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Abstract

Lowering energy consumption is one of the biggest challenges in today’s society. Each
and everyday we use a large amount of electricity to support our lifestyle. According
to the U.S. Energy Information Administration, the energy usage will increase by 56%
by 2040. Thus new innovative solutions to reduce power consumption are in great need.
Consumers typically do not have the information they need to take proactive decisions
about their energy usage. Therefore, the potential for saving energy might rely on the
awareness and involvement in energy conservation and waste reduction.

One of smart grid’s visions is to enable utilities and consumers to more e↵ectively
monitor, control energy usage and cost. Advanced Metering Infrastructure (AMI) is an
important part of smart grid, it is a two-way communication system between smart me-
ters and utilities, where smart meters transmit consumption data to the utilities. Smart
meter is a digital metering device, which not only shows real-time feedback of the energy
consumption but also supports remote communication with utilities. Consumers can
receive their power consumption data in real-time, which allows them to make informed
choices about their energy usage. In this sense, smart grids, AMIs and smart meters can
be used to make people aware of their energy consumption. Additionally, energy usage
trends can be illustrated to consumers by applying di↵erent queries to extract energy
consumption data from the AMIs. At the same time, social media is one of the biggest
communication tools used to reach millions of people. By integrating energy usage data
produced by AMIs on social media, consumers can inspire and influence others to match
the energy they use with their needs and lifestyles.

As more and more smart meters are installed across power grids, huge volumes of
data are generated. In order to capture and analyze large data sets generated by smart
meters within AMIs, challenges such as how to cope with huge volumes of data appears.
Data Stream Processing models, utilized to process the huge amount of continuous data
and extract interesting data, emerge as a possible approach to transform these real-time
operational data into applied insights.

This master thesis presents BCStream, a data streaming based application, which
consumes energy consumption data on the fly and produces feedback to users on so-
cial media in order to raise their energy usage awareness. BCStream utilizes a Stream
Processing Engine to process a large amount of continuous data in real-time. In order
to show that it is possible to address the aforementioned challenges, we implement and
evaluate BCStream using several use-cases. These use-cases provide consumers di↵erent
insights of their energy usage. For instance, in the first use-case, the proposed system
determines at which hour of a day and which day of a week the power is consumed the
most. In the second use-case, BCStream helps users find the top five houses using the
most energy in the consumers’ neighborhood. Finally, the third use-case locates top five
most energy consuming devices per household. In order to evaluate the performance of
BCStream, real energy readings are modified and used as input data to the use-cases.
In order to conduct the evaluation, we use a single machine that relies on a multi-core



architecture to demonstrate good performance (between 160,000 and 170,000 energy
consumption readings) and scalability.

Keywords: Energy Saving, Data Streaming, Stream Processing Engine, Smart Me-
ters, Social Awareness, Smart Grid, Storm.
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1
Introduction

A more sustainable living plays a key goal in our modern society where the number
of electrical devices in our homes is growing. In order to lower the energy usage, the
first step is to make people aware of how much energy they are using and relate it to
their daily behaviours. The main current approach for consumers to get feedback on
their energy usage is through their monthly bills. By receiving feedback more often,
the consumers’ attention in energy usage could be raised significantly [1, 2]. A lot of
e↵ort has been put into this area, where integration between consumers and suppliers
is done with continuous exchange of consumption data using Advanced Metering Infras-
tructures (AMIs). Moreover, integrating energy consumption data into modern social
media enables users to share their achievements in energy saving with friends and fam-
ily. They might receive even more attention and encouragement to further reduce their
energy footprint. Widely used social media such as Facebook and Twitter can be one of
the best ways as information sharing tools which can be utilized to raise energy usage
awareness among their users [3].

This section first raises the problem and challenges to capture and analyze the huge
amount of energy consumption data generated by AMIs and provide useful insights to
consumers. Then it continues with the project’s goal, contributions and finally a short
outline of the report.

1.1 Problem description & challenge

Would you run the dishwasher or washing machine in an o↵-peak time if you know
how much less expensive the energy is at that time? Would you do it if you receive a
notification ? These are key questions for not only the energy utilities but also for the
consumers. As mentioned above, one of the key problems with improving the saving of
energy is getting consumers to be aware of their habits and choose to do something about
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CHAPTER 1. INTRODUCTION

it. Until recently, there has been a lack of information to cause such a change. However,
the deployment of smart meters, digital meters used to measure energy consumption, in
AMIs enables the ability of tracking and reading energy consumption data within the
power grid. We are now able to perform detailed analytics of energy usage data to provide
consumers valuable insights to change their behaviors and costs. Smart meters provide
many new opportunities, but also new challenges. One major challenge is the massive
amount of data that can be created by the smart meters. For example, if a distribution
network has one million metering devices and 5 kilobyte record per collection the amount
of data can grow exponentially quickly. Table 1.1 shows the potential amount of data
generated by one million metering devices in a year:

Collection Frequency 1/day 1/hour 1/30 min 1/15 min

Numbers of collected records 365 M 8.75 G 17.52 G 35.04 G

Terabytes of collected data 1.82 730 1460 2920
Table 1.1: The table indicates the potential amount of data generated by one million smart
meters.

Given the volume of data being generated and the ability to provide energy consumers
di↵erent insights of their energy usage on the fly, the main challenge of this master thesis
is the complex analysis of the input energy data in a real-time fashion.

1.2 Goal

Research has shown that monitoring energy usage contributes to energy saving (see Sec-
tion 6.3). By providing energy consumption information on social media, this thesis
proposes a way to utilize the influence and power of social media to reach out to mil-
lions of people in order to get their involvement in energy saving. The main goal of
this master thesis is to present BCStream, a data streaming based application, which is
able to handle big and unstructured data streams, generated by smart meters, in near
real-time. Furthermore, it continuously performs data analysis to capture the most in-
teresting insights to consumers’ energy usage from the input stream despite the size of
the stream. Consumers are able to specify what kind of feedback they are expecting from
BCStream and how it is presented, e.g., by e-mail, text messages or on social media.
BCStream makes it easier for consumers to view and evaluate their energy consumption
and consequently consumers can raise their energy usage awareness significantly, which
might result in more informed and proactive actions to save energy.

Following questions are investigated and evaluated:

• How can BCStream extract useful insights to consumers’ energy usage from un-
structured data with various format from di↵erent devices in a continuous fashion?

2



CHAPTER 1. INTRODUCTION

• Can BCStream provide its users the ability to construct their own queries ? If this
is the case then how?

• How would BCStream perform focusing on its throughput (energy readings/s) and
latency (ms). How would the system performance be e↵ected if more hardware,
e.g., increasing the number of processor-core, is utilized?

1.3 Contribution

The main contribution of this thesis work is the design and implementation of BCStream.
Using BCStream, a great number of use-cases can be composed to provide consumers
di↵erent insights. Furthermore, we conduct a questionnaire to investigate potential users’
interest in using BCStream for saving energy. The result indicates that people are very
positive to receive insights to their energy usage. We also implement and evaluate sample
use-cases with extensive experiments to measure BCSteam’s performance focusing on
throughput (energy readings/s) and latency (ms). Real energy consumption data sets,
obtained from TraceBase [4], are modified and used as input data stream. The evaluation
shows that, by using an o↵-the-shelf server, the system can handle up to 170,000 energy
readings per second and latency as low as 14 ms. Moreover the system achieves better
throughput with increasing computing power in terms of number of CPU cores.

1.4 Outline

The report continues with the following Chapters:

• Chapter 2: Background This chapter introduces all concepts needed to un-
derstand the rest of the report including social media, smart grids, AMIs, data
streaming and stream processing engines.

• Chapter 3: System design and architecture This chapter introduces BC-
Stream’s architecture and an overview of the modules that compose it.

• Chapter 4: Use-cases & implementation This chapter represents the use-
cases implemented in BCStream and how they are constructed using standard
operators.

• Chapter 5: Evaluation This chapter represents the evaluation of the system
including the di↵erent performed experiments.

• Chapter 6: Related work This chapter brings up other studies related to this
master thesis.

• Chapter 7: Discussion This chapter provides the conclusion of this master thesis
and what could be done in the future in terms of further development of BCStream.
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2
Background

In this chapter, we introduce the necessary background in order to understand the basic
concepts for the report. It appears to be an approach to get people involved in energy
saving by providing energy consumption insights on social media [3, 5]. Section 2.1 intro-
duces social network sites and a discussion on how social media can be used to influence
a group of people. At the same time, in order to provide consumers with useful insights
of their power consumption, energy readings obtained from smart grids and Advanced
Metering Infrastructures (AMIs) are needed. Section 2.2 introduces the components and
concepts of smart grids and AMIs. Finally, Data Stream Processing model, utilized to
process huge amount of continuous input streams and extract interesting data, emerges
as a possible approach to transform these energy readings data into applied insights. In
Section 2.3, we present Data Streaming paradigm.

2.1 Social media

When something is unique or creative it gets attention, information that we think others
like are shared. In the past, this sharing was done via word of mouth, publications or on
TV. Now it is done online. Social Media is the new way to share information, projects
or images we like with the world. People are spending more and more time online, and a
large part of that time is spent on Social Network Sites (SNSs), which are introduced in
the next Section 2.1.1.The increasing number of SNSs users makes social media become
a powerful tool for exchanging information. Consequently, the popularity of social media
enables opportunity to gain influence and engagement among the audience. Section 2.1.2
presents social influence phenomenon.

2.1.1 Social Network Sites

Facebook, Youtube and Myspace are all examples of SNSs. SNSs are defined as online
applications where users can share activities and interact with others. Boyd et al [6]
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CHAPTER 2. BACKGROUND

present three properties that define a SNS: (1) the ability to create a profile which is vis-
ible for others; (2) to have a list of connected users; (3) to be able to explore other users’
connections. The term network is not necessarily related to “networking”, which empha-
sizes on finding new relations to strangers. Even though finding new relations through
SNSs occurs, the intended use is to maintain contact with family, friends, colleagues,
etc.

2.1.2 Social influence

Social influence is the phenomenon where actions, performed by humans, a↵ect others
to act in a similar way, this could be friends or complete strangers. These actions do
not necessarily have to be physical actions, it can in fact be small acts like re-posting
someone’s comment or “liking” a status update. Social influence is a rather explored
area and interesting results regarding how one can be influenced by others’ actions on
social media have been presented in [7, 8, 9]. Goyal et al [8] investigate whether it is
possible to model the influences by looking at social graphs and logged actions. In their
result section, they state “we are able to predict, to within tight margins, the time by
which an influenced user performs an action after its neighbors have performed the same
action”. Example of such an action could be that a user joins a group on a social net-
work and then it potentially could intrigue other connected users to join the same group.

With this knowledge, it is positive that people get a↵ected and competitive with each
other on social media. Since our objective is to influence people to lower their energy
consumption and also to become more aware of their own energy usage, it is clear that
the use of social media, with its e↵ect on its users, is a great way to actualise this.
However, consumers typically do not have the information they need to make informed,
proactive decisions about their energy usage since the current approach for consumers
to get feedback on their energy usage is through their monthly bills. In order to provide
consumers such feedback, energy readings obtained from the smart meters within smart
grids and AMIs are needed. In that sense, we introduce smart grid, AMIs and smart
meters in the next section.

2.2 Smart Grid

The current electric grid was built over a hundred years ago. Back then, the electricity
cost was low and the result of that was a system not concerning about conserving surplus
energy [10]. However, with the increasing energy usage, the electric grid is reaching its
maximum capacity. To move forward, a new kind of electric grid, the smart grid, is built
to utilize new smart appliances such as smart TVs, dishwashers, etc., in order to manage
the increasing complexity and needs of electricity in our modern society. At the same
time, one of the key problems with improving the energy saving is engaging consumers to
be more aware of their energy usage. Until recently, there has been a lack of information
to cause such a change. However, energy consumption data becomes available using
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CHAPTER 2. BACKGROUND

AMIs and smart meters within smart grid. Such data is analyzed to provide consumers
with useful insights to make them aware of their energy usage. This section gives a brief
introduction to smart grids, followed by AMIs and smart meters.

2.2.1 What is smart grid ?

A smart grid is an electrical grid that extensively uses communication for improving
energy e�ciency and keeping track of the supply and demand within the grid. This
communication makes it possible for automated adjustment and control of millions of
devices [11]. Smart grid is not just about utilities having control over the electrical net-
work and constantly knowing the demand and supply the minimum voltage needed, it is
also a way of giving consumers more knowledge and feedback about their consumption,
this is referred to as smart generation [12]. Other components, included in the smart
grid, are smart power meters and intelligent appliances.

Smart grids are intelligent systems, they administrate the distribution of energy along
the grids and can be used to optimize the use of renewable energy. Furthermore, the
two-way communication between suppliers and consumers makes it possible to observe
peaks in energy demand in real-time and to ensure that the demand is met. Smart grids
can also help the reliability of the system and make sure that the customers would be
provided with a stable power supply [13].

