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Abstract. Inclusion of stochastic differential equations in mixed effects models provides means to
quantify and distinguish three sources of variability in data. In addition to the two commonly
encountered sources, measurement error and interindividual variability, we also consider uncertainty in
the dynamical model itself. To this end, we extend the ordinary differential equation setting used in
nonlinear mixed effects models to include stochastic differential equations. The approximate population
likelihood is derived using the first-order conditional estimation with interaction method and extended
Kalman filtering. To illustrate the application of the stochastic differential mixed effects model, two
pharmacokinetic models are considered. First, we use a stochastic one-compartmental model with first-
order input and nonlinear elimination to generate synthetic data in a simulated study. We show that by
using the proposed method, the three sources of variability can be successfully separated. If the stochastic
part is neglected, the parameter estimates become biased, and the measurement error variance is
significantly overestimated. Second, we consider an extension to a stochastic pharmacokinetic model in a
preclinical study of nicotinic acid kinetics in obese Zucker rats. The parameter estimates are compared
between a deterministic and a stochastic NiAc disposition model, respectively. Discrepancies between
model predictions and observations, previously described as measurement noise only, are now separated
into a comparatively lower level of measurement noise and a significant uncertainty in model dynamics.
These examples demonstrate that stochastic differential mixed effects models are useful tools for
identifying incomplete or inaccurate model dynamics and for reducing potential bias in parameter
estimates due to such model deficiencies.

KEY WORDS: extended Kalman filter; model uncertainty; nonlinear kinetics; parameter estimation;
state prediction.

INTRODUCTION

In pharmacokinetic and pharmacodynamic modeling, the
physical system is often assumed to be described by a system
of ordinary differential equations (ODEs). In pharmacoki-
netics, compartmental models are mostly used, whereas for
pharmacodynamics, direct or turnover response models
are common (1). The observed data are assumed to arise
from a deterministic process under some measurement
noise (additive, proportional, a combination of the two, or
more general probabilistic models). However, the use of

deterministic modeling approaches for describing the
dynamics often suffers from limited and uncertain knowl-
edge regarding the details of such processes. Since it is up
to the modeler to define a model describing the drug
administration and its effect, there is also an uncertainty
in the model itself. This uncertainty is not explicitly
accounted for when considering a deterministic model,
for example when using ODEs to describe the dynamics
together with a measurement model to incorporate the
error. This can lead to model deficiencies, such as
correlated residuals, overestimated measurement noise,
and incorrect inference (2).

Nonlinear mixed effects (NLME) models were intro-
duced into the pharmaceutical field to analyze data from
several individuals simultaneously (3–5). The individuals are
assumed to be described by a common structural model with
some of the model parameters varying within the population
(so-called random effects parameters), while other parame-
ters are invariant between subjects (so-called fixed effects
parameters). The NLME approach can be of great benefit
when the data is sparse and the information from a single
subject is not sufficient to identify the model parameters. It is
typically performed using a deterministic model describing
the underlying system, for example by utilizing ODEs (6, 7).

1 Fraunhofer-Chalmers Centre, Chalmers Science Park, SE-41288,
Gothenburg, Sweden.

2 Department of Mathematical Sciences, Chalmers University of
Technology and University of Gothenburg, Gothenburg, Sweden.

3 Systems and Synthetic Biology, Department of Biology and
Biological Engineering, Chalmers University of Technology,
Gothenburg, Sweden.

4 CVMD iMed DMPK, AstraZeneca R&D, Mölndal, Sweden.
5 Division of Pharmacology and Toxicology, Department of Biomed-
ical Sciences and Veterinary Public Health, Swedish University of
Agricultural Sciences, Uppsala, Sweden.

6 To whom correspondence should be addressed. (e-mail:
mats.jirstrand@fcc.chalmers.se)

The AAPS Journal (# 2015)
DOI: 10.1208/s12248-015-9718-8

1550-7416/15/0000-0001/0 # 2015 The Author(s). This article is published with open access at Springerlink.com



We consider the extension of the NLME approach to
allow for uncertainty in the model dynamics. This is done by
considering stochastic differential equations (SDEs), which is
an extension of ODEs to allow for a random part in the
model dynamics. This approach has previously been advocat-
ed, see for example (8–10). We have previously also
demonstrated the benefits of using SDEs when solving the
inverse problem of parameter estimation (11). SDEs can
furthermore be used to model the inherent randomness in
pharmacokinetic and pharmacodynamic systems (12, 13), as
an alternative to discrete models using a master equation
approach and the Gillespie algorithm (14–16). Also, in
systems without true randomness, SDEs can be used to
model an incomplete or imperfect model structure. SDEs (see
(17, 18) for references) have long been used in mathematical
finance, for example to model the uncertainty in an asset (19).
In contrast to the classical approach, where data variability
arises from the measurements and the variability in param-
eters, a stochastic model also incorporates errors in the
dynamics itself. Hence, this kind of modeling allows for three
different sources of variability: population variability, mea-
surement error, and system noise.

