CHALMER

Symmetry Plane

| Inlet> | Outlet>

Wall

Investigation of turbulence models for two
dimensional mean flows and implementation in

OpenFOAM

Master’s Thesis in Automotive Engineering
MANAN LALIT

Department of Applied Mechanics
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2014

Master’s Thesis 2014:78

Investigation of turbulence models for two-dimensional mean flows and implementation

in OpenFOAM

© MANAN LALIT, 2014

Master’s Thesis 2014:78

Department of Applied Mechanics
Division of Fluid Dynamics
Chalmers University of Technology
SE-41296 Go6teborg

Sweden

Tel. +46(0)31-772 10 00

ii

To Begoria and Mike

iii

Investigation of turbulence models for two dimensional mean flows and implementation
in OpenFOAM

Master’s Thesis in the Master's programme in Automotive Engineering

MANAN LALIT

Department of Applied Mechanics

Division of Fluid Dynamics

Chalmers University of Technology

Abstract

With an intention of discovering the best RANS model for modeling impinging flows,
linear epsilon - based models(‘Chien’s Low Reynolds’ and ‘¢-f’) and non-linear(e and
w- based) EARSM formulations were implemented on OpenFOAM-2.2.x and validated
against two dimensional, developed channel flow geometries.

The project arose from the need to capture flow arising from a flame impingement on
the walls of an (internal combustion) engine cylinder. The objective desired from this
project is to achieve directives regarding ‘optimal’ turbulence models, defined as those
which sufficiently reproduce the flow dynamics, and are applicable over a wide variety
of meshes, while not being too costly on the computational front. A rating scheme for
judging the quality of turbulence models, based on the aforementioned three character-
istics, is discussed as part of the conclusions from this thesis project.

Keywords: Chien, EARSM, Wallin-Johansson, Menter, k w BSL, Channel, OpenFOAM

v

ACKNOWLEDGEMENTS

I began this thesis in September 2013 and spent a good portion of a year understanding
OpenFOAM and the basics of CFD theory. During this period, I faced a lot of pitfalls
and moments of self-doubt and had it not been for the support of many kind souls, I
would have found it hard to bring the thesis work to where it stands now.

I am indebted to Dr. Lars Davidson, my examiner, for his insightful suggestions about
work and otherwise, which often helped me land myself out of a pickle and gave new
perspectives about looking at a problem. Jon-Anders Béickar, my supervisor, was always
available with time, words of counsel and links to excellent reference material. In my
dealing with him, he was extremely kind and comradely. It was always a delight sharing
my new findings with him, which he would listen to with a very patient ear.

I can’t speak enough about the invaluable role of my colleague Ansuman. He would tran-
quilly listen to any doubts I would have and would give a sanguine, well-thought reply,
no matter how tied up with work he was at that moment. Ansuman, and the other thesis
workers, namely Sankar, Himanshu and Axel also helped me clear my head on many oc-
casions by providing a bouncing board for my thesis-related problems or by sharing some
new development from around the world. Karthik, my friend and batchmate provided
many an entertaining discussion over fika or otherwise. Lastly, I am deeply grateful to
my parents and sister. They have always been extremely positive about my endeavors,
and that has allowed me to take my own time, constantly questioning what it is that I
am doing.

To all of you, I am truly thankful!

CONTENTS

Introduction

Constant Properties

2.1 Channel Geometry L
2.2 Transport Properties L o
2.3 Boundary Conditions Lo

Chien Low Reynolds kEpsilon Model

3.1 Theory e
3.2 Implementation L
3.2.1 Wall Scaling
3.2.2 Boundary Conditions
3.3 Verification
EARSM
4.1 Wallin Johansson Formulation.
4.1.1 Theory (for Two Dimensional Mean Flows)
4.1.2 Theory (for Three Dimensional Mean Flows)
4.1.3 Implementation (Chien Low Reynolds kEpsilon)
4.1.4 Verification
4.2 Menter Formulation oo
421 Theory e
4.2.2 TImplementation (k w BSL)
¢-f Model
5.1 Theory o e
5.2 Implementation Lo
5.3 Verification
Validation
6.1 Fidelity
6.2 Robustness
6.3 Cost e e
Conclusions
Appendix
8.1 Chien Low Reynolds kEpsilon Model
8.2 EARSM + Chien Low Reynolds kEpsilon Model
8.3 EARSM 4+ kw BSL Model
8.4 o¢-f Model

vi

13
14
14
15
17
17
19
19
21

23
23
24
28

30
30
35
36

38

1 INTRODUCTION

The work of this thesis was inspired by the research problem of modeling heat transfer
by impinging fuel jets on the inside walls of diesel engine cylinders. There was a gap
in the accuracy of the results from existing RANS-based turbulence models on the one
hand and the burgeoning computational and temporal cost of LES-based techniques on
the other.

The following features were desired in the turbulence model:
Fidelity Higher degree of accuracy

Robustness Lack of dependence on mesh

Cost Lower requirement of time/computational resources

One could assume from the description of the problem statement that there would be
a certain degree of streamline curvature upon impingement and flow separation caused
by roughness on the walls of the engine. Hence one could safely also conclude based on
existing research that linear eddy viscosity models would not suit the need.

The objective of this thesis is to propose a list of turbulence models worth investigation
for modeling heat transfer by impinging jets on curved walls. The applicability of a
range of models for 2-D developed channel flow in OpenFOAM-2.2-x was considered by
comparing the simulation results with DNS data at a specific Reynolds Number. The
models which showed interesting results are discussed in the subsequent pages.

In this process of investigation, some models were implemented for OpenFOAM-2.2-x.
It is hoped that the list of suitable candidates can be further assessed in steps by looking
at results with the following cases : pipe flow (instead of the current channel flow),
impingement of jet flame on a flat wall, impingement of jet flame on a curved wall and
finally impingement of flame on the actual inner cylinder geometry.

2 CONSTANT PROPERTIES

2.1 CHANNEL GEOMETRY

Symmetry Plane

| Inlei> | Outlet>

X

The channel mesh is generated by the ‘blockMesh’ utility. There are a total of 2 * 100 *
1 cells. Apart from the four patches in the figure above (‘inlet’; ‘outlet’; ‘wall’, ‘symme-
tryPlane’), the z-faces are named as ‘frontAndBack’ and are classified as ‘empty’ patches.

An expansion ratio of 10 is given in the y - direction. This means that the ratio of the
thickest cell (in the mid channel region) and the thinnest cell (near the wall) is equal to
10.

n—1
ar - 10
a
_1
r=10n-1
r=1.0235

where a = height of the thinnest cell, r is the growth ratio and n = 100.

2.2 TRANSPORT PROPERTIES

//////////////////////////////////////
//////////////////////////////////////

,,,,,,,,,,,,,,,,,

//////////////////////////////////////
//////////////////////////////////////

By force balance on the whole channel domain,

(P — Py) (20) = (27) L
AP
==

By choosing L = 1.0, P; = 1.0, P, = 0.0 and 0 = 1.0, the value for 7, is obtained as
1.0 S.I. Units.

Tw

Also since
2
Tw = PU

Hence, by choosing p = 1.0, gives us u, = 1.0.

The results have been run at Re; = 395 to correspond with DNS data of Moser, Kim
and Mansour [1]. This has been done by setting the molecular viscosity accordingly.

Re; = —
vV = i
395
2.3 BouNDARY CONDITIONS

Since fully developed flow is being modeled, the inlet and outlet properties of the velocity
field have been assigned as ‘zero Gradient’, while the pressure field has been assigned as
‘fixed Value’ along the respective patches to generate a constant pressure gradient.

The 0/U file for the velocity field is specified as follows:

FoamFile

{

version 2.0;

format ascii;
class volVectorField;
object U;

3

J/ % % %)k % %k k %k % % % % % % % % % %k % *k % % %k % %k % % * % x % *x x //

dimensions [01-10000];

internalField uniform (0 0 0);

boundaryField
{
inlet
{
type zeroGradient;
b
outlet
{
type zeroGradient;
}
fixedWalls
{
type fixedValue;
value uniform (0 0 0);
X
frontAndBack
{
type empty;
3
middle
{
type symmetryPlane;
b
X

// >k 3k 3k 3k 5k >k >k >k 5k 3k 5k >k %k >k 3k 5k 5k >k %k 5k 5k 5k 5k >k >k >k 5k 5k 5k >k %k >k 5k 5k >k >k %k >k 5k >k 5k >k %k >k >k >k >k >k %k >k 5k >k >k >k %k >k %k >k > >k %k >k %k >k %k % //

The 0/P file for the pressure field is specified as follows:

FoamFile
{
version 2.0;
format ascii;
class volScalarField;
object P
}

J/ % % % k % k% k %k % % %k % *k * % % % >k % *k >k % %k % % % % * % x % *x x //

dimensions [02-20000];

internalField uniform O;

boundaryField
{
inlet
{
type fixedValue;
value uniform 1.0;
b
outlet
{
type fixedValue;
value uniform 0.0;
X
fixedWalls
{
type zeroGradient;
b
frontAndBack
{
type empty;
+

middle

{
type symmetryPlane;

3

[/ Rkkkkkskskokokokkokokokokskokkokkokokkokokok ok sk sk skkokokokkokokokksk sk kokok ok kokokok ks kkkokkkokokokkk -/ /

3 CHIEN Low REYNOLDS KEPSILON MODEL

Standard kEpsilon model is known for its inability to integrate through the viscous
sublayer. That motivates a need for low Reynolds kEpsilon versions which accurately
account for the order of turbulent quantities near the wall.