2.2.2 Advanced Metering infrastructure

AMI is a two-way communication system between meters and utilities [14] where the
customer-end meters transmit consumption data to the utilities. It is a further develop-
ment of the Meter Reading System, which was introduced to reduce cost and improve the
accuracy of meter reading. As the name indicates, AMI is not just a single technology
but rather a whole infrastructure with the possibilities of configuration and integration
with existing electrical systems in our homes. The customer-end devices could be energy
management systems or smart meters and these devices are all a part of the smart grid.
Consumption data is not only sent to the utilities, it can also be displayed to the user
for instant feedback in some cases.

2.2.3 Smart Meter

A smart meter is a digital metering device, and in this case it is about electricity metering.
The word smart in smart meter refers to the fact that it not only shows real-time feedback
of the actual consumption, it also supports remote communication and controlling for the
suppliers. Furthermore a smart meter can directly connect to the electricity provider to
constantly provide them with the consumption data. To give evidence of the widespread
use of smart meters, the installation of smart meters are growing, in 2020 most of the
households in UK would have one installed in their home according to [15]. As more and
more smart meters are installed, this leads to huge volumes of data being generated. In
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CHAPTER 2. BACKGROUND

order to capture and analyze large data sets generated by smart meters, Data Stream
Processing models, utilized to process the huge amount of continuous data and extract
interesting data, emerge as a possible approach to transform these real-time operational
data into applied insights. The next section presents the concepts of data streaming.

2.3 Data streaming paradigm

There are a large number of sensors, smart meters, etc., being deployed across the
power grid infrastructure and that results in huge amount of data which is accessible
at unprecedented scale [16]. Consequently, more proactive decisions can now be made
based on the available data. However, with traditional computing, data is collected,
stored in a specific system, e.g., a database, and databases are first designed to e�ciently
store data, rather than rapidly process it and scaling accordingly. Therefore it is not
suitable to use the traditional computing in order to capture and analyze real-time
energy usage data. Stream computing is a new paradigm which supports processing
data in motion and stream processing applications can be deployed to undergo complex
analysis of continuous data streams in a real-time fashion [17]. This section first raises
the importance of data streaming, and furthermore provides an overview of the stream
processing paradigm including its key concepts.

2.3.1 Why is Data Streaming important?

As more and more intelligent devices such as sensors, smart meters proliferate across
power grids, a large volume of data is available for instant processing as it is being pro-
duced. Real-time analysis of continuous data streams enables faster and more informed
insights, which help consumers to better manage their energy consumption in order to
take action in time. However, because of the data volume produced by all the devices
across smart grids, it is not suitable to store all the received data into storage for later
analysis as in the traditional computing. A data stream processing application can pro-
cess continuous data streams on the fly, reducing large-volume input data streams to
low-volume output data streams for further storage or computation. Aside from the
above-mentioned motivations from the application perspective, stream processing is also
motivated by current technology trends. Multi-core processors and clusters of servers
are becoming more and more common. Thus data streams can be processed on di↵erent
cores of a processor or on di↵erent servers of a cluster, which can enhance the stream
processing application’s performance as well as its scalability.

Stream processing is especially suitable for applications that exhibit the following appli-
cation characteristics: intense computing (high ratio of operations to I/O), demanding
low processing latency and ability to apply data pipelining where data is continuously
fed from producers to consumers.

7



CHAPTER 2. BACKGROUND

2.3.2 Data Streaming model

Data Stream

Applications such as smart metering based monitoring generate and push data to com-
putation servers for real-time processing. The data generated by these applications can
be seen as streams of tuples. A stream is an unbounded, append-only sequence of tuples
generated continuously over time.

Tuple schema

Tuples contains one or more fields (F1,F2,F3,...,Fn). For instance, a field timestamp
could represent the timestamp when the tuple is created. Table 2.1 presents a sample
tuple schema, generated by real energy consumption of electrical appliances provided by
Tracebase [4].

Field Name Field Type

Timestamp string

Consumption double

Device string

CustomerID string
Table 2.1: Sample tuple schema which contains four fields (Timestamp, Consumption,
Device, CustomerID).

Fields Timestamp and Consumption represent the timestamp when the tuple is created
and the wattage at that timestamp, respectively. Field Device determines the specified
electronic device which the tuple is sent from and CustomerID represents the identifica-
tion of the customer whom the device belongs to. For this project we assume that the
field timestamp is always defined in the schema and that the tuples are sorted based on
the value of it.

2.3.3 Query processing

A lot of architectures have been proposed to process data streams. Data Streaming
Management Systems (DSMSs) process streams using continuous queries [18, 19]. These
queries are translated into a plan of operators and can be optimized and executed.
Queries over continuous data streams are very similar to traditional queries used in
DBMSs. However, there is a major distinction between the two types. The traditional
queries can be seen as one-time queries and the continuous data streams’ queries as
continuous queries [20]. The one-time queries are queries that are evaluated once over
the data set with the answer returned to the user. Continuous queries, on the other
hand, are evaluated continuously as data streams continue to arrive. The results to the
continuous queries are produced over time and updated or stored as new tuples arrive.
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CHAPTER 2. BACKGROUND

Continuous queries

Data streams are consumed and produced by continuous queries. As in StreamCloud [21],
a continuous query is defined as a directed acyclic graph (DAG) with additional input
and output edges. Each vertex is an operator that consume tuples from one or multiple
input streams and produces one or multiple output streams. An edge from operator A to
operator B indicates that operator B consumes tuples produced by operator A. Queries
are defined as continuous because they are executed repeatedly until they are explicitly
removed and results are computed as new tuples arrive.

Data Streaming Operators

A stream operator takes one or more streams of tuples as input and outputs one or
more streams of tuples. In most DSMSs, a stream operator behaves like its relational
database counterpart. Data streaming operators are classified into two categories re-
garding whether they maintain any states while processing input tuples or not: stateless
and stateful operators. BCStream defines the same streaming operator semantics as the
ones in StreamCloud [21]. Each operator is defined as:

OPN{P1,...,Pm}(I1,...,In,O1,...,On)

OPN represents the operator name, whereas, {P1,...,Pm} is a set of parameters, e.g.,
user-defined functions to transform input tuples or parameters and I,O denote the input
and output stream.

Stateless operators

Stateless operators produce a result based on the evaluation of a single input tuple.
Stateless operators do not maintain states that evolve accordingly with the input tuples
being processed.

Typical stateless operators are map, filter, and union.

• Map - the data streaming counterpart of the relational projection function. The
map operator accepts a single input tuple and produces a single output tuple with
an arbitrary number of output tuple fields. It’s main objective is to add, modify
or drop fields from the input tuples.

M
n

F1  f1(tin) ,..., Fn  fn(tin)
o

(I,O)

Where I and O indicate the input and output streams. tin is the input tuple
and {F1,...,Fn} is the output stream’s schema. The operator modifies each input
tuple using user-defined functions {f1,...,fn}.
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• Filter - the data streaming counterpart of the relational select function. The fil-
ter operator receives a single input tuple from the data stream and applies a user
defined function to decide whether or not to keep that tuple. The Filter is defined
as followed:

F
n

f(tin)
o

(I,O)

I,O represent input and output streams, respectively. tin is an input tuple and
the operator decides whether the tuple is discarded or not using the user-defined
function {f}.

• Union - the data streaming counterpart of the relational union clause. The union
operator merges two or more input streams to a single output stream, all streams
share the same schema. The operator is defined as:

U{}(I1,...,In,O)

Where I1,...,In is a set of input streams and O is the single output stream

Stateful operators

Stateful operators process a set of input tuples, maintain the states and finally produce a
single output tuple. In order to collect a set of input tuples, a window is defined and all
tuples belonging to the same window are processed together. The window is a parameter
of the stateful operators.

Windowing

When processing potentially unbounded sets of data it is impossible to execute functions
such as average or sum, this is one of the motivations for using windowing [22].

Another aspect in the motivation is that the most recent data is considered, this is an
important factor to some applications. For instance, a re-alarm application emphasizes
data of the last thirty minutes than data from one month ago. Windowing is used to
limit the scope of input data. The query is not evaluated over the entire data stream,
but rather only over windows of recent data. A window continuously selects a part of the
data stream, e.g., the last ten tuples or only tuples from the last hour and only considers
these in producing answers with older data being discarded.

A window has a window start, window end, size, and advance. Size is the window’s length
and advance indicates how the window is updated. Whenever the window’s start and
end updates, the window updates and the tuples outside of the window are discarded.
Depending on the relation of advance and the window’s size, there are three di↵erent
window types:
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• Sliding window (advance < size): Sliding window (advance < size): The window
start and end update depending on the being processed tuple’s timestamp. When
a sliding window updates, the window shifts to include the incoming tuple, and
tuples still within the window are kept.

• Tumbling window (advance = size) is very similar to the sliding window. The
main di↵erence is that when a tumbling window updates, it shifts the current
window by the window size units. Consequently, all the tuples within the new
updated window are kept.

• Jumping window (advance > size) shifts the current window by the window ad-
vance units which can result in holes where data is being discarded. Consequently,
all the tuples within the previous window expire.

Windows are di↵erentiated into two di↵erent types; time-based and tuple-based window,
e.g., time-based windows (also referred to as logical windows) are defined over a period
of time (e.g., tuples received in the last 10 minutes) or tuple-based windows (also re-
ferred to as physical windows) are defined over the number of stored tuples (e.g., last 50
received tuples).

A typical stateful operator is the aggregate:

• Aggregate computes aggregate functions such as mean, count, sum, min, max
over windows of tuples. The operator is defined as:

A
n

Type,Size,F1  f1(W) ,..., Fn  fn(W), [group-by = (F 0
i1,...,F

0
im)]

o

(I,O)

Where I,O are input and output streams. Parameter Type specifies the window
type which can be either time-based (Type = time) or tuple-based (Type = tuple).
Tuples over input stream I are stored in the window W until it becomes full, which
means that a tuple outside the window is received.

The time-based window is considered full if a newly received tuple’s field Times-
tamp exceeds the window End and the tuple-based window becomes full when the
number of stored tuples is the same as the window Size. After an output tuple is
propagated, the window is updated and the contributing tuples are discarded. (F1

,..., Fn) are output schema fields which are modified using user-defined functions
(f1, ... fn). Group-by parameter is the data streaming counterpart of the relational
group-by statement. The group-by parameter is optional and used to group input
tuples based on the value of one or more fields such as (F 0

i1,...,F
0
im). Whenever the

group-by parameter is set the output tuple schema contains a timestamp and the
input field utilized by the group-by. Finally, I and O are input and output streams.

2.3.4 Stream Processing Engines

Stream Processing Engines (SPEs) process continuous queries and produce results which
are updated with the arrival of new data. Many researches have been undertaken and
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some well-known SPEs are Aurora [18] and StreamInsights [19]. SPEs can be imple-
mented as centralized or distributed. Aurora is a centralized SPE, which has a single
instance system executed in a single machine where all the processing takes place. The
major issue with Aurora and other centralized SPEs is that the system capacity is lim-
ited to the capacity of the single machine and therefore its scalability with respect to
the incoming stream volume cannot be achieved. Aurora is integrated into Medusa [18]
to become one of the first distributed SPEs.

There are many types of distributed SPEs, where the most basic ones can run di↵erent
queries on di↵erent nodes which makes it possible to scale the number of queries with
more machines. More advanced distribution techniques include distribution of operators
among the nodes, which makes it possible to scale out with the number of operators by
adding more nodes [23]. Furthermore, the queries are composed by operators which can
be distributed to one or several nodes, this is referred to as parallel processing. A widely
used distributed and parallel SPE is Apache Storm [24] which is used as BCStream’s
SPE. Next section introduces Storm and its basic concepts as well as the motivations
why Storm is chosen in this thesis work.

Apache Storm as BCStream’s SPE

In order to provide consumers continuous insights of their energy usage and potentially
get the involvement of consumers in energy conservation and waste reduction, BCStream
needs a powerful SPE which can provide features such as real-time, low latency compu-
tation, and scalability with respect to input data volume. There are several distributed
stream processing engines available, including S4 [17], Apache Storm [24], StreamInsight
[19], IBM InfoSphere Streams [25], etc. For this research, Storm is chosen as BCstream’s
processing engine because of it is a widely used open-sourced real-time stream pro-
cessing system. Moreover, the project’s supervisors have also had experience working
with Apache Storm so it is convenient to gain knowledge and expertise if necessary. Fur-
thermore, Storm also o↵ers features such as fault tolerance and distributed computation,
which make it suitable for processing huge amounts of data on di↵erent machines. Other
useful features, provided by Storm, include:

• Parallel processing - Storm’s components can be specified to process in parallel
which can enhance the system’s performance.