One often faces the inverse problem of estimating model
parameters from observed noisy data. There are several
approaches to the delicate problem of estimating parameters
in stochastic differential mixed effects models. In general,
there is no closed form solution of the likelihood function.
Approaches to the parameter estimation problem on a
population level include for example the first-order (FO)
and the first-order conditional estimation (FOCE) method
(20, 21) and stochastic approximation of expectation maximi-
zation (SAEM) method (22). State estimation on an individ-
ual level includes, for example, the Kalman filter (KF), the
extended Kalman filter (EKF), and particle filters. For a
combination of the FOCE approximation of the population
likelihood and the EKF, see for example (10, 23–25). In (26),
the authors propose a combination of the SAEM algorithm
and EKF. For a review of parameter estimation methods in
SDE population models, see (27).

In this paper, we consider approximation of the popula-
tion likelihood by using the first-order conditional estimation
with interaction (FOCEI) approximation of the population
likelihood together with the EKF for state estimation on the
individual level. In contrast to previous efforts (10, 23–25), we
estimate the full covariance matrix describing population
variability. That is, we allow for correlation between random
parameters in the model. By utilizing the FOCEI method, we
allow for interaction between output variance and random
parameters. Furthermore, instead of adopting the commonly
used finite difference approximation, we make use of
sensitivity equations to evaluate the gradient of the objective
function in the optimization procedure, previously mentioned
in (28). Moreover, we produce illustrative plots describing
state variable uncertainty and output uncertainty (which is a
combination of state and measurement uncertainty). These
plots serve as diagnostic tools of model appropriateness and
illustration of the uncertainty in model output.

The extension of ODEs to SDEs is illustrated using two
examples of pharmacokinetic data. First, a stochastic one-
compartmental pharmacokinetic model with first-order input
and nonlinear elimination is considered by using a simulated

data set consisting of 20 animals. Since we now account for
three sources of variability in data, it is important to know if
the three sources can be distinguished from each other. From
the simulated data, the parameters of the model are
estimated, including the system noise and the covariance
matrices describing measurement error and parameter vari-
ability. Second, we consider a data set from a preclinical study
of nicotinic acid (NiAc) turnover in obese rats, where the
original NiAc disposition model and a NiAc disposition
model extended to an SDE model are compared in terms of
parameter estimates and model prediction.

MATERIALS AND METHODS

Mathematical Theory

In this section, we state the stochastic mixed effects
model and derive the (approximate) maximum likelihood
theory needed for parameter estimation. This section is
recommended for readers not familiar with the concept of
SDEs. We also introduce the concept of the EKF, which
serves as a state estimator for the stochastic model (29).

The Stochastic Mixed Effects Model Framework

In population modeling, NLME models are used to
describe data of the form

yi j; i ¼ 1; …;N; j ¼ 1;…; ni; ð1Þ

where the vector yij denotes the j:th observation for the i:th
individual. The statistical model is the following

dxi ¼ f xi; ui; t;ϕið Þdt; xi 0ð Þ ¼ x0 ϕið Þ ð2Þ

yi j ¼ h xi; ui; ti j;ϕi

� �þ ei j; ð3Þ

where time is denoted by t. Note that the differential equation
is written in differential form, which is the standard notation
for SDEs that will be introduced later on. The vector-valued
function f(xi,ui, t,ϕi) describes the dynamics of the system,
and ϕi denotes the individual parameters for individual i.
The state variables of the system are denoted xi and may
for example be the concentration of a drug or drug effect.
The input to the system is denoted ui, which for example
can be an infusion. Measurements are assumed to be
taken at discrete points in time and characterized by the
measurement function h(xi,ui, tij,ϕi) and the measurement
error eij~N(0,S(xi,ui, tij,ϕi)).

The individual parameters ϕi are related to the popula-
tion parameters θ according to

ϕi ¼ g θ;Zi;ηið Þ;

where θ denote the fixed effect parameters, Zi denote the
covariates for individual i and ηi~N(0,Ω) are the random
effects for individual i, which are assumed to be multivar-
iate normal distributed with mean zero and covariance Ω.
The model described above is the commonly used NLME
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model setup, and we refer the reader to (6, 7) for more
information.

Instead of considering the deterministic model in the
classic framework, we want to include some kind of uncer-
tainty in the differential equations as well. This is achieved by
expanding the ODEs to SDEs. The stochastic differential
mixed effect model, abbreviated SDMEM (30), is defined as

dxi ¼ f xi; ui; t;ϕið Þdt þΣ xi; ui; t;ϕið ÞdW i; xi 0ð Þ ¼ x0 ϕið Þ ð4Þ

yi j ¼ h xi; ui; ti j;ϕi

� �þ ei j: ð5Þ

An SDE of the form (4) consists of two parts. First, we
have the so-called drift function f(xi,ui, t,ϕi) corresponding to
the deterministic part in the model, which is the same as in
Eq. (2). Second, we have the random term Σ(xi,ui, t,ϕi)dWi,
which corresponds to the uncertain part of the model. We
will later refer to Σ(xi,ui,t,ϕi)dWi as the system noise. The
system noise is a continuous stochastic process, in contrast
to the measurement noise, which is realized at discrete time
points. In Eq. (4), dWi corresponds to the increment of a
q-dimensional Wiener process Wi. The elements of dWi are
independent and normally distributed with mean zero and
variance dt. Moreover, the Wiener increments dWi are
considered independent across individuals and independent
of the measurement error.

