are executed in the system are modeled
by operations. In this paper, each operation is realized by
one robot. For other systems, more than one resource may be
required for realization. An operation comprises one guard, and
two actions referred to as pre- and post-actions. The guard is
a boolean function defined over a subset of the variables. An
operation can start to execute when its guard evaluates to true.

The pre- and post-actions specify how the variables are updated
when an operation starts and completes, respectively. Each
action specifies a value to a non-empty subset of the variables
from their respective domains. The variables specified in the
pre-action keep the specified values throughout the execution of
the operation. Throughout this paper, the pre-action must only
specify values to variables in the scope of the guard and the
post-actions must only specify values to variables in the scope
of the pre-action.

Table 1 illustrates how an operation op affects the variables v0,
v1, and v2. Their domains, initial values, and marked values are
irrelevant for this demonstration and are thus undefined. The
symbols ?, ⇑, and ⇓ denote a sub-guard, a sub-pre-action, and
a sub-post-action, respectively.

Table 1. Variables v0, v1, and v2 affected by
operation op.

op v0 ?a ⇑c ⇓a
op v1 ?e ⇑n
op v2 ?o

The final guard for an operation is the conjunction of all its sub-
guards. The operation op can thus start if v0==a∧v1==e∧v2==o
is satisfied. The pre- and the post-actions for an operation are
built up from the sub-pre- and the sub-post-actions, respec-
tively. Any two sub-pre-actions or any two sub-post-actions
added for the same operation are assumed to not specify differ-
ent values for the same variable. When op starts, v0 and v1 are

assigned the values c and n, respectively. When op completes,
v0 is assigned the value a.

The actions for a general operation will update the variable
values for the resource (robot) realizing the operation and the
products being refined by the operation. To keep the product
variable domains distinct, no values describe that a product is
refined from one form to another or from one carrier to another.
All product values are specified in the pre-actions.

The guards for the operations are typically related to local nom-
inal requirements, like robot in correct pose carrying product
in correct form. Global nominal requirements, like two robots
must not be in two of their poses simultaneously to avoid
collisions, are typically easier to specify with forbidden state
combinations. Two or more variable value combinations can be
specified as forbidden and should thus never be reachable.

4.1 Automata representation

The variables, the operations, and the forbidden state combina-
tions can be represented by automata (Ramadge and Wonham,
1987). Each variable corresponds to an automaton where the
values in the domain become the states. Initial and marked val-
ues become initial and marked states, respectively. The transla-
tion of the operations is less straightforward.

Since the guard for an operation is a boolean function over a
subset of variables, each guard is satisfied by a finite set of as-
signments, called guard assignments, for these variables. Since
each variable takes a single value in each guard assignment, this
value corresponds to a state in the automaton representing the
variable. When the operation starts, the pre-action updates the
values for a subset of the variables in the scope of the guard. In
the automata representation of the control system, this start of
an operation is modeled by transitions.

For the case that the guard is satisfied by a single guard assign-
ment, a transition is added in each automaton corresponding to
a variable in the scope of the guard assignment. The transition
is added differently depending on if the variable is in the scope
of the pre-action or not. For a variable in the scope of the pre-
action, the transition is added from the state corresponding to
the value in the guard assignment to the state corresponding
to the value specified by the pre-action. For a variable not in
the pre-action, the transition is self-looped in the state corre-
sponding to the value in the guard assignment. For the case
that the guard is satisfied by more than one guard assignment,
the presented translation is repeated for each guard assignment
satisfying the guard.

The transitions added for the different guard assignments are
labeled by unique events, called start events. For an operation
op, the start events are denoted ↑op or suffixed by an enumer-
ation index if the guard is satisfied by more than one guard
assignment.

As for the start of an operation, the completion of an operation
is modeled by transitions in the automata representation. The
construction of these transitions follows the case with a single
satisfying guard assignment presented above, however, using
the post-action instead of the pre-action. From the requirement
that all variables in the scope of the pre-action keep their
specified values throughout the execution of the operation,
these specified values are used as the single satisfying guard
assignment. The added transitions are labeled by an unique



event, called complete event. For an operation op, the complete
event is denoted ↓op.

