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Abstract—Inmultiple antenna systems, phase noise due to insta-
bilities of the radio-frequency (RF) oscillators, acts differently de-
pending on whether the RF circuitries connected to each antenna
are driven by separate (independent) local oscillators (SLO) or
by a common local oscillator (CLO). In this paper, we investigate
the high-SNR capacity of single-input multiple-output (SIMO)
and multiple-output single-input (MISO) phase-noise channels for
both the CLO and the SLO configurations.
Our results show that the first-order term in the high-SNR ca-

pacity expansion is the same for all scenarios (SIMO/MISO and
SLO/CLO), and equal to 0.5 ln(ρ), where ρ stands for the SNR. On
the contrary, the second-order term, which we refer to as phase-
noise number, turns out to be scenario-dependent. For the SIMO
case, the SLO configuration provides a diversity gain, resulting
in a larger phase-noise number than for the CLO configuration.
For the case of Wiener phase noise, a diversity gain of at least
0.5 ln(M) can be achieved, where M is the number of receive
antennas. For the MISO, the CLO configuration yields a higher
phase-noise number than the SLO configuration. This is because
with the CLO configuration one can obtain a coherent-combining
gain through maximum ratio transmission (a.k.a. conjugate beam-
forming). This gain is unattainable with the SLO configuration.

I. INTRODUCTION
Phase noise due to phase and frequency instability in the local

local radio-frequency (RF) oscillators used in wireless com-
munication links results in imperfect synchronization between
transmitters and receivers, which degrades the system through-
put [1]–[4], especiallywhen high-ordermodulation schemes are
used to support high spectral efficiency.
A fundamentalway to assess the impact of phase noise on the

throughput of wireless links is to determine the corresponding
Shannon capacity. Unfortunately, a closed-form expression for
the capacity of wireless channels impaired by phase noise is
not available (although it is known that the capacity-achieving
distribution has discrete amplitude and uniform independent
phase when the phase-noise process is stationary and memory-
less, with uniform marginal distribution over [0, 2π) [5]). Nev-
ertheless, both asymptotic capacity characterizations for large
signal-to-noise ratio (SNR) and nonasymptotic capacity bounds
are available in the literature. Specifically, Lapidoth [1] char-
acterized the first two terms in the high-SNR expansion of the
capacity of a single-input single-output (SISO) stationary phase-
noise channel. Focusing on memoryless phase-noise channels,

This work was partly supported by the Swedish Foundation for Strategic
Research under grant SM13-0028.

Katz and Shamai [5] provided upper and lower bounds on the ca-
pacity that are tight at high SNR. The results in [1], [5] have been
generalized to block-memoryless phase-noise channels in [6],
[7]. Numerical methods for the calculation of the information
rates achievable with specific modulation formats have been
proposed in, e.g., [8]–[10].
In multiple-antenna systems, phase noise acts differently de-

pendingonwhether the RF circuitries connected to each antenna
are driven by separate (independent) local oscillators (SLO)
or by a common local oscillator (CLO). Although the CLO
configuration is intuitivelymore appealing because it results in a
single phase-noise process to be tracked, the SLO configuration
is unavoidable when the spacing between antennas needed to
exploit the available spatial degrees of freedom, and, hence,
achieve multiplexing or diversity gains, is large [11], [12]. This
occurs for example in multiple-antenna line-of-sightmicrowave
backhaul links operating in the 20–40GHz frequency band,
where the spacing between antennas required to exploit the avail-
able spatial degrees of freedom can be as large as fewmeters [4].
In large-antenna-array systems [13]–[15], cost and packaging
considerations may also make the SLO configuration attractive.
For the CLO configuration, a high-SNR capacity expansion

together with finite-SNR capacity upper and lower bounds have
been recently reported in [16], [4]. For both the CLO and the
SLO configurations, the multiplexing gain was partly charac-
terized in [17]. In [18], [15], [19], lower bounds on the sum-
rate capacity for the case when multiple single-antenna users
communicate with a base station equipped with a large antenna
array (uplink channel) have been developed for both CLO and
SLO. These bounds suggest that the SLO configuration yields a
higher sum-rate capacity than the CLO configuration. However,
it is unclear whether these lower bounds are tight.