Among the low Reynold versions, the model by Chien [2] has been chosen. Although
the general treatment to account for the difference in order ‘O(y)’ of the modelled and
the actual value of the turbulent quantities is the same as Jones and Launder (1972),
the detailed proposals are quite different.

3.1 THEORY

In general, near the wall, because of no slip conditions and continuity relations, we have

the following relations for velocity ¥ = (u,v,w) and turbulent kinetic energy k:
u=0(y") v=0(") w=0(") k=0 (3.1.1)

The standard kEpsilon formulation by Jones and Launder (1972) appears as follows. It

would need to be altered to suit the Low Reynolds flow.

The Jones and Launder equations for the Standard k-Epsilon model are as follows:

dt Oy or) oy '\ By ‘

de 9 (, w\oe e (N 2
dt oy oe) Oy et oy >k

where the turbulent (eddy) viscosity is defined as:

k2
S

and the constants are:
¢y =009 ¢1=135 =18 op=1 o0.=13 (3.1.2)

Chien [2] firstly considered the k equation of Jones and Launder. It is evident that near
the wall, the molecular diffusion term is a constant while other terms go to 0. To balance
the molecular diffusion term, he introduced D such that:

e=é+D (3.1.3)

While the order of € is known to be O(y°), the order of € needs to be investigated. By
Taylor’s expansion, k expands out as follows:

k= asy® + asy® + aqy + ...

ok
— = 2a9y + 3a3y2 + 4a4y3 + ...
dy
ok
Va—y =v [2a2y + 3asy® + daqgy® +]
0 Ok
a—yya—y =v [2&2 + 6a3y1 + 12a4y2 + }

The term on the left hand side at the last line is the molecular diffusion near the wall.
Since as ~ y%, hence one concludes that the term ‘D’ that balances the molecular
diffusion is:

k
D=2 (3.1.4)
The final k equation for the Chien Model is as follows:
dk 0 v: \ Ok ou\ 2 2vk
i R il e I 3.1.5
ity KWF 0k> 8y} I <8y> Ty (3:15)

Chien [2] then re-modified the turbulent viscosity formulation to take into account the
wall damping. The new equation for v is:
kz —c3ury/v
Y= [1 e } (3.1.6)
The equation above gives an insight into the (near-wall) order of €. Since the order of

v¢ near-wall is O (y3), as it is determined purely by the Boussinesq Assumption (Con-
stitutive Relations between 7, which is O (y3) and S7o which is O (yo)), hence

O (y* 1
5300

This implies that the near-wall order of € is O(y?). This is so because of Taylor’s
expansion near the wall:

O(y’) =

e =1 [1-0(5') + 0 (1) - .

A word of caution here: Since u, is constant across the mesh and hence across ‘y’,

O (ur) ~ O (y")

The final step is the conversion of Jones-Launder equation for € into an equation for €.
The final transport equation for € is as follows:

) v\ OF E [ou\? ¢ _ 2uke—caury/v
=_ 2 = u (=) - = e 1.
&= oy Ku + Ug) 0y] +epv (8y> 3 [Czﬁe + 2 (3.1.7)

where:

4)2
fr=1— %e—(k2/<6w>) c3 = 00115 ¢ =05

3.2 IMPLEMENTATION
3.2.1 WALL SCALING

Current wall damping function f, is a function of y™ as can be seen in (3.1.6). However
the formulation becomes invalid in regions of separation and reattachment.

Hence, an alternate scaling y ™ is proposed as follows:

k
Re, = \Cy (3.2.1)

y* =2.4./Re, + 0.003Re; (3.2.2)
Wallin and Johansson [3] have shown that y* ~ y* for y™ < 100

3.2.2 BOUNDARY CONDITIONS

The boundary conditions for turbulent kinetic energy k is as follows:

FoamFile
{
version 2.0;
format ascii;
class volScalarField;
location "o";
object k;
}

[/ * % % kx k ok ok ok k k k Kk Kk k k k k k k k *k *k *k k k *k * * * * * *x x //
dimensions [02-2000 0];

internalField uniform 0.325;

boundaryField
{
inlet
{
type zeroGradient;
3

outlet

{
type zeroGradient;
X
fixedWalls
{
type fixedValue;
value uniform 1le-10;
}
frontAndBack
{
type empty;
3
middle
{
type symmetryPlane;
b

The boundary conditions for turbulent dissipation e is as follows:

FoamFile
{
version 2.0;
format ascii;
class volScalarField;
location "o";
object epsilon;
}

// % % % %k % %k k %k % % %k % % * % %k % %k % *k * %k %k % %k % % *x %k *x % *x x [/
dimensions [02-30000];

internalField uniform 0.000765;

10

boundaryField

{
inlet
{
type zeroGradient;
b
outlet
{
type zeroGradient;
}
fixedWalls
{
type fixedValue;
value uniform 1e-10;
X
frontAndBack
{
type empty;
3
middle
{
type symmetryPlane;
b
3

// >k 3k 3k 3k 5k >k >k 3k 3k 3k 5k >k %k >k 5k 5k 5k >k %k 5k 3k 5k 5k >k >k k 3k >k >k >k >k 5k 3k >k >k >k >k 3k 5k >k >k >k %k 5k 5k >k >k >k %k 5k >k >k >k %k >k %k >k >k >k %k >k %k >k >k //

3.3 VERIFICATION

Chien [2] in his 1982 publication, where he introduces the model, publishes results for Re,
= 3850. Upon running the simulation at the same flow conditions (Re, = 228), the results
match well with Chien’s observations. The published data below in Figure (3.1) is taken
from Figure 3 in Chien [2] ’s publication and is added for the sake of verification and
completeness. Results of U and e were not included in the aforementioned publication
and hence, performance of the current model with regards to U and e has not been

11

discussed here.

Plot of k" Vsy"

—— k" (From implemented model)
O k" (From published results)

0 20 40 60 80 100

Figure 3.1: k™ vs y* : Chien Model at Re, = 228 or Re, = 3850

12

4 EARSM

The linear eddy viscosity models have one major drawback: that the constitutive rela-
tions between stresses and strains is a function of an isotropic turbulent viscosity 4.

To alter that, and to see if any improvement is visibly seen in the performance of the
eddy viscosity models, the EARSM formulation is added.

Replacing the Boussinesq Assumption, EARSM seeks to redefine the constitutive relation
between Reynolds stress (7, where 7;; = —puju}) and the mean velocity strain tensor

(g , where S;; = (Um- + Ujji)). a (which is a function of higher order multiples of S and

—

Q (where Qi = (Uij — Uj;))) will be determined in the equations below:

— 2
u;u; =k (aij + 35@') (4.0.1)
The EARSM formulation begins with the following declaration:

RSM Equation: Cij — Dij =]Dij + IIz'j — 6Z'j

k Equation: Cy — Dy = P, — €,

where C is the convection term, D is the diffusion term, P is the production term, € is
the dissipation term and II is the pressure strain term.

Next comes the following assumption:

/
Cij — Dy = — (Cy — Dy) (4.0.2)

This implies that:

/
-Pij +II” — 67;]' = 7]{] (Pk — Gk)

This assumptive tactic above seeks to find u;u; in terms of the other terms. This implies
that one must have the models for €;; and I1;;.

Substitution of the models leads up to a simplified but still implicit equation for a.

P\ = 83 4
1+ F)lg=—-=2 =
(Cl + 6)& 15S+9< >

—
—

Q

Ll

9)

IS

13

4.1 WALLIN JOHANSSON FORMULATION

4.1.1 THEORY (FOR TwO DIMENSIONAL MEAN FLOWS)

Expressing @ in terms of tensorially independent groups using the Cayley Hamilton
Theorem, for 2D flow, we have the following equation:

F- 6,548 (sn QS)
where,
6 N
i=—s§z_ oI 1
and,
6 1
br=—s§z= oI

In the equations above ‘N’ is the solution to the cubic equation:
3 / 2 7 !/
N° — ¢ N — 10]15 +21Ig | N+2c1Iqg=0
Here, N can be solved in closed form with the solution:

/ 1/3
N=24 (P+VB) " +sign (P = VB) P = VB Py > 0

3

/
c 1/6 1 P
=L1492(P?—-P - —— | |. <0
3 + (1 2) S(garccos< P12—P2>> 2

where,
1 9
P = (2701 + —II — 3[[9) |
Py=P?— 1 + gIIS + Z1qg ’
o\o?t 10 3
where,
r 9
IIg =tr (5’2) Il =tr (QQ) =7 (c1—1) =18

For Low Reynolds flow, Wallin and Johansson [3] recommend some changes to the (i,
B2 and (4 coefficients. The damping factor in the equation below is of the Van Driest
damping factor form:

fi=1- o(—v7/26)

ﬁl,low—Re = flﬁl

14

3(1.8) — 4

ﬁ2,low—Re = T (1 - f12)

1.8
ﬁ4,low—Re = f12/84 - E (1 - f12)

The above reformulation of the [coefficients leads to some changes in the a tensor (or
the a;; values)

In the tensorial format, the 2D anisotropy model would read as follows:

Qll

= 3x18—-4 (2, 1 32
2 J2
=hmS+ (1= 1) max (I1g,5.74) <S B HSI)

3
+ (28— (1-£2) L5 3G - G5
! Y 2max (I1g,5.74)

(4.1.1)

In addition, the C, coefficient will no longer be a constant. For two dimensional mean
flows, it will be modeled as follows:

_hh

ff —
cpll = 5

Finally, the turbulent eddy viscosity will be calculated differently than before. It shall
be:
vy = C;ﬂk:T

4.1.2 THEORY (FOR THREE DIMENSIONAL MEAN FLOWS)

Expressing @ in terms of tensorially independent groups using the Cayley Hamilton
Theorem, for 3D flow, we have the following equation:

= S 1 2 5 1 2 2z 23
a= 1S+ P (52 — 3[[5[) + 33 <92 — 31'[91) + 4 <SQ — QS)
(4.1.2)

—)

S
+ fe <§Q2 025 - §IVf> + By <ﬁss22 _ 925(3)

where,
_ N(2N?-T7IIp)
br=— 0
and,
12 (N11V)
B3 = — 0
and,

15

2 (N? —211Ip)

fi= =
and,
6N
56 = _6
and,
6
59 = @
Also,

0= g (N2 —2IIg) (2N? — 1) IV =tr <§d2>

For Low Reynolds flow, Wallin and Johansson [3] recommend some changes to the g,
B2, B4, Bs and By coefficients.