In contrast to the classic approach, where the only
error arises in the measurement equation, an SDE setting
provides a flexible framework to account for fluctuations
in the underlying state variables. The system noise is a
tool that accounts for all the unknown phenomena that
are not captured by the deterministic model, for example
approximations, modeling errors, and oversimplifications.
In a mixed effects model setting, variability in response
can now arise from three different sources, namely
measurement noise, system noise, and parameter
variability.

Parameter Estimation in the Stochastic Mixed Effects
Population Framework

Given a collection of measurements of the form (2)
and an underlying model of the form (4)–(5), the model
parameters can be estimated using the maximum likelihood
approach. This has previously been elaborated, see, e.g.,
(10, 25). For convenience of the reader, we here provide
the necessary equations together with the extension to
models with interaction between random effects and output
covariance.

For a specific individual i, the optimal parameter values
are found by maximizing the individual likelihood. Using the
notation Yik=[yi1,yi2, …, yik] to denote the measurements up
to time point tk for individual i, the combined likelihood
becomes

Li θ
���Yini

� �
¼ ∏

ni

j¼2
p yi j

���Yi j−1ð Þ;θ
� � !

p yi1
���θ� �

where the probability for an observation given the previous
observations and the parameters is p(yij|Yi(j−1),θ). Assuming

Gaussian densities, which are characterized by their first and
second moments denoted by

byi j ¼ E yi j
���Yi j�1ð Þ;θ

� �
Ri j ¼ Var yi j

���Yi j�1ð Þ;θ
� �

;

we can write down the individual likelihood. Taking the
logarithm, the individual log-likelihood is given by

logLi θ
���Yini

� �
¼ −

1
2

Xni
j¼1

ϵTi jR
−1
i j ϵ i j þ logj2πRi jj

� �
;

where

ϵ i j ¼ yi j−byi j;
is the prediction error, assumed to be normal distributed with
mean 0 and variance Rij. We denote the collection of all
individual measurements Y ¼ Y1n1 ;Y2n2 ;…;YNnNf g. The pop-
ulation likelihood is simply a product of individual likelihoods,

L θ
���Y� �

¼ ∏
N

i¼1
p Yini

���θ;Ω� �
Since the random effects are unobserved quantities, we

marginalize over the random effects,

L θ
���Y� �

¼ ∏
N

i¼1

Z
p Yini

���θ;ηi

� �
p ηi

���Ω� �
dηi ¼ ∏

N

i¼1
exp lið Þdηi; ð6Þ

where li ¼ li ηið Þ ¼ li ηi;Yini ;θð Þ is the a posteriori log-
likelihood for the random effects of the i:th individual

li ¼ −
1
2

Xni
j¼1

ϵTi jR
−1
i j ϵ i j þ logj2πRi jj

� �
−
1
2
ηT
i Ω

−1ηi−
1
2
logj2πΩj; ð7Þ

In most cases, there is no closed form expression for the
integral in Eq. (6). The integral can be approximated using
the Laplace approximation, see (31–33). The Laplace ap-
proximation uses a second-order Taylor expansion of li
around a point ηi

*. Here, the point is chosen to be the value
of ηi which maximizes the individual log-likelihood (7),

η*
i ¼ argmax

ηi

li ηið Þ:

Using this ηi
*, we end up with the approximate population

likelihood function

L θ
���Y� �

≈∏
N

i¼1
exp li η*

i

� �� � −Δli η*
i

� �
2π

���� ����;
whereΔli(ηi

*) denotes theHessian of the individual log-likelihood
(7) evaluated at the point ηi

*. Taking the logarithm, we have

log L θ
���Y� �

≈
XN
i¼1

li η*
i

� �
−
1
2
log

−Δli η*
i

� �
2π

���� ����:
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The expression for the element at index l,k of the
Hessian matrix is

Δli ηð Þð Þl;k ¼ ∂2li ηð Þ
∂ηl∂ηk

≈−
Xni
j¼1

∂ϵTi j
∂ηl

R−1
i j

∂ϵ i j
∂ηk

þ ϵTi jR
−1
i j

∂Ri j

∂ηl
R−1

i j

∂ϵTi j
∂ηk

þ ∂ϵTi j
∂ηk

R−1
i j ϵ i j

−ϵTi jR
−1
i j

∂Ri j

∂ηl
R−1

i j

∂Ri j

∂ηk
ϵ i j−

1
2
Tr −R−1

i j

∂Ri j

∂ηl
R−1

i j

∂Ri j

∂ηk

� �
−Ω−1

l;k;

where only first-order partial derivatives are considered and
higher-order contributions are assumed to be negligible in the
calculation of the Hessian Δli(η). This is called the FOCEI
approximation. If we assume no interaction between the
output covariance Rij and the random parameters, the
approximate Hessian is given by