The automata representation of the example operation op spec-
ified in Table 1 is shown in Figure 3. Only the states and the
transitions related to op are shown for each automaton. The
guard for op is satisfied by a single guard assignment, thus there
is no index on the start event.

a c e n o
↑op

↓op

↑op
↓op ↑op

Fig. 3. From left to right, automata corresponding to the vari-
ables v0, v1, and v2.

A method for specifying forbidden state combinations locally
for a set of automata such that the combination of these states
are never reached in a supervised system is among others pre-
sented in Magnusson et al. (2010). Throughout this paper, this
technique is used to specify the global nominal requirements
that undesirable product and resource state combinations are
avoided.

4.2 Supervised model

The supervisory control theory (SCT, Ramadge and Wonham,
1987) is a model-based framework for automatic calculation of
discrete event controllers. Given a set of automata that interact
through full synchronous composition, a supervisor can be
synthesized such that the composition of the automata and the
supervisor is both non-blocking and controllable. Non-blocking
assures that at least one marked state can be reached from
any state in the supervised system. In SCT, a subset of the
events are uncontrollable. By being controllable, the supervisor
is never allowed to disable an uncontrollable event that might
be generated by the automata.

To simplify the modeling task and to assure that all nominal
requirements are satisfied by the model, the model is preferably
retrieved as the solution of a synthesis problem. A supervisor
is therefore synthesized for the automata representation of the
control system. This supervised system satisfies all nominal
requirements.

The synthesis problem is general, thus any synthesis algorithm
can be used. In this paper, the supervisor is represented by
one boolean function for each controllable event as presented
in Miremadi et al. (2012). The boolean functions are defined
over the variables in the model. To force the supervisor to
always let an executing operation complete, all complete events
are uncontrollable. The start events are thus the only control-
lable events in the model. The final form for each operation
guard is then a conjunction of the initially defined guard with
the synthesized boolean function for the start event of the op-
eration. These conjuncted guards are referred to as extended
guards.

5. MODELING NOMINAL PRODUCTION FOR THE
WINDSCREEN MOUNTING STATION

The windscreen mounting station presented in Section 1.2
contains two products: the (rear) windscreen and the tailgate.
The windscreen is modeled by two variables. The first variable
models the carrier of the windscreen, denoted wsCarr, and

the second variable models its form, denoted wsForm. The
tailgate on the car body remains stationary on the conveyer
throughout the work cycle and is therefore modeled by a single
variable for its form, denoted tgForm. The domains for the three
variables are given below. Initial and marked values are over-
and underlined, respectively.

wsCarr :=
{
byInFeed, byRobot, byTailgate,

byOutFeed
}

wsForm :=
{
blank, glued

}
tgForm :=

{
empty, measured, hasWindscreen

}
Two of the eight variable combinations for the windscreen are
undesirable. The windscreen must not have the form glued and
be carried byInFeed nor have the form blank and be carried
byTailgate. In the automata representation, the corresponding
states are specified as two forbidden state combinations.

Given these variables describing the products, the value adding
part of a work cycle is modeled by four process operations.
Three of these refine the windscreen:

gripWindscreen wsCarr ?byInFeed ⇑atRobot
glueWindscreen wsForm ?blank ⇑glued
mountWindscreen wsCarr ?byRobot ⇑byTailgate

and two refine the tailgate:

measureTailgate tgForm ?empty ⇑measured
mountWindscreen tgForm ?measured ⇑hasWindscreen

The mountWindscreen operation thus affects both products.
The three operations that affect the windscreen are realized by
a robot R3 and the measureTailgate operation is realized by a
robot R8.

5.1 Showing and scrapping of the windscreen

Gluing of the windscreen is an operation with high tolerance
requirements. In addition to an automatic inspection, performed
continuously throughout the operation execution, an operator
must be able to manually inspect a windscreen with glue
applied to it. To assure a high quality, if either of the inspections
fail, the windscreen must be scrapped and the car will leave the
station without a windscreen mounted onto the tailgate. If this
happens, a new windscreen is mounted onto the tailgate in a
later station, outside the main production line.