2
ﬁ?},low—Re = fl 53
/86,l0w—Re = flﬂ6

2
ﬁ9,low—Re = fl /89

The above reformulation of the 3 coefficients leads to some changes in the a tensor (or
the a;; values)

In the tensorial format, the 3D anisotropy model would read as follows:

= = 3x1.8—4 >
a:f1ﬁ13+(1— 12 (

= 1 2 2
et S 0 Y] 23, (Q2 — =TI
)maX(IIS,5.74) 3 >+f153< @

1.8 g
=+ <f1254 - (1 B f%) 2max (IIS,5-74)> <SQ

33 3 = 2 3
QS) + f106 <592 + Q%S5 — 3[VI>

(4.1.3)
In addition, the C), coefficient will no longer be a constant. For three dimensional mean
flows, it will be modeled as follows:

J1 (B + 11of6)

fr— _
cpll = 5

16

4.1.3 IMPLEMENTATION (CHIEN Low REYNOLDS KEPSILON)

The Wallin Johansson EARSM implementation was tested with Chien Low Reynolds
kEpsilon Model. Upon running the original two dimensional mean flow formulation, it
was observed that the mid channel velocity is a little over predicted. Hence, Wallin and
Johansson [3] recommend a change to € in the Chien’s Model as follows:

e=€+ ?exp (—Cky+)

where CY} is chosen as 0.04. This means that the original wall dissipation is multiplied
by an exponential function to ensure a more ‘rapid decaying’. In the implementation,
this exponential function will manifest itself in both the k and the € equations.

The T expression in the exponential function is calculated as follows:

dU
Ty = —V—o

Tw
Ur = 4| —

p

Yur
yt =
1%

4.1.4 VERIFICATION

The published data in Figures (4.1) and (4.2) is taken from Wallin and Johansson [3]
’s publication and is added for the sake of verification. The data matches closely to
the results obtained with the implemented model. Results of € were not included in the
aforementioned publication and hence, performance of the current model with regards
to € has not been discussed here.

17

Plot of U" Vs log (y")

24

—— U* (From implemented model)
O U* (From published results)

10°
log (y")

Figure 4.1: U" vs y© : Chien Model with EARSM at Re, = 395

Plot of k" Vsy"

— k" (From implemented model)
O k" (From published results)

0 20 40 60 80 100 120
+

y

Figure 4.2: kt vs y* : Chien Model with EARSM at Re, = 395

18

4.2 MENTER FORMULATION
4.2.1 THEORY

Menter [4] ’s formulation is based on Wallin and Johansson [3]’s theory and the differ-
ences between the two are few. The (3) coefficients of the velocity strains, although
fundamentally the same as in Wallin and Johansson [3]’s model have been ‘expressed’
differently. For the sake of completeness, all the underlying equations and constants are
(re) discussed here.

Reynolds Stress Tensor is defined as:

where, the anisotropy tensor @ is decomposed as:

@ = BT + PoTo + B3Ts + BaTy + B6Ts + BoTy

Here, the velocity strains are as follows:

Ty =S5
= z3 1 2
Ty =55 — §I Isl
Ty =G0 — 11l
Ty =50 - QS
333 333 2.3 =z
T = SQQ + QOQS — §IVI — IS
T, = 6566 - 6656 + 111 (sg - QS)
Here, S and € are the non-dimensional strain and vorticity tensors and are given as
follows:
T (0U; 0OU;
Sii = — ! J
J 2 <8$j + 61'1)
T (0U; 0U;
Qij = — —
2 8$j 8.%'1

Here, 7 is the time scale:

B 1
TR ow

The tensor invariants are as follows:

IL;:tr<§§> Ik)—tr<66> (Sﬁﬁ)

19

The coeflicients of the tensor basis are:

b3

P2 =0
21V
B3 = —

where,
N? —2]Iq Q
0= 9T

Here, N can be solved in closed form with the solution:

+ (Pl + \/172)1/3 + sign (P1 - \/172) 1P — /B3, Py >0

1
3
4 1 P,
= % + 2 (P12 - P2)1/6 cos <3arccos <P121—P2>> , Py <0

(2N? - 11)

N =

where,
1 9
P = <2701 + —II — 3[]9) c
1 9 2 3
P, =P? — —II gy
20 <9 101513 Q)

Here ¢f = 1.8. The transport equations for BSL model are mentioned as follows:

dw 0 Ow 6
Here, P, is given by:
= . oU;
P;; = min < Tij o oz, -, 10pB* kw> (4.2.3)

20

The rest of the theory involves the fundamental concepts of the baseline model.

e = F10.54 (1 — F1) 1.0
5o = F10.5 + (1 — F1) 0.856
B = F,0.075 + (1 — F})0.0828
54 =2(1— Fy)(0.856)
B Guk?
T 009 03

v

where I reads as:

Fy = tanh (arg%)

v — min L vk 5000 2kw
= b'e
&1 0.09wy” wy? | " y%(Vk) (Vw)

4.2.2 IMPLEMENTATION (K w BSL)

There is one difference between Wallin and Johansson [3] ’s model and Menter [4] model.
A slight recalibration of the A; constant was done and it was set at 1.245 instead of 1.2,
like in Wallin and Johansson [3] ’s model.

The boundary condition for w at the first cell centre next to the wall was kept as:

6v
(0.075) y?

The complete 0/omega file is specified as follows:

Wy =—

FoamFile
{
version 2.0;
format ascii;
class volScalarField;
location "o";
object omega;
}

[/ % % % % k% ok ok ok k k Kk Kk Kk k k k k k k *k *k *k * k x *k * * * * * *x x //
dimensions [00-10000];
internalField uniform 400;

boundaryField
{

21

inlet

{
type zeroGradient;

}

outlet
{

type zeroGradient;

}

fixedWalls

{
type omegaWF;
value uniform 400;

frontAndBack
{
type empty;
}
middle

{
type symmetryPlane;
}

22

5 ¢-f MODEL

5.1 THEORY

The v2-f model was created by Durbin [5]. It expresses turbulent viscosity as a function
of wall normal stress (W) and hence does away with the need of damping functions
to model near wall turbulence. (Damping functions represent the kinematic blocking
by walls. Instead, using wall normal stress to calculate turbulent viscosity indicates the
presence of the wall, while also doing away with non linear damping functions).

The v2f model that has been implemented in OpenFOAM 2.2x is based upon David-
son [6] and Lien-Kalitzin [7]’s work.

The ¢ -f model, in principle, is the same as the v2f model. But casting ¢ = % makes
it more numerically stable. There are two forms of the ¢ f model, one implemented by
Laurence et al. [8] (University of Manchester) and the other, implemented by Hanjalic et
al. [9] (Delft University of Technology). The former has been chosen for implementation
as it is more similar to the original v2f than the latter’s model.

The transport equations of interest are as follows:

dk 0 ve\ Ok

= _—p - — -) = 1.1

dt k 6+6xj [(y—l_Uk) a.%']:| (5)
de C’;lP,{ — Cege 0 v\ Oe

where
, T0
P. =218 S =4/2 (SUS@]) 0, =10 0,=13 Cq=14(1.0+0.05 ? Ceo

The transport equations for ¢ and fy are as follows:

do _ o 0p , O () 99| 2u 09 Ok
i e+ oz ij o + kg O, D1, (5.1.3)
0? 1 2 P v 0¢ Ok
27 J e = _ e 716_ i At 2
027 f T(01 1) {qﬁ 3} Cs k Qkaxj o vV2¢ (5.1.4)
where:
Ci=14 Cy=03
And:

T = max [k,ﬁ.o (5)2 (5.1.5)

€ €

=
_

23

=1.85

€

3/2 3\ 1
L = Cpmax [k 110 (V)] (5.1.6)
€

where C'r,= 0.25.