Contributions: We consider the scenario where a multiple-
antenna base station communicates with a single-antenna user
over an AWGN channel impaired by phase noise and study the
first two terms in the high-SNR capacity expansion, for both
the uplink (SIMO) and the downlink (MISO) channel, and for
both CLO and SLO. We characterize the first term and provide
bounds on the second term that are tight for some phase-noise
models of practical interest. Our findings are as follows. The
first-order term in the high-SNR capacity expansion turns out to
be the same in all four scenarios, and equal to 0.5 ln(ρ), where ρ
stands for the SNR. In contrast, the second-order term,whichwe



denote as phase-noise number, takes different values in the four
cases. For the uplink channel, the SLO phase-noise number is
larger than the CLO one. Intuitively, this holds because the SLO
configuration provides a diversity gain. For the specific case of
Wiener phase noise [20], we show that a diversity gain of at least
0.5 lnM , where M is the number of receive antennas, can be
achieved. This result provides a theoretical justification of the
observation reported in [18], [15], [19] that SLO yields a higher
sum-rate capacity than CLO for the uplink channel.
For the downlink channel, the ordering is reversed: the CLO

configuration results in a higher phase-noise number than the
SLO configuration. Coarsely speaking, this holds because CLO
allows for maximum-ratio transmission (also known as con-
jugate beamforming), which yields a coherent-combing gain,
whereas this gain is lost in the SLO case. For the case of Wiener
phase noise, we determine numerically the extent to which the
quality of the local oscillators in the SLO configurationmust be
improved to overcome the loss of coherent-combing gain.
Our results are derived under the assumption that the

continuous-time phase noise process remains constant over the
duration of the symbol time. This assumption allows us to
obtain a discrete-time equivalent channel model by sampling
at Nyquist rate. As shown recently in [21]–[23], by dropping
this assumption one may obtain drastically different high-SNR
behaviors. In the Wiener phase-noise case, for example, the
first-order term in the high-SNR capacity expression was shown
in [21] to be at least as large as 0.5 ln(ρ). However, it is unclear
whether this lower bound is tight.

Notation: Boldface letters such as a and A denote vec-
tors and matrices, respectively. The operator diag(·), applied
to a vector a, generates a square diagonal matrix having the
entries of a on its main diagonal.WithN (0, σ2) and CN (0, σ2),
we denote the probability distribution of a real Gaussian ran-
dom variable and of a circularly symmetric complex Gaus-
sian random variable with zero mean and variance σ 2. Fur-
thermore, U [0, 2π) stands for the uniform distribution over the
interval [0, 2π). Throughout the paper, all sums between angles
(both random and deterministic) are performed modulus 2π.
For a given discrete-time vector-valued random process {θ k},
we denote the sequence {θm, . . . , θn}, m < n as θn

m. When
m = 1, we omit the subscript. For two functions f(·) and
g(·), the notation f(x) = o(g(x)), x → ∞, means that
limx→∞ |f(x)/g(x)| = 0. Finally, ln(·) denotes the natural
logarithm.

II. REVIEW OF THE SISO CASE

Consider the discrete-time SISO phase-noise channel

yk = ejθkhxk + wk, k = 1, . . . , n. (1)

Here, xk denotes the input symbol at time k. The constant h is
the path-loss coefficient, which is assumed deterministic, time-
invariant, and known to the transmitter and the receiver; {wk}
are the additive Gaussian noise samples, drawn independently
from a CN (0, 2) distribution.1 Finally, the phase-noise pro-

1Normalizing the noise variance to 2 turns out to be convenient [1], [24].

cess {θk} is assumed stationary, ergodic, independent of the
noise process {wk}, and with finite differential-entropy rate2

h({θk}) > −∞. (2)

Under these assumptions, the capacity of the SISO phase-noise
channel (1) is given by

C(ρ) = lim
n→∞

1

n
sup I(yn;xn) (3)

where the supremum is over all probability distributions
on xn = (x1, . . . , xn) that satisfy the average-power constraint