• Storm guarantees that every tuple is processed (at-least-once processing guaran-
tee).

• Storm can be used with any programming language such as Java, Ruby, Python,
PHP, etc.

2.3.5 Storm SPE

Storm is a real-time, distributed, fault-tolerant, computation system. Like other SPEs,
Storm can process huge amounts of data continuously in real-time. Storm program-
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ming model consists of Spouts, Bolts, and Topologies. Storm’s concept architecture is
described as:

Programming model

Topology is a group of Spouts and Bolts arranged in a Directed Acyclic Graph. A topol-
ogy starts with one or several Spouts followed by Bolts. A continuous query is defined
as a topology (see Section 2.3.3).

Spout is the data source of the topology. A Spout can have one or many data sources
and it emits streams of tuples from theses underlying data sources to one or several Bolts.

Bolt consumes and processes tuples emitted from Spouts and emits streams of tuples to
downstream Bolts. A bolt represents a stream operator (see Section 2.3.3).

Figure 2.1 shows a sample Storm topology with 1 spouts and 3 bolts.

Spout

Bolt

Bolt
Tupl

es

Bolt
Tuple

sTuples

Figure 2.1: Sample Storm topology which consists of one Spout and three Bolts.

Data Flow in a topology

Spout injects streams of data into a topology. A Spout can listen to and pull messages
from one or more underlying data sources, when a topology is created it can specify how
many tasks to run in parallel for a Spout or a Bolt. Tasks can be viewed as the physical
instances of the Spouts and Bolts which can be extracted as logical execution units. The
tasks execute the Spout code or Bolt code in parallel in di↵erent nodes. A bolt’s input
is connecting to the output of a Spout or another Bolt.

Storm Concepts

The processing is done in what Storm refers to as workers, and a host machine can have
many workers. The workers have executors which are threads spawned by the workers,
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furthermore the workers then run one or more tasks from either a spout or a bolt (For
a more detailed description see Storm documentation [24]).

Fieldsgrouping

Since Storm can operate in parallel and one bolt can be run on one or more tasks at the
same time, in order to ensure that one or more data streams always go to the same task,
Storm has implemented fieldsgrouping. Fieldsgrouping makes it possible to always send
tuples to one specific task based on values from one or more fields.

Fault tolerance & message guarantee

Storm [24] o↵ers fault tolerance such that when a node goes down it is restarted auto-
matically and it is designed to be stateless so a restart of a node would work as if nothing
ever happened. Additionally, by o↵ering fault tolerance Storm guarantees all messages
to be properly processed within the system. This is done by sending acknowledgements
to the spout emitting the tuple the first time when it has reached the final bolt. If the
spout does not receive an acknowledgement within the time limit it is considered to be
failed, and then it is retransmitted. This feature ensures that all tuples are at least
processed once. Since acknowledged messages take up a lot of processing power Storm
o↵ers the ability to disable it.
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3
System design and architecture

This chapter describes BCStream’s architecture and an overview of the modules that
compose it. The first part of this chapter presents an overview of BCStream, how its
modules are connected, how the data flows through the system and finally how it should
be deployed. The following sections continue to describe each module in more detail.

Figure 3.1 shows an overview of BCStream’s architecture. BCStream contains three
modules: Consumer Configuration System, Stream Processing System, and Publishing
System. Additionally, a database is also needed in order to store consumers’ information.
The first module, Consumer Configuration System, enables consumers to define contin-
uous queries. The queries are then sent to the Stream Processing System. The second
module, Stream Processing System, receives energy consumption data from Advanced
Metering Infastructures (AMIs see Section 2.2) and processes the data based on the
continuous queries defined by the consumers using Apache Storm as SPE (see Section
2.3.4). Lastly, the third module, Publishing System, acquires the query output from
the Stream Processing System and sends out feedback to consumers. The Publishing
System o↵ers consumers the ability to specify how they want to receive the feedback on
social media.
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Figure 3.1: An overview of BCStream’s architecture.

BCStream’s deployment: With fine-grained energy consumption data being avail-
able through AMIs and the potential of gigabytes of data packets per second (see 1.1)
being generated, the huge amount of data generates even more overhead to the already
exhausted networks’ bandwidth. BCStream could process data with a higher resolution
than the one usually used to bill customers or monitor the network state. Neverthe-
less, this could not be done in a centralized fashion, because the amount of data could
exhaust the infrastructure. Furthermore, it is unnecessary to allow such huge amount
of data traveling a long distance through networks to the data center where BCStream
is deployed at. To address such problem, the data computation can be distributed to
di↵erent locations. The idea is to move the computation closer to the data sources such
as deploying instances of BCStream at local energy centers for data analysis in di↵erent
neighborhoods. For example, the total energy consumption of a day and comparison with
neighbors can be computed at the local energy center where an instance of BCStream
can be deployed at. The fine grained energy readings are not sent further than the local
data center and the result is computed and sent back to consumers. Furthermore, the
local systems can also send computed data packets to other data centers where other
computation can be executed, for instance consumers in di↵erent cities want to compare
their energy consumption with each other’s. The local instance of BCStream located
near the households aggregates the energy consumption over a period of time (e.g., one
day consumption) and then transmits the result to another data center which handles
the computation in that region where the cities are located at. By deploying instances
of BCStream at energy centers, we are able to move the data computation closer to the
data sources which are consumers’ households. Thus we can reduce the amount of data
sent through networks. Another advantage of such architecture rather than deploying
BCStream in every household is to avoid any modifications of the already deployed me-
tering devices. We refer the readers to Home Energy Management Systems (HEMS)
about how analysis could be moved closer to the devices (see [26]).
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3.1 Consumer Configuration System

This subsystem provides consumers the ability to compose di↵erent queries which are
run in the Stream Processing System. Figure 3.2 shows an overview of the Consumer
Configuration System. This system provides an Abstract Query Interface where the
consumers can compose queries by adding standard operators such as Map, Filter, Ag-
gregate (see Section 2.3.3). A query compiler is utilized to transform an abstract query,
composed by consumers, into a Storm topology which is sent to Stream Processing Sys-
tem for deployment.

Furthermore, consumers can also specify how the query output is presented by providing
the system their personal information, e.g., a Facebook account. A database stores the
obtained information and later on the Publishing System utilizes such data to notify
the consumers. The database also stores the configurations which are accessible for the
Stream Processing System and the Publishing System.

Query as Storm 
Topology

Database

User
Information

Abstract 
Query

Interface

Query 
Compiler

Abstract 
query Stream

Processing
System

Figure 3.2: Consumer Configuration System overview. The figure indicates the data flow
of the Consumer Configuration System.

3.2 Stream Processing System

Stream Processing System consists of two sub-systems which are Data Acquisition Sys-
tem and Stream Processing Engine (SPE) as shown in Figure 3.3. The Data Acquisition
System receives energy usage data from AMIs and pushes the data into a queue system
such as RabbitMQ [27] or Kafka [28]. The data can be converted, if needed, to a stan-
dardized format to make sure that all input messages, as tuples, have the same fields.
Then the queue feeds the SPE with data, and in this project the SPE is implemented
using Apache Storm [24]. In Storm, data is processed using queries, referred to as topolo-
gies (see Section 2.3.5). The SPE receives topologies, defined by consumers, from the
Consumer Configuration System. A topology specifies how data is being forwarded and
processed using Spouts and Bolts. A Spout connects to the Data Acquisition System,
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pulls data and emits tuples to the downstream Bolts, which aggregate, process the input
data then output results. A topology can consist of several Spouts and Bolts. Depending
on what kinds of feedback consumers want, the topology might need to interact with the
database for some specific information of consumers, such as home address or number
of family members. In addition to using databases, Bolts can also interact with other
services like open APIs for energy pricing, weather services, etc. The output from the
Bolts is then forwarded to the Publishing System.

Storm

Data
Acquisition 

System

Energy 
Consumption

(Watt)

Publishing
System

Input 
Stream

Output
data

Spout

Database

Bolt

Figure 3.3: Stream Processing System overview. The figure indicates the data flow of the
Stream Processing System.

3.3 Publishing System

Information about how feedback is presented on social media is defined by the consumers
and stored in a database. By using such information, the Publishing System’s task is to
make sure that all notifications to consumers are processed properly. Much like the Data
Acquisition System in the previous section a queue can be used, where the input data
is the output sent from the SPE as can be seen in Figure 3.4. A possible approach is to
utilize modular design to have di↵erent modules for di↵erent notification types, where
open-sourced APIs can be used to integrate with, e.g., Facebook and Twitter.

The reason for having Publishing System apart from the Stream Processing System is
due to the fact that it is unnecessary to let the Processing System handle all interaction
with social media when its main task is to analyze consumption data and should not be
interrupted or delayed due to overhead caused by the Publishing System. Furthermore,
the Publishing System is not time sensitive, if the interaction with social media is de-
layed with a couple of seconds or minutes it is not critical.
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Storm
Output
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Twitter API

Social
Media
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Figure 3.4: Publishing System overview. The figure indicates the data flow of the
Publishing System.

As mentioned in Section 2.1.2 the phenomenon of social influence where actions, per-
formed by humans, a↵ect others to act in a similar way is utilized by BCStream. The
idea is to present the insights of the consumers’ consumption data on social media in
a way that other users find it interesting and they start using the same application. A
possible approach to intrigue fellow consumers is to create a feeling of a competition,
for instance assigning badges and awards, to consumers who are saving a lot of energy,
similar to Foursquare [29, 30].
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4
Use-cases & Implementation

The main objective of this chapter is to show that standard operators, provided by
BCStream, are expressive enough to compose di↵erent continuous queries (see Section
2.3.3) for di↵erent use-cases. By processing these queries, BCStream provides consumers
insights to their energy usage and the opportunity to make proactive actions for saving
energy either for environment, economic purpose or just to receive“likes”on social media.
In the first section we introduce the schema of the input tuples utilized for data analysis
in BCStream. The following sections, we describe three sample use-cases which we have
studied, implemented as continuous queries and evaluated (see Section 4.2, 4.3 and 4.4).
Using the first use-case, consumers can receive notifications when they use the most
energy on daily and weekly basis. The second use-case provides consumers the ability
to compare their daily energy consumptions with their neighbours’ and determines the
top five most consuming neighbours. Lastly, the third use-case, consumers can find out
which five electrical appliances consume the most energy in their homes. For each use-
case, there is a short overview followed by a more detailed description of how di↵erent
operators are used to implement the continuous query carrying out the computation.
BCStream utilizes Apache Storm [24] to process the continuous queries as its stream
processing engine (SPE). However, Storm does not provide operators with the same
semantic as BCStream’s operators (see Section 2.3.3), and for this reason, we implement
the operators in Storm as a prototype. Finally, we present the results of a questionnaire
we conducted in order to investigate potential users’ opinions on how they would utilize
our system (see Section 4.5).

4.1 Input tuple schema

The input tuples represent energy readings, taken every second, from electrical appliances
such as PC or TV. Figure 4.2 shows some example energy readings, which contains the
timestamp when it is created, the energy consumption (Watt) at that timestamp, the
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customer which the appliance belongs to and the specific appliance. Readings are taken
every second. However some factors like network trouble or faulty appliances might result
in some readings not being collected. Furthermore we assume that all tuples entering
the system are sorted. The input tuples consumed by all three use-cases share the same
schema (Table 4.1).

Field Name Field Type

Timestamp string

Consumption double

Device string

CustomerID string
Table 4.1: The table represents four fields of the input tuples’ schema.

28/12/2011 00:00:01;43;1;TV

28/12/2011 00:00:02;45;3;Lamp

28/12/2011 00:00:04;43;145;TV
Table 4.2: The table shows some sample energy readings taken from electrical appliances.

Field Timestamp specifies the timestamp of the tuple while field Consumption indicates
the consumption in wattage for that second, Device determines the specified electronic
device and CustomerID represents id of the customer whom the tuple refers to.

4.2 Use-case 1: Daily and weekly peak energy consump-
tion

The main objective of this query is to find out consumption peaks and inform the con-
sumers. They receive updates such as which hour of a day and which day in a week
the energy is consumed the most and the consumption for that specific time. By re-
ceiving such insights on daily and weekly basis, consumers can recognize their power
usage patterns and take actions in order to lower their consumption. Moreover, as con-
sumers know their power usage patterns, they can easily discover any abnormal activities
which cause more energy consumption than usual and that can not be achieved with the
normal monthly utility bills. As shown in Figure 4.1, our system receives input tuples
(whose schema is discussed in the previous Section 4.1) containing data such as times-
tamp, energy consumption, device, customerID. After processing the input tuples using
”Daily and weekly peak energy consumption” query, our system produces two di↵erent
types of output tuples with schemas are defined as (DateHr, MaxDayConsumption and
ConsumerID) and (Date, MaxWeekConsumption and ConsumerID). The output tuples
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include data such as at what hour of a specific day and which day in a specific week they
use the most energy and how much the total consumption is.