5.2 IMPLEMENTATION

The original implementation has been modified by adding the Davidson [6] correction
factors (Modification 1). The modifications are enumerated as follows:

1. v; = min [0.09k%/¢,0.22¢kT |
2. (z)source = min [fa _% (Cl - 1) [(b - %] + 02%]

The boundary condition for € at the first cell centre next to the wall is calculated as:

2uk
Ew:T

, (5.2.1)

The complete 0/epsilon file is specified as follows:

FoamFile
{
version 2.0;
format ascii;
class volScalarField;
location "o",;
object epsilon;
}

[/ % k x x %k k ok k k kx %k k ok k k kx k *k *k *k *k kx *x * *k *k *x x *x *x *x *x //
dimensions [02-3000 0];
internalField uniform 0.000765;

boundaryField
{

inlet

{
type zeroGradient;

3

outlet

24

type zeroGradient;

}
fixedWalls

{
type epsilonlLRWF;

frontAndBack
{
type empty;
}
middle

type symmetryPlane;

The boundary condition for phi and f at the wall is of type ‘fixed Value’ with value
SMALL (1e-10). The files(‘0/zeta’ for phi and ‘0/f’ for f) are specified as follows:

FoamFile
{
version 2.0;
format ascii;
class volScalarField;
location "o";
object zeta;
}

J/ ¥ % k k k k k k k k k k k k Kk k k k k k k k k k Xk *k *k *k *kx *x *x x [/
dimensions [0000O0O0O0];

internalField uniform 0.325;

25

boundaryField
{

inlet

{
type zeroGradient;

}

outlet
{

type zeroGradient;

}

fixedWalls

{
type fixedValue;
value uniform 1e-10;

frontAndBack
{
type empty,;
}

middle

{
type symmetryPlane;
b

[/ REkokkskokokokokokokok ok ok ok ok ok ok ok ok ok sk ok ook ok sk ok ok ok sk ok ok sk ok ok sk sk ok kok sk okokok ok sk ok ok sk kokokk ok kok ok / /

FoamFile
{
version 2.0;
format ascii;
class volScalarField;
location "o";
object epsilon;

26

3

// k % % %k %k % % % % %k % % % 3% %k %k) % 3% %k %k) % % 3% %k % % % 3% %k %k

dimensions [00-100 0 0];
internalField uniform 0.000765;

boundaryField
{

inlet

{
type zeroGradient;

}

outlet
{

type zeroGradient;

}

fixedWalls
{
type fixedValue;
value uniform 1le-10

frontAndBack
{
type empty;
}

middle

type symmetryPlane;

I

//

// >k 3k 3k 3k 3K >k >k >k 3k 5k 5k >k >k 5k 3k 5k 5k >k >k 5k 3k 5k 5K >k >k 5k 3k 5k 5k >k >k 5k 5k 5k 5k >k >k >k 3k >k 5k >k >k >k %k >k 5k >k >k >k %k >k >k >k %k >k %k >k > %k %k >k %k >k % Xk //

27

5.3 VERIFICATION

The data below for the published results in the Figures (5.1), (5.2) and (5.3) are taken
from Laurence [8] ’s publication and is added for the sake of verification. The data
matches closely to the results obtained with the implemented model.

Plot of U* Vs log (y")
20 T T

sl ——U" (From Implemented Model) |

O U" (From Published Results)

T

16

14

12

10 10° 10 10° 10°
+
log (y")

Figure 5.1: UT vs y* for ¢ -f at Re, = 395

28

Plot of k" Vsy"

—— k" (From Implemented Model)
O k™ (From Published Results

1

0 50 100 150 200 250 300 350 400
+
y
Figure 5.2: 7 vs y* for ¢ -f at Re, = 395
Plotof £ Vsy"
0.3r
——¢ " (From Implemented Model)
oasl| © € (From Published Results)
0.
w 0.15F
01f
0.05f
o 1 1 1 1 1 1 1 1 1 J
0O 10 20 30 40 50 60 70 80 90 100
+
y

Figure 5.3: ¢ vs yT for ¢ -f at Re, = 395

29

6 VALIDATION

6.1 FIDELITY

The figures below ((6.1), (6.2) and (6.3)) demonstrate the performance of the imple-
mented models vis-a-vis DNS data for turbulent parameters like channel velocity ‘U’,
turbulent kinetic energy ‘k’ and turbulent dissipation ‘¢’ . The curves depicted corre-
spond to the following cases, for channel flow at Re, = 395:

1 DNS data

2 Chien Low Reynolds k ¢ Model

3 EARSM + Chien Low Reynolds k € Model (Wallin-Johansson’s Formulation)
4 ¢-f Model

5 v2-f Model

6 k w SST Model

7 EARSM + k w BSL Model (Menter’s Formulation)
For the evaluation of € from w, the following formulation was used for w based models.

€= C,kw

30

n 1%
- ek
N 8,]
21 . 1
i
0+ & i
>
5 R
o % 1
o \
®
\
- R =
I \]
i ®]
1
I |
| o|
C-—1
3 e
HA N M < 10O O~ —
o | | i
; : : : : 4 4
N
31

Figure 6.1: UT vs y™ at Re, = 395 [1 - DNS, 2 - Chien k ¢, 3- EARSM + Chien k ¢, 4-
G-, 5- v2-f, 6 k w SST, 7-EARSM + k w BSL)]

log (v")

Plot of k™ Vs y*
\

32

Figure 6.2: k™ vs y* at Re, = 395 [1 - DNS, 2 - Chien k ¢, 3- EARSM + Chien k ¢, 4-
¢-f, 5- v2-f, 6- k w SST, T-EARSM + k w BSL]

Plot of e* Vsy"

33

Figure 6.3: ¢ vs y™ at Re, = 395 [1 - DNS, 2 - Chien k ¢, 3- EARSM + Chien k ¢, 4-
¢-f, 5- v2-f, 6- k w SST, T-EARSM + k w BSL]

Looking at the figures above, one can conclude the following:

Ranking for fidelity
U k €
k w SST EARSM + Chien k € Chien k €
1 EARSM + k w BSL EARSM + Chien k €
o-f
Chien k € o-f o-f
2 | EARSM + Chien k € Chien k € v2-f
v2-f
3 v2-f k w SST k w SST
EARSM + k w BSL | EARSM + k w BSL

The idea is to place the models in three broad rank fields, 1 being the most faithful and
3 being the least faithful to the DNS data. It is observed that for channel velocity, both
the w based models and ¢-f capture the viscous and the logarithmic flow fields quite
accurately and hence are collectively assigned a rank of 1. While Chien Low Reynolds
k e slightly overpredicts the mid channel velocity, the EARSM attachment slightly un-
derpredicts the same. The EARSM formulation is quite accurate until Re, = 170, from
where it starts to flatten out away from the DNS curve. It was felt that v2-f performs
the least bit accurately compared to the other models and hence, was assigned a rank
of 3 with respect to the velocity prediction.

With respect to turbulent kinetic energy, the EARSM attachment to Chien Low Reynolds
k € is a clear winner. The original Chien Low Reynolds k € and ¢-f also perform satis-
factorily well and are hence assigned a rank of 2. The w based formulations perform the
least satisfactorily for k, with respect to DNS data, and hence are assigned a rank 3.

Finally for turbulent dissipation, both the Low Reynolds formulations perform the best,
followed by the v2-f family of models and lastly the w family of models.

From the results’ evaluation, it is a little hard to make a clear assessment of the best
model. While the w based formulations are quite accurate in predicting the channel
velocity, they are not so faithful for turbulent kinetic energy and dissipation. However,
in many scenarios, the channel velocity ranks as a more important parameter to predict
than the other two, and hence the importance of w based models can not be shunted away.

Also, some observations are quite evident:

34

e ¢-f model, which has been developed using v2-f as a substrate, performs better
than v2-f.

e EARSM attachments to Chien Low Reynolds based model improves its perfor-
mance, especially with regard to its prediction for turbulent kinetic energy. This
justifies spending more computational resources for attaining higher fidelity.

6.2 ROBUSTNESS

The robustness of the models was tested by looking at their mesh sensitivity. Two
simulations with 100 (y* = 0.50) and 200 (y* = 0.25) cells in the Y (wall normal)
direction respectively were evaluated. Performance with regard to the mean velocity
was used as the judging criterion.

Plot of U™ Vs log (y") Plot of U™ Vs log (y")

24 T 24 T
——100 cells ——100 cells
200 cells 200 cells
20| 7 20|
’,“' o
16 / / B 16 /
/, //
/s ”
+ / + /’,
5 12 / 1 5 12 /
/ /
/ /
/ /
8 '// 8 /
/ /
// ,/
4 / 4 J/
/ rd P ” -
0--_’0 1 2 0--_—0 ‘1 ‘2
10 10 10 10 10 10°
log (") log (")

Figure 6.4: U™ vs yT for Chien Low Figure 6.5: U™ vs y™ for EARSM +
Reynolds k € Chien Low Reynolds k €

35

Plot of U™ Vs log (y") Plot of U™ Vs log (y")

24 : 24 :
——100 cells ——100 cells
200 cells 200 cells
20 A 20 -
e ~
P e //,/
16 e 1 16 e
yd /
,/’/ ///
51 /z/ ‘5 12t //
/ /
8 // 8 /
/ /
/ /
4 J/ 4 /
g 7
- ~ g - ~
o= o=) ’
10 10' 10° 10° 10 10°
log (v*) log (")
i .6: % - i T %
Figure 6.6: Ut vs y* for ¢-f Figure 6.7: Ut vs yT for EARSM +
k w BSL

It is concluded that the models are quite robust with respect to sensitivity to the mesh,
and further mesh refinement does not lead to improvement in results.

