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ABSTRACT 

Nuclear electricity is considered to be an alternative energy production solution for the 

power industry in many countries. To ensure the sustainability of this energy solution, the 

disposal of the produced waste is one of the biggest issues facing nuclear electricity 

industries. Deep geological disposal of waste with multi-layered engineered barriers has 

been shown to be one of the safest solutions. However, degradation induced in barrier 

material by long-term contact with water during the required operational life time of the 

repository should be accounted for in safety assessments. Cementitious materials are 

considered to be one of the most efficient alternative barrier materials, providing high pH 

buffering capacity, good mechanical properties and low diffusivity. The major degradation 

scenario to consider for these barriers is the dissolution of calcium-containing phases and 

the eventual leaching of calcium. Decalcification occurs due to the low concentration of 

calcium ions in the groundwater that comes in long-term contact with the barriers. To 

facilitate long-term durability predictions, acceleration methods that enhance the calcium 

leaching process from cementitious materials are needed. However, experimental studies of 

the natural leaching process under long-term degradation are hampered by the tedious and 

complicated process of manufacturing large enough decalcified specimens with a 

composition and pore structure that corresponds to that of concrete leached under natural 

leaching conditions. In this study, a new acceleration test method for cementitious 

specimens of flexible size is developed. The electrochemical migration method facilitating 

both the dissolution and transport of calcium ions provides a higher acceleration rate than 

other available methods. With application of a current density of 125-130 A/m2 for 53 days 

a depletion depth of 75 mm is obtained. The dissolution front, comparable to a natural 

leaching process, corresponds to the complete leaching of Portlandite, with a certain degree 

of phase changes in calcium silicate hydrates. The changes in the pore structure, adsorption, 

ionic diffusion, mechanical strength, elastic modulus, permeability and frost resistance of 

Ca-depleted concrete, mortar and paste specimens are demonstrated. The results indicate 

that a considerable increase in pore volume and specific surface area can be expected due to 

the complete leaching of the Portlandite. This coincides with up to 70% decrease in 

mechanical strength, more than 40% decrease in elastic modulus and a significant increase 

in the adsorption capacity and ionic diffusion rates of the leached specimens. 
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1 Introduction 

This chapter provides a background knowledge regarding the importance of the nuclear 

power industry in many countries as an alternative energy production solution. 

Consequently, the problems facing the authorities of these countries in managing the 

disposal of nuclear waste in a sustainable manner are addressed. Accordingly, the 

assessment of long term functionality of cementitious materials as efficient alternative 

barriers for nuclear waste repositories is distinguished. Hence, initiation of this research 

project as a collaboration with the Swedish Nuclear Fuel and Waste Management Company 

(SKB) to gain a better understanding of the longevity of cementitious barriers is also 

addressed.  

1.1 Nuclear power and waste management 

Nuclear power is an important energy production solution for the power industry in many 

countries. Interest in nuclear power has been revived as a result of concerns about fossil 

fuel prices, the security of energy supplies and global climate change. According to key 

world energy statistics provided by the International Energy Agency (IEAE), the top 10 

countries with a considerable share of nuclear electricity in their total electricity production 

are France, Ukraine, Sweden, Korea, United kingdom, the United states, the Russian 

Federation, Germany, Canada and the People’s Republic of China with a share of up to 

76% of nuclear electricity in their total domestic electricity production. The IEA 

assessments show that about 5.7% of the world’s energy and 13% of the world’s electricity 

were provided through nuclear power stations in 2012. As reported by Adamantiadesa and 

Kessides [1], nuclear energy is now a key element in the European Union's climate-change 

policy. Finland's parliament voted in 2002 to approve building a fifth nuclear power plant, 

Italy has plans to resume building nuclear plants within five years and Sweden announced 

plans to overturn a near 30-year ban on new nuclear plant construction. Debates on 

construction of new nuclear facilities are underway in Germany, Belgium, the Netherlands 

and Hungary. The demand for nuclear electricity in Asia has also been growing 
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significantly. A number of countries in East and South Asia: China, Japan, South Korea 

and India are also planning and building new reactors [1].  

Although nuclear electricity is judged as a relatively sustainable energy with a low carbon 

foot print, the hazards of nuclear power revolve around several basic concerns. The 

possibility of a nuclear accident is one of the major obvious concerns. However, the 

developments in safety assessments and the debates regarding legislation can ensure 

improvements in minimizing production risks. On the other hand, a bigger issue facing the 

nuclear power industries is the post production phase, such as waste management, which is 

more complicated as the time scales to deal with are extremely large. As a consequence, a 

major concern is the lack of comprehensive understanding of permanent and safe disposal 

of nuclear waste which has been one of the more challenging problems for the nuclear 

industry [1].  

The disposal of radioactive waste is based on the radioactivity level and the life time of the 

waste. There are four classes of radioactivity for the waste; very low, low, intermediate and 

high level. Very low level waste is short-lived waste and surface disposal is an option for 

storing this waste. Low level waste is considered hazardous for few centuries and can be 

disposed in near-surface disposal facilities with consideration of engineered multi-barriers, 

depending on the half-life of the waste. The chosen barrier types are: clay, bentonite, 

quartz sand, graphite, cementitious materials and concrete.  

The intermediate and high levels of waste present a hazard for hundreds of thousands of 

years, and therefore, disposal in a stable geological environment is essential. Such 

timescales are termed geological because they are characteristic of geological changes of 

the Earth. In these time durations uncertainties in the risks with near-surface disposal, even 

if equipped with engineered multi-barriers are very high. Therefore, geological disposal is 

the only acceptable option [2].  

Wet disposal is an option for geological disposal in which the repository is located at a 

depth of up to 500 m, where eventual water ingress and saturation is inevitable. Various 

types of host rock are being considered including hard rock (e.g. granite which is being 

considered in Sweden) and soft rock (e.g. clay in Belgium and France). Considering the 

direct contact of the facility with water, the role of the engineered barriers in disposal and 
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storage systems is to ensure the containment of radionuclides and to prevent leachates to 

the groundwater. However, considering very long-term perspectives in safety prediction, 

changes in the sealing properties of barriers in direct contact with water is of great 

importance in the safety analysis.  

1.2 Cementitious barriers 

Cementitious materials as suitable physical barriers, are efficient chemical binders for 

waste species and are extensively used in the construction of radioactive waste repositories 

[3, 4]. These materials which have a high pH buffering capacity, good mechanical 

properties and low diffusivity are considered as suitable alternative engineered barriers for 

repositories. The high pH of the pore solution can neutralize the acidity of waste waters 

and also promote the precipitation of metals. Moreover, because the solubility of 

carbonates like calcite is lower in high pH levels, the encapsulation of 14C (a radioactive 

isotope of carbon) can be promoted. However, as mentioned in the previous section, one 

possible complication is the requirement for long-term service life predictions, which 

necessitate an accurate demonstration of the changes in functionality of these materials 

caused by long-term degradations. One of the major promoting factors in degradation 

scenarios of the barriers is the long-term contact between the barrier materials and the 

surrounding groundwater [5, 6]. The groundwater surrounding the cementitious barriers in 

repositories has a different pH and ionic concentrations in comparison with the pore 

solution of the cementitious materials. The concentration differences will cause ion 

exchange and interaction and re-depositions of these ions, which will result in the 

dissolution or precipitation of minerals, and, consequently an alteration in the 

microstructure and composition of the cementitious materials.  

Several researchers have reported investigations into durability analyses of cementitious 

barriers utilized in repositories of nuclear waste with long-term contact with water [3-42]. 

However, lengthy perspectives in predictions encounter high uncertainties such as dealing 

with very complicated and coupled processes that influence the performance of the 

barriers. Moreover, current knowledge and experimental data about the performance of this 

construction material does not cover more than a service life of up to 200 years, which is 

considerably lower than the expected service life for the repositories. This means that there 
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is not yet sufficient knowledge to demonstrate the effectiveness of these engineered 

barriers [43], and more assessments are necessary in order to improve the understanding of 

the long-term performance of such a material. 

1.3 SKB  

The Swedish Nuclear Fuel and Waste Management Company (SKB), was formed in the 

1970s as a partnership between nuclear power companies in Sweden. The organization is 

tasked to manage the disposal of radioactive waste according to safety regulations from the 

point that the waste leaves the nuclear power plants.  

The current facilities in Sweden include: 

• The intermediate storage facility for nuclear fuel (Clab) situated near Oskarshamn 

• The final repository for short-lived radioactive waste (SFR) located in Forsmark.  

Currently, there are also plans for an extension of SFR and to build a new repository for 

long-lived radioactive waste (SFL) and a repository for spent nuclear fuel. Spent nuclear 

fuel, which is considered as long-lived waste, will be deposited in a spent fuel repository. 

The design of the final repository requires engineered barriers to meet the level of 

radioactivity of the waste. The current repository for radioactive waste, SFR, consists of 

several sections with respect to the radioactivity level of the waste, Figure 1-1. These 

include the Silo (intermediate waste), BMA (intermediate waste), 1BTF and 2BTF 

(dewatered ion exchange resins) and BLA (low level waste). The facility is a hard rock 

system located 60 meters beneath the sea. The silo for the most reactive part of the waste is 

designed with multi-layers of engineered barriers. The waste container is considered to be 

the first barrier which is embedded in concrete. The reinforced concrete walls provide 

additional barriers. Furthermore, between the concrete walls and the outer barrier layer of 

rock, a bentonite layer is engineered providing higher safety. The BMA vault, Figure 1-2, 

has been designed using rock as the loadbearing parts and in situ casted reinforced concrete 

is used as the slab and flooring and the walls and the whole structure is constructed on a 

base of shot rock leveled with gravel. The 1BTF and 2BTF are concrete tank repositories 

and the BLA vault has a concrete floor and rock walls. 
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As noted, an extensive amount of concrete is utilized in the construction of the repositories 

in Sweden. Consequently, safety assessments require predictions regarding the long-term 

functionality of cementitious barriers in retaining hazardous radionuclides. This motivates 

the vast amount of research on this topic initiated by this organization.  

 

Figure 1-1. Different parts of SFR. The section in blue color is SFR 3 which is planned to be built by 2025 

 

Figure 1-2. The BMA vault: concrete is a major construction material 
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1.4 Initiation of the project: goals and limitations 

In order to broaden the knowledge and understanding of the long-term degradation of 

cementitious materials as well as to provide databases that account for the changes in the 

chemical, physical, mechanical and transport properties of the cementitious materials after 

degradation, a project called “Ageing of cementitious materials for storage of nuclear 

waste” was initiated and funded by SKB. The major intention was to provide accurate 

databases for further numerical simulation of the degradation process. The project was 

defined as a PhD project performed at Chalmers University of Technology, Department of 

Civil and Environmental Engineering, Division of Building Technology. The primary 

objectives were to investigate the chemical, physical, mechanical and transport properties 

of the aged cementitious materials undergoing calcium leaching as the major deterioration 

factor affecting the cementitious concrete barriers in nuclear waste repositories. The 

specific goals included in the project description are as follows:  

• Laboratory investigation of various aging tests in order to find suitable regimes for 

manufacturing the aged cementitious materials without significantly distorting the 

properties of the material from the natural aging processes.  

• Development of a proper leaching test method to produce aged specimens of 

flexible size and comparable to naturally leached specimens, to be used in further 

tests.  

• Laboratory investigation of physical and chemical properties of “young” and aged 

cementitious materials, including mechanical properties, transport properties 

(diffusivity), binding (adsorption) capacities, surface complexation (charge) 

behaviors, and chemical and mineralogical stabilities as well as frost resistance. 

The predictions should have a perspective of 100,000 years as the service life.  

• Synthesis and analysis of the test and modeling results with the intention of 

establishing a mechanism-based (chemo-mechanical-coupled) model for longevity 

prediction of concrete for storage of nuclear waste. 
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It should be noted that chemical degradations and changes in the mechanical characteristics 

of steel bars in reinforced concrete are beyond the goals of this project. The effect of water 

cement ratio, mix proportions as well as the utilization of supplementary cementitious 

materials on durability, are considered as possible future investigations and are not dealt 

with in this work. It should be noted that the cementitious materials studied in this project 

were limited to those actually used in repository of nuclear waste in Sweden, SFR.  
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2 Degradation of Cementitious Barriers 

This chapter presents a general knowledge about properties of cement and hydrated cement. 

A background about durability of cementitious materials and the most important 

degradation scenarios interfering with long-term functionality of these materials is also 

presented. Leaching of calcium as a major durability issue is addressed, and test methods 

for simulating this phenomenon are introduced. Major gaps of knowledge in current 

understanding concerning changes in properties of cementitious materials are also pointed 

out.  