Timestamp Consumption Device ConsumerID

2014-07-28 
00:00:00

8 TV 12345

2014-07-30 
01:42:13

10 Stereo 12345

….. …. …. ….

…. …. …. ….

2014-08-03 
23:59:59

3 Lamp 1337

Daily and 
weekly peak 

energy 
consumption 

query

Date Hr Max Day
Consumption

ConsumerID

2014-07-29 15:
00

248 12345

2014-07-29 19:
00

3600 1337

….. …. ….

Date Max Week
Consumption

ConsumerID

2014-08-03 1045 12345

2014-08-01 7600 1337

….. …. ….

Figure 4.1: The figure shows some sample input and output of the daily and weekly peak
energy consumption query.

4.2.1 Continuous query design

Figure. 4.2 presents the ”Daily and weekly peak consumption” use-case as a continuous
query using standard operators.

Aggregate 
A1

Aggregate
A2 

OA1

Aggregate
A3

Aggregate
A4

OA2

OA3

Energy
Readings

OA4

Map 
M1

OM1IM1 Publishing 
System

Figure 4.2: Data flow of the Daily and weekly peak energy consumption topology. The
figure shows how data streaming operators are used to construct the query.

The query is composed by one stateless operator (Map operator M1) and four stateful
aggregate operators ( A1, A2, A3, and A4).
For each incoming tuple with schema (Timestamp, Consumption, Device, CustomerId)
(see Section 4.1), the Map operator M1 removes the field Device and generates a output
tuple composed by fields (Timestamp, Consumption and CustomerID), which are just
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copied from the input tuple values. The Device field is removed because it won’t be
needed by the downstream operators of this query. Operator M1 is defined as:

M1{Timestamp Timestamp, Consumption Consumption, CustomerID Cus-
tomerID },(IM1,OM1)

The first Aggregate operator A1 receives tuples produced by Map operator M1. This
operator utilizes a tumbling time-based window with window size of one hour to com-
pute the total hourly energy usage by summing the energy consumption from the re-
ceived tuples within the current window. Furthermore, tuples referring to the same field
CustomerID are grouped and processed together to ensure correct computation and a
customer’s energy consumption can not be altered by others during computation using
parameter group-by. The operator A1 is defined as:

A1{time,3600, Date-Hr  getWindowStart(), totHrConsumption  
sum(Consumption), group-by = CustomerID },(IA1,OA1)

The output tuples schema consists of the following fields (Date-Hr, totHrConsumption
and CustomerID) where field CustomerID indicates the consumer identification. Field
totHrConsumption refers to the total energy usage of a customer using a window of one
hour. Field Date-Hr represents the specific hour for which the totHrConsumption is
measured and it is set to the window start (see Section 2.3.3). These output tuples are
emitted to Aggregate operators A2 and A3. Once the Aggregate operator A2 receives
tuples with hourly wattage for a whole day, it determines at which hour the customers
use the most power and the results are forwarded to the Publishing System (see Section
3.3) to inform the consumers.

As in the operator A1, operator A2 also has a time-based window and parameter
group-by on field CustomerID. However, the window size is one day (86400 seconds)
instead of one hour. The Aggregate operator A2 is defined as:

A2{time,86400, Date-Hr  getHourWithMaxConsumption(Date-Hr), maxDayCon-
sumption  max(totHrConsumption), group-by = CustomerID },(IA2,OA2)

The output tuples schema is composed by fields (Date-Hr, MaxDayConsumption and
CustomerID) where field CustomerID is the same as the input tuple value produced by
Aggregate operator A1. Field Date-Hr and maxDayConsumption refer to the hour with
the maximum value of energy consumption under a period of one day.

Next, the Aggregate operator A3 receives tuples emitted from operator A1 every hour.
Operator A3 is almost the same as Aggregate operator A1. The main di↵erence is that
A3 utilizes a window of 24 hours to compute the total power usage instead of one hour.
The A3 operator is defined as:
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A3 {time,86400, Date  getWindowStart(), totDayConsumption  
sum(totHrConsumption), group-by = CustomerID },(IA3,OA3)

The output tuples schema has the following fields (Date, totDayConsumption, Cus-
tomerID) where field CustomerID is the same as the input tuple value produced by
Aggregate operator A1, field totDayConsumption refers to the total energy consumption
for one specific day. Field Date specifies which day the consumption is measured and,
similar to operator A1, it is set to the window start.

Finally, the stateful aggregate operator A4 receives tuples emitted from operator A3 every
day. Operator A4 is almost the same as aggregate operator A2. The main di↵erence is
that A4 has a time-based window of one week (604800 seconds). It determines at which
day, within a week, the most energy is consumed and also how much energy that is used
during that day. Furthermore, it forwards the results to the Publishing System. The A4

operator is defined as:

A4{time,604800, Date getDateWithMaxConsumption(TotDayConsumption, Date),
maxWeekConsumption max(totDayConsumption), group-by = CustomerID },(IA4,OA4)

The output tuples schema consists of the following fields (Date, maxWeekConsumption,
CustomerID) where field CustomerID is copied from the input tuple values of Aggregate
operator A3, field Date and maxWeekConsumption refer to the day with the maximum
value of energy consumption under a period of one week.

4.2.2 Implementation in Storm

For our use-case, we designed one topology of one Spout and five Bolts (see Section 2.3.5)
that processes energy readings generated by AMIs to inform consumers their energy us-
age peaks. In terms of Storm components, the Spout reads the incoming data from the
Data Acquisition System (see 3.2), converts them to tuples, and then emits these tuples
to downstream Bolts to perform energy consumption peaks analysis.

As shown in Figure 4.3, the InputSpout receives the input data from the Data Acquisi-
tion System, converts it to tuples and emits the tuples to the RemoveFieldsBolt (B1),
SumBolt Hour (B2), MaxBolt Day (B3), SumBolt Day (B4), MaxBolt Week (B5) for
further processing. Once the processing is done, the consumption peaks are emitted to
the Publishing System, where they are published on social media. The detailed imple-
mentation for this process is explained next.
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Figure 4.3: Data flow of use-case Daily and weekly peak energy consumption.

InputSpout

As shown in Figure 4.4, InputSpout takes energy readings (Table 4.2), which contains
energy data information such as timestamp when the reading is created, the specific
device whose consumption is registered, its consumption at that timestamp, and the
customer who the device belongs to. Then it generates a tuple for each reading with a
schema containing four fields (Timestamp, Consumption, Device, and CustomerID) and
emits these tuples to downstream Bolts for processing.

Data 
Acquisition 

System
[TS1, 23W,TV, 234] 

[TS2, 15W, Lamp, 123] 

[TS3, 9W, TV, 555] 

InputSpout

[TS1, 23W, TV, 234] 

[TS2,15W,Lamp, 123] 

[TS3, 9W,TV, 555] 

TS1 = 2014-04-23 12:32:22
TS2 = 2014-04-23 23:12:22
TS3 = 2014-04-23 05:07:22

Output tuples

[TS1;23W;TV;234] 

[TS2;15W;Lamp;123] 

[TS3;9W;TV;555] 

Figure 4.4: Data flow from Data Acquisition System to InputSpout. The figure shows
how the inputSpout generates tuples from the input energy readings from the Data

Aquisition System.

RemoveFieldsBolt

RemoveFieldsBolt implements the functionality of Map operator M1 (see Section 4.2.1).
It receives one or more parameters which indicate one or more fields to be removed.
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In this case, the output tuples of InputSpout are forwarded to RemoveFieldsBolt to
remove the unused field Device and produce new tuples with the new schema containing
following fields Timestamp, Consumption, CustomerID. The values of the remaining
fields stay the same as the input tuples’ values. Figure 4.5 shows how RemoveFieldsBolt
works.

InputSpout
(Timestamp,

Device,
Consumption,
CustomerID)

[TS1, TV, 23W, 234] 

[TS2, Lamp, 15W, 123] 

[TS3, TV, 9W, 555] 

RemoveFieldsBolt

Device

[TS1, 23W, 234] 

[TS2, 15W, 123] 

[TS3, 9W, 555] 

TS1 = 2014-04-23 12:32:22
TS2 = 2014-04-23 23:12:22
TS3 = 2014-04-23 05:07:22

Output tuples

(Timestamp,
Consumption,
CustomerID) 

Figure 4.5: Flow of data from InputSpout to RemoveFieldsBolt. The figure shows that
RemoveFieldsBolt removes field Device in input tuples from InputSpout.

The tuples emitted by RemoveFieldsBolt are passed to the next corresponding Bolt,
which is a SumBolt in this case.

SumBolt Hour & SumBolt Day

SumBolt computes the total energy consumption of a consumer within a predefined
tumbling window (see 2.3.3). To implement the Aggregate semantics, a SumBolt re-
quires: what type of window (time-based or tuple-based), window size, what fields of
the input tuple schema are used to calculate the sum and a grouping parameter which
indicates how tuples should be partitioned among the Bolt’s tasks (see Section 2.3.5).
Aggregate operators A1 and A3 (see Section 4.2.1) are implemented as SumBolt Hour
B2 and SumBolt Day B4(see Figure 4.4) with time-based windows of one hour and one
day respectively. The reason that time-based windows are used in this context is that
we are only interested in tuples with timestamps within a certain period of time.

As tuples arrive at SumBolt Hour B2 from RemoveFieldsBolt (see B1 in Figure 4.4)
with timestamps within the current time-based window, SumBolt Hour B2 does not
store every tuple. Instead, it only updates the sum of the power usage stored in field
Consumption and then discards the tuples. When a tuple with timestamp outside of
its window, the SumBolt Hour B2 immediately updates its time-based window based on
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the newly received tuple’s timestamp, emits the total energy consumption of the tuples
within the previous time-based window and also updates the sum of energy consumption
so far with the newly received tuple’s value.

As shown in Figure 4.6, SumBolt Hour B2 receives parameters which indicate that Sum-
Bolt Hour B2 has a time-based window of one hour, it computes the total energy usage
in one hour for a consumer using field Consumption of the input tuple schema. Addi-
tionally, field CustomerID is used as a grouping rule to ensure that tuples with same
CustomerID are always going to the same task. However, tuples with di↵erent Cus-
tomerID might also end up in the same task so in order to ensure correct computations,
a data structure, which stores the customers’ energy consumption data in memory, is
utilized.

RemoveFields
Bolt

(Timestamp,
Consumption,
CustomerID)

[TS1, 721W, 555] 

[TS2, 244W, 555] 

SumBolt_Hour

Time, 3600, Sum
(Consumption),

Group-by = 
ConsumerID

[Date-Hr’, 965W, 555] 

TS1 = 2014-04-23 12:32:22
TS2 = 2014-04-23 12:45:04
TS3 = 2014-04-23 12:54:46

Output tuples

[Date-Hr’, 950W, 550] 

[TS3, 950W, 550] 

Date-Hr’ = 20014-04-23 12:00:00

(Date-Hr,
totHrConsumption,

CustomerID) 

Figure 4.6: Data flow from RemoveFieldsBolt to SumBolt Hour. The SumBolt
summarizes the consumption over an hour produces output tuples.

SumBolt Day B4 (4.7) receives a tuple with schema (Date-Hr, totHrConsumption, Cus-
tomerID) (see Figure 4.6) from SumBolt Hour every hour. It is implemented almost
exactly the same as SumBolt Hour B2. B4 has a time-based window of one day (86 400
seconds) instead of one hour. It also uses field totHrConsumption in order to compute
the total energy usage for a day and field ConsumerID to partition stream of tuples into
its tasks
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SumBolt_Hour
(Date-Hr,

totHrConsumption,
CustomerID) [Date-Hr1, 965W, 555] 

[Date-Hr2, 300W, 555] 

SumBolt_Day

Time, 86400, Sum
(totHrConsumption)

,Group-by = 
ConsumerID

[Date, 1265W, 555] 

Date-Hr1= 2014-04-23 12:00:00
Date-Hr2= 2014-04-23 13:00:00
Date-Hr3= 2014-04-23 12:00:00

Output tuples

[Date, 950W, 550] 

[Date-Hr3, 950W, 550] 

Date = 20014-04-23 

(Date,
totDayConsumption,

CustomerID) 

Figure 4.7: Data flow from SumBolt Hour to SumBolt Day which summerizes the total
energy consumption of a specific customer under one day and generates output tubles

based on the input tubles from the SumBolt Hour.

MaxBolt Day & MaxBolt Week

MaxBolts determine the maximum energy usage of a consumer within a certain window.
Similar to SumBolt, a MaxBolt requires several parameters: window, a window size,
what fields of the input tuple schema to calculate the maximum energy usage within
the window and a grouping parameter which indicates how tuples should be sent to the
Bolt’s tasks (see Section 2.3.5). Aggregate operators A2 and A4 (see Section 4.2.1) are im-
plemented as MaxBolt Day B3 and MaxBolt Week B5(see Figure 4.4) with time-based
windows of one day and one week respectively. The reason that time-based windows are
used in these Bolts is that we are only interested in finding out which hour of a day and
which day of a week the consumers use the most energy.