6.3 CosT

Plot of Wall Shear Stress Vs (10?') Iterations

1+ e e e
1
08k |, ey 2
0 —3
o
= 4
O 06F
S
@
()
<
n
g 0.4 *#
02t
' PTIITI,
e
Ob 1 1 1 1 1 1 1 1 1]
0 20 40 60 80 100 120 140 160 180 200

10° iterations

Figure 6.8: Wall Shear Stress vs (103) iterations at Re, = 395 [1 -Chien k ¢, 2- EARSM
+ Chien k €, 3- ¢-f, 4- EARSM + k w BSL]

36

The cost of a model has been judged based on how many iterations it takes to attain a
wall shear stress (7,) of 1.0 given the same mesh (100 cells in the Y direction) and the
same initial conditions for the common transport quantities, as was discussed in section
3.2.

As is evident from the figure (6.8), EARSM + k w BSL and ¢-f models takes the least
time to reach a wall shear stress of 1.0, closely followed by the Chien k ¢ model and
lastly the EARSM - Chien k € model.

Ranking for cost
1 | EARSM + k w BSL
o-f
Chien k €
3 | EARSM - Chien k ¢

37

7 CONCLUSIONS

In this thesis project, ¢ based models like Low Reynolds Group (‘Chien’, ‘Launder
Sharma’); ¢ - f and w based models like k-w SST, k-w BSL were considered. In ad-
dition, the EARSM formulation was attached to some models to see if there was an
improvement in results.

Although the results with standard k-e and Launder Sharma k-e¢ have not been printed
in this report, they were thoroughly investigated. Amongst the Low Reynolds linear
eddy viscosity € based models, Chien ’s Low Reynolds formulation is a clear winner. All
the turbulent quantities are predicted very closely to the DNS data.

The next model with several advantages is ¢-f. Its major advantage is that the turbulent
viscosity is expressed in terms of the wall normal stress thus including the effect of the
wall damping and eliminating the need of another damping function. Also this model
automatically works well for Low or High Reynolds flow which gives it a powerful edge
to Chien’s formulation which can be used only for Low Reynolds flows. Although the
number of transport equations have increased by two for this model (¢ and f transport
equations), the model offers performs very well across the measures of fidelity, robustness
and accuracy which justifies its use.

The EARSM implementation with Chien’s model achieves a close fit with turbulent
quantities as well. It leads to slightly improved accuracy for channel flows, but has
higher cost as well. Logic would deem that for impinging flows with streamline curva-
ture and stagnation points, an EARSM implementation would be useful. Hence further
comparison of the original Chien Model and Chien + EARSM should be done for more
complex geometries.

Results with w - based models have also been carried out. k-w SST gave a good perfor-
mance and an EARSM formulation with k-w BSL was tested to see for any improvement
in results. As such, the k-w SST model, for its applicability to all flows and its improved
accuracy over Standard Wilcox k-w, is also recommended for capturing channel flows, by
the author. Not too much difference between k-w SST and the EARSM implementation
was noticed, and for that purpose a verification of the k-w BSL + EARSM model needs
to be looked into. It was not included in this report because two dimensional developed
channel flow results were not included by Menter [4] in his publication.

38

1]

REFERENCES

R. D. Moser, J. Kim, and N. N. Mansour, “Direct numerical simulations of turbulent
channel flow up to Re tau = 590,” Physics Of Fluids, vol. 11, pp. 943-945, 1999.

K.-Y. Chien, “Predictions of Channel and Boundary-Layer Flows with a Low-
Reynolds-Number Turbulence Model,” ATAA Journal, vol. 20, pp. 33-38, 1982.

S. Wallin and A. V. Johansson, “An explicit algebraic Reynolds stress model for
incompressible and compressible turbulent flows,” J.Fluid Mech, vol. 403, pp. 89—
132, 2000.

F. R. Menter, A. V. Garbaruk, and Y. Egorov, “Explicit Algebraic Reynolds Stress
Models For Anisotropic Wall-Bounded Flows,” Progress in Flight Physics, vol. 3,
pp- 89-104, 2012.

P. A. Durbin, “Separated flow computations with the k-epsilon-v-squared model,”
AIAA Journal, vol. 33, 1995.

L. Davidson, P. V. Nielsen, and A. Sveningsson, “Modifications of the v2-f Model for
Computing the Flow in a 3D Wall Jet,” Turbulence, Heat and Mass Transfer, vol. 4,
pp- 577-584, 2003.

F.-S. Lien and G. Kalitzin, “Computations of transonic flow with the v2-f turbulence
model,” International Journal of Heat and Fluid Flow, vol. 22, pp. 53-61, 2001.

D. R. Laurence, J. C. Uribe, and S. V. Utyuzhnikov, “A Robust Formulation of the
v2-f Model,” Flow, Turbulence and Combustion, vol. 73, pp. 169-185, 2004.

K. Hanjalic, M. Popovac, and M. Hadziabdic, “A robust near-wall elliptic-relaxation
eddy-viscosity turbulence model for CFD,” International Journal of Heat and Fluid
Flow, vol. 25, pp. 1047-1051, 2004.

39

8 APPENDIX

8.1 CHIEN Low REYNOLDS KEPSILON MODEL

Following are the OpenFOAM generated source files (Chien.C) for the discussed Chien
model.

ook okok okok ok ok okok ok ok

*xkCHIEN . Ckx*x*
ook okokok ok sk ok ok ok k

#include "Chien.H"

#include "addToRunTimeSelectionTable.H"

#include "wallDist.H"

#include "backwardsCompatibilityWallFunctions.H"

[/ % % % x k ok ok k k k k Kk %k k k *k k k *k *k *k *k * *x kx *k * * * * *x *x //

namespace Foam
namespace incompressible

{
namespace RASModels
{

// * % % % x % *x % % % *x x Static Data Members * * * % % % *x *x *x x //

defineTypeNameAndDebug(Chien, 0);
addToRunTimeSelectionTable (RASModel, Chien, dictionary);

// % * x % % x *%x % *x x Private Member Functions * * * % % *x *x *x *x //

tmp<volScalarField> Chien::fMu() const

{
volScalarField y=wallDist(mesh_).yQ);
volScalarField Rey =pow(k_,0.5)*(y/nu());
volScalarField yStar=pow(Rey,2)*0.003 + pow(Rey, 0.5)*2.4;
return
scalar (1)
- exp(-0.0115*yStar) ;
}

40

tmp<volScalarField> Chien::f2() const

{

// * x % % % x x % * % x x *x * Constructors

return
scalar (1)

- 0.22%exp(-sqr(sqr(k_)/(nu() *epsilonTilda_x6)));

Chien: :Chien

(

const volVectorField& U,

const surfaceScalarField& phi,
transportModel& transport,

const word& turbulenceModelName,

const word& modelName

RASModel (modelName, U, phi, transport, turbulenceModelName),

Cmu_
(
dimensioned<scalar>
(
"Cmu",
coeffDict_,
0.09
)
),
Ci_
(
dimensioned<scalar>
(
"c1",
coeffDict_,
1.35
)
),
C2_
(

dimensioned<scalar>

: :lookupOrAddToDict

: :lookupOrAddToDict

: :1lookupOrAddToDict

41

* k ok ko kx kx k *k ok x x [/

"ca",
coeffDict_,
1.8
)
),
sigmaEps_
(
dimensioned<scalar>::lookupOrAddToDict
(
"sigmaEps",
coeffDict_,
1.3
)
),
k_
(
IO0object
(
g
runTime_.timeName(),
mesh_,
IO0object::MUST_READ,
I0object: :AUTO_WRITE
)
mesh_
),
epsilonTilda_
(
I0object
(
"epsilon",
runTime_.timeName(),
mesh_,
I0object: :MUST_READ,
I0object: :AUTO_WRITE
)
mesh_
),
nut

42

I0object

(
"nut",
runTime_.timeName(),
mesh_,

I0object: :NO_READ,
I0object: :AUTO_WRITE
),

autoCreateLowReNut ("nut", mesh_)
bound(k_, kMin_);
bound (epsilonTilda_, epsilonMin_);

nut_ = Cmu_*fMu()*sqr(k_)/epsilonTilda_;
nut_.correctBoundaryConditions () ;

printCoeffs();

// % % % %k % % % % % % *x % x Member Functions * * % % % % % x *x *x //

tmp<volSymmTensorField> Chien::R() const

{
return tmp<volSymmTensorField>
(
new volSymmTensorField
(
I0object
(
||Rll s
runTime_.timeName(),
mesh_,
IO0object: :NO_READ,
IOobject::NO_WRITE
),
((2.0/3.0)*I)*k_ - nut_xtwoSymm(fvc::grad(U_.)),
k_.boundaryField() .types()
)
)3
b

43

tmp<volSymmTensorField> Chien::devReff() const

{
return tmp<volSymmTensorField>
(
new volSymmTensorField
(
I0object
(
"devRhoReff",
runTime_.timeName(),
mesh_,
IO0object: :NO_READ,
IOobject::NO_WRITE
),
-nuEff () *dev (twoSymm (fvc::grad(U_)))
)
)3
}

tmp<fvVectorMatrix> Chien::divDevReff (volVectorField& U) const
{

return
(

- fvm::laplacian(nuEff (), U)

- fvc::div(nuEff QO *dev(T(fvc: :grad(U))))
)3

tmp<fvVectorMatrix> Chien::divDevRhoReff

(
const volScalarField& rho,
volVectorField& U
) const
{
volScalarField muEff ("muEff", rho*nuEff());
return
(