Δli ηð Þð Þl;k ¼ ∂2li ηð Þ
∂ηl∂ηk

≈ −
Xni
j¼1

∂ϵTi j
∂ηl

R−1
i j

∂ϵ i j
∂ηk

−Ω−1
l;k; ð9Þ

referred to as the FOCE method (33). Finally, the
maximum likelihood estimates are given by maximizing the
approximate population likelihood as

bθ ¼ argmax
θ

logL θ
���Y� �

: ð10Þ

Due to the stochastic part of the model in Eqs. (4)–(5),
the state of the system is uncertain. There are several
solutions to the state estimation problem in these situations,
including for example particle filters and the Kalman filter
(29). In this paper, we will utilize the so-called extended
Kalman filter (EKF).

The Continuous Discrete Extended Kalman Filter

To calculate the individual log-likelihoods (7), we need
the prediction errors ϵij and the output covariance matrices
Rij. As noted in (10, 25), these identities can be recursively
computed using the extended Kalman filter (EKF).

The continuous discrete EKF is a state estimator for
continuous discrete state space models of the form (4)–(5)
(29). From observations, the state variables of the system and
their covariance are estimated in order to compute the
residuals and the output covariance. From now on, we drop
the individual notation i.

The EKF is an extension of the famous Kalman filter to
nonlinear models (34). For linear dynamic models, the Kalman
filter provides an optimal state estimator for a given parameter
vector ϕ. For nonlinear models, the EKF uses a first-order
linearization around the model trajectory. The EKF provides
estimates of the conditional expectation of the state x̂kjk ¼ E
xtk jYk;ϕð Þ and its covariance Pkjk ¼ Var xtk jYk;ϕð Þ. Given
initial conditions x̂1j0 ¼ x0 and P1|0=P0 and linearizations

At ¼ ∂f
∂xt

����
xt¼bxtjk

Ck ¼ ∂h
∂xt

����
xt¼bxkjk−1 ;

the state variables and their covariance are predicted between
two consecutive measurement time points according to

dbxtjk
dt

¼ f bxtjk; ut; t;ϕ� �
; t∈ tk; tkþ1½ �

dPtjk
dt

¼ AtPtjk þ PtjkAt þΣΣT ; t∈ tk; tkþ1½ �:

From the predicted state variables and their covariance,
we have the output prediction equations

bykjk−1 ¼ h bxkjk−1; uk; tk;ϕ� �
Rkjk−1 ¼ CkPkjk−1C

T
k þ S:

From the state covariance Pk|k−1 and measurement
covariance Rk|k−1, the Kalman gain is given by

Kk ¼ Pkjk−1C
T
kR

−1
kjk−1:

Finally, the state and its covariance are updated accord-
ing to

bxkjk ¼ bxkjk−1 þKkϵk
Pkjk ¼ Pkjk−1−KkRkjk−1KT

k ;

where the residual ϵk is given by

ϵk ¼ yk−bykjk−1:
Optimization of the Approximate Population Likelihood

To maximize the approximate population likelihood in
Eq. (10), we have to solve a nested optimization problem. For
every value of the population parameters θ in the optimiza-
tion of the approximate population likelihood, the individual
likelihoods in Eq. (7) have to be maximized with respect
to the random effects due to the Laplace approximation.
We refer to the maximization of the individual likelihoods
as the inner optimization problem and maximization of
the approximate population likelihood as the outer
optimization problem.

For the outer and inner optimization problems, we use a
local gradient-based quasi-Newton optimization routine
based on the Broyden-Fletcher-Goldfarb-Shannon (BFGS)
updating formula (35). The BFGS updating formula is a
popular optimization method because it performs well in
many different problems.

Since the optimization methods are gradient-based, we
need to calculate the gradient of the outer objective function
(10) and the gradient of the inner objective function (7). We
also need to calculate the approximate Hessians (8) or (9) of
the inner objective function. As argued in (28), there are
three approaches to this problem, namely (i) approximations
based on finite differences, (ii) symbolic differentiation, or
(iii) automatic differentiation tools. Instead of using finite
difference approximation, as performed in (8, 10), we use
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symbolic differentiation using the symbolic algebra capabil-
ity in Mathematica. By using symbolic derivation, the system
of ODEs if differentiated with respect to the model
parameters to obtain the so-called sensitivity equations.
These sensitivity equations are integrated together with the
original system of ODEs to form the expression of the
gradient.