1

n

n∑
k=1

E

[
|xk|2

]
≤ 2ρ. (4)

Here, ρ can be thought of as the SNR (recall that we set the
noise variance to 2; hence, the SNR is equal to half the signal
power 2ρ). A closed-form expression for the capacity of the
phase-noise channel is not available. Lapidoth [1] proved the
following asymptotic characterization of C(ρ).
Theorem 1 ( [1]): The capacity of the SISO phase-noise

channel (1) is given by

C(ρ) = η ln(ρ) + χ+ o(1), ρ→∞ (5)

where η = 1/2 and

χ = (1/2) ln
(
|h|2/2

)
+ ln(2π)− h({θk}) . (6)

The factor η = 1/2 in (5) is the so-called capacity prelog, de-
fined as the asymptotic ratio between capacity and the logarithm
of SNR as SNR grows to infinity: η = limρ→∞ C(ρ)/ln(ρ).
The capacity prelog can be interpreted as the fraction of com-
plex dimensions available for communications in the limiting
regime of high signal power, or equivalently vanishing noise
variance [26]. For the phase-noise channel (1), only the ampli-
tude |xk| of the transmitted signal xk can be perfectly recovered
in the absence of additive noise, whereas the phase xk is lost.
Hence, the fraction of complex dimensions available for com-
munication is η = 1/2.
We denote the second term in the high-SNR expansion (5)

of C(ρ) as the phase-noise number χ

χ = lim
ρ→∞ {C(ρ)− η ln(ρ)} . (7)

We can see from (6) that the phase-noise number depends only
on the statistics of the phase-noise process and on the path-
loss coefficient h. It is worth mentioning that the approximation
C(ρ) ≈ η ln(ρ) + χ, although based on a high-SNR capacity
expansion, is often accurate already for low SNR values [5],
[7], [4]. Next, we characterize χ for some phase-noise models
commonly used in the wireless literature.

2Note that the differential-entropy rate of the complex random process
{ejθk} is equal to −∞. This means that the results obtained in [25] in the
context of fading channel are not applicable to (1).



Noncoherent System: Consider the case where the phase-
noise process {θk} is stationary and memoryless with uniform
marginal distribution over [0, 2π). This scenario models accu-
rately a noncoherent communication system where the phase
of xk is not used to transmit information (see [5]). The phase-
noise number for this case can be readily obtained from (6) by
using that h({θk}) = ln(2π).

Partially Coherent System: When a phase tracker such as a
phase-locked loop (PLL) is employed at the receiver, the output
signal after phase tracking is impaired only by the residual phase
error. Systems employing phase trackers are sometimes referred
to as partially coherent [5]. It is often accurate to assume that the
residual phase-error process {θk} is stationary and memoryless.
Under this assumption, the phase-noise number for the partially-
coherent case simplifies to

χ = (1/2) ln
(
|h|2/2

)
+ ln(2π)− h(θ) (8)

where θ is the randomvariablemodeling the residual phase error.
When a PLL is used, the statistics of θ are accurately described
by a Tikhonov distribution.

The Wiener Process: The case of phase-noise process with
memory is relevant when a free-running oscillator is used or
when the phase tracker is not able to completely remove the
memoryof the phase-noise process [20], [27]. The samples {θ k}
of a free-runningoscillator are typicallymodeled using aWiener
process [20], [28], according to which

θk+1 = (θk +Δk) mod (2π) (9)

where {Δk} are Gaussian random samples, independently
drawn from aN (0, σ2

Δ) distribution. Hence, the sequence {θk}
is a Markov process, i.e.,

fθk | θk−1,...,θ0 = fθk | θk−1
= fΔ (10)

where the wrapped Gaussian distribution fΔ is the pdf of the
innovationΔmodulus 2π. Under the assumption that the initial
phase-noise sample θ0 is uniformly distributed over [0, 2π), the
process {θk} is stationary. Hence, its differential-entropy rate is
given by the differential entropy of the innovation process

h({θk}) = h(Δ). (11)

The differential entropy h(Δ) can be well-approximated by that
of an unwrappedN (0, σ2

Δ) random variable:

h(Δ) ≈ (1/2) ln(2πeσ2
Δ) (12)

whenever the standard deviationσΔ is below 55◦ (see [29]). The
oscillators commonly used in wireless transceivers result in a
phase-noise standard variation that is well below 55◦ [24].

