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Abstract—This paper investigates the effect of oscillator phase
noise and channel variations due to fading on the performance of
communication systems at frequency bands higher than 10GHz.
Phase noise and channel models are reviewed and technology-
dependent bounds on the phase noise quality of radio oscil-
lators are presented. Our study shows that, in general, both
channel variations and phase noise can have severe effects on
the system performance at high frequencies. Importantly, their
relative severity depends on the application scenario and system
parameters such as center frequency and bandwidth. Channel
variations are seen to be more severe than phase noise when the
relative velocity between the transmitter and receiver is high. On
the other hand, performance degradation due to phase noise can
be more severe when the center frequency is increased and the
bandwidth is kept a constant, or when oscillators based on low
power CMOS technology are used, as opposed to high power
GaN HEMT based oscillators.

I. INTRODUCTION

Scarcity of the microwave band motivates the need to move
to higher frequency bands (greater than 10GHz) that enables
access to several GHz of vacant spectrum [1]. However, this
transition to higher frequency bands presents new challenges,
with channel variations and phase noise being identified as
some of the most critical [1].

It is known that both channel variations due to mobility
and phase noise in radio frequency oscillators increases with
frequency [2], [1]. Furthermore, both channel variations and
the phase noise manifest as a multiplicative form of noise, in
that, they multiply with the transmitted signal of interest [3].
Hence, when both channel variations and phase noise are
present in a practical system, it is interesting to know which
noise is more dominant in terms of its impact on the system
performance. This knowledge is also useful for designing
receiver algorithms, where a pertinent question is whether
one needs to design separate or joint channel-phase noise
compensation algorithms.

The goal of this paper is to study the effects of oscillator
phase noise and small-scale channel variations due to mobility
on the performance of communication systems when operating
in higher frequency bands, e.g., above 10GHz. It is also
of interest to see how these effects change with frequency.
In particular it is investigated how oscillators in different
technologies will be affected. First, we present a technology
dependent lower bound that quantifies the quality of practical
oscillators. This bound can be used to predict the phase noise

process statistics in higher frequency bands. Then we analyze
the effect of channel variations and phase noise on the signal-
to-noise ratio (SNR) of a system. Specifically, we study two
scenarios — in the first scenario, the received signal is only
affected by oscillator phase noise, and the channel is assumed
to be known perfectly. In the second scenario, the received
signal is considered to be affected only by the time-varying
channel due to fading and phase noise is absent. For both
scenarios, the received signal is assumed to be compensated by
estimators that achieve the minimum mean square error. Then
the impact of the residual error due to channel variations and
phase noise on the SNR is analyzed separately. To this end, we
derive the Modified Bayesian Cramer Rao Bound (MBCRB)
for the channel and phase noise estimators that are assumed
to be used at the receiver.

Finally, we present extensive simulation results that analyze
the effects of relative velocity, oscillator quality, operating cen-
ter frequency and the bandwidth on the system performance.
Based on our analysis, we conclude that channel variations due
to fading and phase noise can have severe effects on the system
performance at high frequencies, and their relative severity
depends on the application scenario and system parameters
like center frequency and bandwidth. Channel variations are
seen to be more severe than phase noise when the relative
velocity between the transmitter and receiver is high, and when
the center frequency is increased along with the bandwidth of
the system. On the other hand, performance degradation due
to phase noise can be more severe when the center frequency
is increased and the bandwidth is kept a constant. The severity
of phase noise is also seen to depend heavily on the design
technology of the oscillators — when oscillators based on high
power GaN HEMT based oscillators are used, phase noise is
less of a problem compared to channel fading while for low
power CMOS based oscillators phase noise may be an issue
for high frequency communication systems.

Notations: Ttalic letters (x) are scalar variables, boldface letters (x) are
vectors, uppercase boldface letters (X) are matrices, ([X], ;) denotes the
(a, b)*" entry of matrix X, IE [-] denotes the statistical expectation operation,
N (z; i, 02) and CN (z; p, 02) denote the real and complex Gaussian distri-
bution with variable =, mean u, and variance o, respectively; log(-) denotes
the natural logarithm, and (-)* and (-)7" denote the conjugate and transpose,
respectively.