Application 1: Simulation and estimation of a stochastic
one-compartmental pharmacokinetic model

To illustrate the concept of SDEs explained in the
previous section, we consider a one-compartment pharmaco-
kinetic model with first-order input and nonlinear elimina-
tion. In this application, we validate the proposed stochastic
modeling framework. A necessary condition is that the model
parameters and the three sources of variability (measurement
error, population variability, and model uncertainty) can be
identified. Here, we consider data from a simulated popula-
tion consisting of 20 animals. Moreover, we are interested in
investigating the difference in parameter estimates with an
assumption of a deterministic model. Consider the determin-
istic mixed effects pharmacokinetic model

dAi

dt
¼ − kaiAi; Ai 0ð Þ ¼ 20

V
dCi

dt
¼ kaiAi � Vmi

Km þ Ci
Ci; Ci 0ð Þ ¼ 0;

where Ai (mg) and Ci (mg L−1) are the amount of drug in
the GI tract and the concentration of drug in plasma for
individual i, respectively. We assume that the kai and Vmi are
multivariate log-normal distributed, that is

kai ¼ kaexp ηi1ð Þ ;
Vmi ¼ Vmexp ηi2ð Þ;

where the random effects vector η=(ηi1,ηi2) is assumed to
follow a multivariate normal distribution with mean zero and
covariance matrix Ω. The parameters of the model are the ka
(min−1), Vm (mg min−1), Km (mg L−1), and V (L). Moreover,
we parameterize Ω=UUT, where U is an upper triangular
matrix of the form

U ¼ ω11 ω12

0 ω22

� �
:

The reason for the parameterization Ω=UUT is to assure that
Ω is a positive definite matrix, a necessary condition since it is
a covariance matrix. We get

Ω ¼ ω2
11 þ ω2

12 ω12ω22

ω12ω22 ω2
22

� �
:

Using additive system noise, we end up with an SDE
describing the concentration of drug.

VdCi ¼ kaiAi−
Vmi

Km þ Ci
Ci

� �
dt þ σdWi; Ci 0ð Þ ¼ 0: ð11Þ

In the stochastic model, there exists a system noise σdWi,
where σ is the scaling factor and dWi is the increment of a
standard Wiener process. In Eq. (11), the system noise is
independent of the drug concentration. This may not be a
realistic assumption since it allows for a change in concentra-
tion even in the absence of drug. By defining the system noise
dependent on the concentration level itself, such phenomena
can be avoided. The final model, which we consider for
simulation and estimation, is

dAi

dt
¼ −kaiAi; Ai 0ð Þ ¼ 20 ð12Þ

VdCi ¼ kaiAi � Vmi

Km þ Ci
Ci

� �
dt þ σĈ idWi; Ci 0ð Þ ¼ 0; ð13Þ

where σ (L min−1) is the system noise factor. In the SDE
above, Ĉi denotes the approximation of the conditional
expectation of the concentration Ci computed by the EKF.
The reason for this model is that the EKF does not allow
for state-dependent system noise. However, by utilizing
the approximation of the conditional expectation of the
concentration, we can still use a proportional-like system
noise. For SDEs with system noise dependent on the
stochastic process itself, one can in rare cases use the
Lamperti transform to obtain a state-independent system
noise. The SDE (12)–(13) has a stochastic part in the
equation describing the central compartment. Since dWi is
the increment of a Wiener process, this implies that dWi is
normally distributed with variance dt, which in turn
implies that σĈidWi is normally distributed with variance
σ2Ĉi

2dt.
Mass-balance constrains for SDE models can be

enforced by assign the structure of Σ according to the
stoichiometry of the modeled system. For example, account-
ing for uncertainty in the drug uptake rate from the GI tract
can be achieved by adding the same system noise term to the
Eq. (12) with opposite sign. However, we have chosen to
assume that the system noise describes an uncertainty in the
elimination process from the central compartment, requiring
no mass-balancing.

Furthermore, the measurement yik is the concentration
for individual i measured at time tik under additive Gaussian
noise according to

yik ¼ Ci tikð Þ þ eik; ð14Þ

where eik~N(0,s2). A population consisting of 20 animals is
simulated according to the parameter values in the third
column of Table I. A total of 100 data sets are simulated, and
the model parameters are estimated using the FOCEI
method. The response is measured at equidistant time
points tk=1, 9, 17, …, 97 minutes for all animals.

Application 2: Stochastic NiAc disposition in obese
Zucker rats

In this section, we extend a pharmacokinetic model of
nicotinic acid (NiAc) in obese Zucker rats, previously used to
drive a pharmacodynamic model describing nonesterified
fatty acid (NEFA) turnover (36–41). The disposition of NiAc
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in obese rats was described by a one-compartment model
with endogenous synthesis of NiAc and a capacity-limited
elimination process. Instead of using a deterministic model
for the pharmacokinetics, we consider the extension to a
stochastic NiAc disposition model.

Original NiAc Disposition Model

The previously used pharmacokinetic model was a
one-compartmental model with a synthesis rate Synt
(μmol min−1 kg−1) of NiAc in the absence of drug with a
nonlinear elimination with parameters Vmi (μmol min−1 kg−1)
and Km (μmol L−1) describing the maximal rate from the
central compartment and the Michaelis-Menten constant,
respectively. The mixed effects kinetics is described by the
ODE

Vc
dci
dt

¼ uþ Synt−
Vmici

Km þ ci
; ð15Þ

ci 0ð Þ ¼ Synt Km

Vmi−Synt
; ð16Þ

where u (μmol min−1 kg−1) denotes the input. Two
different infusion rates were used, 0.67μmol min−1 kg−1

(corresponding to 20μmol kg−1 over 30 min) and
0.17μmol min−1 kg−1 (corresponding to 51μmol kg−1 over
300 min).