Figure 4.8 shows the data flow from SumBolt Day through MaxBolt Day B3. A tu-
ple is sent from SumBolt Day to MaxBolt Day every hour with a schema (Date-Hr,
totHrConsumption, CustomerID). MaxBolt Day has a time-based window of one day
(86 400 seconds) and uses field Date-Hr and totHrConsumption to determine the hour
in which the most energy is consumed. Moreover, field ConsumerID is once again used
as stream grouping rule to ensure that tuples with same CustomerID are always going
to the same task. Instead of storing every input tuple, MaxBolt Day utilizes a simple
data structure (for instance Map) to store consumers’ total hourly consumption data in
memory. Since tuples with di↵erent CustomerID might end up in the same task so in
order to ensure the computation of energy consumption for a customer would not be
altered by other consumers, the data structure is needed.
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SumBolt_Hour 
(Date-Hr,

totHrConsumption,
CustomerID) [Date-Hr1, 4223W, 555] 

[Date-Hr2, 5223W, 555] 

maxBolt_Day

Time, 86400, Max
(totHrConsumption)

,Group-by = 
ConsumerID

[Date-H1’, 7213W, 50] 

Date-Hr1 = 2014-04-23 12:00:00
Date-Hr2 = 2014-04-23 13:00:00
Date-Hr3 = 2014-04-23 23:00:00

Output tuples

[Date-Hr1, 7213W, 50] 

Date-Hr2’ = 20014-04-23  13:00:00  

[Date-Hr2’, 5223W, 555] 

(Date-Hr,
maxDayConsumption,

CustomerID)

Date-Hr1’ = 20014-04-23  23:00:00  

Figure 4.8: Flow of data from SumBolt Hour to MaxBolt Day. The MaxBolt Day
computes under which hour of a day, a customer consumes the most energy and generates

output tubles based on the input tubles from the SumBolt Hour.

MaxBolt Week receives a tuple from SumBolt Day with a tuple schema (Date, totDay-
Consumption, CustomerID) everyday (see Figure 4.9). The implementation is almost
exactly the same as SumBolt Hour. MaxBolt Week has a time-based window of one
week (604800 seconds) instead of one day. It also uses field totDayConsumption and
Date in order to determine in which day the most energy is used and field ConsumerID
to partition stream of tuples into its tasks.

SumBolt_DaY 
(Date, 

totDayConsumption, 
CustomerID) [Date1, 4223W, 555] 

[Date1, 5223W, 555] 

maxBolt_week

Time, 604800, Max
(totDayConsumptio

n), Group-by = 
ConsumerID

[Date2, 7213W, 555] 

Date1 = 2014-04-23 
Date2 = 2014-04-24 
Date3 = 2014-04-26 

Output tuples

[Date3, 7213W, 555] 

(Date, 
maxDayConsumption, 

CustomerID)

Figure 4.9: Data flow from SumBolt Day to MaxBolt Week. MaxBolt Week outputs the
day with the highest consumption for that week.
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4.3 Use-case 2: Comparing energy usage with neighbours

This second use-case enables consumers to compare their consumption with each other,
whether it is neighbors, friends or both. The purpose is to give a feeling of a competi-
tion and by that intrigues and influences people to consume less energy. This use-case
determines the top five consumers per day, however it could be extended to work with
any given time period, e.g., week, month, etc. The output of this use-case is be a list
of consumers and their daily consumption which is sent to the Publishing System (see
Section 3.3 for distribution of the data. Figure 4.10 gives an example of how the input
and the expected output tuples look like.

Timestamp Consumption Device ConsumerID

2014-04-04 
00:00:00

20 TV 123 W

2014-04-04 
01:42:13

15 Stereo 456 W

….. …. …. ….

…. …. …. ….

2014-04-05 
23:00:12

32 Lamp 137 W

Comparing 
energy usage 

with 
neighbours

Date GroupID ConsumptoinList

2014-04-04 111

[
    123 : 521 W,
    456 : 213 W,
    578 : 142 W,
    876 : 24 W,
    333 : 13 W,
]

2014-04-05
222

[
    578 : 931 W,
    876 : 752 W,
    456 : 702 W,
    333 : 331 W,
    123 : 100 W,
]

Figure 4.10: The figure shows some sample input and output of the Comparing energy
usage with neighbours use-case.

4.3.1 Continuous query design

Figure 4.11 shows use-case Comparing energy usage with neighbours as a continues query
composed by standard data streaming operators (see 2.3.3). The query consists of two
stateless Map operators and two stateful aggregate operators ( A3 and A5). Operators
M1 and A3 works just like the ones used in the previous use-case (see Section 4.2.1).

OM2Energy 
Readings Map 

M1

OM1 OM1 Aggr. 
A3

OA2 Aggr. 
A5

OA5
Map 
M2 

Publishing
System

Figure 4.11: Comparing energy usage with neighbours topology. The figure shows how
data streaming operators are used to construct the query.

The Map operator M1 removes the field Device since this use-case only calculates the
daily and weekly peak consumptions of a household. The main reason is to reduce the
computational cost of the query by removing unnecessary information that are not used
to compute the query result. The operator M1 is defined as:
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M1{Timestamp Timestamp, Consumption Consumption, CustomerID Cus-
tomerID },(I,OM1)

Aggregate operator A3 receives tuples from Map operator M1 and are grouped by the
field CustomerID. A3 uses a time-based window and sums up the consumption over the
window size of 86400 seconds to compute the daily consumption and outputs the result.
Consumption is summed up and a new tuple is output with a schema consisting of the
following fields: Date, totDayConsumption and CustomerID and Date is set to window
start. The operator A3 is defined as:

A3{time,86400, Date  getWindowStart(), totDayConsumption  
sum(totHrConsumption), group-by = CustomerID },(IA3,OA3)

The operator M2 which receive tuples from A3 with the daily total consumption. M2

adds the field GroupID to the tuples in order to find out which consumers to compare
with. The function getGroupID gives the groupID based on the CustomerID and is used
in A5 with the group by parameter. The output tuple schema consists of the following
fields: Date, totDayConsumption , CustomerID, GroupID and the operator is defined
as:

M2{Date  Date, totDayConsumption  totDayConsumption, CustomerID  
CustomerID, GroupID  getGroupID(customerID) },(IM2,OM2)

Finally the operator A5 receives tuples from M2 and determine the top five consumers
over the time window of one day. The parameter group by is used on GroupID to only
aggregate over the consumers that are in the same group. The function topConsumers
then returns a list containing the consumption and CustomerID of the top consumers for
that group. The output tuple schema consists of the following fields: Date, CompareList,
GroupID and the operator is defined as:

A5{time,86400, Date  getWindowStart(), CompareList  
topConsumers(totDayConsumption, CustomerID) , group-by = GroupID },(IA5,OA5)

4.3.2 Implementation in Storm

For the use-case Comparing energy usage with neighbours, we designed one topology
of one Spout and four Bolts (see Section 2.3.5). The Spout reads the incoming data
from the Data Acquisition System (see 3.2), after converting it to tuples with a schema
consisting of several fields. Furthermore, the spout emits the tuples to the downstream
Bolts to perform energy consumption comparison with di↵erent consumers.

Figure 4.12, much like the previous use-case (see Section 4.2.2) the InputSpout accepts
the input data from the Data Acquisition System, convert it to tuples and emits the
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tuples to the RemoveFieldsBolt (B1) and MaxBolt Day (B2) for further processing.
Furthermore, there are 2 other bolts introduced in this section: AddFieldsBolt and
TopConsumersBolt Day which are described in more detail.

Storm

Data
Acquisition 

System

Energy 
Readings Publishing

System

Input 
Stream

Output
data

S
B1 B3 B4B2

B1: RemoveFieldsBolt
B2: SumBolt_Day B3: AddFieldsBolt

B4: TopConsumersBolt_Day 

S: InputSpout 

Figure 4.12: Data flow for use-case Comparing energy usage with neighbours.

AddFieldsBolt

This Bolt is the implementation of the operator M2 described earlier in this section and
the purpose is to add the field GroupID to the tuples. The field is then used as input for
the group by parameter in the next bolt, TopConsumersBolt Day and it ensures that
consumers belonging to the same group are compared together. All tuples entering this
bolt invoke a call to the function getGroupID(CustomerID) which returns all the groups
the consumer of that tuple belongs to. For each group, a new tuple with the a new
schema consisting of the fields: Date, totDayConsumption , CustomerID and GroupID
is emitted, some example tuples are shown in Figure 4.13. The function getGroupID
has access to the database where the consumer information, regarding what groups to
compare with, is stored.
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SumBolt_Day
(Date,

totDayConsumption, 
CustomerID)

[TS1, 523W, 123] 

[TS2, 515W, 456] 

AddFieldsBolt

GroupID

[TS1, 523W, 123, 111] 

[TS2, 515W, 456, 111] 

[TS1, 523W, 123, 222] 

TS1 = 2014-04-23 
TS2 = 2014-04-24 

Output tuples

(Date, totDayConsumption,
CustomerID,

GroupID) 

Figure 4.13: Data flow from SumBolt Day to AddFieldsBolt. The Figure shows how
AddFieldsBolt generate output tuples containg an extra field.

TopConsumersBolt Day

This bolt correlates to the operator A5 and determines the top five most energy consum-
ing households within a group (neighbourhood, Facebook friends, etc.,). This bolt uses
a time-based window with a window size of one day. TopConsumerBolt Day receives
tuples emitted by AddFieldsBolt and stores the consumption and CustomerID in a data
structure and then discards the tuple. To make sure that all users within the same com-
paring group ends up in the same task, GroupID is used as a fieldsGrouping (see Section
2.3.5) parameter for this bolt. When a tuple with a timestamp greater than windows
start + window size is received the bolt calls a function topConsumers. TopConsumers
then computes which the top most consuming households are and returns a list (Compar-
eList) containing the CustomerIDs and their daily consumption. TopConsumers function
takes a parameter MaxConsumers which indicates the maximum number of people that
should be in the list which is set to five in this use-case. Finally when the list is done,
this Bolt emits a new tuple consisting of the fields: Date, CompareList and GroupID.
Figure 4.14 shows some example input and output tuples:
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AddFieldsBolt

(Date, 
totDayConsumption,

CustomerID,
GroupID) 

TopConsumersBolt

GroupID

[TS1, 111
CompareList: { 
    123,523W;
    456,515W;
    678,342W;
]

TS1 = 2014-04-23 

Output tuples

(Date, GroupID,
CompareList) 

[TS1, 523W, 123, 111] 

[TS1, 515W, 456, 111] 

[TS1, 342W, 678, 111] 

CompareList: {
    [CustomerID, 
    totDayConsumption]
}

Figure 4.14: Flow of data from AddFieldsBolt to TopConsumersBolt. The Figure shows
how TopConsumerBolt find the top 5 consumers and outputs it.

4.4 Use-case 3: Top five energy consumption appliances

The main objective of this use-case is to find out and inform the consumers which five
power consumption appliances consume the most power on daily and weekly basis. By
receiving such insights, consumers can easily understand their households’ energy usage,
especially how much power each appliance actually consumes. They might take appro-
priate actions such as replacing an old refrigerator or a washing machine which consumes
too much power. Consequently, it improves the energy saving either for the economic
or environment purpose. Figure 4.15 shows how our system receives tuples with schema
(Timestamp, Consumption, Device, Customer) (see Section 4.1). After processing the
input data, our system produces outputs including top five energy consuming appliances
and the consumption of each appliance.
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Timestamp Consumption Device ConsumerID

2014-04-04 
00:00:00

20 TV 12345

2014-04-04 
01:42:13

15 Stereo 12345

….. …. …. ….

…. …. …. ….

2014-04-04 
23:59:59

32 Lamp 1337

Date Top 5 devices Consumptions ConsumerID

2014-04-04 TV, WM, DM,
PC,Lamps

1234,1001,954,800, 
560. 12345

…. …. …. ….

2014-04-04 Stereo,Drier,TV,
WM,Refrigerator

3034,2001,1954,90
0, 860. 1337

Week Top 5 devices Consumptions ConsumerID

14
TV, PC, DM,
Refrigerator,

Lamps

22340,10001,7954,58
00,3560. 12345

…. …. …. ….

14 Stereo,Drier,TV,
WM,Refrigerator

30034,14001,12954,1
0900, 8600. 1337

Use-
case 

3:

Figure 4.15: The figure shows some sample input and output of the Top five energy
consumption appliances query.

4.4.1 Continuous query design

Figure 4.16 introduces use-case Top five energy consumption appliances as a continuous
query composed by standard operators.