To account for manual inspection and/or scrapping of the
windscreen, the two process operations showWindscreen and
scrapWindscreen are added to the model. Both operations are
realized by R3. From a control point of view, both scrapping
and mounting of the windscreen are correct ways to complete
the work cycle, thus the byOutFeed value is marked. This gives
alternative production processes in the control system.

showWindscreen wsForm ?glued

showWindscreen wsCarr ?byRobot

scrapWindscreen wsCarr ?byRobot ⇑byOutFeed

5.2 Robot poses

To start and end the realization of a process operation, the
realizing robot must be in an operation specific waiting pose.
During the realization, the robot is in an operation specific
motion pose. The domains for the variables modeling the poses
for the two robots are given below. A value suffixed by a W



and a M refers to a waiting and a motion pose, respectively.
In addition to the poses modeled for the operations, each robot
has per default a home waiting pose where it must be when the
work cycle starts and ends. This home pose is thus both initial
and marked. An abbreviation like grip{W,M} is short for gripW,
gripM.

R3Pose :=
{
homeW, grip{W,M}, glue{W,M},

mount{W,M},show{W,M},scrap{W,M}
}

R8Pose :=
{
homeW, tailgate{W,M}

}
The values modeling the poses for R3 and R8 during realization
of the six operations are given below. In this station, the same
waiting pose is used both before and after the realization, this
is not required in general.

gripWindscreen R3Pose ?gripW ⇑gripM ⇓gripW
glueWindscreen R3Pose ?glueW ⇑glueM ⇓glueW
mountWindscreen R3Pose ?mountW ⇑mountM ⇓mountW
showWindscreen R3Pose ?showW ⇑showM ⇓showW
scrapWindscreen R3Pose ?scrapW ⇑scrapM ⇓scrapW
measureTailgate R8Pose ?tailgateW ⇑tailgateM

⇓tailgateW

5.3 Transport operations

A transport operation is an operation which upon execution
reconfigures a robot from one waiting pose to another waiting
pose, without affecting a carried product. Each robot has its
own set of transport operations. By exploiting the succeeding
supervisor synthesis, the transport operations can be added
automatically to the model, based on the waiting poses defined
for each robot. A single transport operation is created for each
ordered pair of waiting poses for each robot. For example,
R3Pose contains six waiting poses so 6*(6-1)=30 transport
operations are thus created for R3. At the start and completion
of a transport operation, the robot must be in the first and
the second waiting pose in the pair, respectively. During the
realization of the operation, the robot is in an operation specific
motion pose. The motion pose for the operation that models that
R3 reconfigures from homeW to gripW is, as an example, denoted
homeGripM.

To avoid unjustified transport operations, there must be an
alternation in the execution of process and transport operations
for each robot. This is modeled by a variable, denoted altExR,
for each robot R plus sub-guards and sub-pre-actions in the
operations realized by R, as shown below. Let opPR and opTR
denote general process and transport operations that are realized
by robot R, respectively. At the start and end of each work cycle
a robot is in its home waiting pose. The first and last operation
must therefore be a transport operation, thus tNext is initial and
pNext is marked.

altExR :=
{
tNext, pNext

}
opPR altExR ?pNext ⇑tNext
opTR altExR ?tNext ⇑pNext

5.4 Global nominal requirements

The robots will collide if they work close to the tailgate si-
multaneously. Four forbidden state combinations are created to
specify that R3 cannot be in the pose mountM simultaneously
with R8 in any of the poses tailgate{W,M,Home} or the motion
pose homeTailgateM.

5.5 Supervised model

Based on the automata representation of the operations, the
variables, and the forbidden state combinations, defined through-
out this section, a supervisor is synthesized to retrieve the su-
pervised model. The supervised model contains 179 states. The
synthesis enables eleven and two automatically added transport
operations for R3 and R8, respectively.

5.6 The mountWindscreen operation as automata

The representation of the model by automata is exemplified
on the mountWindscreen operation. The extended guard and
the actions for mountWindscreen are given in Table 2. Due to
forbidden state combinations for the tailgate, the synthesized
supervisor requires that mountWindscreen is only enabled if R8
is in its home pose.