In previous work, in addition to Vmi, Synt was allowed to
be distributed in the population. In this paper, we only
consider Vmi, to be distributed in the population. This choice
was due to the fact that few data samples were taken at
steady-state and that the estimation results in (39) showed a
very high residual standard error on the interindividual
variability parameters. We consider a log-normal distribution
of the maximal rate Vmi. That is

Vmi ¼ Vmexp ηið Þ;

where ηi~N(0,ω2). Vc (L kg−1) denotes the central
volume. The first group consisted of eight subjects and the
second group of seven subjects. There was also one subject
receiving placebo, giving a total of 16 subjects in the analysis.

Stochastic NiAc Disposition Model

We consider the extension to a stochastic NiAc model
described by the SDE

Vcdci ¼ uþ Synt−
Vmici

Km þ ci

� �
dt þ σbcidWi ð17Þ

In the stochastic NiAc disposition model, the system
noise σĉidWi models the uncertainty in dynamics. Again, we
assume a system noise proportional to the mode ĉi. We refer
to σ (L min−1 kg−1) as the system noise factor. In contrast
to the original NiAc disposition model, the total error is
now divided into measurement error and system noise.
The choice of the stochastic model structure is to allow
for an uncertainty in the elimination process dependent
on the drug concentration.

The purpose of the extension is to identify the structural
parameters together with the sources of variability. Most
importantly, we are interested in identifying the system noise
factor σ. Note that σ=0 corresponds to the original NiAc
disposition model.

RESULTS

Application 1: Simulation and estimation of a stochastic
one-compartmental pharmacokinetic model

In this example, the primary interest lies in how well the
parameters in the model can be estimated from data. Since
we have three sources of variability (parameter variability,
measurement error, and system noise), it is important to
know whether these sources of variability can be separated in
the estimation.

The parameters in the model are estimated using the
FOCEI method. The parameters in the model consist of the
structural parameters ka, Vm, Km and V and the parameters
s, ω11,ω12, ω22 and σ describing the three sources of variability.
Hence, our vector of model parameters is θ=(ka, Vm, Km,V,
s, ω11,ω12, ω22,σ) which gives a total number of 9 parameters to
be estimated.

We estimate the model parameters using the SDE
approach and compare this to the corresponding ODE model
(σ=0). The estimated parameter values using the SDE model
and the ODE model are shown in Table I. The relative

Table I. Estimated parameter values for the one-compartmental model (12)–(13) using the ODE and the SDE model

Parameter Definition True value Starting value ODE model (RSE %) SDE model (RSE %)

ka First-order absorption 0.1 0.2 0.078 (22.6) 0.103 (12.9)
Vm Maximal velocity 0.5 1 0.637 (20.3) 0.508 (9.52)
Km Michaelis-Menten const. 3 1 5.43 (51.3) 3.04 (14.9)
V Compartmental volume 1 2 0.793 (17.6) 1.00 (5.50)
s Measurement error std. 0.1 0.5 0.609 (17.2) 0.099 (7.49)
ω11 Interindividual variability ka 0.5 0.1 0.403 (22.8) 0.456 (18.4)
ω12 Interindividual correlation 0.1 0 0.098 (120.9) 0.092 (149.5)
ω22 Interindividual variability Vm 0.3 0.1 0.332 (18.3) 0.279 (18.9)
σ System noise factor 0.05 0.01 - 0.050 (6.56)

The relative standard errors (RSEs) in % are included in parenthesis
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standard errors (RSEs) in % are included in parentheses.
They are obtained by calculating the mean and standard
deviations of the 100 estimates. The distribution of the
estimated model parameters for the 100 simulated data sets
are seen in Fig. 1.

Application 2: Stochastic NiAc disposition in obese
Zucker rats

The measured NiAc concentrations for the two infusion
groups are shown in Fig. 2.

Estimated Parameters

The parameters are estimated using the FOCE approx-
imation of the individual Hessians. The reason for using the
FOCE approximation is to guarantee that the individual
Hessians are positive definite. The starting values for the
structural parameters were adopted from Ahlström et al. (39)
with values Vm=1.8 μmol min−1 kg−1, Km=23 μmol L−1, Vc=
0.319 L kg−1, and Synt=0.00125 μmol min−1 kg−1. Moreover,
the starting values for the variance components were s=0.1,
ω=0.1, and σ=0.01 L min−1 (for the SDE model).