II. SYSTEM MODEL

Consider the transmission of a block of K data symbols over
a time-variant Rayleigh fading channel, affected by random
oscillator phase noise. In the case of perfect timing and
frequency synchronization, the received signal after sampling
the output of the matched filter at Nyquist rate can be written
as [4]

yr = e hysy, +wy, ke {l,...,K}, (1

where 0}, represents the phase noise affecting the kth received
signal due to noisy transmit and receive local oscillators.
Furthermore, hj, represents the complex channel coefficient
at time instant k, and w; is a realization of a zero-mean
complex circularly symmetric additive white Gaussian noise
(AWGN) with variance 2. We denote the transmitted and
received symbol sequences as y = {y;}1 | ands = {5},
respectively.

In the sequel, we first present a detailed background on the
Wiener phase noise model for 0, and the Clarke’s model for
h.

A. Oscillator Phase Noise

Consider the case where the channel coefficient hj is
perfectly known and compensated at the receiver. Assuming
that |hy| = 1, the system model (1) can be rewritten as

yr = e%%s +wy, ke {l,...,K}. 2)

The phase noise samples are modeled as a discrete Wiener
process,

Or = Op—1 + (-1, 3)

where the phase noise innovation process (j is a white zero-
mean Gaussian random process, ie., (x ~ N(0,02) [5].?
This discrete process corresponds to the sampled version of
the continuous time Wiener process, which is the result of
the sum of the phase noise processes at the transmit and
receive oscillators. The samples are obtained at Nyquist rate
in every Ty seconds, where Ty is the symbol interval. Spectral
measurements such as the single-side band (SSB) phase noise
spectrum are the common figures for characterizing oscillators.
The SSB phase noise spectrum is defined as the normalized
power of the oscillator at offset frequencies from the carrier
and it is reported in dBc/Hz. For Wiener phase noise, the SSB
spectrum has a Lorentzian shape [6]

L(f)= W%fga “4)

where f is the offset frequency (see Fig. 1). This spectrum
is fully characterized by a single parameter; the 3dB single-
sided bandwidth, fsqp = k7 [8, Sec. V], which corresponds
to the frequency at which the noise power drops to half of
the maximum noise level. The connection between the con-
tinuous phase noise process and its discrete sampled version
is captured by 02, which is given as

o Amf3an
T TBw

2For discussions on the limitations of this model see [6], [7] and references
therein.
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Fig. 1: The SSB spectrum of the oscillator in case of the Wiener phase noise.
Here, f denotes the offset frequency from the carrier, and figqp = K.

f3dB

where BW = 1/T; denotes the system bandwidth.

B. Channel Fading

In absence of oscillator phase noise, the input-output rela-
tion (1) is rewritten as

Yk = hgsk +wg, k€ {1,..., K}. (6)

We consider a Rayleigh fading channel, which is an appropri-
ate non-line-of-sight propagation model when there are many
scattering objects in the environment. Based on Clarke’s model
[2], the channel coefficients h; are modeled as zero-mean
complex Gaussian random variables, i.e., hy ~ CN(0,07).
Without loss of generality, we normalize the channel power
by setting 0f = 1. Upon splitting hy, into its real h,(:) and
imaginary h;’ components, we obtain [2]

hi = b + gk ™
r 1 i 1
By~ N(O,5) B~ N(O,5) ®)
Rypwpo () = Rpopew (£) =0 ©)
o - 1 27TfD
Ry (0) = Bpono () = 5Jo( 5= lel),  (10)

where the function R,,(¢) = E [z(k)y(k+¢)] in (9) and
(10) represents the correlation function between the random
variables x and y. In (10), J is the zero-order Bessel function
of the first kind, and fp is the maximum Doppler frequency,
given by

fo = o

c

(11)

where v is the relative speed between the transmitted and the
receiver, fo is the center frequency of the radio frequency
signal, and ¢ = 3 x 108 [m/s] is the speed of light. Note that
the Doppler frequency scales linearly with fg.

In the next section we employ the models provided in (2)
and (6) to evaluate the effect of phase noise and channel fading
on the the performance of the system, where the performance
metric considered is the SNR of the received signal.

III. EFFECT OF PARAMETER ESTIMATION ERRORS ON THE
SNR

In this section, we investigate the effect of phase noise
and channel fading on the SNR at the receiver. As stated
before, two scenarios are considered — in the first scenario,
an estimator is employed by the receiver to track the random
time varying phase noise process. In the second scenario, an



estimator is used to track the time varying channel fading
process. For both the scenarios considered, the estimate of
the parameter of interest is used to compensate its effect on
the system performance. However, residual estimation errors
remain, which influence the system performance. The SNR
derived in this section corresponds to the SNR of the received
signal after its compensation at the receiver.