2.1 Cement and cement hydration  

Cement is an essential part of concrete. It hardens after mixing with water through several 

chemical reactions, and functions as a binder. More than 95% of the cement which is used 

around the world is Portland cement [43]. The main constituents of Portland cement are 

calcium oxide (CaO) and silicon dioxide (SiO2), both of which exist in the Earth’s crust as 

calcium carbonate and sand. Portland cement powder has a grain size between 2 and 80 

µm, it is grey in color and has a relative density of about 3.14 g/cm3. The chemical 

composition of cement consists of Tricalcium Silicate (C3S), Dicalcium Silicate (C2S), 

Tricalcium Aluminate (C3A) and Tetracalcium Aluminoferrite (C4AF), which are known 

as the four phases of cement. Gypsum is also added to ground clinker in order to regulate 

the reactivity of the aluminate phases. The Bogue Equation [44] is used to calculate the 

compound composition of cement . After mixing cement with water, hydration starts. The 

rate of hardening is very significant after about 2-4 hours and strength is obtained very 

rapidly after a few days. However, after this time, hardening continues at a decreasing rate 

for at least a few months. It should be noted that hydration reactions never end, and in 

order to show the level of reactions, the hydration degree is used as an indicator. The 

hydration of two phases of cement, C3S and C2S, significantly contribute to most of the 

engineering properties of hydrated cement paste (HCP), like strength and stiffness. The 

hydration reactions are presented in Equations (2.1) and (2.2) below: 
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CHHSCHSC 3362 233 +→+  (2.1) 

CHHSCHSC +→+ 342 232  (2.2) 

where C is CaO, S is SiO2, H is H2O, CH is Ca(OH)2 and CSH is the Calcium Silicate 

Hydrate.  

The aluminate ions in Tricalcium Aluminate (C3A) and Tetracalcium Aluminoferrite 

(C4AF) also react with calcium and sulphate ions to form Calcium Trisulphato Aluminate 

Hydrate (Ettringite). According to Powers [45] as hydration reactions proceed, more and 

more anhydrous material is converted into hydrates. This leads to an overall decrease in 

porosity since the molar volume of hydrates is much larger than that of the anhydrous 

phases, and the remaining porosity is referred to as capillary porosity.  

A major hydration product as stated in Equations (2.1) and (2.2) is Calcium Silicate 

Hydrate known as CSH gel. The CSH part of HCP is the main phase that contributes to 

strength properties. The mineralogical structure of the CSH gel is very complex and it is 

reported to be amorphous to slightly crystalline [46]. It has been shown that CSH has a 

layered crystal structure similar to tobermorite or jennite, with a layer thickness in the 

nanometre range [47-49]. The average Ca/Si-ratio is around 1.7 with reported fluctuations 

between 0.6 and 2 [50]. The CSH layers bear a mixture of Si OH and Si O- 

groups. The proportion of O groups increases as the Ca/Si ratio and the pH increase [50]. 

Thus, the CSH layers are negatively charged particles, although because of the high 

concentration of calcium ions a charge reversal may occur [50]. However, the structure of 

the CSH gel accommodates available adsorption sites and high specific surface area, which 

has a direct influence on the diffusion/adsorption properties of cementitious materials [51].  

The CH known as Portlandite is the main crystalline part of the HCP. It provides alkaline 

characteristics (pH: 12.5-13) which have a great influence on the durability of cementitious 

materials. Figure 2-1, illustrates the main constituents of HCP after a few weeks of 

hydration. As illustrated in this figure, the hydrated cement matrix contains water-filled 

gaps which are known as pores. The volume of the pore structures depends on the water 

cement ratio. The magnitude of the pore volume has a direct influence on the strength as 

well as the transport properties of the cementitious materials. There are two types of pores 
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in the HCP system: capillary pores and gel pores. The usual pore size categorization is 

interlayer pores (2nm), gel pores (2-10 nm) and capillary pores (10 nm-5 µm) [46]. There 

are also air voids in the system with sizes ranging on the scale of 5 µm-5 mm.  

 

Figure 2-1. The main constituents of HCP after a few weeks of hydration 

2.2 Degradation scenarios  

The interactions between the cementitious materials and the surrounding environment 

encounter changes in these materials. The exchange of ions between the environment and 

the hydrated cement paste, and the interaction and re-deposition of these ions would cause 

alterations to the properties of cementitious materials. Moreover, changes in surrounding 

climate conditions (high temperature gradients and freeze-thaw) are other important factors 

that can influence the durability of cementitious materials.  

2.2.1 Chloride ingress 

One well-known scenario concerning the service life of specifically reinforced concrete 

structures is chloride ingress. The exposure of cementitious materials to chloride ions will 

water Unhydrated part of
the cement grain  

Portlandite CSH 
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cause a reaction with aluminate phases in the paste and the formation of Friedel’s salt 

(3Cao.Al2O3.CaCl2.10H2O) [52-55]. The production of other solid phases such as Kuzel’s 

salt (Chloro-sulfate AFm) [56] and calcium oxychlorides [52] has also been reported in the 

literature. The production of these solid phases might cause expansion and cracking, but 

these new solid phases are not readily produced after the penetration of chloride ions. The 

interaction of chlorides and the HCP matrix is not necessarily a chemical interaction that 

leads to the formation of new solid phases as soon as the exposures are taking place. That 

is because the early exposure interactions in the pore solution of cementitious materials are 

affected by binding phenomena [57, 58]. The overall amount of chlorides that react with 

the materials in early chloride exposure has also been taken into consideration in the 

investigation by Tang and Nilsson [59].  

Moreover, it has been reported that the chloride concentration of the groundwater around 

repositories is too low to form Friedel’s salt (<0.1 M [60]). This indicates that formation of 

Friedel’s salt is not considered as a leading degradation scenario when dealing with safety 

assessments of cementitious barriers.  

A chloride intrusion may indirectly influence the concrete barriers due to initiating steel 

corrosion in reinforcements. Corrosion products are expansive and will lead to eventual 

cracking and distortions. The major effect of the presence of chlorides is the destruction of 

the protective passive layer on the steel reinforcement surface causing the initiation of 

corrosion [61]. The corrosion products contribute to stress around the rebar, and 

consequently damage the concrete cover.  

2.2.2 Carbonation  

Another well-known source of degradation in cementitious systems is carbonation. If 

gaseous carbon dioxide penetrates in to the HCP matrix it will cause the production of 

HCO3
- and CO3

2- which will react with dissolved calcium, and this reaction will lead to the 

precipitation of CaCO3 (Calcite). Although the production of calcite causes a reduction of 

material porosity and increases the retention of the HCP constituents [29], the consumption 

of Portlandite causes a pH drop in the system. The pH drop can affect the protective 

passive layer of the reinforced steel. This will initiate steel corrosion. Moreover, 

carbonation might also cause changes in the solubility of the HCP constituents [29, 62]. 
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2.2.3 Sulfate attack 

Sulfate attack is another degradation problem. The reaction of sulfate ions with the HCP 

phases leads to the production of: 

• Gypsum (CaSO4.2H2O), 

• Ettringite ([Ca3Al(OH)6⋅12H2O]2⋅(SO4)3⋅2H2O) and 

• Thaumasite (Ca3[Si(OH)6⋅12H2O]⋅(CO3)⋅SO4). 

These products can cause expansion, spalling and severe degradation [63-65]. The source 

of sulfate ions is usually the groundwater surrounding the cementitious barriers, and since 

the pH level is commonly near neutral in these environments, the sulfate ingress will be 

accompanied by leaching [4]. This emphasizes the importance of coupling the effect of 

sulfate attack with leaching phenomena when dealing with safety assessments.  

2.2.4 Leaching of calcium 

Another factor behind major deterioration in the long-term service life of cementitious 

barriers in a nuclear waste repository is the leaching of calcium [5, 6]. The low calcium 

content of the water in the surrounding environment causes a concentration gradient which 

leads to dissolution and eventually the leaching of the calcium from the hydrated cement 

matrix. It has been mentioned earlier that CSH and CH parts of the HCP system contribute 

to strength and durability properties, and therefore, decalcification affects the chemical and 

mechanical properties of the cementitious materials. The dissolution of the CH part of HCP 

encounters extreme changes in the pore structure which leads to changes in transport 

regimes and strength properties [12, 17, 22, 27, 36]. The induced calcium depletion will 

also lead to changes in the surface charges of CSH and eventually the surface area, which 

will have an extensive effect on the adsorption properties of the cementitious systems [17]. 

The coupled chemical/physical and mechanical changes might induce changes in freeze-

thaw properties as well. It should be noted that this degradation process is relatively slow, 

but will be magnified from the service-life perspective of nuclear waste repositories.  

Figure 2-2 briefly illustrates the influencing degradation factors and the consequent 

encountered degradations.   
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Figure 2-2. Degradation of cementitious materials    

Of all the major degradation scenarios for cementitious materials, calcium leaching is often 

stated as the major degradation scenario of cementitious materials in long-term contact 

with water [5, 6]. Moreover, the other degradation processes, such as chloride and sulfate 

ingress as well as carbonation, are extensively affected and coupled with the leaching 

phenomena. This motivates the importance of considering the coupled effect of leaching 

on other degradation processes while drawing conclusions in safety assessments.  

2.3 Experimental simulation of decalcification process 

As explained in the previous section, a major process that causes the degradation of 

cementitious materials in long-term contact with water is the decalcification of the 

hydrated cement system. It has been shown in several studies that the calcium leaching 

process is governed by a coupled dissolution/diffusion process [66]. By definition, 

leaching is the removal of a soluble phase, in the form of a solution, from an insoluble 

permeable solid.  

The kinetics of an ionic diffusion process are presented in a simplified way in Equation 

(2.3) [8].  
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where, c(x,t) is the Ca2+ concentration in the liquid phase, cs(x,t) is the content of Ca2+ in 

the solid phase, ϕ(x,t) is porosity and D(x,t) is the diffusion coefficient.  

Although this equation is rather simplified (the influence of phenomena such as chemical 

activity, electrical coupling and convection is neglected), it indicates that a major factor in 

a diffusive transport process is the concentration gradients. Due to a low concentration of 

calcium ions in the water, the dissolution of calcium hydroxides followed by the diffusive 

transport of calcium ions, or leaching of calcium, occurs. The loss of calcium leads to the 

dissolution of Portlandite followed by the decalcification of CSH. Figure 2-3, illustrates the 

simplified decalcification process of HCP. 

 

Figure 2-3. Decalcification of hydrated cement paste  

A more complex model that describes the process should consider all the possible 

dissolution/precipitations, adsorption/desorption and cation exchanges. Since the process 

frequently encounters changes in the properties of the solid matrix, the effect of the 

continuous changes on leaching propagation should also be considered.  

As decalcification phenomenon is relatively slow, usual structures such as tunnels, bridges 

or even dams which have shorter required service life compared to repositories cannot 

show the severity of the degradation induced by long-term leaching of calcium. Several 

standard test methods have been developed to provide adequate information for regulating 

acceptable thresholds for dealing with nuclear waste safety assessments. The ANS 16.1, 

Mixed water
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the cement grain  
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ASTM C1308 [67, 68] as well as parallel batch extraction test, up-flow percolation column 

and tank leaching tests [69] are some examples. The test methods are either kinetic-based 

to measure specific diffusion coefficients or equilibrium-based to account for the 

characteristics of the barrier and surrounding environment in equilibrium [4]. The batch 

reaction test is based on the application of acidic or basic solutions on solid materials with 

reduced particle size. The percolation column utilizes the effect of an advective flow and 

the tank leaching test is an immersion test with frequent exchanges of the leaching solution 

[4]. Several other improvised versions of these test methods have been reported in 

literature, which simply induce the leaching process through the immersion of solid 

cementitious materials in leaching solutions. [7, 11, 13, 21, 22, 26, 27, 30, 31, 37, 42, 70-

72]. The reduced solid particle size and also the chemical properties of the leaching 

solutions (pH and ionic concentration) introduce acceleration rates in the leaching process 

in some of the proposed test methods.  Since this is a matter of a very slow process, more 

accelerated leaching test methods with high acceleration factors have been developed in 

order to draw conclusions about long-term predictions and in order to avoid extrapolating 

short term data sets. These methods either utilize electrical field [11, 13, 70, 73] or 

aggressive leaching solutions [26, 37, 74] to change the kinetics of the process.  

2.3.1 Accelerated calcium leaching test methods   

2.3.1.1 Electrical acceleration 

A well-known acceleration method is electrical migration. There are a few studies in the 

literature based on the migration concept [11, 13, 70, 73]. According to the definition of 

migration, it is possible to move charged substances with the application of an electrical 

field. The charged substances move under the gradient of the electrical field in a certain 

direction according to their valance state. The average velocity of the movement is defined 

according to Equation 2.4. 

x
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Where, mυ  is the velocity of the charged substance and u is the ion mobility.  

According to the Einstein relation, ion mobility can be defined as Equation (2.5).  
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where, D is the diffusion coefficient, z is the valance number of the charged substance, F is 

the Faraday number equal to 96485 C/mol, R is the gas constant and T is the temperature.  

The actual movement of ionic species can be described by the Nernst-Plank Equation: 
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where J is the flux of ions, D denotes the diffusion coefficient, c is the molar 

concentration, R is the gas constant, T is the absolute temperature, x is the distance, z is the 

valence of ions, F is the Faraday constant, and Ψ is the electrical potential including both 

the so-called counter electrical potential caused by different mobilities between anions and 

cations and the imposed external electrical potential across the anode and the cathode. The 

subscript i represents a specific type of ions. On the right side of Equation (2.6), the first 

term describes diffusion, while the second term describes the migration process. Equation 

(2.6) has been used by Tang [75] in the development of the rapid chloride migration test 

which was adopted as the Nordic standard NT BUILD 492 [76]. 