III. UPLINK CHANNEL

Building on the results reviewed in Section II, we next an-
alyze the uplink channel of a wireless communication system
where a single-antenna terminal communicates with a base sta-
tion equipped with M antennas over an AWGN channel im-
paired by phase noise. This yields the following 1×M single-
input multiple-output (SIMO) phase-noise channel:

yk = Θkhxk +wk, k = 1, . . . , n. (13)

Here, the matrix Θk = diag ([ejθ1,k , . . . , ejθM,k ]) contains
the phase-noise samples. We assume that, for each m =
1, . . . ,M , the phase-noise process {θm,k} is stationary, er-
godic, independent of the additive-noise process {wk}, and
has finite differential-entropy rate. Note that we do not nec-
essarily assume that the phase-noise processes {θm,k}, m =
1, . . . ,M are independent. It will turn out convenient to de-
fine also the phase-noise vector-valued process {θk} where
θk = [θ1,k, . . . , θM,k]

T . The vector h = [h1, . . . , hM ]T

contains the path-loss coefficients. Finally, the vector wk =
[w1,k, . . . , wM,k]

T contains the AWGN samples, which are
drawn independently froma CN (0, 2) distribution.The capacity
of the SIMO phase-noise channel (13) is

C(ρ) = lim
n→∞

1

n
sup I(yn;xn) (14)

where the supremum is over all probability distributions on xn

that satisfy the average-power constraint (4).

A. Uplink, Common Local Oscillator (UL-CLO)

In the CLO configuration, we have that θ1,k = · · · = θM,k =
θk for all k. Hence, the input-output relation (13) simplifies to

yk = ejθkhxk +wk. (15)

By projecting yk on h/‖h‖, i.e., by performing
coherent/maximal-ratio combining, we obtain a sufficient
statistics for the detection of xk from yk . Through this
projection, the SIMO phase-noise channel (15) is transformed
into an equivalent SISO phase-noise channel with channel
gain ‖h‖. Therefore, using Theorem 1, we conclude that the
prelog for the UL-CLO case is ηul-clo = 1/2 and that the
phase-noise number is

χul-clo = (1/2) ln
(‖h‖2/2)+ ln(2π)− h({θk}). (16)

B. Uplink, Separate Local Oscillators (UL-SLO)

In the SLO case, the M phase-noise processes {θm,k}, are
independent and identically distributed (i.i.d.) across the re-
ceive antennas. Hence, coherent combining does not yield a
sufficient statistics. In Theorem 2 below, we provide a char-
acterization of the high-SNR capacity of C(ρ), which holds
irrespectively of the dependency between the M phase-noise
processes {θm,k},m = 1, . . . ,M .
Theorem 2: The prelog of the SIMO phase-noise channel

(13) is given by ηul = 1/2. Furthermore, the phase-noise num-
ber is bounded by

χul ≥ (1/2) ln
(‖h‖2/2)+ ln(2π)

− h
(
φ0 | θ0 + φ0, θ

−1
−∞

)
(17a)

χul ≤ (1/2) ln
(‖h‖2/2)+ ln(2π)

− h(φ0 | θ0 + φ0) + I
(
θ0; θ

−1
−∞

)
(17b)

where {φk} is a stationary memoryless process, with marginal
distribution uniform over [0, 2π).

Proof: See [24, App. I].



Remark 1: The lower and upper bounds in (17) match when
the phase noise processes are memoryless. Indeed, under this
assumption,

χul = (1/2) ln
(‖h‖2/2)+ ln(2π)− h(φ0 | θ0 + φ0) . (18)

Remark 2: For the CLO case where θ1,k = · · · = θM,k = θk
for all k, the bounds in (17) match and reduce to (16) (see [24]).