- fvm::laplacian(muEff, U)

44

- fvc::div(muEff*dev(T(fvc::grad(U))))
)

bool Chien::read()

{
if (RASModel::read())
{
Cmu_.readIfPresent(coeffDict());
Cl_.readIfPresent(coeffDict());
C2_.readIfPresent (coeffDict());
sigmaEps_.readIfPresent (coeffDict());
return true;
}
else
{
return false;
}
}

void Chien::correct()

{
RASModel: :correct();

if (!turbulence_)

{

return;

tmp<volScalarField> S2 = 2#magSqr(symm(fvc::grad(U_)));

volScalarField G(GName(), nut_x*S2);
volScalarField y=wallDist(mesh_).y();
volScalarField Rey= pow(k_,0.5)*(y/nu());

volScalarField yStar=pow(Rey,2)*0.003 + pow(Rey, 0.5)%*2.4;
const volScalarField E(-2.0*nu()*epsilonTilda_/pow(y,2)

*exp (-0.5*yStar)) ;

const volScalarField D(2.0*nu()*k_/pow(y,2));

// Dissipation rate equation

45

tmp<fvScalarMatrix> epsEqn
(
fvm: :ddt (epsilonTilda_)
+ fvm::div(phi_, epsilonTilda_)
- fvm::laplacian(DepsilonEff (), epsilonTilda_)

Cl_xG*epsilonTilda_/k_
- fvm::8Sp(C2_*f2()*epsilonTilda_/k_, epsilonTilda_)
+ E
)5

epsEqn() .relax();
solve(epsEqn) ;
bound(epsilonTilda_, epsilonMin_);

// Turbulent kinetic energy equation

tmp<fvScalarMatrix> kEqn

(
fvm: :ddt (k_)
+ fvm::div(phi_, k_)
- fvm::laplacian(DKEff(), k_)

G - fvm::Sp((epsilonTilda_ + D)/k_, k_)
)3

kEqn() .relax();

solve (kEqn) ;
bound(k_, kMin_);

// Re-calculate viscosity
nut_ == Cmu_*fMu()*sqr(k_)/epsilonTilda_;

J/ % % % %k % %k k %k % % % % % % % % % % X% % >k % *k % % % % * % x *x *x //
} // End namespace RASModels

} // End namespace incompressible
} // End namespace Foam

46

// >k 5k >k 3k 3k >k 5k >k 3k 3k 3k 5k >k 3k 3k 3k 5k >k 3k 3k 3k 5k %k 5k 3k 3k 3k %k 3k 3k 3k 3k %k 5k >k 5k 3k 5k 5k >k 5k 5k 5k 5k >k 5k 3k 5k 5k >k 5k 3k %k 5k %k %k 5k %k 5k %k %k k k //

8.2 EARSM 4+ CHIEN Low REYNOLDS KEPSILON MODEL

Following are the OpenFOAM generated source files (EARSM_Chien.C) for the discussed
EARSM model.

3k 3k >k 5k >k 3k 5k >k 5k >k 3k 5k %k 5k %k %k 5k %k 5k %

**xEARSM_CHIEN. Gk
stk ok sk sk sk ok ok sk sk ok ok ok k ko sk ok ok

#include "EARSM_Chien.H"

#include "addToRunTimeSelectionTable.H"

#include "wallDist.H"

#include "backwardsCompatibilityWallFunctions.H"

[/ * x % x k ok ok k k k k Kk Kk k k k k k k k k *k * *x kx *k * * * * *x *x //

namespace Foam
namespace incompressible

{
namespace RASModels
{

// % % % % % % % % % % *x *x Static Data Members * * * * * % % x *x *x //

defineTypeNameAndDebug (EARSM_Chien, 0);
addToRunTimeSelectionTable (RASModel, EARSM_Chien, dictionary);

// * * x % * x *x *x x *x Private Member Functions * * * * * *x *x *x x //

tmp<volScalarField> EARSM_Chien::fMu() const

{
volScalarField y=wallDist(mesh_).yQ);
volScalarField Rey = pow(k_,0.5)*(y/nu());
volScalarField yStar=pow(Rey,2)*0.003 + pow(Rey, 0.5)*2.4;
return
scalar(1)
- exp(-0.0115*yStar) ;
}

47

tmp<volScalarField> EARSM_Chien::f2() const

{
return
scalar(1)
- 0.22%exp(-sqr(sqr(k_)/(nu()*epsilonTilda_x6))) ;
}

// % % % %k % % % % % % *x % x *x Constructors * * * % % % % % x *x *x //

EARSM_Chien: :EARSM_Chien

(
const volVectorField& U,
const surfaceScalarField& phi,
transportModel& transport,
const word& turbulenceModelName,
const word& modelName

RASModel (modelName, U, phi, transport, turbulenceModelName),

Cmu_
(
dimensioned<scalar>::lookupOrAddToDict
(
"Cmu",
coeffDict_,
0.09
)
),
Ci_
(
dimensioned<scalar>::lookupOrAddToDict
(
"c1",
coeffDict_,
1.35
)
),
C2_
(

48

dimensioned<scalar>::lookupOrAddToDict

(
"ca",
coeffDict_,
1.8
)
),
sigmaEps_
(

dimensioned<scalar>::lookupOrAddToDict

(

"sigmaEps",
coeffDict_,
1.3
)
),
k_
(
I0object
(
llk"’
runTime_.timeName(),
mesh_,
I0object: :MUST_READ,
I0object: :AUTO_WRITE
),
mesh_
),
epsilonTilda_
(
I0object
(
"epsilon",
runTime_.timeName(),
mesh_,
I0object: :MUST_READ,
I0object: :AUTO_WRITE
),
mesh_
),

49

// * % *x % % ¥ % x % *x * *x *x Member Functions

tmp<volSymmTensorField> EARSM_Chien::R() const

{

(
I0object
(
"R,
runTime_.timeName(),
mesh_,
I0object: :MUST_READ,
I0object: :AUTO_WRITE
),
autoCreateR("R", mesh_)
),
nut_
(
I0object
(
"nut",
runTime_.timeName(),
mesh_,
I0object: :MUST_READ,
I0object: :AUTO_WRITE
),
autoCreateLowReNut ("nut", mesh_)
)

bound(k_, kMin_);

bound(epsilonTilda_, epsilonMin_);

nut_ = Cmu_xfMu()*sqr(k_)/epsilonTilda_;
nut_.correctBoundaryConditions () ;
printCoeffs();

return tmp<volSymmTensorField>

(

new volSymmTensorField

(
I0object

50

% %k Xk k % % % x *x x [/

||R" s
runTime_.timeName (),
mesh_,
IO0object: :NO_READ,
I0object: :NO_WRITE

),

R_,

k_.boundaryField() .types()

tmp<volSymmTensorField> EARSM_Chien::devReff () const
{

return tmp<volSymmTensorField>

(
new volSymmTensorField
(
I0object
(
"devRhoReff",
runTime_.timeName(),
mesh_,
I0object: :NO_READ,
IO0object: :NO_WRITE
),
-nuEff () *dev(twoSymm(fvc: :grad(U_)))
)
)3

tmp<fvVectorMatrix> EARSM_Chien::divDevReff(volVectorField& U) const
{

return
(
- fvm::laplacian(nuEff(), U)
- fvc::div(nuEff O *dev(T(fvc: :grad(U))))

)

o1

tmp<fvVectorMatrix> EARSM_Chien::divDevRhoReff
(

const volScalarField& rho,

volVectorField& U

) const

{
volScalarField muEff ("muEff", rho*nuEff());
return
(

- fvm::laplacian(muEff, U)
- fvc::div(muEff*dev(T(fvc::grad(U))))
);

bool EARSM_Chien::read()

{
if (RASModel::read())
{
Cmu_.readIfPresent (coeffDict());
Cl1_.readIfPresent (coeffDict());
C2_.readIfPresent (coeffDict());
sigmaEps_.readIfPresent (coeffDict());
return true;
}
else
{
return false;
}
}

void EARSM_Chien: :correct()
{
RASModel: :correct();

if (!'turbulence_)

{

return;

92

volScalarField taul_ = k_/epsilonTilda_;
volScalarField tau2_ = 6.0*sqrt(nu()/epsilonTilda_) ;
volScalarField tau_ = max(taul_, tau2_);

volTensorField S
volTensorField W

0.5*%tau_x(T(fvc::grad(U_)) + fvc::grad(U_));
0.5%tau_*(T(fvc::grad(U_)) - fvc::grad(U_.));

volScalarField IIs
volScalarField ITw

tr(S & S) ;
tr(W & W);

volScalarField P1
(1.8%(sqr(1.8)/27.0 + (9.0/20.0)*IIs - (2.0/3.0)*IIw));
volScalarField P2
sqr (P1) - pow((sqr(1.8)/9.0 +

(9.0/10.0)*IIs + (2.0/3.0)*IIw), 3);

// N is initialized first and then recalculated later.
volScalarField N_ = 1.8+9/4*pow(2*0.09%IIs,0.5);

forAll1 (P2, celll)

{

if (P2[cellI] < 0.0)

{

N_[cellI] = 1.8/3.0 + 2.0*pow(pow(P1[celll],2.0)-P2[celll],1.0/6.0)%*
cos(1.0/3.0%acos(P1[celll]/ (pow(pow(P1[celll],2.0)-P2[celll],0.5))));
}

else

{

N_[cellI] = 1.8/3.0 + pow(P1[cellI]+pow(P2[cellI],0.5),1.0/3.0) +
sign(P1[cellI]-pow(P2[celll],0.5))

xpow (mag(P1[cellIl]- pow(P2[celll],0.5)), 1.0/3.0);