Under a certain gradient of external electrical potential, the migration current is the sum of 

ions moving in the pore solution that is shown in Equation (2.7):  
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where I is the migration current and A is the cross-sectional area of the specimen. The 

subscript j denotes various types of ions. Combining Equations (2.6) and (2.7), one can 

obtain Equation (2.8): 
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A more detailed description of the electrochemical migration theory has been presented by 

Cronstrand et al. [77]. 

There are very few reported migration-governed accelerated leaching test methods in the 

literature. The methods entail the utilization of an electrical cell, in which the cementitious 

specimen is a porous barrier through which ions can migrate due to induced electrical 

gradients. In a study performed by Saito et al. [11], a disc of a mortar sample with a 

diameter of 50 mm and a thickness of 10 mm was placed between two glass vessels 

containing water as the electrolyte. A constant potential of 25 V was applied during the 

experimental time and carbon electrodes were used as the cathode and the anode. Ryu et al. 

[13], had utilized titanium mesh as the electrode and water is the electrolyte. The electrical 

cell was designed in such a way that catholyte and anolyte solutions were in contact, as the 

specimen with an embedded electrode (anode) was immersed in water in a container. The 

cathode was also placed at the bottom of the container. A low current density of 10 A/m2 

was applied because of the low dissolution rate of calcium ions.   

2.3.1.2 Application of ammonium nitrate  

Another category of accelerated leaching is the application of aggressive solutions. A well-

known chemical acceleration method presented in the literature is the immersion of 

samples in a concentrated ammonium nitrate solution [26, 37, 74]. As reported by 

Heukamp et al. [26] as well as Carde [37], the application of ammonium nitrate solution 

favors the dissolution of calcium hydrates because of the formation of highly soluble 

Ca(NO3)2 along with the consumption of the OH- ions in calcium hydroxides. However, it 

should be noted that due to the low concentration of calcium ions in pore solution, 

Ca(NO3)2 can only exist as ions of Ca2+ and NO3
- and precipitations of this product will not 

exist. This indicates that the presence of nitrate ions in the pore solutions is major the 

factors facilitating the dissolution of calcium hydroxides.  

In this method, cylindrical paste specimens with the size of Ø11.5×60 mm were immersed 

in an oscillating box containing 6 M ammonium nitrate solution. In order to reach a quasi-

steady state, 45 days of experimental time was required, and during this time the 

propagation of the dissolution front was 2mm/����. Other test set-ups utilizing specimens 

of different sizes with different experimental durations have also been reported in the 
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literature. Nguyen et al. [18] have reported on the application of specimens of the size 

Ø32×100 mm and Ø110×220 with an experimental time of up to 547 days. Choi and Yung 

[35] have used cylindrical concrete samples of the size Ø100×100 mm and an experimental 

time of up to 365 days.  

2.3.2 Reported properties of decalcified cementitious materials  

The test methods and standards noted in previous sections were developed to account for 

the properties of calcium-leached cementitious materials. A study by Adenot [42] has 

demonstrated that the degraded material has a layered system which consists of different 

zones separated by precipitation/dissolution fronts and progressive decalcification of CSH. 

The secondary precipitation of Ettringite and AFm (Alumina Ferric Oxide Monosulfate) 

and calcite has also been reported [31].  

It is also reported that leaching front is characterized by continuous decalcification of the 

CSH phase with a gradient of Ca/Si-ratio between the sound and leached zone. This causes 

silicate polymerization and as a result several adsorption sites become available on the 

CSH surface. The presence of these sites could cause the incorporation of dissolved iron or 

aluminum in the CSH matrix [30, 31].  

It is also demonstrated that the changes in pore structure are attributed to the leaching of 

Portlandite. In addition, it is shown that for larger initial Portlandite content, the magnitude 

of the changes in pore volume is also larger [27]. It has also been reported that the induced 

increase in porosity caused by the degradation of the CSH gel is very low and can be 

neglected [22, 27, 36]. Moreover, several investigations have demonstrated the effect of 

changes in pore volume on strength properties [12, 18, 35, 36]. Although the results of 

these studies showed considerable deviations, all of the investigations indicated that lower 

mechanical strength is a result of larger pore volume. In addition, changes in the surface 

charges of the CSH gel due to silicate polymerizations, causing changes in adsorption 

properties are reported as well [17]. More available adsorption sites mean a higher 

available specific surface area as well.  
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2.3.3 Complications and gaps in knowledge  

As noted in previous sections, there are a vast number of test methods that are reported in 

the literature to experimentally simulate the calcium leaching process. One complication is 

that test methods that approximate natural leaching conditions are very time consuming 

because the leaching process is very slow. Moreover, even if using acceleration to facilitate 

the process, an accelerated leaching test might not properly simulate the process. In 

addition, the available accelerating laboratory test methods use relatively small sample 

sizes to reach higher acceleration rates. This indicates that accurate further testing of 

properties such as transport, frost or mechanical strength, is not possible. Also, because 

leaching is a dissolution/diffusion governed process, high acceleration rates can be 

achieved if both dissolution and diffusion phenomena are accelerated. However, the 

electrical acceleration methods can only accelerate the ionic transport process by 

introducing migration instead of diffusion, but the kinetics of the dissolution process will 

not be changed. On the other hand, chemical acceleration with leaching solutions, such as 

high concentrations of ammonium nitrate, accelerates the dissolution process while the ion 

transport remains slow and diffusion-governed.  

It should be noted that a proper acceleration method should not create an over-estimation in 

the simulation of a natural process. Nevertheless, the proposed electrical leaching test 

methods cause degradation due to the production of H+ ions close to the anode. The acidic 

characteristic of this ion cause unrealistic degradation in the specimens. As reported by 

Saito et al. [11], a Ca/Si-ratio of zero can be obtained after less than 500 days of leaching 

with an electrically accelerated test method. This indicates that severe degradation will be 

obtained in less than 2 years, which is an extreme over-estimation. In addition, the 

application of a highly concentrated ammonium nitrate might cause inhomogeneous 

accelerated leaching due to excessive degradation on the surface of specimens in direct 

contact with the aggressive solution.  

Consequently, a test method accelerating decalcification for specimens of flexible size that 

speeds up both the dissolution and diffusion processes with the least amount of over-

estimation is needed to better demonstrate the circumstances of decalcification. The 

produced electrochemically aged specimens should be thoroughly characterized to enable a 

comparison with naturally aged specimens.   
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3 Methods and Experimental Details    

In order to attain the goals within the scope of this project as well as considering the 

importance of an efficient test method for calcium leaching as demonstrated in the 

previous chapter, the experimental approach in this project was prioritized as follows: 

I. Development of an accelerated leaching test method for cementitious specimens of 

flexible size. 

II. Demonstration of the comparability of the produced aged specimens with leached 

samples produced through reference leaching test methods proposed in the 

literature.  

III. Investigation of the changes of the properties of the age specimens caused by 

leaching. The considered properties are: transport properties, diffusion/adsorption, 

mechanical strength, frost resistance as well as physical properties such as 

permeability and pore structure changes.  

This chapter presents all the experimental approaches and the details of the performed test 

methods to achieve the above-mentioned goals. The chapter starts by presenting the 

preparation procedures for all the cementitious specimens used in the test methods. Then, 

the electrochemical migration test method as the main focus of the project is presented. 

Thereafter, the set-up designs of all the performed reference leaching test methods 

formulated according to literature propositions are demonstrated. Details of instrumental 

analyses and characterization of leached specimens are also presented.  

3.1 Specimen preparation  

The paste specimens were cast from a mixture of Swedish structural Portland cement for 

civil engineering (CEM I 42.5N SR3/MH/LA) and deionized water at a water-cement ratio 

(W/C-ratio) of 0.5. The chemical composition of the cement is listed in Table 3-1. Fresh 

cement paste was cast in acrylic cylinders with an internal diameter of 50 mm and a length 

of 250 mm. The ends of the cylinders were sealed with silicone rubber stops. The cylinders 

containing fresh paste were rotated longitudinally at a rate of 12-14 rpm for the first 18-24 
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hours of hydration in order to produce specimens with a homogeneous composition and 

structure. Afterwards, the rubber stops were removed and the ends of the cylinders were 

sealed with plastic tape. The specimens were stored for over 6 months in a tight plastic box, 

and then cut into cylinders with the size of Ø50×75 mm for use as specimens in the 

experiments. In order to prevent carbonation, saturated lime water was used at the bottom 

of the plastic box as an absorbent for carbon dioxide during the storage of specimens. To 

further ensure that the specimens used in the leaching experiments were not carbonated, the 

paste portions about 10-20 mm from the ends of the cylinders were cut off prior to 

specimen cutting. The initial calcium and silica content in hydrated cement is calculated 

and presented in Table 3-2. 

Table 3-1. Chemical composition of Swedish CEM I 42.5N SR3/MH/LA. 

Chemical formulation  CaO SiO2 Al2O3 Fe2O3 MgO Na2O K2O SO3 Cl 

Percentage 64 22.2 3.6 4.4 0.94 0.07 0.72 2.2 0.01 

 

Table 3-2. Initial calcium and silica contents in a cement paste specimen (Considering C3S2H3 as the 

composition of CSH) 

Total  Component mole/gr paste Ca/Si (in mole) 

Calcium content 

CSH 0.0044 

3.1 

CH 0.003 

Other hydrates 0.0018 

Total  0.0092 

 Silica content CSH 0.003 

 

The mortar specimens at a W/C-ratio of 0.5 and a cement:sand-ratio of 1:2, were cast from 

mixtures of Swedish structural Portland cement for civil engineering (Table 3-1), deionized 

water and natural sand with a maximum particle size of 1 mm. A casting procedure similar 

to the one for paste specimens was followed.   
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The concrete specimens were cast from mixtures of Swedish structural Portland cement for 

civil engineering (Table 3-1), natural sand and crushed coarse aggregate with a maximum 

size of 16 mm. The specimens were cast in cylinders in two different dimensions of 

Ø100×200 mm and Ø50×250 mm with two different W/C-ratios (in line with the properties 

of the concrete used in, SFR, in Sweden [33, 78]), Table 3-3. The slump of fresh concrete 

prior to casting was 25 mm for the concrete with W/C=0.48 and 35 mm for W/C=0.62. The 

specimens were cast in cylinders in two different dimensions of Ø100×200 mm and 

Ø50×250 mm. 24 hours after casting, the specimens were demolded and cured in the 

saturated lime water for more than 3 months in a moist plastic box and then cut to cylinders 

with the dimensions of Ø50×75 and Ø100×50 mm to be used in the leaching experiments.  

Table 3-3. Properties of concrete used in SFR repository located in Forsmark, Sweden.  

Properties Silo1 BMA2 

Cement type  Swedish structural cement Swedish structural cement 

W/C 0.48 0.62 

Cement content (kg/m3) 350 300 

Aggregate volume fraction3 0.7 0.7 

1 Based on Emborg et al. [33], however with a symmetrical deviation of 48±5 MPa in compressive strength instead of 43-
58 MPa with a mean 48 MPa. 
2 BMA: rock vault for intermediate level radioactive waste. The data has been estimated based on the previous Swedish 
concrete class K30. 
3 Estimated based on the general mix design of concrete mix proportion, which is in line with Höglund [78] for the 

concrete in silo. 

3.2 Electrochemical acceleration method  

As mentioned in the previous chapter, although some important conclusions have been 

drawn in several studies reported in the literature regarding the chemical properties of Ca-

depleted materials, in particular, the test methods available in the literature have been 

limited to the use of crushed materials or small solid samples. This has limited the 

possibilities to properly study the mechanical and physical properties of cementitious 

materials, e.g. compressive strength and diffusivity, which require the use of larger 
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samples. In addition, not many studies reported in the literature cover the implications of 

concrete specimens of proper size but instead paste specimens or powder samples have 

been used. Moreover, the proposed acceleration methods in previous studies did not 

accelerate both processes (dissolution/diffusion) governing the leaching phenomenon, 

which, consequently limits the obtained rates of acceleration. Further, as also noted in 

Section 2.3.3, the methods in previous studies have not entirely simulated the natural 

situation because of the introduction of some over-estimations and undesired degradation 

scenarios. For this reason, an efficient accelerated leaching method for the decalcification 

of cementitious materials of the proper size, is developed in this project. The 

electrochemical migration method:  

• enables acceleration of both dissolution and diffusion processes governing the 

leaching phenomenon and consequently a high leaching rate of calcium,   

• allows application of specimens of flexible sizes,  

• enables homogeneous leaching of calcium, and  

• prohibits degradations caused by extensive over estimated decalcification.  

The initial set-up design of the method was regulated according to literature 

recommendations. However, the initial design was gradually refined in order to achieve the 

most efficient combination of adjustable settings that enabled the leaching of calcium 

without causing unexpected damage to the specimens. The adjustment of several set-up 

parameters was based on the results and observed outcomes from a series of experimental 

trials. A complete demonstration of the gradual refinement of the method development 

process can be found in a licentiate thesis by Babaahmadi [79]. Paper I, presents some 

concluding remarks based on a pre-developed version of the method. The results presented 

in Papers II, IV, V and VI, are based on the finalized set-up design of the method. A step-

by-step experimental procedure for an electrochemical acceleration method is presented in 

Appendix.  