C. Discussion
The fact that ηul-clo = ηul-slo = ηsiso comes perhaps as

no surprise because adding multiple antennas at the receiver
only (SIMO channel) does not yield spacial multiplexing gains.
We next compare the phase-noise number of the CLO and the
SLO configurations. We see from (16) and (17) that the term
0.5 ln(‖h‖2/2) appears in the phase-noise number of both the
CLO andSLO configuration.As already pointed out, in theCLO
case this term comes from coherently combining the signals
received at theM antennas.
In the SLO case, coherent combining is not possible because

the received signals at the different antennas are subject to in-
dependent random phase shifts. It turns out (see [24, App. I-A,
App. I-B]) that a coherent-combining gain can be harvested re-
gardless by separately decoding the amplitude and the phase of
the transmitted signal, and by adding the square of the received
signals when decoding the amplitude.
The CLO and SLO phase-noise numbers coincide in the non-

coherent case (stationary, memoryless phase noise, with uni-
form marginal distribution over [0, 2π)):

χul-clo = χul-slo = (1/2) ln
(‖h‖2/2) . (19)

For phase-noise processes with memory, the CLO configuration
results in a smaller phase-noise number than the SLO configu-
ration. Indeed by rewriting the second and the third term on the
RHS of (16) as follows

ln(2π)− h({θk}) = I(θ0 + φ0;φ0 | θ−1
−∞) (20)

= ln(2π)− h(φ0 |φ0 + θ0, θ
−1
−∞) (21)

where φ0 ∼ U(0, 2π] is independent of {θk}, we see that the
differential entropy on the RHS of (21) is larger than the differ-
ential entropy in the SLO phase-noise lower bound in (17a). To
shed further light on the difference between the CLO and the
SLO configuration, we now consider the special case of Wiener
phase noise. For the CLO configuration, by substituting (12) in
(11), and then (11) in (16) we obtain

χul-clo ≈ (1/2) ln
(‖h‖2/2)+ ln(2π)− (1/2) ln(2πeσ2

Δ). (22)

For the SLO configuration, we manipulate the lower-bound in
(17a) as follows (see [24] for details):

χul-slo ≥ (1/2) ln
(‖h‖2/2)+ ln(2π)

− h
(
φ0

∣∣∣φ0 +
1

M

M∑
m=1

Δm,−1

)
(23)

=
1

2
ln

(‖h‖2
2

)
+ ln(2π)− h

(
1

M

M∑
m=1

Δm,−1

)
(24)

≈ (1/2) ln
(‖h‖2/2)+ ln(2π)− (1/2) ln

(
2πeσ2

Δ/M
)
. (25)

By comparing (22) and (25) we see that—as expected—
χul-slo ≥ χul-clo. This gain can be explained as follows: in the
SLO case, we have M independent noisy observations of the
phase of the transmitted signal. These independent noisy obser-
vations can be used to improve the estimation of the transmitted
phase. In order to obtain equal phase-noise numbers in the CLO
and SLO configurations, the phase-noise variance σ 2

Δ in the
CLO case must be at leastM times lower than in the SLO case.
It is perhaps also worth mentioning that the SLO gains cannot
be achieved in the CLO case simply by independently phase-
shifting the signal received at each antenna. In fact, this strategy
does not even achieve the CLO phase-noise number (16).
A configuration that is perhapsmore relevant from a practical

point of view is the one where the M phase-noise processes
{θm,k}, m = 1, . . . ,M result from the sum of the phase-noise
contribution θ(tx)k at the transmitter and ofM independent phase-
noise contributions {θ(rx)m,k}, m = 1, . . . ,M at the receivers. As-
suming that both θ(tx)k and {θ(rx)m,k} evolve according to indepen-
dentWiener processes with iid innovationsΔ(tx)

k ∼ N (0, σ2
Δ,tx)

and Δ(rx)
m,k ∼ N (0, σ2

Δ,rx), we obtain [24]

χul-slo ≥ (1/2) ln
(‖h‖2/2)+ ln(2π)

− h

(
Δ

(tx)
−1 +

1

M

M∑
m=1

Δ
(rx)
m,−1

)
(26)

≈ (1/2) ln
(‖h‖2/2)+ ln(2π)

− (1/2) ln
(
2πe

(
σ2
Δ,tx + σ2

Δ,rx/M
))

. (27)

The case where a single oscillator is used at the receiver can be
obtained from (27) by settingM = 1. Also for this setup, using
independent oscillators at the receiver is advantageous, although
the gain is smaller than what suggested by (25).