Table 2. Extended guard and the actions for
mountWindscreen.

mountWindscreen wsCarr ?byRobot ⇑byTailgate
mountWindscreen tgForm ?measured ⇑hasWindscreen
mountWindscreen R3Pose ?mountW ⇑mountM ⇓mountW
mountWindscreen altExR3 ?pNext ⇑tNext
mountWindscreen R8Pose ?homeW

The operation is represented by the five automata correspond-
ing to the variables in the scope of its guard and actions.
The three generic automata in Figure 3 are used for illustra-
tion. The events ↑op and ↓op are set to ↑mountWindscreen and
↓mountWindscreen, respectively. Only the states and transitions
related to mountWindscreen are shown in each automaton.

The automaton corresponding to the variable R3Pose will get
two transitions like the left automaton in Figure 3. The states a
and c are set to mountW and mountM, respectively. The automata
corresponding to the variables wsCarr, tgFrom, and altExR3
will get one transition each like the middle automaton in Fig-
ure 3. The states e and n are set to byRobot and byTailagate,
measured and hasWindscreen, and pNext and tNext, respec-
tively. The automaton corresponding to the variable R8Pose will
get one self-loop transition like the right automaton in Figure 3.
The state o is set to homeW.

6. MODELING RESTART OF PRODUCTION

To analyze how the production can be restarted, the automata
representation of the control system of the nominal production
is extended with transitions, so called reset transitions, that
reset operations, or more precisely, reset the variable values
updated by the operations (Bergagård and Fabian, 2014). The
control system then contains process and transport operations
that take the production process “forward” and reset transitions
that restart the production process by going “backward”. Based
on such an extended control system, the restart states can be
derived by analyzing the sequences of reset transitions that can
be taken from each control state, such that the production can be
resumed and eventually be completed, respecting both nominal
and reexecution requirements. By calculating all restart states
for all contorl states, the set of restart states can be further
analyzed to for example derive the states where the operator
placement becomes simplest according to some appropriate
metric or to minimize the overall number of restart states.



The modeling with variables proposed in this paper means
that the reset transitions cannot be derived as in Bergagård
and Fabian (2014). This section therefore describes how the
reset transitions can be added automatically to the automata
representation of the control system.

Each operation that is executing or just completed should be
reset such that the operation can be reexecuted. An operation is
executing when the variables in the scope of the pre-action take
the values specified by the pre-action. Similarly, an operation
is just completed when the variables in the scope of the post-
action take the values specified by the post-action and the
variables in the scope of the pre-action but not in the scope
of the post-action take the values specified by the pre-action.
Recall that the post-action must only update the values on
variables in the scope of the pre-action.

The variables in the scope of the pre-action should be reset to
the values they had when the guard for the operation was satis-
fied, such that the operation can be reexecuted. As outlined in
Section 4.1, the extended guard for an operation is satisfied by a
finite set of guard assignments. In each such guard assignment
the variables in the scope of the pre-action take a value.

For the case the guard is satisfied by a single guard assignment,
up to two reset transitions are included in each automaton
corresponding to a variable in the scope of the pre-action. One
reset transition is included from the state corresponding to the
value when the operation is executing to the state corresponding
to the value in the guard assignment. For variables updated by
the post-action, an additional reset transition is included from
the state corresponding to the value when the operation is just
completed to the state corresponding to the value in the guard
assignment. All the included transitions are labeled by the same
event. For an operation op the event is denoted ←↩op. For the
case the guard is satisfied by more than one guard assignment,
the reset transitions are included for each assignment separately
and the event for each assignment is suffixed with an enumera-
tion index. No reset transitions are included when the guard is
not satisfied by any guard assignment.

6.1 Reset transitions for the mountWindscreen operation

The retrieving of reset transitions is exemplified on the
mountWindscreen operation, specified in Section 5.6. The reset
transitions for mountWindscreen are given in Figure 4. Only the
states and the reset transitions related to op are shown for each
automaton.

byTailgate byRobot

hasWindscreen measured

mountM mountW

tNext pNext

←↩mountWindscreen

←↩mountWindscreen

←↩mountWindscreen

←↩mountWindscreen

←↩mountWindscreen

Fig. 4. From top to down, reset transitions for mountWindscreen
in automata for the variables wsCarr, tgForm, R3Pose,
and altExR3.