}

}

volScalarField beta_1=-1.2%(N_/(sqr(N_)-2*IIw));
volScalarField beta_4=-1.2*(1/(sqr(N_)-2*IIw));
volTensorField WW W & W;

volTensorField SS = S & S;

volTensorField SW S & W;

volTensorField WS W & S;

volTensorField SWW = SW & W;

volTensorField WWS = WW & S;

93

volTensorField WSWW
volTensorField WWSW

(WS & W) & W;
(Ww & S) & W;

volScalarField y=wallDist(mesh_).yQ);

volScalarField Re_t = pow(k_,0.5)*(y/nu());

volScalarField yStar = 2.4xpow(Re_t,0.5) + 0.003*pow(Re_t,2.0);

volScalarField fi1= 1.0 - exp(-yStar/26.0);

volScalarField beta_2_lowre=(3.0%1.8-4.0)/(max(IIs,5.74))*
(1-pow(£1,2));

volScalarField beta_4_lowre=pow(f1l,2)*beta_4 -

1.8/(2*max(IIs,5.74))*(1-pow(£f1,2));

volSymmTensorField aij_= symm(flxbeta_1*S +
beta_2_lowre*(SS - (1.0/3.0)*IIs * I) +
beta_4_lowre*x(SW-WS));

R_= k_*(aij_ + (2.0/3.0)*I);

volScalarField G(GName(), -R_ && T(fvc::grad(U_)));

volScalarField dUdy=mag(fvc::grad(U_));

dimensionedScalar tauw("tauw",

dimensionSet(0,0,-1,0,0,0,0), scalar(dUdy.boundaryField() [2] [0]));
volScalarField yPlus=pow(tauw*(nu()),0.5)*y/nu();

const volScalarField E(-2.0*nu()*epsilonTilda_/pow(y,2)*
exp(-0.5xyStar) *exp(-0.04*yPlus)) ;
const volScalarField D(2.0xnu()*k_/pow(y,2)*exp(-0.04*yPlus));

// Dissipation rate equation

tmp<fvScalarMatrix> epsEqn
(
fvm: :ddt (epsilonTilda_)
+ fvm::div(phi_, epsilonTilda_)
- fvm::laplacian(DepsilonEff (), epsilonTilda_)
Cl_xGxepsilonTilda_/k_
- fvm::Sp(C2_*£f2()*epsilonTilda_/k_, epsilonTilda_)
+ E
)3

epsEqn() .relax();

solve (epsEqn) ;
bound (epsilonTilda_, epsilonMin_);

o4

// Turbulent kinetic energy equation

tmp<fvScalarMatrix> kEqn

(
fvm::ddt (k_)
+ fvm::div(phi_, k_)
- fvm::laplacian(DKEff(), k_)

G - fvm::Sp((epsilonTilda_ + D)/k_, k_)
);

kEqn() .relax();

solve(kEqn) ;

bound(k_, kMin_);

// Re-calculate viscosity

nut_ == -flxbeta_1/2.0*xk_xtau_;

[/ * x % x k ok ok k k k k Kk Kk k k *k k k *k *k k *k * *k k *k * * * * *x *x //

} // End namespace RASModels_
} // End namespace incompressible
} // End namespace Foam

[/ Fkskkokskok ok ook ok ok sk sk ok s ok ok sk sk ok ook ok ook ok o ok sk ok sk sk ok sk sk ok ok ok ok ok ok sk ok sk sk ok sk k ok ok kkokk k- / /

8.3 EARSM + K w BSL MODEL
Following is the source file for the EARSM + kw BSL model.

#include "EARSM_kwBSL.H"
#include "addToRunTimeSelectionTable.H"

#include "backwardsCompatibilityWallFunctions.H"

95

J/ % %k x x % k ok ok ok x %k k ok k k x kx *k *k *k *k x *x *k *k *k *x x *x *x *x *x //

namespace Foam

{

namespace incompressible

{

namespace RASModels

{

// % % % % % x % *x Static Data Members * * * % % * % % % % % x *x //

defineTypeNameAndDebug (EARSM_kwBSL, 0);
addToRunTimeSelectionTable (RASModel, EARSM_kwBSL, dictionary) ;

// * * x * x * Private Member Functions * * * * * * * % * % % *x //

tmp<volScalarField> EARSM_kwBSL::F1(const volScalarField& CDkOmega)
const

{

tmp<volScalarField> CDkOmegaPlus = max

(

CDkOmega,

dimensionedScalar("1.0e-10", dimless/sqr(dimTime), 1.0e-10)
)

tmp<volScalarField> argl =

min
(
max
(
(scalar(1)/betaStar_)*sqrt(k_)/(omega_x*y_),
scalar (500)*nu()/(sqr(y_)*omega_)
),

(4xalphaOmega2_)*k_/ (CDkOmegaPlus*sqr (y_))

return tanh(pow4(argl));

o6

tmp<volScalarField> EARSM_kwBSL::F2() const

{
tmp<volScalarField> arg2 = min
(
max
(
(scalar(2)/betaStar_)*sqrt(k_)/(omega_x*y_),
scalar (500)*nu()/ (sqr (y_)*omega_)
),
scalar (100)
)3
return tanh(sqr(arg2));
}

tmp<volScalarField> EARSM_kwBSL::F3() const

{
tmp<volScalarField> arg3 = min
(
150*nu() / (omega_*sqr(y_)),
scalar(10)
)5
return 1 - tanh(pow4(arg3));
}

tmp<volScalarField> EARSM_kwBSL::F23() const

{
tmp<volScalarField> £23(F2());
if (F3_)
{
£23() *= F30);
+
return £23;
}

// % % % %k % % *x % *x x Constructors * * % * % % % % % % % % *x x //

o7

EARSM_kwBSL: : EARSM_kwBSL

(
const volVectorField& U,
const surfaceScalarField& phi,
transportModel& transport,
const word& turbulenceModelName,
const word& modelName

RASModel (modelName, U, phi, transport, turbulenceModelName),

alphaKil_
(
dimensioned<scalar>::lookupOrAddToDict
(
"alphaK1",
coeffDict_,
0.5
)
),
alphakK2_
(
dimensioned<scalar>::lookupOrAddToDict
(
"alphaK2",
coeffDict_,
1.0
)
),
alphaOmegal_
(
dimensioned<scalar>::lookupOrAddToDict
(
"alphaOmegal",
coeffDict_,
0.5
)
),
alphaOmega2_
(

dimensioned<scalar>::lookupOrAddToDict

(

o8

"alphaOmega2",
coeffDict_,

0.856
)
),
gammal_
(
dimensioned<scalar>
(
"gammal",
coeffDict_,
0.5532
)
),
gamma2_
(
dimensioned<scalar>
(
"gamma2",
coeffDict_,
0.4403
)
),
betal_
(
dimensioned<scalar>
(
"betal",
coeffDict_,
0.075
)
),
beta2_
(
dimensioned<scalar>
(
"beta2",
coeffDict_,
0.0828
)
),
betaStar_
(

: :1lookupOrAddToDict

: :1lookupOrAddToDict

: :1lookupOrAddToDict

: :1lookupOrAddToDict

99

dimensioned<scalar>::lookupOrAddToDict
(
"betaStar",
coeffDict_,
0.09
)
),
al_
(
dimensioned<scalar>::lookupOrAddToDict
(
"al",
coeffDict_,
0.31
)
),
bl_
(
dimensioned<scalar>::1lookupOrAddToDict
(
"b1",
coeffDict_,
1.0
)
),
cl_
(
dimensioned<scalar>::lookupOrAddToDict
(
"ci",
coeffDict_,
10.0
)
),
F3_
(
Switch: :lookupOrAddToDict
(
"F3",
coeffDict_,
false
)
),

60

y_(mesh_),

k_
(
I0object
(
nn
runTime_.timeName(),
mesh_,
I0object: :NO_READ,
I0object: :AUTO_WRITE
),
autoCreateK("k", mesh_)
),
omega_
(
I0object
(
"omega",
runTime_.timeName(),
mesh_,
I0object: :NO_READ,
I0object: :AUTO_WRITE
),
autoCreateOmega("omega", mesh_)
),
R_
(
I0object
(
"R ,
runTime_.timeName(),
mesh_,
I0object: :MUST_READ,
I0object: :AUTO_WRITE
),
autoCreateR("R", mesh_)
),
nut_
(

61

IO0object

(
"nut",
runTime_.timeName(),
mesh_,
IO0object: :NO_READ,
I0object: :AUTO_WRITE
),
autoCreateNut ("nut", mesh_)
)
{
bound(k_, kMin_);
bound (omega_, omegaMin_);
nut_ =
(
k_/omega_
)3
nut_.correctBoundaryConditions() ;
printCoeffs();
}

// * *x x x x x x Member Functions * * % % % % % % % % *x % x //

tmp<volSymmTensorField> EARSM_kwBSL::R() const

{
return tmp<volSymmTensorField>
(
new volSymmTensorField
(
I0object
(
||Rll s
runTime_.timeName (),
mesh_,

IO0object: :NO_READ,
I0object: :NO_WRITE

),

R_,

k_.boundaryField() .types()