3.2.1 Set-up design  

The set-up design of the electrochemical migration method was based on the rapid chloride 

migration method developed by Tang [75], Figure 3-1. However, this method was re-

adjusted, thus enabling accelerated leaching of calcium from cementitious specimens. The 
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design included utilizing a cementitious specimen which was placed between two 

electrolyte solutions (electrical cells) as a porous medium for ion migration. The sealant 

was asphalt tape which is 2-3 times longer in height than the specimen’s, and provided an 

empty volume of about 250 ml used as the anolyte container. A plastic box with the 

capacity of 30 liters was used as the catholyte container. The cathode was made of stainless 

steel and was mounted on a plastic support in a similar way as described in NT BUILD 

492 [76]. The anode was produced using a titanium mesh and was equipped with a plastic 

spacer that prevented direct contact with the specimen.  

 

Figure 3-1. Set-up design for electrochemical migration method  

3.2.1.1 Anolyte/Catholyte solutions  

The electrolyte solutions were selected in a way to minimize the undesired destructive 

scenarios which exist in some other proposed acceleration methods and also to accelerate 

dissolution processes. It was noted in the previous chapter that the application of 

ammonium nitrate to accelerate the dissolution of calcium-containing phases has been 

reported in literature [26, 38]. However, although the dissolution of calcium is enhanced 

according to these studies, the transport of nitrate ions into the pore solution as well as the 
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leaching of calcium is still very slow due to the slow diffusion process. On the other hand, 

with the application of an electrical gradient, a homogeneous transport process of nitrate 

ions as well as higher leaching rates of calcium can be achieved. Consequently, an 

ammonium nitrate solution was used as the catholyte solution in the electrochemical 

migration method to obtain the combined effects of both chemical and electrical 

acceleration. Moreover, as mentioned in the previous chapter, the applied high 

concentration of this solution (6 M), results in an overestimated concentration gradients, 

which might cause magnified decalcification in the surface of exposed specimens. To 

prevent such degradations, a concentration close to the ionic concentration in the pore 

solution of the specimen was selected in this study. Assuming that the pH level in the pore 

solution is approximately 13.5, a concentration of 0.3 M was chosen.  

Also, as stated in the previous section, a major problem with electrical acceleration is the 

induced H+ ions produced at the anode. The acidic characteristics of these ions results in 

severe magnified degradations (Saito et al. [11] have reported that a Ca/Si-ratio = 0 can be 

achieved in less than 2 years of experimental time). To avoid this phenomenon, a lithium 

hydroxide solution was chosen as the anolyte solution in the electrochemical migration 

method, because the hydroxide ions will neutralize the produced H+ ions. Also, since Li+ 

ions are not present in the pore solution of the cementitious specimens, these will not 

interfere with leaching of the existing ions in pore solution. Moreover, Li+ ions with a 

crystallographic radius of 0.07 nm have a high surface charge density, and therefore they 

are strongly hydrated in water and acquire a large size [80]. Therefore, the thick water 

layer around Li+ in a solution will reduce the tendency for diffusion or migration of Li+ 

ions.   

To use nitrate as the negative ions and to reduce the amount of free OH- ions in the 

catholyte solution, ammonium nitrate was added to the catholyte. In the catholyte, 

ammonium was in equilibrium with ammonia, Equation (3.1), and the pH level was below 

9, which means that the H+ will neutralize the OH- formed at the cathode.  

++
+↔ HaqNHNH )(34   (3.1)  

As the amount of free OH- ions were reduced in line with the process described above, the 

nitrate ions became the dominant negative ions for migrating into the specimen, and this 
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facilitated the dissolution of the Portlandite and kept the specimen under a low resistivity 

for a longer experimental time, as shown in Trial 3 in Figure 3-2. The figure illustrates that 

with the application of ammonium nitrate, the resistances decrease in time while when 

using only deionized water as the catholyte, the leaching stops after about 150 hours. A 

plausible explanation for this behavior is that when the initial alkaline ions K+ and Na+ in 

the pore solution leach out, there should be an agent that favors the dissolution of 

Portlandite so that the leaching can be followed by calcium migration. However, when 

using deionized water as catholyte solution, low availability of calcium ions (due to low 

solubility of Portlandie) after a certain time of leaching cause high resistances. On the 

other hand, when utilizing ammonium nitrate, since the nitrate ions enhance dissolution of 

Portlandie, dissolved calcium ions would be available for continuation of the leaching 

process. Consequently, with application of ammonium nitrate solution as catholyte, the 

resistance inside the specimen will not increase. 

3.2.1.2 Current or potential range applied to the specimen 

In order to avoid any temperature-induced mechanical destruction of the specimen, the 

current applied to the specimen was controlled and kept constant to prevent any significant 

elevation in temperature caused by the Joule Effect. The application of a constant current 

also enabled accounting for the exact amount of electrical charge (Coulombs) through the 

specimen.  

As mentioned in the previous chapter, low current densities are reported to be utilized in 

the electrical acceleration methods proposed in the literature (10 A/m2 as reported by Ryu 

et al. [13] and 36 mA/m2 as reported by Castellote et al. [73]). This is due to the low 

dissolution rates of the calcium-containing phases which lead to high resistances. 

However, by applying ammonium nitrate to increase the dissolution kinetics, it is possible 

to use higher current densities without any temperature-induced degradation in the 

specimen. Here, a current density of 125-130 A/m2
paste is proposed in the electrochemical 

migration test method. According to the pilot scale experiments, the temperature fluctuates 

in the range of 20-30 °C, which would not cause any temperature-induced cracking.  
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Figure 3-2. Ohmic resistance across the specimens with application of water or ammonium nitrate as 

catholyte solution 

3.2.1.3 Specimen’s sealing conditions 

The curved surface of the specimen was sealed to enable leaching only in the longitudinal 

direction. A homogenized electrical gradient can be expected in the axial direction if the 

curved surface is completely sealed. Asphalt tape was utilized as the sealant material, and 

it also provided adequate elastic flexibility. As for dealing with high concentration 

gradients in the electrochemical cell, osmotic pressures might cause mechanical 

destructions, however, the application of an elastic sealant will prevent unrealistic 

degradation. Alternatively, silicon rubber can be utilized as an electrical-resisting sealing 

material. However, this product is rather expensive and not elastic enough.  

The simulation of axial gradients, similar to the ones in natural leaching, was conducted in 

the electrochemical migration test by sealing only half of the curved surface of the 

specimen. Figure 3-3 and Figure 3-4 illustrate the changes in the simulated electrical 

gradient through the specimen when the sealing conditions were changed.  
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Figure 3-3. Electrical current inside the specimen sealing whole curved surface area of the specimen 

  

Figure 3-4. Electrical current inside the specimen sealing almost half of specimen’s curved surface area 

The results of such a test are presented in Paper I. Also the visual characteristics of the 

leached specimen when only half of the curved surface is sealed are presented in Figure 

3-5. As can be seen in this figure, the changes in cross sections of the specimen are 
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illustrated as a function of time (the specimen was turned half way in to the experimental 

time to obtain a more homogenize leaching effect). As illustrated, leaching is not 

homogenized in the specimens due to the uneven distribution of electrical field.   

 

Figure 3-5. The observable changes inside the specimen in the course of the acceleration test 

Considering these results, in order to completely control the leaching phenomenon in order 

to draw conclusions about the post-leaching characteristics of the specimens, a 

homogenized electrical gradient (sealing the whole curved surface) is recommended to be 

utilized in the final set-up design of the electrochemical migration method. It should be 

noted that, all of the results presented in this study (except the results in Paper I) are 

obtained using a completely sealed specimen.  

3.2.1.4 Recharging reagents 

In order to compensate for the consumed ions (OH- and Li+ ions from LiOH in the anolyte 

solution as well as H+ and NO3
- ions from ammonium nitrate in the catholyte solution), the 

solutions were frequently recharged. The quantities of the salts required for recharging 

were calculated according to Faraday’s law of electrolysis as given in Equation (3.2).  

)(
M

m
zFtI ⋅⋅=⋅

                                                                                      (3.2)                                
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where, I is the current (A), t is the time (seconds), F is the Faraday number = 96485 C/mol, 

M is the molecular mass of substance (g/mol), m is the mass of substance (g) and z is the 

valance number of ions. Depending on the current intensity, different amounts of 

recharging reagents were used. The test method manual presented in Appendix also 

illustrates the calculation procedure to account for the needed regent amounts.  

3.2.1.5 Specimen size  

Cementitious specimens of sizes Ø50×75 and Ø100×50 mm were implemented in the 

electrochemical migration test. However, considering the homogeneous axial distribution 

of the electrical gradient utilized in this study, specimens of various sizes can be 

implemented. It should be noted that for specimens of different sizes, different magnitudes 

of current are needed to reach a similar current density. An important parameter to consider 

regarding mortar or concrete specimens is that only the paste fraction of the specimen is the 

current carrier (the ions only move in the pore solution of the paste). A detailed description 

of the calculation for the needed current necessary to reach the proposed current density is 

presented in Appendix. In the event of very high resistances due to a specific specimen 

size, lower current densities are recommended to prevent thermal cracking. If a lower 

current density is used, the required leaching time period must be extended to reach a given 

leaching state.  

3.2.2 Experimental time 

An important leaching level is considered to be the complete leaching of Portlandite as one 

of the major hydrated phases of HCP. Therefore, complete leaching of Portlandite which 

can also be calculated according to Portlandite content in the specimen (Table 3-2) was 

selected as the reference leaching level in this study. The accumulated leached calcium in 

the catholyte solution was frequently measured to account for the required experimental 

time to reach the leaching state of interest. As presented in Table 3-2, approximately 0.003 

Moles of Portlandite exist in 1 gram of hydrated cement paste. As illustrated in Figure 3-6, 

with the application of a current density of 125-130 A/m2, approximately 53 days of 

experimental time is needed to leach out this amount of Portlandite. However, lower 

current densities require longer leaching periods to obtain a similar leaching level. It should 

be noted that depending on the W/C-ratio the Portlandite content varies in the specimens. In 

this study the concrete specimens have the same volume of aggregate, implying the same 
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volume of CSH + Portlandite + capillary pores. Which means with a higher W/C- ratio, the 

capillary pore volume is larger, implying the CSH + Portlandite volume is smaller. 

Accordingly under the same degree of hydration, Portlandite in the concrete with higher 

W/C-ratio is less. As a consequence the experimental time for concrete specimens with 

W/C-ratio of 0.62 to reach to complete leaching of Portlandite should be shorter than that 

of specimens with W/C-ratio of 0.48. However, the prolongation of experimental time after 

leaching of Portlandite only affects the phase changes in CSH gel and as it was concluded 

by Carde et al. the changes in CSH phases due to leaching is not affecting the mechanical 

properties [36]. 

 

Figure 3-6. Leached calcium per gram of HCP against leaching time. The applied current density was 

125-130 A/m2.  

3.2.3 Calcium migration rate 

The transport or transference number is the fraction of the total current carried by given 

type of ions, Equation (3.3), where, I+ is the current carried by a given type of ion, I is the 

total applied current, M is the number of moles of the given ions which are transferred, Z+ 

is the valance number and t is the time. It should be noted that variations in the mobility 

and availability of the given ion in the system would cause different transport numbers. 
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Figure 3-7 illustrates the amount of leached calcium against the total applied electrical 

current for a specimen with the size of Ø50×75 mm. Considering 1 mole of leached 

calcium and 106 Coulombs of total applied electrical charge, the calculated transport 

number is 0.2 according to Equation (3.3).   

 

Figure 3-7. Moles of leached calcium against applied electrical current for a specimen with the size 

Ø50×75 mm.  

Moreover, Figure 3-8 illustrates the changes in the rate of calcium leaching. The equivalent 

charge carried by leached calcium ions has been plotted against the total applied electrical 

charge per gram of cement paste. The tangent to the curve represents the transport number.  

As can be seen, the transport number is higher in Zone 1, it reduces for a short while and 

then increases again, while a gradual decrease can be seen in Zone 3. A plausible 

explanation for this behavior is that in the first few hours of the experiment the current was 

carried by the available calcium ions. However, after these ions have been transported with 

the applied current, additional dissolution of calcium-containing phases is needed. As 

ammonium nitrate was utilized in the catholyte solution, considering the migration of 

nitrates into the specimen, the considerably higher solubility of calcium nitrate will cause 

an increase in the ionic concentration of calcium in the pore solution (Zone 3), thus the 

migration of calcium will propagate. As the leaching propagates, the available 

concentration of the calcium ions decreases as well, which leads to a gradual decrease in 

the transport number of these ions in Zone 3.  
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It should be noted that the transport number of calcium ions (slope of the curve in Figure 

3-8), in Zone 1 and 2 is obtained only based on 2 measured points. This might cause some 

uncertainty in absolute values for the transport number. However, the decrease in rate of 

calcium migration in Zone 2 and the following increase in the rate in Zone 3 was shown to 

be repeatable in comparable sets of experiments.    