7. CALCULATION OF RESTART STATES

Given the set of automata modeling the nominal production, the
reset transitions, and the reexecution requirements, a supervisor
is synthesized to derive the enabled reset transitions. As pre-
sented in Bergagård and Fabian (2014), the set of restart states
for each control state are the set of states that are reachable
using a sequence of reset transitions in the supervised system.
By constructing the transitive closure (Pemmaraju and Skiena,
2003) for the supervised system using only reset transitions, the
set of restart states for each control state correlates to the set of
adjacent states.

7.1 Reexecution requirements for the windscreen mounting
station

The windscreen mounting station contains three reexecu-
tion requirements. To guarantee a high product quality, the
glueWindscreen operation is not reexecutable. This operation
can start at most once during each mounting work cycle. This
is captured by the automaton glueOnce shown in Figure 5. The
state zero is initial. Both states are marked.

zero once
↑glueWindscreen

Fig. 5. Automaton to model that glueWindscreen is not reexe-
cutable.

The mountWindscreen operation can only be reexecuted if the
quality of the windscreen is approved by an operator and the
tailgate is re-measured. These reexecution requirements are
modeled by two instances of the automaton shown in Figure 6.
To capture the operator approval, the windscreen must be
shown to the operator before mountWindscreen is reexecuted.
In the first automaton instance, called mustShow, the start event
↑op and the state toK are therefore set to ↑showWindscreen and
toShow, respectively. To capture the re-measurement, ↑op and
toK are set to ↑measureTailgate and toMeasure, respectively,
in the second automaton instance, called mustMeasure. In both
instances, the state normal is initial and all states are marked.

normal toK

toMount

←↩mountWindscreen

↑op↑mountWindscreen

↑mountWindscreen,↑op

↑op

Fig. 6. Automaton to model that an operation op must
execute between the resetting and the reexecution of
mountWindscreen.

7.2 Restart states for the mountWindscreen operation

The synthesized supervisor contains 574 states. All control
states except those related to gluing the windscreen have at least
one restart state.

The restart states calculation is exemplified for the case when
the control state modeling execution of mountWindscreen is the
error state. The results are presented in Table 3.



Table 3. An error state with four restart states.

Variables/ Error Restart
Automata state states

wsForm glued glued
wsCarr byTailgate byRobot
tgForm hasWindscreen empty
R3Pose mountM glueW∨showW
R8Pose homeW homeW∨tailgateW
altExR3 tNext _
altExR8 pNext _
glueOnce once once
mustShow normal toShow
mustMeasure normal toMeasure

Recall that the product variables take their refined values
in the pre-action. Thus, during a substantial part of the
mountWindscreen execution, the windscreen is carried by R3,
despite that the automata corresponding to wsCarr and tgForm
are in the states byTailgate and hasWindscreen, respectively.
The placement action to reset these variables to byRobot and
empty is thus straightforward if the error occurs while the wind-
screen is still carried by R3. Also note, the glueWindscreen op-
eration always precedes mountWindscreen, thus the automaton
corresponding to glueOnce is in the state once.

In total, the error state has four restart states that respect both
the nominal and the reexecution requirements. As indicated
by the or-signs, R3 can be placed in one of the poses glueW

and showW and R8 can either remain in its home pose or be
moved to the pose tailgateW. The state for the automaton
modeling the alternation in the execution between process
and transport operations are connected to the pose selected
for each robot. These states are therefore left blank in the
table. From the reexecution requirements, both the operations
showWindscreen and measureTailgate must be reexecuted.
The automata mustShow and mustMeasure are therefore in the
states toShow and toMeasure, respectively.

The table shows how the proposed modeling approach with
variables aids the operator during the restart. Both the intended
state (the error state) and the restart states in the control system
are described on the selected abstraction level.