A. Oscillator Phase Noise

Consider the system model in (2), and assume that the
receiver employs a phase noise estimator that tracks the
discrete phase noise process in (3). Specifically, this estimator
tracks 6 in each time instant, and let ék be the estimate of
0 in the kth time instant. In order to compensate the effect
of phase noise on the received signal, it is rotated by — 6, at
the receiver,

e 0k = eIk gy 4 eIk, (12)
where €, = 0, — ék denotes the estimation error, and e 7%k,
has the same statistics as wp. We model ¢, as a zero-
mean Gaussian random variable, i.e., €, ~ N (O,U?’k) for
k =1,...,K [5], where o2 indicates that the phase noise
estimation variance depends on (position) index of the received
signal in the block. Next we rewrite (12) as
ey = 51 + (7% — 1)sp, 4+ e Pk, (13)
where (e’* — 1)s;, represents additive noise term due to the
residual phase noise estimation error. We now use (13) to
obtain the SNR at time instant k, which is written as the ratio
of the desired signal power to the signal power due to AWGN
and phase estimation error,

PN _ E [|se]’]
SNRE = ER —costen)ss P+ EJul ] O
_ B (15)

2E,(1—e 5" ) 402

B. Channel Fading

We now analyze the effect of channel estimation errors on
the SNR at the receiver. We consider a channel estimator at the
receiver that provides an estimate of the instantaneous channel
coefficient hy, denoted as hj,. The channel estimate is modeled
as

hi = hy + e (16)
where e ~ CN(0,02,). In order to compensate for the
effect of channel, we multiply the received signal (6) by the
conjugate of the channel estimate as

iLZyk = iLthSk + fLZwk 17)
= (hy, +ep)hisk + (hy, + er)wi (18)
= ‘hk|28k + EthSk + (hz + EZ)wk (19)

In (18), we have substituted hye from (16). Using (18) the SNR
for kth symbol of the block is obtained as follows
E [[hw*|skl?]
[lew P Ihel?[sk]?] + E [(1he|* + lex]?)|wg]?]
= Es @1
0Bt od)+od

As we observe from (14) and (21), the SNR after estimation
of phase noise and channel fading depends on the variance of
estimation errors. In the next section we provide lower bounds
on the estimation error variance for each scenario.

SNR{H = = (20)

IV. LOWER BOUND ON ESTIMATION ERROR VARIANCE

In order to assess the estimation performance of a random
parameter, the Bayesian Cramér-Rao bound (BCRB) can be
utilized — this bound gives a tight lower bound on the mean
square error (MSE) of the estimator of interest [9]. Consider
a burst-transmission system, where K symbols, denoted by
the vector s = [sy,...,,sk]T, is transmitted in each burst.
According to the system model (2), a frame of signals y is
received with the phase distorted by a vector of oscillator phase
noise denoted by @ = [0y, ..., 0|, with its prior probability
density function (pdf) denoted by f(6). The BCRB satisfies
the following inequality for the MSE associated with a phase
noise estimator:

o (0-0) (6-0)"| Byt =0
Bex = Eo [F(0) +Eo [~ 10g 0] . 2

where @ denotes an estimator of 0, Bpy is the Bayesian
information matrix (BIM), and for a matrix Z, Z > 0 implies
that Z is positive semi-definite. In (22), F(6) is defined as

32
F(e) = IES l:EyB,s [_w IOg f(Y|07 S):|:| ) (23)

and this is referred to as the modified Fisher information
matrix (FIM) [9]. Equivalently, the bound computed from (22)
is called the modified Bayesian Cramér-Rao bound (MBCRB).
The MBCRB is a tight lower bound for non-data-aided pa-
rameter estimation at moderate and high SNR [5]. Note that
in (22), the diagonal elements of BgﬁI provide a lower bound
on the variance of the estimator for the elements in 0, i.c.,
o2, éE[(ek - ek)ﬂ > [Bo], - 4)

pAy
=€k

From (22)-(24), we observe that the estimation error vari-
ance is entirely determined by f(0) and f(y|0,s), which is
the conditional pdf of the received signal y given 6 and s
(usually referred to as the likelihood of ).