 

Figure 3-8. Frequent changes in the rate of calcium migration represent the changes in the calcium 

transport number 

3.3 Characterization methods  

Several instrumental analyses as well as experimental investigations of properties were 

carried out to account for the changes in chemical, mineralogical, physical, mechanical and 
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transport properties of the aged specimens. The experimental details of the laboratory 

analysis are explained in this section.  

3.3.1 Chemical and mineralogical analysis 

3.3.1.1 IC and potentiometric titration 

To quantify the content of charged substances in the catholyte solution, Ion 

Chromatography (IC) was utilized using an IONEX (ICS 900) Ion Chromatograph. IC 

allows the ions of interest to be detected through conductivity or UV/visible light 

absorbance. The samples were injected into the instrument with an auto-sampler. In 

addition, the gradual change in the calcium concentration in the catholyte solution was 

analyzed with potentiometric titration on a Metrohm Titrator 702 SM Titrino, using a 

calcium-selective electrode and a 0.1 N EDTA solution as the titrant.  

3.3.1.2 XRD 

Characterization of the crystalline phases in the solid samples was performed with X-Ray 

Diffraction (XRD). A Siemens D5000 (CuKα = 1.5418 Å) X-Ray diffractometer equipped 

with a Gobel mirror was used. The measurements were carried out by using 0.050˚ per step 

and at a time step of 2 s. Powder sample was prepared by crushing and grinding the solid 

sample in a mortar while immersed in ethanol, and vacuum dried after grinding. For each 

analysis, 0.5 grams of the powder placed on a thin-walled glass sample holder was used. 

The results were calibrated using 0.05 wt.% of Si powder as the internal standard.  

3.3.1.3 LA-ICP-MS 

Line scans quantifying the axial (longitudinal) changes in Ca/Si ratios of solid samples 

were performed using Laser Ablation-Inductive Coupled Plasma-Mass Spectrometry (LA-

ICP-MS). Laser Ablation analysis was performed using a New Wave NWR213 instrument 

coupled to an Agilent 7500a quadrupole ICP-MS (upgraded with a shield torch and a 

second rotary vacuum pump). A 30-micron laser spot size, with a beam energy density of 6 

J/cm2 and a repetition rate of 10 Hz was used in line scan mode (scan speed 100 µm/sec). 

Each analysis included background measurements for 30 seconds, before switching on the 

laser.  
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3.3.1.4 SEM/EDX 

The surface topography and elemental composition of the solid samples were analyzed 

with Scanning Electron Microscopy (SEM). A FEI Quanta ESEM 200 equipped with a 

field emission gun and an Oxford Inca EDX system was used to perform the analysis.  

Thin cubes of the solid sample of about 20×10 mm with a thickness of 10 mm were used. 

The samples were vacuum dried prior to analysis. It should be noted that in order to 

prevent the samples from carbonation they were neither polished nor coated which may 

cause charging effects in the results as well as uncertainties due to the uneven surface of 

the sample. The EDX (Energy Dispersive X-ray) analysis were performed in high vacuum 

mode and at a working distance of 12 mm.   

3.3.1.5 XRF 

X-Ray Fluorescence (XRF) analysis were performed to quantify the elemental composition 

of the samples. The analysis were carried out using an X-ray Fluorescence sequential 

spectrometer (PANalytical, AXIOS) by dispersion of wavelength (WDXRF) with a Rh 

tube and three detectors.  

3.3.1.6 TGA/DSC 

Thermogravimetric (TGA) and Differential Scanning Calorimetric (DSC) analysis indicate 

the changes in mass and heat of reaction as a function of temperature. Unalike TGA/DSC 

spectrums represent different materials. Consequently changes in hydrated phases of 

cementious materials, specifically Portlandite can be detected. The analysis were performed 

with a Netzsch STA 409 PC/PG. The samples were placed in a crucible and heated in pure 

nitrogen (inlet flow rate of 20 ml/min) to a set temperature of 900°C. The heating rate was 

a linear ramp of 10°C/min.  

3.3.1.7 NMR analysis 

Nuclear Magnetic Resonance spectroscopy (NMR) was used in this study to assess the 

changes in physical and chemical properties of atoms or the molecules in which they are 

contained and to obtain information about the structure of molecules. This technique 

exploits the magnetic properties of certain atomic nuclei with respect to nuclear magnetic 

resonance. Changes in the structure of silicates were considered which represents changes 

in the structure of CSH gel. NMR spectroscopies in this study were performed on a Varian 
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Inova-600 operating at 14.7 T and equipped with a 3.2 mm solid-state probe. 

Measurements were conducted at 299 K with a MAS spinning rate of 15 kHz. 

3.3.2 Analysis of physical properties  

3.3.2.1 Pore structure and specific surface area 

The pore size distribution was studied with Mercury Intrusion Porosimetry (MIP), using 

Micrometrics Auto pore 9500 with a 5 ml penetrometer. In this method, the volume 

intrusion of mercury into specimen pores is measured to determine pore size distribution. 

The relation between pore sizes and the applied pressure is presented in Equation (3.4): 

r
p

θγ cos2
=                                 (3.4) 

where p is the absolute applied pressure, γ is the mercury surface tension, θ is the contact 

angle and r is the pore radius. It should be noted that in this method the pores are assumed 

to be cylindrical. Moreover, the Brunauer-Emmett-Teller (BET) specific surface area and 

Barrett-Joyner-Halenda (BJH) pore size distribution was measured with N2 adsorption with 

a Micrometrics TriStar 3000. BET analysis provides specific surface area assessments of 

materials by nitrogen multi-layer adsorption which is measured as a function of relative 

pressure. The technique encompasses external area and pore area evaluations to determine 

the total specific surface area in m2/g. Also, by employing BJH analysis, pore size 

distribution, independent of external area due to particle size of the sample can be 

characterized.  

3.3.2.2 Freezable water  

The changes in freeze-thaw regimes due to decalcification, were accounted for with 

scanning colorimetric measurements. A Calvet-type scanning calorimeter (SETARAM) 

was used. The calorimeter was calibrated and operated to work between about 20 °C and 

about -130 °C. The temperature scanning of a freezing and melting cycle started at 20 °C 

and went down to -80 °C and then went back to 20 °C again. The cooling and heating rate 

were set to be 0.1 °C per minute. The cement paste/mortar samples were dried at +50 °C 

and then vacuum saturated. The visible water on the surface of cylinders was wiped off and 

the samples were assumed to be saturated surface dry when placed in the calorimeter. The 

mass of each vacuum saturated sample was determined before and after calorimetric 
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measurements. The mass difference was less than about 0.1%. After calorimetric 

measurements, the samples were subjected to oven drying at 105 °C until constant dry 

weights could be determined. 

3.3.3 Assessment of transport properties  

3.3.3.1 Diffusion cell tests  

Conventionally, the diffusivity of ions in a porous material is measured using a natural 

diffusion cell test at a certain gradient of concentration [16]. In the set-up of the natural 

diffusion cell test, as presented in Figure 3-9 two solution containers (cells) were separated 

by a 10 mm thick slice of a paste specimen. The cell filled with a solution containing the 

specific ions of interest is called the upstream solution and the other cell, which is free of 

those ions (usually filled with deionized water), is called the downstream cell. The 

diffusion of the ions of interest would take place from the upstream cell to the downstream 

cell, through the specimen, due to the concentration gradient between the cells. In order to 

study the effect of ionic charge and solution concentration on the transport properties of 

chloride, sodium, lithium and calcium ions, 6 different solutions containing these ions were 

used:  

• 5 g, 10 g and 20 g NaCl per liter 

• 10 and 20 g LiCl per liter 

• 10 g LiNO3 per liter 

In this study, 18 sets of diffusion cells were used, with three sets per each solution. 

Monitoring the concentration changes in the downstream cell, and using Flick’s first law, 

the steady state diffusion coefficient can be calculated according to Equation (3.5) [81].  
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where V is the volume of the downstream cell (m3), ∆Q is the increase in the specific ions 

in the downstream cell (kg/m3), ∆t is the time interval (s), A is the exposed specimen 

surface area (m2), L is the exposed slice thickness (m), 1C is the concentration of the 
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specific ions in the upstream solution (kg/m3) and 2C is the average concentration of the 

specific ions in the upstream solution (kg/m3). 

 

 
Figure 3-9. Diffusion cell test set-up design: front view (a) and side view (b) 

Using the QCl–t curve the “time-lag”, which is the duration until a significant linear 

relationship is observed from the QCl–t curve could be specified. The non-steady state 

diffusion coefficient was calculated using Equation (3.6) [81]: 
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                                                                               (3.6)                                       

where L is the thickness of the specimen (m) and t is the time-lag (s). 

3.3.3.2 Diffusion-Adsorption test 

In order to compare the diffusion properties of reference and calcium-depleted specimens, 

the diffusion cell test was performed by utilizing solutions of LiCl, NaCl and CsCl with 2 

different concentrations of 0.05 and 0.5 M. Moreover, to analyze the changes in adsorption 

properties, the reference and the calcium-leached paste specimens were hand crushed and 

powdered in a mortar and mixed with a CsCl solution in separate plastic tubes in a glove 



40 

 

box filled with nitrogen gas in order to prevent the samples from carbonation. The Cs 

concentration in the solutions was determined with ion chromatography.  

3.3.3.3 Gas permeability and capillary water absorption  

The gas permeability and capillary water absorption tests were performed according to the 

state of the art report of RILEM Technical Committee 189-NEC [82] and the 

recommendations by Kollek [83]. The measurements were performed on concrete 

specimens of Ø100×50 mm. The specimens were preconditioned for two weeks according 

to the recommended procedures stated in the RILEM technical report 189-NEC [82] and 

the recommendations by Kollek [83] prior to the measurements. Two specimens, 

representative for each W/C-ratio and each degradation state, were tested to ensure 

repeatability of the results. 

3.3.4 Measurement of mechanical properties  

3.3.4.1 Tensile and compressive strength  

The tensile strength of the leached and reference concrete specimens of Ø100×50 mm was 

measured using the splitting test on a Toni-Technik compression testing machine with a 

maximum capacity of 100 kN. The test procedure was in accordance with the American 

standard ASTM C49 [84]. The compressive strength of concrete, mortar and paste 

specimens of Ø50×75 mm was measured with the same compression testing machine and 

according to the ASTM C39 standard [85]. 

3.3.4.2 Elastic modulus   

The elastic modulus of the concrete specimens of Ø50×75 mm was obtained as the slope of 

stress-strain curves recorded by means of an ALPHA compression testing machine, Figure 

3-10. The load cell had a maximum capacity of 50 kN and was loaded with a mechanical 

press. The vertical strain was measured using a calibrated Linear Variable Differential 

Transformers (LVDT) sensor. The end surfaces of each specimen, perpendicular to the 

longitudinal axis of the specimen, were cut with a diamond saw and polished in order to 

create a smooth surface. Concrete specimens of Ø50×75 mm were placed between two 

platens and positioned under the load cells. 4 LVDT sensors were used to measure the 

displacement of the bottom platen and three more sensors were employed to measure the 

displacement of the upper platen. The sensors were connected to a data-log system to 
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record the gradient of strain as a function of stress. The calcium-depleted specimens were 

kept in 100% RH prior to test in order to avoid any drying cracks. 

 

Figure 3-10. Elastic modulus measurements set-up design  

3.3.4.3 Resonant frequency test (fundamental longitudinal frequency) 

An impact resonant apparatus was used to measure the fundamental longitudinal frequency 

of concrete, mortar and paste specimens of Ø50×75 mm. One end of the horizontally 

placed concrete cylinder was vibrated with an impactor, and the other end was connected 

to an accelerometer. The accelerometer was connected to an amplifier, and the set-up was 

connected to a wave-form analyzer. The wave-form analyzer should have a sampling rate 

of at least 20 kHz and should record at least 1024 points of the wave form. By utilizing the 

fact that the elastic modulus is proportional to the square root of the resonant frequency, 

the elastic modulus of each specimen can be calculated according to the American standard 

ASTM C215 [86]. 
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3.4 Reference leaching test methods 

Several leaching tests designed according to methods proposed in the literature were 

carried out in the pilot scale of this project. The outcomes demonstrate the comparability of 

the produced aged samples with the specimens manufactured with application of the 

electrochemical migration method. Since the rate of leaching would increase when using 

cementious samples with reduced particle size, most of the tests were performed with 

powder samples.  

3.4.1 Natural immersion test  

The natural immersion test involved immersion of the test specimen in a solution 

containing the specific ions of interest and measuring the penetration or leaching depth or 

profile of these ions in the specimen. In this test, a total of 20 cylinders (10 pastes and 10 

mortars) of Ø46×100-250 mm, cured for 6 months, were coated with thick (3-4 mm) 

epoxy, sealing all surfaces except one for exposure. The specimens were immersed in 

ground water 400 meters deep under the ground in the Äspö laboratory located in 

Oskarshamn, Sweden, Figure 3-11. After 2 and 3.5 years of exposure, samples were 

chemically analyzed in order to obtain their leaching profiles. 

  

Figure 3-11. Natural immersion test  

3.4.2 Flash column test  

The flash column test was designed considering the effect of an advective flow and reduced 

particle size on leaching. The set-up design as illustrated in Figure 3-12, includes a 110 ml 
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glass chromatography column with a fritted disc equipped with a PTFE plug to control the 

flow rate. A powder sample of about 0.1 mm (0.075-0.125) was filled into the column on 

the fritted disc and subjected to upward water flow with a flow rate of less than 2.5 ml/s. 