Table II shows the estimated parameters for the two
models of interest. As a reference, we also provide the
estimates from Ahlström et al. (39). The relative standard
errors (RSEs) in % are included in parentheses, calculated
from the approximated Hessian at the optimum. Two
comparisons are of interest. First, we used the original NiAc

disposition model (15) to compare the results from our
estimation with the results from (39). Second, we are
interested in the differences in parameter estimates using
the original NiAc disposition model (15) and the stochastic
NiAc disposition model (17).

Fitted Population and Individual Models

The fitted population models for the two approaches are
illustrated in Fig. 2.

Given the estimated population parameters as priors, the
individual likelihoods are maximized once again to obtain the
maximum a posteriori estimates for the random effect
parameters. These optimal parameter values are then
inserted in the model equations to obtain the individual
model fits. The original NiAc disposition model fit is obtained
by simply solving the ODE describing NiAc concentration
given an individual’s parameter values. For the stochastic
NiAc disposition model, the individual fit is slightly more
complicated to obtain. Due to the stochastic component, the
individual model fits for the stochastic model are obtained by
a method called smoothing. This has previously been
demonstrated by Kristensen et al. (2). When smoothing is
used, the model is used to provide an optimal state estimator
given all the measurements for a specific individual. The
fitted individual models together with the output uncer-
tainties are illustrated in Fig. 3 for three animals (rows 1–3)
with the shorter infusion for the estimated ODE (a–c) and

Fig. 1. Smoothed histograms over the estimated parameters from 100 simulated data sets. The estimated parameters using
the SDE model is shown in blue and the estimates using the ODE model (σ=0) is shown in purple. The vertical lines show
the parameter values used for simulation
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SDE (d–f) NiAc disposition model. The uncertainty bands
represent one standard deviation of the output uncertainty
(that is, the square root of the output covariance). Note that
the concentration and its uncertainty are visualized on a
linear scale, in contrast to the previous plots in Fig. 2, to
emphasize the improved fit for large NiAc concentrations
using SDEs.

DISCUSSION

The extension of NLME models to stochastic differential
mixed effect models has been considered to provide a more
general model to describe the error between model predic-
tion and observed data. By utilizing the stochastic setting, the
total error is divided into measurement noise and model
uncertainty. Together with the population variability induced
in a mixed effect model, we are able to account for a total of
three sources of variability.

Maximum Likelihood Estimation

We have taken the maximum likelihood approach to
parameter estimation by combining an approximation of the
population likelihood together with an extended Kalman
filter for state estimation. In contrast to the estimation
method proposed in (10, 23–25), we have further developed
the method by considering interaction between the output
covariance and random effects, referred to as the FOCEI
method (33). The interaction between output covariance and
random effects occurs for example in ODE models with a
proportional measurement noise and in stochastic models

where the output covariance depends on the Kalman update,
which in turn depends on the individual response.

The parameters were estimated using the gradient-based
method BFGS (35). In many applications, the gradient of the
objective function is approximated using finite differences.
However, numerical ODE solvers with an adaptive step length
are known to introduce quantification errors to the objective
function, making it nonsmooth on small scales (42). To
overcome such problems, we utilized the sensitivity equations
when calculating the gradient in the inner and outer
optimization problem. The sensitivity equations were obtained
by differentiating the system of differential equations and the
extendedKalman filter equations with respect to the parameters
in the model. This has been previously demonstrated by
Leander et al. (11) in the single individual case, and we are
preparing a manuscript that concerns the mixed effects case.

The extension to SDEs comes with an increased computa-
tional burden. Due to the fact that we now consider equations
describing the time evolution of both mean and covariance of a
stochastic process, a larger system of ODEs has to be solved.
The implementation of the numerical machinery for parameter
estimation also becomes more challenging and requires ad-
vanced numerical techniques such as the EKF. The stochastic
mixed effects modeling framework has been implemented in
Mathematica 9. An executable version of the code may be
received from the authors upon request.

Application 1: Simulation and estimation in the simu-
lated stochastic one-compartmental pharmacokinetic model

As a first application of stochastic mixed effects modeling,
we used a stochastic one-compartmental pharmacokinetic

Fig. 2. Plots of the estimated ODE (solid) and SDE (dashed) NiAc model together with the observed
concentration time courses of NiAc for the two infusion groups. a 20μmol kg−1 over 30 min. b 51μmol kg−1

over 300 min over 300 min. The concentration is shown on a log-linear scale

Table II. Estimated parameter values and interindividual variability (IIV) for the NiAc disposition model, with corresponding relative
standard errors (RSE %)

Parameter Definition Ahlström et al.
Current investigation:
ODE model

Current investigation:
SDE model

Vm Maximal velocity 1.59 (13.9) 1.46 (16.3) 1.35 (16.7)
Km Michaelis-Menten const. 18.9 (21.5) 15.2 (21.7) 13.6 (21.5)
Vc Central volume 0.328 (12.4) 0.29 (4.3) 0.32 (5.5)
Synt Endogenous synthesis rate 0.00280 (10.1) 0.0006 (29.5) 0.0018 (24.3)
s Residual prop. error 0.400 (26.3) 0.460 (8.08) 0.241 (11.7)
ω Variability Vm 0.214 (234) 0.174 (22.5) 0.133 (27.0)
σ System noise factor - - 0.033 (15.7)

See Ahlström et al. (39) for reference
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model for a simulation study. The aim was to investigate
whether the three sources of variability (measurement error,
population variability, and model uncertainty) could be sepa-
rated using the proposed maximum likelihood estimation.