IV. DOWNLINK CHANNEL

We next analyze the downlink channel, i.e., the scenario
where a base station equipped withM antennas communicates
with a single-antenna terminal. This yields the followingM ×1
multiple-input single-output (MISO) phase-noise channel

yk = hTΘkxk + wk. (28)

Here, the phase-noise process {Θk} and the path-loss vector
h are defined as in Section III; xk = [x1,k, . . . , xM,k]

T ,
where xm,k denotes the symbol transmitted from antennam at
time instant k; finally, {wk} is the additive noise process, with
samples drawn independently froma CN (0, 2) distribution. The
capacity of the MISO phase-noise channel (28) is

C(ρ) = lim
n→∞

1

n
sup I(yn;xn) (29)

where the supremum is over all probability distributions on
xn = (x1, . . . ,xn) that satisfy the average-power constraint

1

n

n∑
k=1

E
[‖xk‖2

] ≤ 2ρ. (30)



A. Downlink, Common Local Oscillator (DL-CLO)
In the CLO case, we have that θ1,k = · · · = θM,k = θk for

all k. Hence, the input-output relation (28) simplifies to

yk = ejθkhTxk + wk. (31)

Maximum ratio transmission, i.e., setting xk = skh
∗/‖h‖,

with {sk} chosen so that (30) holds, is capacity achieving.With
maximum ratio transmission, the MISO channel is transformed
into a SISO channel. Hence, Theorem 1 allows us to conclude
that, for the DL-CLO case, ηdl-clo = 1/2 and

χdl-clo = (1/2) ln
(‖h‖2/2)+ ln(2π)− h({θk}). (32)

B. Downlink, Separate Local Oscillator (DL-SLO)
In Theorem 3 below, we characterize the prelog and provide

bounds on the phase-noise number of the MISO phase-noise
channel (28). Afterwards, we shall discuss specific phase-noise
models for which the bounds are tight.
Theorem 3: The prelog of the MISO phase-noise chan-

nel (28) is given by ηdl = 1/2. Furthermore, the phase-noise
number is bounded by

χdl ≥ ln(2π) + max
m=1,...,M

{
1

2
ln

(
|hm|2
2

)
− h({θm,k})

}
(33a)

χdl ≤ ln(2π) + sup
‖x̂‖=1

{
1

2
ln

(
1

2
E

[∣∣hTΘ0x̂
∣∣2])}

− inf
‖x̂‖=1

{
h
(

hTΘ0x̂ | θ−1
−∞

)}
(33b)

where x̂ is a unit-norm vector in CM .
Proof: See [24, App. B].

Remark 3: The lower bound on the phase-noise number
in (33a) is achieved by antenna selection, i.e., by activating only
the transmit antenna that leads to the largest SISO phase-noise
number. The otherM − 1 transmit antennas are switched off.
Remark 4: In the CLO case where θ1,k = · · · = θ1,k = θk

for all k, the upper bound in (33b) is tight. On the contrary, the
lower bound in (33a) is not tight because antenna selection is
not optimal for the CLO case.

C. Discussion
The lower bound and the upper bounds in (33) match when

the phase-noise processes are independent across antennas, and
have uniformmarginal distributions over [0, 2π). This occurs in
noncoherent systems and for the Wiener model. We formalize
this result in Theorem 4 below.
Theorem 4: The phase-noise number of the MISO phase-

noise channel (28) under the additional assumptions that the
M phase-noise processes {θm,k}, m = 1, . . . ,M i) are in-
dependent and identically distributed (i.i.d.) across antennas
(SLO configuration), ii) have uniform marginal distributions
over [0, 2π), is given by

χdl-slo =
1

2
max

m=1,...,M
ln

(
|hm|2
2

)
+ ln(2π)− h({θk}) (34)

where h({θk}) is the differential-entropy rate of one of the i.i.d.
phase-noise processes.