The column was connected to a reservoir with the capacity of 5 liters through PVC tubes 

from both sides. Demineralized water was used as the circulating solution in the system. 

The pH value of the solution was manually monitored. When the pH value in the 

circulating solution was around 12, the entire solution in the reservoir was refreshed. The 

experiment was continued until the pH value in the solution became constantly low (about 

8). A similar set-up design can be found in a study presented by Pfingsten and Shiotsuki 

[15]. 

 

Figure 3-12. Flash column test set-up design  

3.4.3 pH stat test  

The pH stat test was designed enabling accelerated leaching of calcium which was obtained 

as of using reduced particle size and lower pH level [7] of the leaching solution than that of 

in pore solution. In this method, a constant pH level lower than that of the natural situation 

was applied to powdered samples through frequent acidification. The added volume of acid 

and the changes in temperature for an experiment aiming for pH=8, is presented in Figure 

3-13. A powder size of about 0.1 mm (0.075-0.125) was used in this test. In order to 

prepare the powder, thin slices were cut from a cylindrical specimen after more than 6 
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months of moist curing. The slices were crushed and ground under wet conditions in order 

to reduce the risk of carbonation. 12 grams of the produced powder was mixed with 50 ml 

of Milli-Q water and 6.5 ml of concentrated Nitric acid (67% chemical quality) which was 

added to the mix to reach the initial pH of 8. 

The automated potentiometric titration method using a Metrohm 836 Titrando titrator was 

employed to perform the test. The titrator was equipped with a magnetic stirrer as well as 

two dosimeters. The pH electrode with a built in thermometer was used to monitor the pH 

value in the solution. The electrode was calibrated with standard buffer solutions before 

use. The titration procedure was controlled with TIAMO software. Nitric acid of 3.7 M was 

used to maintain the natural pH value of 8. The experiment duration was set to 24 hours 

because stable equilibrium was observed under this time period. After termination of the 

experiment, the solid part was separated from the liquid through vacuum filtration. The 

sample was vacuum dried to be further characterized.  

 

Figure 3-13. Temperature change and the added amount of acid as a of function of time in pH stat test for pH 

level 8.  

3.4.4 Application of concentrated ammonium nitrate solution  

It was mentioned in Chapter 2 that one of the leading chemical acceleration methods in the 

literature is the application of concentrated ammonium nitrate solution [26, 37]. It was 

noted that to obtain a high acceleration rate specimens of small sizes were used which 
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limited further proper testing of properties. However, it can be informative to repeat this 

method and compare the properties of the aged samples with the samples aged with other 

leaching methods as well as the electrochemical migration method. 

 As shown in Figure 3-14, thin cylinders (Ø10 mm) of paste samples cured for 1 year were 

immersed in 6M ammonium nitrate solution in a vacuumed desiccator container (the 

container was vacuumed to prevent carbonation). The content was stirred during the 

experimental time (using a magnetic stirrer) to homogenize the effects. The experimental 

time was set to 45 days, in line with the results reported by Heukamp et al. [26]. 

 

Figure 3-14. Accelerated leaching test with application of concentrated ammonium nitrate solution 
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4 Results and Discussions  

The outcomes of this project are presented in the following. The results are categorized 

with regard to the major goal of this study which is to study the various properties of 

decalcified cementitious materials. It was noted in the previous chapter that in order to 

reach this goal an important part of the study was to develop a test method to produce 

decalcified cementitious specimens of flexible size.  

The set-up design of the method was presented in the previous chapter and it was noted that 

the method is applicable for samples of variable size. The efficiency of the method in 

calcium migration was demonstrated and the novelty of the method accelerating both 

dissolution and diffusion processes involved in decalcification of cementitious materials 

was discussed. In this chapter, the results of through characterization of leached specimens 

with respect to instrumental analysis results are presented. Also, the changes in chemical, 

mineralogical, physical, transport and mechanical properties of calcium leached specimens 

produced with application of electrochemical migration method are discussed. The 

characteristics of decalcified specimens produced with application of the electrochemical 

migration method and the reference methods, are compared. The comparability of the 

leached specimens is an indication of credibility of the electrochemical migration method. 

Specifically the similarity with natural immersion test is of high importance. However, it 

should be mentioned that detailed characterization of specimens leached with reference 

accelerated leaching test methods is out of the scope of this study. As it was noted in 

Chapter 2, these methods do not enable the leaching of specimens of flexible size and 

consequently are not comparable with electrochemical migration method in this regard.  

The chemical and physical characterization results can be found in Paper II and partially in 

in Paper IV, V and VI. The results regarding changes in mechanical properties are 

presented in Paper IV, V and VI. The changes in transport properties are presented in paper 

VI and partially III and IV. Discussions regarding characteristics of specimens degraded 

with natural immersion can be found in Paper V and VI.  
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4.1 Chemical and mineralogical properties of leached specimens  

The LA-ICP-MS results, presenting the electrochemical migration induced longitudinal 

changes in the Ca/Si-ratio of paste specimens as a function of leaching duration are 

illustrated in Figure 4-1. As can be seen, the reference specimen had a relatively 

homogeneous distribution of Ca/Si-ratio, which decreased with the propagation of the 

leaching front from the cathodic side towards the anodic side. The longitudinal function of 

changes in the Ca/Si-ratio propagated towards a relatively homogeneous leaching state in 

time, which is the complete leaching of Portlandite. It should be noted that leaching of 

Portlandite is also accompanied by phase changes in CSH gel.   

The reference lines presenting the Ca/Si-ratio of the Portlandite leaching state as well as the 

Ca/Si-ratio of CSH were calculated according to Table 3-2, as shown in the previous 

chapter. As can be seen, after approximately 53 days of experimental time (1×106 

Coulombs), a Ca/Si-ratio close to complete leaching of Portlandite was obtained. As 

mentioned in the previous chapter, 53 days of leaching is the proposed experimental time 

for the electrochemical migration method. This means that in upcoming results and 

discussions, the leaching state representing degraded specimens by utilizing the 

electrochemical migration method corresponds to approximate leaching of Portlandite. In 

addition, based on XRF analysis, the longitudinal changes in the Ca/Si-ratio of the 

degraded specimen leached for 53 days are presented in Table 4-1. The results are 

relatively comparable with the results from the ICP-MS analysis as shown in Figure 4-1. 

The results also indicate that a depletion depth of 75 mm can be expected with the 

application of the electrochemical migration method after 53 days of experimental time. 

Considering the leaching experiments reported in the literature, Haga [27] have shown that 

a depletion depth of maximum of 1.25 mm can be expected after 100 days of a natural 

immersion test. In a similar experimental approach, Faucon [31] have shown that up to 60 

days of natural leaching leads to 0.7 mm of dissolved thickness in exposed specimens. Also 

according to investigations by Trägårdh and Lagerblad [9, 23] a leaching depth equal to 5-

10 mm can be expected after up to 100 years. Moreover, considering the results presented 

by Carde and Francois [37], with the application of concentrated ammonium nitrate 

solution a degraded thickness of 8 mm can be expected after 36 days of leaching. 

Comparing these results with the depletion depths of 75 mm for the specimens leached with 
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the electrochemical migration method presented in this study, it is stablished that a 

considerable acceleration rate can be obtained using the electrochemical migration method.  

The changes in the Ca/Si-ratio indicate possible changes in the calcium-containing phases 

in HCP. XRD analysis results presented in Figure 4-2, illustrate the crystallographic 

changes caused by leaching. As can be seen, the most apparent change is that the 

Portlandite peaks had disappeared in leached samples. 

 

 

Figure 4-1. Longitudinal LA-ICP-MS results (considering 250 mA of constant current for a paste 

specimen of Ø50×75 mm) 
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Table 4-1. XRF analysis results (The aged paste sample had been leached for 53 days.) 

 % weight SiO2 Al2O3 Fe2O3 MnO MgO CaO K2O SO3 Ca/Si 

 Reference 16.8 2.8 3.6 0.2 0.6 49.5 0.5 1.1 3 
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0-15 17.2 2.9 3.6 0.2 0.6 37.4 0.0 0.9 2.2 

15-30 19.2 3.3 4.0 0.2 0.6 40.6 0.0 0.6 2.1 

30-45 20.9 3.5 4.3 0.2 0.8 36.9 0.0 1.2 1.8 

45-60 21.4 3.7 4.4 0.3 0.7 33.6 0.0 0.6 1.6 

60-75 20.2 3.4 4.2 0.2 0.8 27.2 0.0 0.8 1.4 

 

 

Figure 4-2. XRD analysis results comparing the un-leached reference and the leached sample. (The aged 

paste sample had been leached for 53 days.) 
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To account for the credibility of XRD results, TGA analysis were conducted and the 

results are shown in Figure 4-3. As can be seen, the reference sample exhibits a mass 

change at approximately 400°C, which is the assigned peak to Portlandite [87]. However, 

thermogravimetric changes in the leached sample do not show any Portlandite peak. The 

preferential leaching of Portlandite, as stated in Chapter 2, has also been reported in the 

available leaching assessments in the literature [27, 42, 88]. 

Figure 4-3. TGA analysis comparing changes in temperature-induced mass changes in cement paste 

samples due to leaching. (The aged paste sample had been leached for 53 days.) 

In addition, Figure 4-4 illustrates comparable thermogravimetric outcomes for leached 

mortar and concrete samples. This indicates that leaching of Portlandite with the 

application of the electrochemical migration method was not affected by the addition of 

aggregates in the cementitious specimens. 

4.2 Physical properties of leached specimens 

4.2.1 Pore structure and specific surface area 

The visual changes in the pore structure of leached paste specimens are illustrated in Figure 

4-5. It can clearly be seen that the degraded samples are considerably more porous than the 

reference samples. Moreover, the Portlandite crystals can be found in the reference samples 

while crystalline phases cannot be seen in the images representing leached samples. 

A more detailed assessment of the changes in pore structure and the distribution of pore 

sizes are presented in Figure 4-6 with regard to mercury intrusion and N2 adsorption 

analysis. As can be seen, the mercury intrusion results indicate changes in the larger pores 

(capillary pores) and the N2 adsorption results show changes even in gel pores. The results 

indicate a considerable increase in pore volume due to leaching. As shown, a major 
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increase in capillary pores happens for pores of size approximately 200 nm. This has also 

been shown by Haga (2005). 

 

Figure 4-4. TGA analysis comparing changes in temperature-induced mass changes in concrete and 

mortar samples due to leaching. (The aged samples had been leached for 53 days.)  

 

Figure 4-5. SEM images from reference and leached paste samples. (The aged paste sample had been 

leached for 53 days.)  
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Another important point is the 50 nm pores. The results reported by Haga (2005) indicate a 

lower pore volume in this pore size for the leached sample than in the reference material. 

However, Figure 4-6 indicates relatively similar pore volume for this pore size before and 

after aging with electrochemical migration method. The results presented in Figure 4-7 can 

clarify this difference. The figure shows that the pore volume assigned to this pore size in 

the samples leached for 25 or 35 days is actually lower than the reference, which is 

comparable to the results presented by Haga (2005). since a decrease in pore volume can 

be due to precipitation, the results indicate that the probable leaching-induced 

precipitations also occur when using the electrochemical migration method, however, with 

longer leaching time these precipitations are also leached out. 

 

Figure 4-6. Pore size distribution results: mercury intrusion and N2 adsorption analysis. (The aged paste 

sample had been leached for 53 days.)  

Moreover, the N2 adsorption results, Figure 4-6, indicate a considerable increase in gel 
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indicates changes in other parameters such as specific surface area. BET analysis results 

indicate that leaching causes an increase of approximately 80% in specific surface area of 

cementitious materials. This is in agreement with the results presented by Chen et al. [89] 

indicating that a near doubling of specific surface area is expected due to decalcification of 

cementitious materials with changes in Ca/Si-ratio from 3 down to 1.1. It should be noted 

that the deviations in measured specific surface area by BET is a known disturbing 

phenomena as reported in literature [51], specifically due to the effect of the drying 

condition of sample prior to the analysis. However, this matter should not influence the 

conclusions in this study as all sets of measurements were carried out under the same 

conditions and showed similar specific surface areas for degraded specimens with both 

electrochemical and natural leaching methods with values higher than that of reference 

sample. 

A plausible explanation for the increase in specific surface area is the changes in 

characteristics of the scale of gel pores due to silicate polymerizations in the CSH gel. It 

has been reported in the literature that due to leaching, the Ca/Si-ratio of CSH gel gradually 

decreases and iron or aluminum ions dissolved from Ettringite and AFm phases can 

incorporate into the CSH [30, 31, 42, 88]. As also stated in Chapter 2, a higher specific 

surface area in the CSH gel indicates the presence of available adsorption sites for other 

ions, such as aluminum and iron. 

The NMR results are presented in Figure 4-8 illustrating the changes in the structure of 
29Si, thus representing the changes in the structure of CSH gel. As shown Q2 peaks are 

increasing due to leaching. This indicates a higher degree of polymerization of silicates as 

Q2 represents a longer chain structure. The Q1 and Q2 peaks are located according to a 

study by Rawal et al. [90]. Silicate polymerization as a phenomenon caused by 

decalcification has been reported in literature as an outcome of decalcification of 

cementitious materials [89, 91].  