For the phase noise model, where the phase noise inno-
vations (j, for k € {1,..., K}, are correlated, Bpnx can be
found in [5, Eq. 22]. By adopting that result to the Wiener
phase noise model in (3), where the phase noise innovations
are uncorrelated, we obtain
2F,
o2

w

Bpy = —214+C 1, (25)



where I is an K x K identity matrix, and

[Clmn = 031 + (min(m,n) — 1)02 (26)

m,n € {l...K}.

Here in (26), 031 denotes the phase noise variance associated
with the first received signal in the block, where 61 is
uniformly distributed over [0, 27).

Assuming that the phase noise estimator used at the receiver
achieves an MSE performance close to the MBCRB and by
substituting (25) in (24), then (24) in (14), the SNR for
the received signal model in (2) after PN compensation is
determined as

Es
2B, (1 — exp (—0.5[Bpilex)) + 02"

Next we obtain the MBCRB for the channel estimator.
First, we decompose the complex channel coefficient into
its real and imaginary components and then calculate the
MBCRB for the joint estimation of these components. We

SNRIN =

27

denote h™ = [hThT], where hT = [r{" ... n{] and h{ =
v h(['(] The BIM and the FIM are defined as
N 92 5
Bon = B [P0)] +8 |- o s /(B)] @9
~ 92 ~
F(h) = Eq |:Eyl~l,s {—@ log f(y|h, s)” . (29)

Now, it remains to determine the likelihood function,
f(y|h,s), and the a prior distribution of h, denoted by f(h).
Given that wy, k € {1,..., K % are i.i.d. random variables,
and y;, only depends on h( ), §C and s according to (6), the
likelihood function is written as

K

nyk|h5 =1/

k=1

(y|h,s) fh R s, (30)

Fyrlh n s) =
1 i — s (B + gh)))?
——exp | — k k . (3D

2 2
05T lop

By substituting (30) in (29), it is straightforward to show that

- 2E

F(h) = (32)

W

In order to find the prior distribution f(h), we use that
the real and imaginary components of the channel are i.i.d.
Gaussian random variables. By using (8)-(10), we obtain that

f(h) = N(h;0,3) where
s_| R|O } )
0]R (2K x2K)
1 27 f;

TABLE I: Oscillator Design Parameters

Technology Vesa | Icja [mA] | Qo | References

Si CMOS 1 5 15 10], [11

SiGe HBT 2 30 15 11], [12
InGaP HBT 5 25 40 13], [14

GaN HEMT 20 40 40 14], [15
GaAs HEMT 4 25 40 14], [16], [17]

By setting f(h) and F(h) in (28), followed by straightforward
simplifications, we obtain

2. | I]0
Bey = —2 > L 35
on= o T’T - )

The estimation error variance of h; can be found as the sum
of the error variances associated with h, and h;,

Gg,k- 2 [Bé%l]k,k + 2 [Balll]k,k’ (36)

where the equality in (36) is because B in (35) is symmetric.
Finally, by assuming that the channel estimator used at the
receiver attains the MBCRB, and by substituting (36) in (21),
we obtain

[Bch) Rt Kk K

Es

SNRSH = .
* (Bs+0%)+03

(37)
2 [Bonl

V. RESULTS AND DISCUSSIONS

We start by providing realistic lower bounds on the innova-
tion variance for the Wiener phase noise model. By using (5)
and fs3qp = Kk, and employing the lower bounds on x given
in [18, Eq. 5] and [19, Eq. 28], we obtain

5 _ ™ x19.496 x 10721 f2
UC Z 3 .
I3V Q3 BW

where fj is the operating center frequency of the oscillator,
Qo is the unloaded quality factor of the resonator inside the
oscillator, and I4 and V4 denote the operating collector/drain
current and safe operating voltage of the transistor inside the
oscillator, respectively.> The safe operating voltage is normally
about 1/3 of the device breakdown voltage V. Typical values
of Qo, I. and Vg depend on the design technology of the
oscillators. Tab. I provides these parameters for the various
design technologies. As observed from (38), the phase noise
innovation variance grows quadratically with the operating
center frequency fo and decreases linearly with BW. In Fig. 2
we compare the lower bound (38) for Si CMOS [20] and GaN
HEMT ([21] technologies against different values of fo. We
consider two cases; in the first case a fixed bandwidth is used,
BW = 1MHz. In the second case we linearly increase the
bandwidth with fy. Specifically, we set BW = 0.001 f,. We
observe that for both the technologies and in the fixed band-
width case, ag grows quadratically with fo (20dB/dec). In the
second case, ag scales almost linearly with fo (10dB/dec).
Furthermore, GaN HEMT technology has a lower 02 than
the Si CMOS technology for the scenarios considered. This
difference is due to the higher quality factor obtained in GaN
HEMT technology [11], [14] and the higher available power
[15].