Aggregate 
A1

Aggregate
A2 

OA1

Aggregate
A3

Aggregate
A4

OA2

OA3

Energy 
Readings

IA1 Publishing 
System

OA4

Figure 4.16: Data flow of the Top five energy consumption appliances topology. The
figure shows how data streaming operators are used to construct the query.

The query is composed by four stateful aggregate operators (A1, A2, A3 and A4). The
incoming tuples are consumed by the aggregate operator A1. This operator utilizes a
tumbling time-based window of one day (expressed in seconds in the operator definition).
It uses a sum function to compute the total consumption of an appliance using data in
field Consumption. The operator is defined as:

A1{time,86400, Date  getWindowStart(), Device  Device, totDayConsumption
 sum(Consumption), group-by = CustomerID },(IA1,OA1)
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The output tuples schema is composed by fields (Date, Device, totDayConsumption
and Customer) where field CustomerID is copied from the input tuple values and field
totDayConsumption indicates the total energy usage of a customer under a specific
day. In addition, field Date is set to the window start and refers to the day in which
the totDayConsumption is computed. These output tuples are consumed by aggregate
operators A2 and A3. Once the Aggregate operator A2 receives tuples with the daily
wattage of every energy consumption appliance for a whole day (86400 seconds), it
determines a list of five appliances which consume the most energy in the previous day
and the result is sent to Publishing System (see Section 3.3) to inform the consumers.
The aggregate operator A2 is defined as:

A2{time,86400, Date  getWindowStart(), ConsumptionList  
top5Devices(totDayConsumption, device), DeviceList  
top5Devices(totDayConsumption,device), group-by = CustomerID },(IA2,OA2)

The output tuples schema is composed by fields (Date, ConsumptionList, DeviceList,
CustomerID) where field CustomerID is the same as the input tuple value. Field Con-
sumptionList and DeviceList indicate the top five appliances and their energy consump-
tion values. Finally, field Date determines under which date the result is produced.

Operator A3 receives tuples emitted by A1 every day. This operator uses a time-based
window of a week (expressed in seconds in the definition) and calculates the top five
consuming devices. The operator A3 is defined as:

A3{time,604800, week  getWeek(), Device  Device, totWeekConsumptions  
sum(totDayConsumption), group-by = CustomerID }, (IA3,OA3)

The output tuple schema consist of 4 fields: (week, Device, totWeekConsumption and-
CustomerID), fields Device and CustomerID are just copied from the input tuple. Field
totWeekConsumption refers to the total energy consumption of a specific device under
a specific week. The Week field determines the week number of the current window

Finally, operator A4 is very similar to A2 with the only di↵erence that the operator A4

determines the top five consuming devices under a week (604800 seconds) instead of one
day as in operator A3. In addition, the result is forwarded to the Publishing System to
inform the consumers. The operator A4 is defined as:

A4{time,604800, week  getWeek(),
ConsumptionList  top5Devices(totWeekConsumption, device),
DeviceList  top5Devices(totWeekConsumption, device),
group-by = CustomerID },(IA7,OA7)

The output tuple schema consist of 4 fields: (Week, DeviceList, ConsumptionList, Cus-
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tomerID), whereas field CustomerID is just copied from the input tuple. Fields De-
viceList, ConsumptionList, and Week refers to the total energy consumptions of top five
devices under a specific week.

4.4.2 Implementation in Storm

For this use-case we define a topology consisting of one Spout and four Bolts. Figure 4.17
shows how the InputSpout receives energy readings from the Data Acquisition System,
converts them to tuples (whose schema is discussed in Section 4.1) and finally emits those
newly created tuples to downstream Bolts for further processing. Once the analysis is
done, a list of top five devices and their daily and weekly energy consumption are sent
to the Publishing System, where they are sent to consumers either via e-mail, SMS or
on social media such as Facebook or Twitter. The detailed implementation is explained
next.

Storm

Data
Acquisition 

System

Energy 
Consumption Publishing

System

Input 
Stream

Output
Stream

S

B2

B3

B4
B1

B1: SumBolt_Day
B2: Top5Bolt_Day
B3: SumBolt_week B4: Top5Bolt_Week

S: InputSpout 

Figure 4.17: Data flow of use-case Top five energy consumption appliances.

InputSpout Implementation

InputSpout’s implementation is exactly the same as in the previous use-cases (see Section
4.2.2 for more details).

SumBolt Hour & SumBolt Day

Aggregate operators A1 and A3 are implemented as SumBolt Hour B1 and SumBolt Day
B3 with time-based windows of one day and one week respectively. The implementation
is very much the same as in the previous use-cases. SumBolt Hour B1 (see Figure 4.18)
consumes tuples from the InputSpout. As the tuples arrive with timestamps within the
current time-based window, SumBolt Hour B1 updates the total energy usage for ev-
ery device using data from fields Consumption and Device and then discards the tuple.
When a tuple with timestamp outside of its window, the SumBolt Hour B1 immediately
updates its time-based window based on the newly received tuple’s timestamp. Then
it emits a tuple to downstream Bolts for further analysis. The output tuples schema
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is defined by following fields (Date, Device, totDayConsumption, CustomerID) whereas
field totDayConsumption prefers the total energy usage under a specific period (Date)
using a sum function on data contained by field Consumption. Fields Device and Cus-
tomerID are the same as the input tuple value. In addition, field CustomerID is used
as a grouping rule to ensure that tuples with same CustomerID are always going to the
same task. However, tuples with di↵erent CustomerID might also end up in the same
task so in order to ensure the computation of energy consumption for a customer would
not be modified by others, a data structure, which stores the customers’ devices and
their consumption data, is needed.

InputSpout
(Timestamp,

Consumption,
Device,

CustomerID)
[TS1, 21W,TV, 55] 

[TS2, 24W,TV 55] 

SumBolt_Day

Time, 86400, Sum
(Consumption),

Group-by = 
ConsumerID

TS1 = 2014-04-23 12:32:22
TS2 = 2014-04-23 12:45:04
TS3 = 2014-04-23 12:54:46

Output tuples

[Date,957W,PC, 550] [TS3,95W,PC 550] 

Date = 20014-04-23 

(Date,Device,
totDayConsumption,

CustomerID) 

[Date,450W,TV, 55] 

Figure 4.18: Flow of data from InputSpout to SumBolt Day which summerizes di↵erent
electrical devices’ total energy consumption of a specific consumer during one day and

generates output tubles based on the input tubles from InputSpout.

SumBolt Day B3 (Figure 4.19) receives a tuple with schema (Date, totDayConsumption
and CustomerID) from SumBolt Day every day. It is implemented almost exactly the
same as SumBolt Day B1. B3 has a time-based window of one week (604800 seconds)
instead of one day. It also uses field totDayConsumption in order to compute the total
energy usage for a week and field ConsumerID to partition tuples into its tasks to ensure
the tuples with the same CustomerID end up in the same task.
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SumBolt_Day
(Date,

totDayConsumptio
n,Device,

CustomerID)
[Date1,16659W,TV 55] 

[Date2,2021W,TV,55] 

SumBolt_Week

Time, 604800, sum
(totDayConsumption), 

Device, 
Group-by = ConsumerID

[week1, 17000W,PC, 
40] 

Date1 = 2014-04-21
Date2 = 2014-04-22 
Date3 = 2014-04-27 

Output tuples

[Date3,17000W,PC, 40] 

Week1: 32

[week1, 18680W, TV, 55] 

(Week, 
totWeekConsumption, 
Device, CustomerID)

Figure 4.19: Flow of data from SumBolt Day to SumBolt-Week which summerizes
di↵erent electrical devices’ total energy consumption of a specific consumer during a week

and generates output tubles based on the input tubles from the SumBolt Day.

Top5Bolt Day & Top5Bolt Week

Top5Bolts are used to determine the top five energy consuming devices of a consumer
within a certain window. Similar to SumBolt, a Top5Bolt requires several parameters:
window (either time-based or tuple-based), a window size, a function that determines
top five devices that consume the most energy under the predefined window and a group-
ing parameter which indicates how tuples should be sent to the Bolt’s tasks. As tuples
with timestamps within the current window arrive, the consuming devices along with
their consumption data is stored. When a tuple with timestamp outside of the current
window arrives, the function to determine which five devices consume the most power is
triggered alongside with their consumption.

Aggregate operators A2 and A4 are implemented as Top5Bolt Day B3 and Top5Bolt Week
B5 with time-based windows of one day and one week respectively. Figure 4.20 shows
the data flow from SumBolt Day B1 through Top5Bolt Day B3. A tuple is sent from
SumBolt Day to Top5Bolt Day every hour with a schema (Date, totDayConsumption,
Device and CustomerID). Top5Bolt Day has a time-based window of one day (86 400
seconds) and uses field totDayConsumption to determine the five appliances which con-
sume the most energy under that specific day. Moreover, field ConsumerID is once again
used as stream grouping rule to ensure that tuples with same CustomerID are always
going to the same task. Instead of storing every input tuple, Top5Bolt Day utilizes a
simple data structure (e.g., Map) to store consumers’ devices and their hourly consump-
tion data in memory. Since tuples with di↵erent CustomerID might end up in the same
task so in order to ensure the computation of energy consumption for a customer would
not be altered by other consumers, the data structure is needed. The results including
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fields (Date, DeviceList, ConsumptionList and CusomterID) are then forwarded to the
Publishing System to inform the consumers.

SumBolt_Day
(Date,

totDayConsumptio
n,Device,

CustomerID)
[Date,16659W,TV 55] 

[Date,2021W,PC,55] 

Top5Bolt_Day

Time, 86400, Top5
(totDayConsumptio

n),Group-by = 
ConsumerID

[Date,List1,List2,40] 

Date = 2014-04-21 

Output tuples

[Date,17000W,TV, 40] 

Date = 20014-04-21  

[Date,List1,List2, 55] 

(Date,DeviceList, 
ConsumptionList, 

CustomerID)

List1: TV,PC,lamp,drier,frezzer  
List2: 5131W,5056W,4593W,4134W,3500W  

Figure 4.20: Flow of data from SumBolt Day to Top5Bolt Day which indicates top five
electrical devices using the most energy and their energy consumption under one day and

generates output tubles based on the input tubles from the SumBolt Day.

Top5Bolt Week receives a tuple from SumBolt Day with a tuple schema (Date, totDay-
Consumption, Device and CustomerID) everyday (see Figure 4.21). The implementation
is almost exactly the same as Top5Bolt Day. Top5Bolt Week has a time-based window
of one week (604800 seconds) instead of one day. It also uses field totDayConsumption in
order to determine in which five devices consume the most energy during that week and
field ConsumerID is utilized to partition incoming tuples into its tasks. The output tuple
schema includes following fields (Week, DeviceList, ConsumptionList and CustomerID)
is then sent to the Publishing System to inform consumers.
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SumBolt_Wee
k

(Date,
totWeekConsumpt

ion,Device,
CustomerID)

[Date,6659W,TV 55] 

[Date,5056W,PC,55] 

Top5Bolt_Week

Time, 64800, Top5
(totWeekConsumpt

ion),Group-by = 
ConsumerID

[Week,List1,List2,40] 

Date = 2014-04-21 

Output tuples

[Date,1700W,TV, 40] 

Week = 40 

[Week,List1,List2, 55] 

(Week, DeviceList, 
ConsumptionList, 

CustomerID)

List1: TV,PC,lamp,drier,frezzer  
List2: 6659W,5056W,4593W,4134W,3500W  

Figure 4.21: Flow of data from SumBolt Week to Top5Bolt Week which indicates top
five electrical devices using the most energy and their energy consumption under one week

and generates output tubles based on the input tubles from the SumBolt Week

4.5 Questionnaire

In order to monitor the consumers’ expectations of our system, we performed a ques-
tionnaire. The results are utilized as complements to develop and implement di↵erent
real-world use-cases using our system. Special emphasis is given to university students
and professors as the target group. The questionnaire starts with a short description
of this master thesis as a system which processes real-time energy consumption data
to provide consumers feedback of their energy usage using social media. Furthermore,
a simple example use-case is also stated in order to make it easier to understand the
usage of our system. In the following section we present the questionnaire as well as the
response proveded by the participants.

the questions asked in the questionnaire as well as the results are described.

4.5.1 Questions

From the very beginning of the questionnaire planning process, selection of the questions
stated in the questionnaire is tied very precisely to the use-cases that would be made of
the answers. Following questions are asked:

• If your household contains technology that logs the energy consumption of the
electrical appliances, what feedback would you like to receive and how frequently?

• If the system could be integrated with social media, what kind of information
would you like to share and how frequently?
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• If our system could compare your energy consumption with your neighbours and
friends on Facebook, what kind of comparisons would you like to see?

4.5.2 Results

14 persons answered the questionnaire. The questionnaire results are used as comple-
ments to the development and implementation of the use-cases introduced in the previous
section. Some other useful points are suggested in the first question such as:

• Advices of how to reduce the current energy usage can be sent as part of the
feedback to consumers.