Changes in gel pore volumes, specific surface area and structure of silicates are all 

indicating that the leaching of Portlandite is accompanied by decalcification of CSH gel. As 

mentioned previously, this phenomenon is noted in literature by Adenot and Buil [42].  
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Figure 4-7. Pore size distribution results: mercury intrusion analyses. (The aged paste sample had been 

leached for 25 and 35 days.) 

   

Figure 4-8. NMR results: the changes in structure of 29Si after leaching 
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the water content in specimens subjected to leaching. Colorimetri analysis are reported in 
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larger pore system, because the water in gel pores requires very low temperatures to freeze.  
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The results presented in Table 4-2 include the thawing energy obtained from colorimetric 

results, the freezable water calculated according to the thawing energy and heat of fusion of 

water as well as maximum possible heat calculated according to the total water content of 

specimens and heat of fusion of water. Also four parameters: A, B, C and J1/J2 are defined 

in that table. Parameter A, B and C are the total, frozen and un-frozen water content in the 

specimens normalized with regard to the dry weight of the specimens. The J1/J2 parameter 

is the ratio of thawing heat to maximum heat, which is an indication of the freezing ability 

of water. As can be seen in Table 4-2, higher B values for leached specimens show that 

more water was frozen in leached specimens, which is due to higher capillary pore volume 

in these specimens (Figure 4-6). Also the higher C values indicate more unfrozen water 

exists in leached specimens, which is also due to the larger gel pore volume (Figure 4-6), 

considering that the un-frozen water is the water in gel pores. However the increase rate of 

B as shown is higher than C values indicating that leaching-induced changes in capillary 

pores are more than in gel pores.  

Table 4-2. Changes in freezing properties due to leaching  

Material  Dry 
weight 

Total 
water 

Thawing 
(J1) 

Freezable 
water* 

Max 
heat 
(J2)* 

A=Total 
water/dry 
weight 

B=frozen 
water/dry 
weight 

C=un-frozen 
water/dry 
weight 

Freezability 
(J1/J2) 

Reference paste 17,13 5,62 841 2,52 1880 0,32 0,15 0,18 0,45 

Leached paste 1 8,86 3,62 584 1,75 1209 0,4 0,20 0,21 0,48 

Leaced paste 2 10,43 5,87 1216 3,64 1960 0,56 0,35 0,21 0,62 

Reference mortar 18,11 2,05 371 1,11 684 0,11 0,06 0,05 0,54 

Leached mortar  19,28 2,95 574 1,72 988 0,15 0,09 0,06 0,58 

*Freezable water= J1/heat of fusion of water  

*Max heat = water content*heat of fusion of water (334 J/g) 

 

Accordingly the J1/J2-ratio indicates higher freezing ability in leached specimens. It should 

be noted that there is a considerable deviation in the results comparing leached sample 1 

and 2, which requires further investigations to draw concrete conclusions regarding the 

quantified rate of changes. 
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4.3 Transport properties of leached specimens 

4.3.1 Adsorption and diffusion 

The results of the adsorption test are illustrated in Figure 4-9, and indicate that the free 

concentrations of cesium ions in the mixtures containing the leached cement paste were 

considerably lower than the mixtures that contained the reference samples. This implies 

that the aged cementitious materials have a greater binding potential, which is in agreement 

with the findings previously reported by Ochs et.al [17]. A plausible explanation for the 

enhanced adsorption of Cs+ ions in the aged samples is that when almost all alkali ions and 

a large portion of the Ca2+ ions have been removed during the leaching process, a large 

number of negatively charged adsorption sites of silicates are made available for Cs+ ions. 

On the other hand, in the case of pristine materials, the available adsorption sites for Cs+ 

ions are fewer because a large portion of these sites have already been occupied by Ca2+, 

Na+ or K+ ions. This is also in agreement with the measured higher specific surface area of 

the aged samples, as presented in Figure 4-8.   

 

Figure 4-9. Adsorption test results 
 

The effect of leaching on the transport properties of cementitious materials is not only due 

to changes in adsorption properties, but also due to changes in the ionic diffusion and pore 
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diffused ions has been plotted as a function of time. As shown in the figure, the diffusion 

rates were higher for all the ions in the aged specimens than in the reference material. 

Owing to the fact that the aged specimens have a higher porosity, as demonstrated in 

previous sections, a higher diffusion rate can reasonably be expected. Also shown in Figure 

4-10 (a), is that the diffusion rate of Cs+ ions in an aged sample is similar to that of the Na+ 

ions in a comparable sample. However, this is in contradiction to the diffusion rate in a 

pure salt solution in which the diffusion coefficient of Cs+ ions is higher than that of the 

Na+ ions (for a concentration of ~ 4 mol/dm3, diffusion coefficients of 0.941 and 1.660 m2/s 

are reported for NaCl and CsCl solutions respectively [95]). This may be explained by the 

enhanced adsorption of Cs+ ions on the surfaces of the aged specimens, which has been 

demonstrated to be caused by less competition between Cs+ and other ions for occupying 

the free negative sites [17]. Furthermore, considering the higher degree of hydration of the 

Na+ ions compared with Cs+ ions [80], the binding potential for Na+ ions can be expected to 

be weaker. This implies that although free negative sites are available after the degradation 

of cementitious materials, a strong ionic binding potential is needed to fill these sites and 

this potential is higher for cesium ions than for sodium ions. As a result, the greater 

adsorption potential of Cs+ ions decreases the diffusivity of these ions in degraded samples. 

In contrast, plot (b) in Figure 4-10, shows that the rate of diffusion for Cs+ ions was 

relatively higher than the rate of diffusion for Na+ ions in 0.5 M solutions. The 

discrepancies between 0.05 and 0.5 M solutions can be explained according to the effect of 

ionic concentration on binding. In a 0.05 M solution, the diffusion of Cs+ ions decreases in 

comparison with a pure ionic solution and becomes nearly equal to the diffusion of Na+ 

ions due to the stronger adsorption at the negatively charged surfaces, plot (a). However, in 

a 0.5 M solution, ionic diffusion overcomes these adsorption effects due to higher 

concentration gradients and as a result the diffusion of Cs+ ions will not be affected by the 

adsorption effect, plot (b).Similarly, the difference between the diffusion rates of Cl- ions in 

a CsCl solution and a NaCl solution will be lower in 0.05 M solutions, plot (c), than in 0.5 

M solutions, plot (d). This indicates that if the diffusion coefficient of Cs+ ions is reduced 

owing to the adsorption effect, the diffusion coefficient of Cl- ions will also be affected. 

This is because the diffusion of cations and anions is highly coupled to maintain the 

electro-neutrality of the system. Therefore, a lower rate of Cs+ ions will cause a decrease in 

the diffusion of chloride ions as well. 
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Figure 4-10. Diffusion cell test results: changes in ionic transport properties due to leaching 

As presented in Figure 4-11 and paper III, it should be noted that, the changes in ionic 

concentration in the solution affect the ionic diffusion coefficients. It is shown in the figure 

that the diffusion coefficient of cations and anions differed by approximately an order of 

magnitude. Moreover, the diffusion coefficient value decreased (in most of cases) due to an 

increase in the ionic concentration of the upstream cell, which is logical, due to the friction 

effects between ions. 
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Figure 4-11. The effect of ionic concentration of upstream cell on ionic diffusion coefficient 

4.3.2 Gas permeability and capillary water absorption 

The capillary water absorption results representing the changes in the pore structures of the 

specimens are presented in Figure 4-12. As shown in the figure, capillary water absorption 

increased in the calcium-depleted specimens compared with the pristine material to a large 

extent. Considering the presented results, it can be inferred that the capillary water 

absorption in 24 hours increased by a factor of 4 and 2 for calcium-depleted specimens with 

W/C-ratios of 0.48 and 0.62, respectively. In addition, the difference in capillary water 

absorption between the aged specimens with different water cement ratios is relatively less 

than that of between reference specimens. A plausible explanation is that after leaching the 

pore structure becomes comparable in decalcified specimens no matter which initial W/C-

ratios they had (it should be noted that according to Table 3-3 the paste volume is the same 

for specimens with different W/C-ratios). The change in the gas permeability coefficient, 

which is another representative parameter for the pore volume of cementitious materials, is 

presented in Figure 4-13. It is seen that the gas permeability in the calcium-depleted 

specimens was more than 10 times higher than that in the pristine material. This can also be 

explained by the larger pore volume in the specimens after decalcification. 
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Figure 4-12. Capillary water absorption in square root of time for concrete specimens with W/C-ratios of 

0.48 and 0.62 before and after leaching 

 

Figure 4-13. Gas permeability coefficient K as a function of applied absolute gas pressure P for concrete 

specimens with W/C-ratios of 0.48 and 0.62 before and after leaching 

4.4 Mechanical properties of leached specimens  

The mechanical properties of the concrete specimens are presented in Table 4-3. As can be 

seen, the average tensile strength for the specimens with a W/C-ratio of 0.48 has been 

reduced by up to approximately 70% due to calcium depletion, whereas the reduction in 

tensile strength for the specimen with a W/C-ratio of 0.62 was about 55%. Interestingly, 

the strength of the Ca-depleted specimens is very similar regardless of the W/C-ratios of 

the original specimens. Interestingly the strength reduction factors are comparable to 

0

1000

2000

3000

4000

5000

6000

7000

0 50 100 150 200 250 300 350 400 450

W
a

te
r 

a
d

so
rp

ti
o

n
 p

er
 u

n
it

 a
re

a
 

(g
/m

2
)

√t (√seconds)

W/C=0.48 REF

W/C=0.62 REF

W/C=0.48 Aged

W/C=0.62 Aged

1E-18

1E-17

1E-16

1E-15

0,12 0,17 0,22 0,27

K
 (

m
2
)

P (MPa)

W/C=0.48 REF

W/C=0.62 REF

W/C=0.48 Aged

W/C=0.62 Aged



62 

 

capillary water absorption increased factors. However, it should be noted that the 

repeatability of such similar factors should be further investigated to draw more concrete 

conclusions. The changes in the compressive strength of the mortar and paste specimens 

are also presented in Table 4-4. As can be seen, a relatively similar residual strength level 

is reached for paste and mortar specimens after leaching. The lower residual strength level 

in mortar and paste specimens compared to concrete specimens is due to larger paste 

portion in these specimens which is affected by leaching phenomenon.  

Table 4-3. Average tensile and compressive strengths of concrete specimens 

 Tensile strength (MPa)   Compressive strength 
(MPa) 

 

 
Ref  Aged % decrease Ref  Aged % decrease 

W/C=0.48 10.2 ± 0.1 2.8± 0.1 72 43± 0.3 12.7± 0.1 70 

W/C=0.62 5.5± 0.5 2.5± 0.1 55 30± 0.1 12.7± 0.1 58 

 

Table 4-4. Average compressive strength results for mortar and paste specimens 

  Compressive Strength (MPa)  

 W/C Ref  Aged  % decrease 

Mortar 0.5 38.8± 0.3 9.9± 0.3 74 

Paste 0.5 21.6± 0.2 9.5± 0.1 56 

 

The presented outcomes are in good agreement with the conclusions presented by Carde et 

al. (1996). In their study, they showed that the loss of strength due to the complete removal 

of Portlandite can be up to 70%. It has also been shown that the main contribution to the 

changes in strength properties is due to the leaching of Portlandite, and that the effect of 

CSH degradation is negligible [12, 36, 37]. An increase of up to 50 % in total pore volume 

of leached paste samples was demonstrated in the previous section, which clearly justifies 

the changes in strength properties. This indicates that when leaching propagates towards an 

approximate complete leaching of Portlandite, because of similar obtained pore structures, 

comparable strength properties can be expected in samples with different initial W/C-

ratios.  
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Further, the Elastic modulus of the specimens, obtained as the slope of the stress-strain 

curves, is presented in Figure 4-14. As shown in the figure, the elastic modulus was 

reduced by up to 40% in both concrete specimens due to leaching.  

 

Figure 4-14. Stress-strain curves 

To confirm these results, the obtained elastic modulus in terms of fundamental longitudinal 

frequency is also presented in Table 4-5. The results demonstrate that the reduction factor 

of elastic modulus due to leaching is comparable between all the cementitious materials, 

despite their initial W/C-ratios. 

Table 4-5. Resonant frequency and calculated E-modulus of the reference and aged specimens 
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4.5 Comparability of leached specimens with degraded 

specimens leached with reference leaching methods 

Figure 4-15 shows the longitudinal ICP-MS line scans that illustrate the changes in the 

Ca/Si-ratio for the specimens leached with the natural immersion test. The scanned lines as 

well as the leaching fronts are also illustrated in Figure 4-16. The results represent 2 and 

3.5 years of leaching time. A comparison of Figure 4-15 with Figure 4-1 shows that the 

shape of the leaching front is comparable in the specimens leached with both natural 

immersion and electrochemical migration method.  

As shown in Figure 4-16, the Ca/Si-ratio representative curve has been categorized into 4 

zones. In Zones 1 and 2, the Ca/Si-ratio shows that the Portlandite has been leached. 