From the parameter estimates for the SDE model in
Table I and the smoothed histograms in Fig. 1, we conclude
that all estimated parameter values are close to their true
values used for simulation. The measurement error standard
deviation s and the system noise factor σ are identical to the
true values using the SDE approach. Also, the correlation
between the random effects is close to the true value for the
SDE model. However, the RSE for the random effect
correlation is very high, implying that the correlation is
difficult to reliably estimate. This may depend on the fact
that only 20 individuals were included in each data set.

In the ODE case, we conclude that all the structural
parameters are biased and differ significantly from the true
parameter values used for simulating the data. Comparing the
results to the ODE case where the system noise is neglected
(σ=0), we can see that the measurement error standard
deviation s is increased six-fold. Hence, we conclude that
when the system noise is set to zero (equivalent to the ODE
case), the measurement error standard deviation is increased

to account for that variability, which is not unexpected since
we neglect the variability in dynamics. We also conclude that
the RSEs for the SDE model are generally lower than the
RSEs for the ODE model, although the RSEs for ω12 and ω22

are slightly higher in the SDE model.
Most importantly, we conclude that we can successfully

distinguish the three sources of variability, which is a
necessary condition of the extended framework to be of
practical value.

Application 2: Stochastic NiAc disposition in obese
Zucker rats

Using the original NiAc disposition model, and
comparing the results with previous work, we can conclude
that most of the parameter values are similar. Our estimated
values differ most in Km and Synt. Note that the quotients Vm/
Km are similar in the work by Ahlström et al. (39) and in the
current investigation (0.084 and 0.096, respectively). This may
imply that there are problems estimating the parameters Vm

and Km, whereas the quotient as such is identifiable. One
striking difference between our estimation and previous
results is that the relative standard error for the parameter
describing the interindividual variability (IIV) is significantly

Fig. 3. Observed plasma NiAc concentration time profiles together with the estimated ODE (a–c)
and SDE (d–f) NiAc disposition model for three animals (each row) from the first infusion group
(20μmol kg−1 over 30 min)
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lower in our investigation. The IIV for Vm was 234% in (39),
while it is reduced to 22.5% in our investigation. This is most
likely because instead of using finite difference approximation
of the gradient in the optimization problem, we utilize
sensitivity equations, yielding a more robust calculation of
the gradient, which also seems to influence the precision of
parameter estimates.

If we turn to our investigation and compare the ODE
and the SDE NiAc disposition models, we can see that the
endogenous synthesis rate Synt is increased for the stochastic
model, which is also seen in the population model fits in
Fig. 2. Moreover, another difference in the parameter
estimates is that the measurement error is much lower (two-
fold) for the stochastic model whereas the system noise factor
significantly differed from zero. This implies that the error
that existed in the original model (measurement error) is now
separated into two parts, namely the measurement error and
the system noise. The interindividual variability for the
maximal rate Vm is slightly decreased when the stochastic
NiAc disposition model is used. Hence, some of the
population variability in the maximal rate Vm seen in the
original NiAc disposition model may instead be explained by
a model uncertainty.

With respect to the individual fits in Fig. 3, there is a
clear difference in terms of model fits. The original NiAc
disposition model, proposed in (39), seems to underestimate
the drug concentration during the infusion. The stochastic
model that we propose is much closer to the measurements
and seems to account for model deviation that the original
model is not capable of. In the original NiAc disposition
model, the output covariance is equal to the measurement
covariance, whereas in the stochastic model, it is a combina-
tion of the state covariance and measurement covariance.

That means that the confidence band in the original
model simply arises from the variance of measurements,
which we assumed to be proportional to the concentration
level. Using the stochastic model, we conclude that the
uncertainty is highest between two consecutive time points.
In contrast to the original model, we have a decreased
uncertainty at the measurements, at which information is
gained about the underlying system.

In previous work (39), the original NiAc disposition
model was used to drive a pharmacodynamic model describ-
ing production of NEFA. By utilizing the stochastic NiAc
disposition model, the fitted individual models seem to be
able to capture the high concentrations during the infusion.

This is seen in Fig. 3 and may give a better input to the
NEFA model. A better input to a pharmacodynamic model
can be of broader interest in PKPD modeling, since a
deterministic pharmacokinetic model often is used to drive a
pharmacodynamic model. Using a stochastic pharmacokinetic
model can better account for uncertainty in the drug kinetics.

CONCLUSIONS

We conclude that the stochastic modeling framework we
proposed here leads to a more general framework for handling
measurement error and model errors. This framework, together
with an effective method for calculating the gradients in the
nested optimization problem, provides us with a flexible, robust
modeling framework for mixed effects models.
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