8. CONCLUSION

This paper has shown how to model the control system for an
industrial windscreen mounting station by variables, describing
distinguishable aspects of products and resources, and opera-
tions, describing sub-processes in the production. Given this
model, the restart states from where it is valid to restart the
station after error related stoppages such that the requirements
on both the nominal and the restarted production are satisfied,
can be derived automatically using formal methods. This en-
ables the control system developer to focus on modeling the
nominal production and specify (un-)desirable behavior for the
restarted production, and thereafter automatically retrieve the
allowed restart alternatives. Based on these automatically de-
rived restart states, an operator can be given support for how to
correctly restart the production when an error has been detected,
diagnosed, and corrected in the system. By studying historical
production stoppages for the windscreen mounting station, it
can be concluded that if the proposed restart method had been
used, using restart states calculated from the developed model,
the restart after unforeseen errors that caused long production
stoppages could have been improved.

Future work is concerned with a demonstration implementation
to study how the proposed restart method can be merged with
current industrial practice. It is worth to mention that parts of
the method has already been implemented and tested in a lab
station, see Parsaeian (2014).

REFERENCES

Andersson, K., Lennartson, B., and Fabian, M. (2010). Restart-
ing Manufacturing Systems; Restart States and Restartabil-
ity. IEEE Transactions on Automation Science and Engi-
neering, 7(3), 486–499.

Augustsson, C. (2014). Senior Project Leader at Volvo Car
Corporation. Personal communication.

Bergagård, P. and Fabian, M. (2013). Calculating Restart States
for Systems Modeled by Operations Using Supervisory Con-
trol Theory. Machines, 1(3), 116–141.

Bergagård, P. and Fabian, M. (2014). Calculating restart states
using reset transitions. In IEEE International Conference on
Robotics and Automation.

Lagergren, N. (2014). Control system developer at Teamster.
Personal communication.

Lee, S. and Tilbury, D.M. (2008). A modular control design
method for a flexible manufacturing cell including error
handling. International Journal of Flexible Manufacturing
Systems, 19(3), 308–330.

Magnusson, P., Fabian, M., and Åkesson, K. (2010). Modular
specification of forbidden states for supervisory control. In
Workshop on Discrete Event Systems, 412–417.

Miremadi, S., Lennartson, B., and Åkesson, K. (2012). A
BDD-based Approach for Modeling Plant and Supervisor by
Extended Finite Automata. IEEE Transactions on Control
Systems Technology, 20(6), 1421–1435.

Odrey, N.G. (2008). Error Recovery in Production Systems: A
Petri Net Based Intelligent System Approach. In Petri Net.
Theory and applications, chapter 2. InTech.

Parsaeian, S. (2014). Implementation of a Framework for
Restart after Unforeseen Errors in Manufacturing Systems.
Master Thesis, Chalmers University of Technology, Signals
and Systems.

Pemmaraju, S. and Skiena, S. (2003). Computational Discrete
Mathematics: Combinatorics and Graph Theory with Math-
ematica. Cambridge University Press.

Ramadge, P.J. and Wonham, W.M. (1987). Supervisory control
of a class of discrete event processes. SIAM Journal of
Control and Optimization, 25(1), 206–230.

Shu, S. (2014). Recoverability of Discrete-Event Systems
With Faults. IEEE Transactions on Automation Science and
Engineering, 11(3), 930–935.

Sülek, A.N. and Schmidt, K. (2014). Computation of Su-
pervisors for Fault-Recovery and Repair for Discrete Event
Systems. In Workshop on Discrete Event Systems, 428–433.

Tittus, M., Andréasson, S.A., Adlemo, A., and Frey, J.E.
(2000). Fast restart of manufacturing cells using restart
points. In World Automation Congress.

Wen, Q., Kumar, R., Huang, J., and Liu, H. (2008). A frame-
work for fault-tolerant control of discrete event systems.
IEEE Transactions on Automatic Control, 53(8), 1839–1849.

Zhou, M. and Dicesare, F. (1989). Adaptive design of Petri
net controllers for error recovery in automated manufacturing
systems. IEEE Transactions on Systems, Man and Cybernet-
ics, 19(5), 963–973.