Proof: See [24, App. C]
We next compare χdl-clo and χdl-slo. For the noncoherent case,

we have that

χdl-clo = (1/2) ln
(‖h‖2/2) (35)

χdl-slo = (1/2) max
m=1,...,M

ln
(
|hm|2/2

)
. (36)

For the Wiener case, by substituting (12) in (11) and then (11)
in (32) and in (34), we obtain

χdl-clo ≈ (1/2) ln
(‖h‖2/2)+ ln(2π)− (1/2) ln(2πeσ2

Δ) (37)

χdl-slo ≈ (1/2) max
m=1,...,M

ln
(
|hm|2/2

)
+ ln(2π)

− (1/2) ln(2πeσ2
Δ). (38)

In both the noncoherent and the Wiener case, we see that the
SLO configuration results in no coherent-combininggain: ‖h‖ 2

is replaced by max
m=1,...,M

|hm|2. The resulting throughput loss
is most pronounced when the entries of h have all the same
magnitude.
To shed further light on this loss, we depart from the model

we considered so far, where the {hm},m = 1, . . . ,M are deter-
ministic, and move to a quasi-static fading model [30, p. 2631]
where the {hm} are independently drawn from a CN (0, 1) dis-
tribution and stay constant over the duration of a codeword.We
also assume that the {hm} are perfectly known to the transmitter
and the receiver. In this scenario, 0.5 ln(ρ) + χ, where χ is
now a function of the instantaneous channel gains, is the rate
supported by the channel in the high-SNR regime, for a given
channel realization.
In Fig. 1, we plot the cumulative distribution function of

0.5 ln(ρ)+χ, which is a high-SNR approximation of the outage
capacity. We consider the case of Wiener phase noise with stan-
dard deviation σΔ = 6◦ and set M = 20 and ρ = 20 dB. For
a given outage probability, the rate supported in the SLO case
is smaller than that in the CLO case. For example, for a target
outage probability of ε = 0.1, the rate supported in the SLO
case is 1.36 bit/channel use lower than that in the CLO case. To
achieve the same rate at ε = 0.1, the standard deviation σΔ of
the phase-noise process in the SLO case must be set to 2.34◦.

V. CONCLUSIONS

We studied the capacity of multiple-antenna systems affected
by phase noise. Specifically, we analyzed the first two terms in
the high-SNR expansion of the capacity of both the uplink and
the downlink channel of a system where wireless communica-
tion occurs between a base station equipped with M antennas
and a single-antenna user. Our analysis covers two different
configurations: the case when the RF circuitries connected to
each antenna at the base station are driven by separate local
oscillators, and the case when a common oscillator drives all
the antennas.
For all four cases (uplink/downlink, common/separate oscil-

lators) the first term in the high-SNR capacity expansion is equal
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Fig. 1. High-SNR approximation of the outage probability for the CLO and the
SLO configurations. A Wiener phase-noise model is considered. Furthermore,
M = 20, and ρ = 20 dB.

to 0.5 ln(ρ), whereas the second term,which we denote as phase
noise number, turns out to take different values depending on
which case is considered.For the uplink channel, the phase noise
number is larger when separate oscillators are used. For the
specific case of Wiener phase noise, a gain of at least 0.5 ln(M)
can be achieved. This gain, which is due to diversity, implies
that to achieve the same throughput in the high-SNR regime,
the oscillator used in the common oscillator configuration must
be at leastM times better than any of the oscillators used in the
separate configuration.
In contrast, the phase noise number of the downlink channel

is larger when a common oscillator drives all the antennas. This
is due to the fact that conjugate beamforming, which provides
a coherent-combining gain for the common oscillator configu-
ration, does not achieve the phase-noise number when separate
oscillators are used. The capacity achieving-strategy for the sep-
arate oscillator configuration turns out to be antenna selection,
i.e., activating only the transmit antenna that yields the largest
SISO high-SNR capacity, and switching off all other antennas.
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