However, in Zone 2 there is a gradient in the Ca/Si-ratio for the specimen leached for 2 

years, and the Ca/Si-ratio increased in Zone 3. This indicates that the leaching front, after 2 

years of leaching, is approximately up to Zone 2 (=6 mm) which propagates to 11 mm after 

3.5 year.  

 

Figure 4-15. LA-ICP-MS analysis of specimens leached with the natural immersion test  
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Figure 4-16. Visual leaching front and ICP-MS scan lines for specimens leached with the natural 

immersion test 

The demonstration of the preferential leaching of Portlandite in the specimens with a 

leaching front of 6 and 10 mm after 2 and 3.5 years of leaching, respectively, is presented 

in Figure 4-17. The temperature-induced mass changes did not indicate any Portlandite 

peak in the leached samples.  

 

Figure 4-17. Thermogravimetric analysis of samples leached for 2 and 3.5 years with the natural 

immersion test compared with un-leached reference material.  
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The results concerning the preferential leaching of Portlandite in samples leached with 

other reference accelerated leaching methods are presented in Figure 4-18. As can be seen, 

all methods are enabling the preferential leaching of Portlandite. However, it should be 

noted that as the leaching level is different in these samples, no other conclusion rather than 

comparability in preferential leaching of Portlandite concerning the leaching function of 

these methods is made. 

.  

Figure 4-18. XRD results for decalcified cement paste samples leached with proposed accelerated leaching 

methods in literature and electrochemical migration method. 

Moreover, as mentioned the progression of degradation in CSH gel is determined with 

respect to NMR results for 29Si, representing changes in the structure of calcium silicate 

hydrates after. The sample for analysis of the changes in naturally leached specimens were 

taken from outer most 2 mm of the leaching front and the case of electrochemically leached 

specimens the sample represents the obtained 75 mm depletion front after 53 days of 

leaching. As shown in Figure 4-19, the Q1 peaks are decreasing for both leached samples 

while the increase in the intensity of Q2 peaks indicates polymerization of silicates (longer 

chains [91]). This demonstrates the comparability of decalcified specimens leached with 

both electrochemical and natural methods, in terms of changes in the structure of CSH gel.  
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Figure 4-19. NMR results: the changes in structure of 29Si after leaching 

Moreover, results from BET analysis (for similar samples as for NMR analysis), indicated a 

significantly higher specific surface area in leached specimens degraded with both electro-

chemical migration and natural leaching methods. According to several sets of 

experimental results the specific surface area was approximately 50, 90 and 85 m2/g for 

reference, electrochemically leached and naturally leached samples, respectively. 

Accordingly the comparability of leached specimens with both methods in terms of 

changes in specific surface area is demonstrated.  
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5 Conclusions  

The effect of decalcification on the properties of cementitious materials was investigated. 

The aim was to provide experimental databases to improve predictions regarding the 

functionality of cementitious barriers in nuclear waste repositories. To fulfill the lack of a 

sufficient accelerating test method to produce degraded cementitious specimens of flexible 

size, the electrochemical migration method was developed. The manufactured decalcified 

specimens were characterized with respect to chemical, mineralogical, physical, transport 

and mechanical properties. The comparability of properties with the characteristics of 

specimens produced with natural immersion was investigated and further possibilities for 

continued research are accounted for. The concluding remarks are presented below.  

I. Electrochemical migration test method 

The electrochemical migration method as a test method that accelerates the decalcification 

of cementitious materials was developed and a recommended test procedure was proposed 

in this study. The acceleration was obtained as a result of higher dissolution rate of calcium 

hydroxides, by application of ammonium nitrate, as well as faster transport of calcium ions, 

by an external electrical field. The specific conclusions regarding this method are as 

follows: 

• With the application of the electro-chemical migration method the ageing of 

cementitious materials is driven by the migration function at an ageing rate far 

higher than that of the natural leaching rate. 

• Calcium transport has an average transport number of 0.2, indicating that calcium 

ions are available in the pore solution during the leaching period and at least 20% of 

the applied charge is carried by these ions.  

• The method can enable leaching of specimens of flexible sizes, and the addition of 

aggregates does not interfere with the leaching process.  

• Leaching level can be predicted by monitoring the leached calcium content in 

catholyte solution.  
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• With a current density of 125-130 A/m2, a depletion depth of 75 mm was obtained 

after 53 days of leaching with the application of the electrochemical migration 

method. The dissolution front corresponds to the complete leaching of Portlandite, 

with a certain degree of phase changes in the CSH gel (Ca/Si<1.5) of the material. 

II. Characteristics of degraded specimens  

The changes in the characteristics of cementitious specimens due to leaching induced by 

the application of the electrochemical migration method were investigated. The 

characterizations of specimens in terms of chemical and mineralogical properties as well as 

changes in pore structure of specimens were performed by means of various instrumental 

analysis: XRD, XRF, IC, LA-ICP-MS, SEM/EDX, MIP, BET/BJH, TGA/DSC. The 

changes in properties such as diffusion and adsorption, strength and modulus, permeability 

and water absorption as well as freezable water were also studied. The credibility of the 

electrochemically degraded specimens was also accounted for by comparing the 

characterization outcomes with properties of degraded specimens leached with the natural 

leaching method and other methods proposed in the literature. These investigations led to 

the following conclusions:  

• Similar to natural leaching and other results reported in the literature, ageing using 

the electrochemical migration method causes the dissolution of Portlandite followed 

by progressive decalcification of the CSH gel in the material.  

• Probable leaching-induced precipitations occur when using the electrochemical 

migration method, similar to naturally leached specimens. However, with longer 

leaching times these precipitations eventually leach out.  

• The specific surface area of the calcium-depleted paste specimens leached with both 

natural and electrochemical leaching methods increased considerably after leaching. 

This is due to silicate polymerization which was demonstrated by NMR analysis.   

• The cumulative pore volume of the calcium-depleted paste specimen increased 

considerably, compared with that of the pristine material. This caused a significant 

increase in the ionic diffusion rate of the aged samples. A larger pore volume for 

pore sizes lower than 100 nm indicates that the changes in pore structure after 
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degradation occur not only in the larger pores but also in the gel pores of the 

material.  

• The aged cementitious samples exhibited a higher binding potential for Cs+ ions. As 

almost all the alkali ions and a large portion of the Ca2+ ions had been leached from 

the sample, a large number of negatively charged adsorption sites were created for 

Cs+ ions.   

• The combined effect of binding potential, porosity and ionic diffusion should be 

considered when assessing the transport properties of ions. 

• Leaching of Portlandite causes considerable changes in the physical and mechanical 

properties of concrete specimens, primarily due to an increase in pore volume. This 

would cause up to a 70% decrease in the mechanical strength and 40% decrease in 

the elastic modulus of the material. 

• The larger pore volume that occurs after calcium depletion in concrete specimens 

causes more than 10 times higher gas permeability and at least a 3 times higher 

chloride migration rate. 

• The properties of the concrete specimens after complete leaching of Portlandite 

were found to be similar no matter which initial water cement ratios the specimens 

had. This is, to a great extent, due to similar pore structures in the concrete 

specimens after leaching. 

• Leaching seems to increase the freezing ability of pore water in cementitious 

materials. This could be due to the larger pore structure that occurs after leaching.  

• The leaching front with the application of the electrical migration method was 

similar to the leaching front in specimens leached with the natural immersion test in 

terms of shape, preferential leaching of Portlandite and polymerization of silicates.    
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6 Future Work  

The outcomes of this project can be further utilized to pinpoint the most important factors 

to be considered in long-term predictions of the degradation caused by calcium leaching. 

These outcomes and further detailed investigations can be used as databases for modeling 

the leaching process of cementitious materials in long-term perspectives.  

The electrochemical migration method has proven to be a very effective method for 

producing samples of flexible size with a high leaching rate, however, similar to any other 

acceleration method, further investigations are needed to confirm the comparability of the 

produced degraded samples with naturally leached materials. Moreover, the ageing 

function of the method and the acceleration rate are important parameters to be clarified. 

Quantitative adsorption and diffusion tests for cementitious materials with better precision 

are needed in order to supply accurate databases for service life modeling. Nevertheless, 

producing aged specimens by the electrochemical acceleration method and simulating the 

adsorption and diffusion process in several leaching levels are necessary steps before any 

numerical modeling.  

Further studies of degradation of CSH gel after complete leaching of Portlandite are needed 

in order to predict the entire service life of repositories of nuclear waste.   
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7 Appendix: Recommended manual for 

electrochemical migration test method 

7.1 Scope 

This manual demonstrates a step by step experimental procedure for applying the electro-

chemical migration method in order to produce calcium leached cylindrical cementitious 

specimens of flexible sizes.  

7.2 Apparatus 

7.2.1.1 Sealants 

7.2.1.1.1 Asphalt tape:  

An asphalt tape (type BITUTHENE ) or a similar product providing elasticity should be 

used to seal the curved surface of specimen. 200 mm width for the elastic tape is 

recommended.  

7.2.1.1.2 Plexiglas 

A plexiglas tube with an outer diameter size similar to the specimen’s diameter is required.   

7.2.1.1.3 Clamper 

Stainless still clamper should be used  

7.2.1.2 Electrodes  

7.2.1.2.1 Anode 

0.5 mm thick Titanium mesh, equipped with a plastic spacer 

7.2.1.2.2 Cathode/plastic support 

0.5 mm thick stainless steel plate and a plastic support prepared according to NT BUILD 

492 [76] 

7.2.1.3 Power supply 

Capable of supplying a voltage of 100 V and a constant current of up to 1-2 A 
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7.2.1.4 Reservoirs 

7.2.1.4.1 Catholyte reservoir 

Plastic box with a capacity of at least 20 liters 

7.2.1.5 REAGENTS 

7.2.1.5.1 Anolyte 

2 M Lithium Hydroxide 

7.2.1.5.2 Catholyte 

0.3 M ammonium nitrate  

7.3 Test preparation 

125-130 A/m2
paste of current density should be applied to the specimen to reach to an 

efficient leaching rate without inducing thermal damages.  

Considering a paste specimen of size Ø50×75 mm as an example, with application of such 

a current density, a current of 250 mA and a maximum potential of 100 volts is expected 

which corresponds to 25 W of electrical power.  

In order to calculate the needed current and expected potential and applied power: 

1) Calculate the cross-sectional area of the specimen, A (m2) 

2) Consider the volume percentage of the paste in the specimen, %VP 

3) Calculate the cross-sectional area of the paste content: 
 ×%� = 
� 

4) Calculate the needed current: �(
) = 
� × 127 

5) Start the test and read the potential on power supply 

6) Calculate the power: � =  × � 

7) If P > 25 W decrease the current density by 75% and register the potential and 

recalculate the power. Continue until the calculated power does not exceed 25 W. 
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7.4 Test procedure  

1) Seal the cylindrical cementitious specimen with the asphalt tape and then tighten it 

by the clampers.  

2) The asphalt tape used to seal the curved surface of the specimen should be extruded 

to provide an empty volume of about 200-300 ml to be used as the anolyte 

reservoir, Figure 7-1. 

3) In case of utilizing a specimen with a diameter larger than 50 mm it is 

recommended to place a Plexiglas tube on top of the specimen according to Figure 

7-2. The asphalt tape should be used to assemble them together while also sealing 

the specimens curved surface and sealant should be tightened with the clampers.  

4) Fill up to one third of the anolyte reservoir with a 2 M LiOH solution. 

5)  Place aside the assembled set-up for 5-10 minutes to check possibility of leakage. 

In case of leakage, tight the clampers and wait for mere 10-15 minutes to make sure 

there is no more leakage.  

6) Fill the catholyte reservoir with 10 liters of 0.3 M ammonium nitrate solution.  

7) Place the plastic support/cathode set-up inside the catholyte reservoir and place the 

specimen on the plastic support according to Figure 7-3.  

8) Insert the anode in to the anolyte reservoir. 

9) Connect the anode to + pole and the cathode to the – pole of the power supply.  

10)  Adjust the current to the calculated required current (according to previous section) 

and set it to constant.  

11) If the initial potential is much higher than the calculated values, reduce the current 

slowly to maintain a power lower than 25 W.  

12) The regents should be recharged according to section 7.5.  

13) The accumulated calcium content in the catholyte solution should be measured 

frequently to account for the desired leaching state. For a current density of 125-

130 A/m2
paste, approximately 53 days of experimental time is needed to reach to 

complete leaching of Portlandite. 
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14) When the experimental time (the desired leaching state) is reached, the experiment 

should be stopped and the specimens should be disassembled and sealed with a 

thick parafilm. 

 

Figure 7-1. sealant: asphalt tape.  

 

Figure 7-2. sealing method for specimens of  diameter larger than 50 mm. 

 

Figure 7-3. location of the specimen and the set-up design for anode and cathod 
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7.5 Recharging reagents 

Calculate the required quantities of the salts for every 24 hours of recharging according to:   

  
Im

Im

LiOH

NONH

⋅=

⋅=

22

71
34

                                                                            

where, 

m: mass of substance (grams) 

I: Applied Current (A) 

The calculated amounts can be rounded up to a value that can be measured with precision 

of 1 gram.  
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