(38)

3Note that notations I. and V. for simplicity refer also to drain current
and voltage.
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Fig. 2: Phase noise innovation variance o2 for Si CMOS and GaN HEMT
technologies versus the center frequency fy of the oscillator.
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Fig. 3 illustrates the SNR after phase noise compensation for
Si COM and GaN HEMT technologies. The SNR is calculated
by using (27), followed by an averaging operation over a block
of K = 100 symbols. For the Si CMOS technology, an SNR
loss of 0.1dB and 0.8dB can be seen for BW = 1MHz and
BW = 0.001 fy, respectively, when increasing f, from 1GHz
to 100GHz. However, the SNR is less affected for the GaN
HEMT technology.

Fig. 4 shows the SNR after channel fading compensation
for relative velocities of v = 1Km/h and v = 50Km/h. The
SNR is calculated by using (37), followed by an averaging
operation over a block of K = 100 symbols.* When BW =
0.001 fp, SNR stays constant for both relative velocities. This
is because the autocorrelation function of the channel (10)
stays constant. On the other hand, when the increasing f with
BW = 1MHz, SNR drops 0.04dB and 0.1dB for v = 1Km/h
and v = 50Km/h, respectively. From figs. 3 and 4, we can
clearly see that the degradation of the SNR due to phase noise
is more severe than that due to the channel, when BW is a
constant and an estimator that achieves MCRB is used at the
receiver. This is because the phase noise innovation variance
increases quadratically with f,. However, the degradation of
the SNR due to phase noise and the channel are seen to be
similar when BW scales with fj.

The channel fading based on the Clarke’s model is a
bandlimited process with single-side bandwidth given by fp.
On the other hand, phase noise is not a bandlimited process — it
has infinite bandwidth. However, as mentioned before, we can
define a 3dB bandwidth for the phase noise process. In Fig. 5
we compare the effect of phase noise and channel fading on
the SNR when f3qp = fp. It can be seen that in this particular
comparison, phase noise affects the SNR more severely. We
can also observe that the gap between the SNRs achieved in
the scenarios considered dramatically grows upon increasing
fsap and fp, while maintaining f3qp = fp. However, here it
is worth noting that the f3qp of most practical oscillators is
significantly smaller than fp.

In Tab. II we compare SNR“Y and SNRFN for the

“Note that 3 in (35) can be very close to a singular matrix that raises
matrix inversion problems. To avoid this a constant bias value as explained
in [22] is added to lag-zero of the channel’s autocorrelation function.
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Fig. 3: The SNR after phase noise compensation for Si CMOS and GaN
HEMT technologies versus the center frequency fy of the oscillator. Here,
FEs/o2 = 20dB, and K = 100.
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IEEE 802.15.3¢ and IEEE 802.11b standards. In [20], for
the IEEE 802.15.3c standard a radio frequency oscillator with
CMOS technology is used with £(1MHz) = —95dBc/Hz
in (4). For the IEEE 802.11b standard, another CMOS-based
oscillator with £(1MHz) = —115dBc/Hz is employed in
[23]. For a relative velocity of v = 0.5Km/h, the effects
of channel fading and phase noise are observed to be of
the same level, indicated by the identical SNRs achieved.
This comparison shows that upon using better oscillators or
when the relative velocity is slightly higher, channel fading
has a more prominent effect on the performance compared
to oscillator phase noise. Although the oscillator used in
IEEE 802.11b has a lower phase noise level, we observe that
SNRFY achieved for both the standards are similar. This is
because fo/BW in IEEE 802.11b is 4.32 times higher than
that of IEEE 802.15.3c.

In Fig. 6 we use (14) and (21) to compare the SNR
degradation due to channel and phase noise estimation errors

when 02, = 02,. We observe that when the variance of
TABLE II
Standard fo[GHz] | BW[GHz] | SNRCT[dB] | SNRPN[dB]
IEEE 802.15.3¢ [20] 60 2.16 19.956 19.951
IEEE 802.11b [23] 2.4 0.02 19.956 19.952
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phase noise and channel fading. Here, Ei /02, = 20dB.

the estimator increases, the SNR degradation due to channel
fading is more severe for arbitrary estimation error variance.
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