• The ability to track individual appliances and compare with its usage in the past.

• The ability to show statistical data using graphs over time.

For the second question, the answers are variable in question to share the power con-
sumption on social media. Besides, it is important that the frequency is not too high
to avoid the superfluous posts on social media. Another valid point not to share the
results too often is that not revealing for others when the consumers are at home or not
regarding to how much energy data they are using.
With the third question, the answers show that people are interested in comparing their
energy usage with friends and neighbours such as:

• Total usage in a household.

• Usage of individual devices.

• Energy usage per square meter.
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5
Evaluation

The previous chapter has shown real-world use cases can be implemented in BCStream.
Depending on consumers’ interest, BCStream can provide di↵erent feedback using dif-
ferent continuous queries. In this Chapter we present the results from an evaluation
of BCStream. The use-cases, introduced in the previous chapter (see chapter 4), have
been implemented as continuous queries, composed by standard operators, and run in
BCStream in order to evaluate the system’s performance focusing on its throughput
(tuples/second) and processing latency (ms). First, we introduce the specification of the
hardware (see Section 5.1), followed by a discussion about the input data that we use
in the evaluation (see Section 5.2). We perform two di↵erent kinds of experiments (see
Section 5.3). The first experiment demonstrates how BCStream performs with an o↵-
the-shelf machine and with the second experiment, we evaluate the system’s scalability
by using di↵erent number of the test machine’s processor-cores. For every experiment,
the use-cases were executed ten times in ten minutes each time. Finally, we present the
test results as well as the conclusion.

5.1 Setup

Table 5.1 shows the hardware and software specification for the test machine used for
the system evaluation.

OS Ubuntu 12.04 64bit

Processor Intel(R) Core(TM) i7 CPU 950 @ 3.07 GHz

CPU cores 4

Memory 6 Gb
Table 5.1: Specification of the test machine.
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5.2 Input data

The key to evaluate a system’s performance starts with good input data sets. Since
the proposed system processes real-time streams of energy usage data continuously, it
is crucial to evaluate it with some accurate and realistic energy consumption data sets
which are available to public on Tracebase[4]. Tracebase uses Plugwise system [31] to
collect real power usage of an attached consumer. Furthermore a polling application is
created to request the wattage measured by each of the deployed Plugwise devices. The
input data, used for evaluation of BCStream, is obtained from Tracebase and it includes
power traces of ten electrical appliances. The collected energy readings are stored in
Comma-separated value (CSV) files and each file is generated for each deployed device.
Each entry in the CSV files contains the date and time of its collection, followed by
the power consumption readings averaged over time durations of one and eight seconds,
respectively. An excerpt of an entry is as follow:

28/12/2011 00:00:01;43;43

28/12/2011 00:00:02;45;43

28/12/2011 00:00:04;43;43
Table 5.2: Electrical appliance power traces. The table shows how the energy data retrieved
from Tracebase is formatted.

5.2.1 Generate an input data stream using real energy readings.

Since the real energy consumption data, obtained from TraceBase [4], illustrates only the
power usage of a customer in one single day, we modify the data to create a data stream
in order to evaluate BCStream’s performance. We start out with reading the real energy
readings stored in Csv files into memory then a Spout (see Section 2.3.5) reads each entry
from memory, modifies the entry’s date, energy consumption and adds a customer id.
Finally, the Spout emits each entry as a tuple to downstream Bolts. The modification is
necessary in order to illustrate di↵erent power usage of di↵erent consumers. By running
this process over and over again, we are able to provide BCStream with a real-time
continuous input data stream starting with real energy readings and the evaluation
becomes more representative of a stream observable in the given system model.

5.3 Test results and discussion

The main objective of the evaluation is to measure the proposed system’s performance
with Apache Storm as its SPE (see Section 2.3.4), focusing on throughput (tuples/second)
and processing latency (ms). Each tuple is 37 bytes long. Two di↵erent experiments
have been conducted. The first experiment demonstrates how BCStream performs with
an o↵-the-shelf machine and with the second experiment, we want to evaluate the sys-
tem’s scalability by using di↵erent number of the test machine’s processor-cores. For
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every experiment, the use-cases are executed ten times for ten minutes each time. As
the proposed system’s throughput and its processing latency are of highest interest, the
use-cases are modified and some functions that are out of scope for the tests are removed,
for instance posting notifications to Facebook is exchanged to file-logging. The latency is
measured from when the tuple is emitted in the Spout until it reaches the final printing
Bolt and the system’s throughput is obtained by dividing the total number of emitted
tuples to 600 seconds which is the length of each test.

Additionally, in certain applications, there is a need to ensure that every tuple is pro-
cessed at least once and that results in computational overhead. Apache Storm provides
such feature as message guarantee (see Section 2.3.5). Thus, in all experiments, we take
into account the execution of the use-cases with and without message guarantee and the
results demonstrate if using message guarantee compromises the total performance of
BCStream or not. We expect that throughput and latency is better when not relying
on message guarantee because of the computational overhead. The results

�

throughput
(tuples/second) and latencies (ms)

�

are presented with a 95% confidence interval.

5.3.1 Single-node, multi-core evaluation

The first experiment is conducted in order to test how BCStream works in an o↵-the-
shelf test machine (see 5.1). With this experiment, we would like to demonstrate what
throughput (tuples/second) can be achieved as well as the processing latencies (ms) using
the test machine. This experiment helps the users have an idea of what they receive from
BCStream using the test machine in terms of how many tuples the system can process
per second and its latency.

Results

Figures 5.1, 5.3, and 5.5 show the results obtained from running the use-cases in our
system and the throughput is over what we expected from our proposal which is 100,000
tuples/second. The average throughput is around 151,000 tuples processed every second
when in message guarantee mode and 20,000 more per second when not using message
guarantee in the first use-case ”Daily and weekly peak energy consumption”. In the
second use-case ”Comparing energy usage with neighbours”, similar results are achieved.
However, in the third use-case ”Top five energy consumption appliances”, the average
throughput is around 140,000 tuples/second with message guarantee enabled and 160,000
tuples/second without supporting message guarantee. The latencies (see Figures 5.2, 5.4
and 5.6) are quite similar in all three use-cases, around 18 ms with message guarantee
and 14-16 ms without message guarantee.

As expected, both throughput and processing latency are better when the message guar-
antee is not enabled (see Section 2.3.5). However, using message guarantee only decreases
the throughput with 10% and 2 ms extra as processing latency. It is a trade o↵ that
the users have to take in consideration regarding how crucial it is to make sure that all
tuples are processed. In addition, these use-cases are not time-critical use-cases since
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users receive feedback via social media, it is not crucial that the notifications are several
seconds late.

Figure 5.1 shows the average throughput for message guarantee and without mes-
sage guarantee. It clearly shows that without message guarantee feature gives higher
throughput, however for these use-cases these latencies (see Figure 5.1) are acceptable.
Since the users receive feedback on social media, it is not crucial that the notifications
are several seconds late.

Use­case: Daily and weekly peak energy
consumption
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Figure 5.1: System’s throughput using the test machine, and 95% confidence interval
(Use-case Daily and weekly peak energy consumption).

Use­case: Daily and weekly peak energy
consumption

Message guarantee Without Message guarantee

0

6

12

18

24

La
te
nc
y 
m
s

Figure 5.2: Processing latency using the test machine, and 95% confidence interval
(Use-case Daily and weekly peak energy consumption).
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Use­case: Comparing energy usage with
neighbours
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Figure 5.3: System throughput using the test machine, and 95% confidence interval
(use-case Comparing energy usage with neighbours).
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Figure 5.4: Processing latency using the test machine, and 95% confidence interval
(Use-case Comparing energy usage with neighbours).

47



CHAPTER 5. EVALUATION

Use­case: Top five energy consumption
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Figure 5.5: System’s throughput using the test machine, and 95% confidence interval
(Use-case: Top five energy consumption appliances).
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Figure 5.6: Processing latency using the test machine, and 95% confidence interval
(Use-case: Top five energy consumption appliances).

5.3.2 Scalability experiment with di↵erent numbers of processor-cores

In this experiment, we are evaluating BCStream’s scalability utilizing di↵erent number
of processor cores. This is achieved by controlling the number of utilized processor-cores
of the test machine (see 5.1). Intuitively, the more hardware is used in the test-runs,
the better throughput is yielded. We start the experiment by allowing the test machine
to run one use-case at a time with only one dedicated processor-core. Then we increase
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the number of processor-cores dedicated for execution of a use-case. The main objective
of this experiment is to determine if the proposed system’s throughput and processing
latency are a↵ected if the system scales.

Results

For all three use-cases, we can see the same results that both throughput and latency
are a↵ected by controlling the number of processor-cores of the test machine (see Fig-
ure 5.7, 5.8, 5.9, 5.10, 5.11, 5.12). First, as expected the proposed system yields better
throughput with more processor-cores utilized in the test machine (see Figures 5.7, 5.9,
5.11 ). However, it appears to have a small decreasing in throughput when using four
processor-cores. It is because of the test machine has four physical processor-cores and
therefore BCStream must share processor-cores with other processes running in the com-
puter which causes some overhead and decreases the throughput. Second, the latency
decreases significantly while the number of cores used increases (see Figures 5.8, 5.10,
5.12) for executing a use-case. The reason is because the Garbage Collection (GC) has
to run more often to free memory as there is only one processor-core dedicated for the
system. When the GC is activated other processes must wait until the GC is done there-
fore the latency is much higher in the case with only one processor-core. Finally, similar
to the previous experiment, both throughput and latency are worse when message guar-
antee is enabled. When one core is utilized the throughput with and without message
guarantee are almost the same. However, when several cores are utilized, the average
value of the system’s throughput increases faster in the case without message guarantee.
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Figure 5.7: System’s throughput with di↵erent number of processor-cores used (Use-case
Daily and weekly peak energy consumption).
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Use­case: Daily and weekly peak energy
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Figure 5.8: Processing latency with di↵erent number of processor-cores used (Use-case
Daily and weekly peak energy consumption).

Use­case: Comparing energy usage with
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Figure 5.9: System’s throughput with di↵erent number of processor-cores used (use-case
Comparing energy usage with neighbours).
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Use­case: Comparing energy usage with
neighbours
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Figure 5.10: Processing latency with di↵erent number of processor-cores used (Use-case
Comparing energy usage with neighbours).

Use­case: Top five energy consumption
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Figure 5.11: System’s throughput with di↵erent number of processor-cores used
(Use-case: Top five energy consumption appliances).
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Use­case: Top five energy consumption
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Figure 5.12: Processing latency with di↵erent number of processor-cores used (Use-case:
Top five energy consumption appliances).
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6
Related work

In this Section we presents projects that are related to to our work. The first subsection’s
(see Section 6.1) focus is mainly on research in the area of smart grids and Advanced
Metering Infrastructures (AMIs). This is followed by studies related to social media
(see Section 6.2). Furthermore in the third sub section we present work on energy
consumption and how instant feedback can be used to motivate people to conserve more
energy (see Section 6.3). In the forth sub section we bring up how social media is used to
influence people into acting in similar ways (see Section 6.4). Finally, we present existing
technologies to process Big Data and some of the available Stream Processing Engines
(see Section 6.5).

6.1 Research in smart grid and Advanced Metering Infras-
tructures

There are a lot of distinct research directions related to smart grids and AMIs such as
forecasting of future electricity usage, information security, energy consumption schedul-
ing in smart grids, etc. In this section we introduce studies related to smart grids and
AMIs.

With all data being transferred between consumers and suppliers one aspect that must
be taken into consideration is the information security. Anthony et al. [32] discuss the
security around smart grids and describe key technologies to use, which includes public
key infrastructures and trusted computing. Another survey [33] describs how you can
divide smart grids into 3 subsystem: Smart infrastructure system, Smart management
system and Smart protection system. The last one is the sub system taking care of
reliability analysis, failure protection, and security.

One advantage of AMI is the ability to Demand Side Management (DSM). The ability

53



CHAPTER 6. RELATED WORK

to monitor and control the client devices (Load management) is one of the key functions
of AMI. Some customers with smart meters can program their smart appliances so that
the devices are utilized when energy is cheaper, and turned o↵ when it is more expensive.
If clients on a massive scale run their devices at a time when energy is cheaper, then it
would a↵ect the bulk electric grid. Utilities often uses AMIs, especially DSM systems to
monitor and control the consumption at the costumers side. These DSM strategies often
focus on the two-way interaction between suppliers and customers, however [34] proposes
a technique with an incentive-based energy consumption scheduling algorithm which also
is autonomous. The work is based on the interaction between the users that only requires
a low amount of messages to be exchanged between the costumers. With simulations
the show that their technique can reduce both cost and daily user energy consumption,
furthermore spread out the usage of energy to lower the consumption peaks.

Forecasting of future power usage is an important task to provide intelligence to the
smart gird. Accurate forecasting enables an utility provider to plan the resources and
also to take actions to control the balance the supply and the demand of electricity. In
[35], a data mining scheme to forecast the peak load of a particular consumer entity
in the smart grid for a future time unit is proposed. The experimental results show
that the method is able to provide 98.4–98.7% of average accuracy. Moreover, it is also
computationally e�cient and can potentially be used for large scale load forecasting
applications.

6.2 Research in Social media

Social Media is the new way with which we share information, projects or images that
we like with the world. People are spending more and more time online, and a large part
of this time is spent on social media platforms such as Facebook, Twitter and YouTube.
Therefore social media is a great tool for sharing information. In BCStream, insights
of energy usage are published on social media in order to raise the energy consumption
awareness among consumers. However, social media is a powerful communication tool
with great potentials to influence millions of people. Many research have been done to
review the various impact of social media in our society. In this section we introduce
studies related to social media.

In [36], Clay discuss the political power of social media. He claims that the discussion of
the political impact of social media has focused on the power of mass protests to topple
governments. In fact, social media’s real potential lies in supporting civil society and
the public sphere, which produces change over years and decades, not weeks or months.

Yuki Sampei et al. [37] analysed Japanese newspaper coverage of global warming from
January 1998 to July 2007. They also conducted a monthly public opinion survey from
July 2005 and analysed the changes in public concern about global warming issues and
environmental issues in general. They found that coverage of global warming have an im-
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mediate but short-term influence on public concern and in order to achieve more e↵ective
communication of climate change, strategies aimed at maintaining mass-media coverage
of global warming are required. Their study revealed that mass-media coverage of global
warming increased slightly overall before January 2007 and then increased dramatically
from January 2007. The increasing Japanese media coverage of global warming issues
was driven largely by international events involving the USA.

As mentioned earlier, social media emerges as a new medium for providing new sources
of information and rapid information. It can be used as a political power [36], or to
enhance e↵ective communication of climate change [37]. It is also an information source
and contains huge amount of updates and useful information related to real-world events,
for instance Twitter’s tweets or Facebook updates. In [3], Yin et al. introduces a system
that utilizes social media to enhance emergency situation awareness. The proposed
system uses natural language processing and data mining techniques to extract situation
awareness information from Twitter messages generated during various disasters and
crises.

6.3 Energy consumption monitoring & energy saving

The main function of BCStream is to provide its users the opportunity to monitor their
energy usage on the fly and receiving notifications through social media. With such in-
sights, the users are able to raise their energy awareness and receive enough information
they need to make informed, proactive choices to improve their energy saving. In this
section we introduce several studies where they are showing that energy usage monitor-
ing has a positive e↵ect on the awareness of their energy usage and contributes to energy
conservation.

When considering the e↵ect of energy monitoring on energy saving, several studies have
been undertaken. Matsukawa’s study [2] indicates that power usage monitoring con-
tributes to energy conservation. Bakker et al [1] present a 15 months study from 2008
which aimed to investigate if the participants managed to sustain their initial electricity
savings over a long period of time (more than four months). The study consists of two
phases, an initial trial of four months and a follow-up period of eleven months in order to
determine whether the participants can save energy with the help of the monitors under
the trial phase and then if the participants can keep up the energy saving trend during
the follow-up period. Energy monitors were given to 304 participants and each energy
monitor consisted of a sensor, a sending unit, and a display. The sensor and sending
unit were attached to the electronic meter furthermore the display received radio signals
from the sending unit and showed the power consumption in watts (W) in real-time.
The system was also able to show statistics of consumption for the past 24 hours. The
results from this study indicates that during the initial trial (first four months), the
average savings achieved for all participants were 7.8%. In addition, a group of highly
motivated people managed to reach an initial electricity saving of 16.7%. The household
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with the best result reached a 42.6% lower energy consumption during the pilot and
30.4% during the follow-up phase from the original consumption. This was achieved by
strictly recording the electricity meter data twice a day so they could recognize their
energy usage pattern and undergo actions in order to decrease their consumption.

A similar study [5] in Japan shows how collecting and presenting energy consumption
in nearly real-time manner has a positive e↵ect on the awareness of their energy usage.
The energy consumption was registered by a smart meter and then sent to a backend
system. The users could than easily access the data using a web browser, where data
was presented in hourly, daily, and weekly graphs. The studies demonstrate that energy
consumption monitoring results in energy saving but to sustain the initial saving over
long time is indeed challenging. However, BCStream emerges as a possible approach
for the challenge to maintain its users’ interest by providing them not only the power
usage monitoring but also the interaction with social media continuously over time. By
also o↵ering the consumers more advanced feedback such as comparing consumption
with neighbours and find out specific devices consumption, BCStream has advantages
in features over the studies recently described.

In 2006, Sarah Darby [38] performed a review of the literature on metering, how the
feedback is presented and how it influences the behaviour of the householders. Even
though most of the reviewed studies show some kind of improvements in conserving en-
ergy with the use of feedback, Darby states that one problem is to keep the conserving
persistent. She implies that for it to happen, householders have to develop new habits
and proposes a method, where feedback, combined with energy saving advices, should
be actualized to ensure that users accomplish the new habits. Her conclusions is that
feedback is necessary for energy conservation, however people need help interpret the
feedback and guidance on what actions to take. Our system addresses this by integrat-
ing energy consumption with social media, consumers can then interact with each other
and give helpful hints on what actions could be done to lower the consumption.

In 1996, an experiment [39] was performed with two teams belonging to the same com-
pany. The experiment was to see if they could change the energy wasting behaviour for
the two groups. Both teams got feedback about their energy consumption, in addition
one of the teams also got feedback about how well their competitors were doing. The
result from this small experiment shows that both teams managed to save energy and
furthermore the second team, the one with comparative feedback, had much more im-
proved conservation results. This was taken into account when designing the use-cases,
especially the one where the consumers can compare with their neighbours (Section 4.3).

Chosen as the“Best Idea for the Millennial”in the GE Ecomagination Challenge, start-up
Welectricity [40] utilizes data when users update information from their monthly energy
bills into the site’s graphing tool. Welectricity then creates a readout of consumption
habits matched against di↵erent types of appliances found in the household, generates
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stats and charts on energy usage trends, and o↵ers suggestions on how to reduce the
power usage. Welectricity also makes it easy for users to include their friends in the
process through their online portal. However their model is based on that the users
manually gives information about their energy consumption. Our solution eliminates
this step and instead enables the data sampling in a more automatized manner.

Finally, another study [41] on energy conservation presents results indicating that one
important and promising factor when motivating people to conserve energy is to combine
feedback with goal-setting on a personal level, which can be achieved by simply applying
a query to notice the users their goals and achievement so far on social medias.

6.4 Energy competitions & social awareness

BCStream provide its users the opportunity to trigger competitions to save energy and
raises social awareness by publishing the energy consumption on social media such as
Facebook and furthermore users can compare their energy usage with their friends and
family. In this section we introduce projects which show that social media influences
people’s behaviors and actions. In addition, how social games help people to conserve
energy by competing with others.

Jeroen Stragier et al.[42] have shown that publishing training results on social media
gets positive impact on others. A similar study conducted by Step Foster et al. [43] was
performed using a step monitoring device to motivate people to more physical activities.
The objective is to integrate with Facebook to compete with others by counting steps
taken and registered by the step monitoring device. The results from the study shows
that the integration with Facebook which enables the possibilities to view others score,
make comments and compare with others’ results, tend to motivate the users to engage
in more physical activities. The studies have shown that incorporating energy usage into
social media to gain social influence and motivate people to conserve energy is indeed
possible.

Gustafsson et al. [44] however constructed a game, called PowerExplorer, based on
real-time consumption data for instant feedback. The goal of Gustafsson work was to
contribute to the discussion on how to design a pervasive learning game, with intention
to sustain behaviour changes and learning, within the field of energy e�ciency. They rec-
ognize a clear problem with these types of games, which is to successfully come up with
a long-term change in behavior regarding energy consumption saving. Their solution to
the problem lies in the usage of real-time data, so that the users can relate their device
usage to energy consumption directly. It is also easier to support faster rewarding if the
data is collected in real time which also can enhance the long term change in behaviour.
As a result from their field test, they observed 16% energy saving during the game pe-
riod which lasted for 7 days. As a side e↵ect they also saw how the contestants changes
their attitude in a positive way regarding the promotion of energy savings to others.
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One also has to remember that the economic gain with lowering the energy consump-
tion might be a contributing factor, not just the fact that it is better for the environment.

6.5 Related technologies to process Big Data

BCStream utilizes Data stream processing paradigm to capture and analyze huge vol-
ume of energy consumption data. However, Stream Processing is not the only approach
to process Big Data and, therefore, in this section we present the Batch Processing model.

Two of the most wellknown approaches to process Big Data include batch processing
and stream processing and the main distinction is that in batch processing, there is a
finite amount of data sets collected for a job, whereas in stream processing, the data
streams are assumed to be unbounded. Jobs in batch processing produce results only
when all computation is done and any changes in the data require reprocessing of the
batch job. Batch processing platforms include MapReduce [45] developed by Google,
Dryad [46] developed by Microsoft. Apache Hadoop [47] is a wellknown batch process-
ing software built on top of MapReduce framework. There are also some hybrid systems
supporting both batch and stream processing such as MapReduce Online [48], Twitter’s
Summingbird [49] which allows Hadoop working with Storm [24], and Yahoo’s Storm
Yarn [50]. Depending on the size of the input data sets, and the computational power of
the system performing the batch jobs, this may delay users from gaining important in-
sights. Stream processing, on the other hand, enable users to analyze, correlate data and
produce incremental results as the data arrives from real-time sources. Batch processing
has several benefits such as flexible time of job processing or maximizing the utilization
of system’s computational power but it is not optimized for the computational latency,
continuous feedback, etc., which are the main benefits gained from stream processing
applications.

BCStream utilizes Apche Storm as its SPE. However, there exists many other SPEs,
from pioneers to commercial ones, are Aurora [51], Esper [52], Amazons Kenisis [53],
Microsoft’s StreamInsight [19] and IBM InfoSphere Streams[54]. A special case of stream
processing is Complex Event Processing (CEP). CEP systems classify tuples in input
streams as raw events. A CEP system matches patterns against sequences of events as
they arrives in order to generate composite event for each match. Existing CEP systems
include NiagaraCQ [55], Esper [52], TIBCO BusinessEvents [56].
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7
Discussion

In this chapter, we summarize the conclusions obtained during the development and
evaluation of BCStream. Furthermore, we present what could be done in the future in
terms of further development of BCStream.

7.1 Conclusion

We present BCStream, a data streaming based application, which utilizes energy con-
sumption data on the fly and produces feedback to users on social media in order to raise
their energy usage awareness. BCStream utilizes Apache Storm as its Stream Processing
Engine (SPE) to process large amount of continuous data in near real-time. Three sam-
ple use-cases are implemented and used to evaluate the system performance in terms of
throughput (energy consumption readings per second) and latency (millisecond). The
evaluation shows that BCStream can handle up to 170,000 energy consumption readings
per second with a latency as low as 14 milliseconds. Besides, the scalability experiment
results in at least 60% throughput improvement with every added processor core. The
processing latency also improves significantly (decreasing from 80 ms to 20 ms) using
multi-processor cores. Apache Storm’s feature message guarantee results in additional
overhead. It is a trade o↵ that the users need to take into considerations regarding
how crucial it is to ensure that all data packets are processed at least once. Moreover,
the conducted questionnaire shows that people tend to be interested in getting a better
overview of the energy consumption and compare their consumption with friends and
neighbors.

A major problem when interacting with social media is to keep the news flow at a
moderate level, i.e, not to flood the application with updates. According to [57] an
average Facebook user produces 90 pieces of content each month. By letting BCStream
interact with Facebook on a weekly basis (around 4 posts a month) the flow of the
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average user only increases approximately 5%.

7.2 Future work

BCStream is implemented as a prototype in order to evaluate data streaming as a po-
tential way to process and gain valuable insight in energy consumption. Since it is a
prototype, it excludes some areas that are not fully explored. For instance, the inte-
gration with the AMIs and how energy readings can be sent directly from AMIs to
BCStream could be further investigated. Also the questionnaire is conducted in a small
group of Chalmers students, which might not reproduce the common users’ interest.
So a full scale examination of what people think of collecting and sharing energy con-
sumption data could be done in the future. Furthermore, even though the selected SPE
delivers over expected performance, this project only evaluate one SPE and future work
could include a comparison between several SPEs where performance and functionality
are considered. The evaluation is conducted using one single server and the received
results are very promising hence another setup with a cluster of servers can be utilized
to investigate the performance of BCStream as well as Apache Storm as a distributed
stream processing engine.
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