62

tmp<volSymmTensorField> EARSM_kwBSL::devReff () const
{

return tmp<volSymmTensorField>

(
new volSymmTensorField
(
I0object
(
"devRhoReff",
runTime_.timeName (),
mesh_,
IO0object: :NO_READ,
I0object: :NO_WRITE
),
-nuEff () *dev (twoSymm(fvc: :grad(U_)))
)
)3

tmp<fvVectorMatrix> EARSM_kwBSL: :divDevReff (volVectorField& U) const
{

return
(

- fvm::laplacian(nuEff (), U)

- fvc::div(nuEff () *dev(T(fvc::grad(U))))
);

tmp<fvVectorMatrix> EARSM_kwBSL::divDevRhoReff

(
const volScalarField& rho,
volVectorField& U

) const

{

volScalarField muEff ("muEff", rho*nuEff());

63

return
(

- fvm::laplacian(muEff, U)

- fvc::div(muEff*dev(T(fvc::grad(U))))
)3

bool EARSM_kwBSL: :read()
{
if (RASModel::read())
{
alphaK1_.readIfPresent(coeffDict());
alphaK2_.readIfPresent(coeffDict());
alphaOmegal_.readIfPresent (coeffDict());
alphaOmega2_.readIlfPresent (coeffDict());
gammal_.readIfPresent(coeffDict());
gamma?_.readIfPresent (coeffDict());
betal_.readIfPresent (coeffDict());
beta2_.readIfPresent (coeffDict());
betaStar_.readIfPresent (coeffDict());
al_.readIfPresent(coeffDict());
bl_.readIfPresent(coeffDict());
cl_.readIfPresent (coeffDict());
F3_.readIlfPresent ("F3", coeffDict());

return true;

}

else

{

return false;

void EARSM_kwBSL: :correct()

{
RASModel: :correct();

if (!'turbulence_)

{

return;

64

if (mesh_.changing())
{

y_.correct();

volScalarField taul_ = 1.0/(0.09%omega_) ;
volScalarField tau2_ = 6.0x*sqrt(nu()/(0.09*k_*omega_)) ;
volScalarField tau_ = max(taul_, tau2_);

volTensorField S
volTensorField W

0.5%tau_*(T(fvc::grad(U_)) + fvc::grad(U_));
0.5%tau_*(T(fvc::grad(U_)) - fvc::grad(U_));

volScalarField IIs = tr(S & S) ;
volScalarField IIw = tr(W & W);
volScalarField IV =tr(S & W & W);

volScalarField P1 =

(1.8%(sqr(1.8)/27.0 + (9.0/20.0)*IIs - (2.0/3.0)*IIw));
volScalarField P2 = sqr(P1) -

pow((sqr(1.8)/9.0 + (9.0/10.0)*IIs + (2.0/3.0)*IIw), 3);

volScalarField N_= 1.8+9/4xpow(2*0.09%II1s,0.5);

forAll (P2, celll)

{

if (P2[cellIl < 0.0)

{

N_[cellll=

1.8/3.0 +

2.0*pow (pow(P1[cellI],2.0)-P2[cellI],1.0/6.0)*
cos(1.0/3.0%acos(P1[cellI]/ (pow(pow(P1[celll],2.0)-P2[celll],0.5))));
}

else

{

N_[cellI]= 1.8/3.0 +
pow(P1[cellI]+pow(P2[celll],0.5),1.0/3.0)+
sign(P1[cellI]-pow(P2[celll],0.5))

*xpow (mag(P1[celll]-pow(P2[celll],0.5)),1.0/3.0);
}

}

65

volScalarField
volScalarField
volScalarField
volScalarField
volScalarField
volScalarField
volScalarField

volTensorField
volTensorField
volTensorField
volTensorField
volTensorField
volTensorField
volTensorField
volTensorField

Q= (1/1.245)*(pow(N_,2)-2xIIw) + 1le-10;
Q1= (Q/6.0)*(2.0*pow(N_,2)-IIw) + 1le-10;
beta_1=-N_/Q ;

beta_3=-2.0%IV/(N_*Q1) ;

beta_4= -N_/Q ;

beta_6= -N_/Q1 ;

beta_9=-1/Q1 ;

WW

W & W;

SS =S & S;
SW=2S8&W;

WS =W & S;

SWW = SW & W;

WWS = WW & S;

WSWW = (WS & W) & W;
WWSW = (WW & S) & W;

volScalarField
volScalarField
volScalarField

y=wallDist(mesh_).y(Q;
Re_t = pow(k_,0.5)*(y/nu());
yStar = 2.4*pow(Re_t,0.5) + 0.003*pow(Re_t,2.0);

volSymmTensorField aij_= symm(beta_1%S +
beta_4*(SW-WS) + beta_3*(WW-(1.0/3.0)*IIwxI) +
beta_6%(SWW +WWS -2.0/3.0*IV*I-IIw*S) +
beta_9% (WSWW-WWSW+(1.0/2.0) *IIw*(SW-WS))) ;

tmp<volScalarField> S2 = 2x*magSqr (symm(fvc::grad(U_)));
R_= k_*x(aij_ + (2.0/3.0)*I);

volScalarField G(GName(),

min(-R_ && T(fvc::grad(U_)), cl_xbetaStar_xk_xomega_));

// Update omega and G at the wall
omega_.boundaryField() .updateCoeffs();

const volScalarField CDkOmega
(

(2*alphaOmega2_)*(fvc::grad(k_) & fvc::grad(omega_))/omega_
)

const volScalarField F1(this->F1(CDkOmega));

66

volScalarField gam =beta(F1)/0.09-alphaOmega(F1)*pow(0.41,2)/0.3;
// Turbulent frequency equation
tmp<fvScalarMatrix> omegaEqn
(
fvm: :ddt (omega_)
+ fvm::div(phi_, omega_)
- fvm::laplacian(DomegaEff (F1), omega_)
gam*omega_*G/k_
- fvm::Sp(beta(F1)*omega_, omega_)
- fvm::SuSp
(
(F1 - scalar(1))*CDkOmega/omega_,
omega_

)
omegaEqn() .relax();
omegaEqn () .boundaryManipulate (omega_.boundaryField());

solve (omegaEqn) ;
bound (omega_, omegaMin_) ;

// Turbulent kinetic energy equation
tmp<fvScalarMatrix> kEqn
(
fvm: :ddt (k_)
+ fvm::div(phi_, k_)
- fvm::laplacian(DKEff(F1), k_)

- fvm::Sp(betaStar_*omega_, k_)

kEqn() .relax();
solve(kEqn) ;
bound(k_, kMin_);

// Re-calculate viscosity
nut_ = k_/omega_;
nut_.correctBoundaryConditions () ;

67

// % % %)k % %k %k %k % % % % % % % % % %k % *k k %k % % % % x *x *x //

} // End namespace RASModels

} // End namespace incompressible

} // End namespace Foam

[/ F KKk ko ok ko k ook ko sk ok ko ok ok sk ok ok k ok Kk ok ok Kk kR KRRk KRk Kk KRk K/ /

8.4 ¢-F MODEL
Following are the OpenFOAM generated source files (zf.C) for the ¢-f model.

sk ok ok ok ok ok K KKk K ok ok ok ok oK
*%xkZF . Ckkkx
ok ok ok ok ok ok ok K K KK K ok ok ok ok oK

#include "zf.H"

#include "fixedValueFvPatchField.H"
#include "zeroGradientFvPatchField.H"
#include "addToRunTimeSelectionTable.H"

[/ * *x % x k ok ok k k k k Kk Kk k k k k k k *k k *k * *x k *k * * * * *x *x //

namespace Foam
{
namespace incompressible
{
namespace RASModels

{
// % % % % % x % *x % Static Data Members * * * * % % % % % % % *x *x //

defineTypeNameAndDebug(zf, 0);
addToRunTimeSelectionTable (RASModel, zf, dictionary);

// * * x % * x *x *x Private Member Functions * * * * % *x * % *x * x //

wordList zf::RBoundaryTypes() const
{

68

const volScalarField::GeometricBoundaryField&
bf (k_.boundaryField());

wordList bTypes

(
bf.size(),
zeroGradientFvPatchField<symmTensor>::typeName
)3
forAll(bf, patchI)
{
if (bf [patchI].fixesValue())
{
bTypes [patchI] = fixedValueFvPatchField<symmTensor>::
typeName;
}
}

return bTypes;

tmp<volScalarField> zf::davidsonCorrectNut

(
const tmp<volScalarField>& value
) const
{
return min(CmuKEps_xsqr(k_)/epsilon_, value);
X

tmp<volScalarField> zf::Ts() const
{

return max(k_/epsilon_, 6.0*sqrt(nu()/epsilon_));

tmp<volScalarField> zf::Ls() const

{
return CL_*max(pow(k_, 1.5)/epsilon_,
Ceta_xpow025 (pow3(nu())/epsilon_));

69

// * * x x x x x x x x x Constructors * * * % % % % % % % % % *x x [/

zf::zf

(

const volVectorField& U

b

const surfaceScalarField& phi,
transportModel& transport,
const word& turbulenceModelName,

const word& modelName

RASModel (modelName, U, phi, transport, turbulenceModelName),

Cmu_
(
dimensioned<scalar>
(
"Cmu",
coeffDict_,
0.22
)
),
CmuKEps_
(
dimensioned<scalar>
(
"CmuKEps",
coeffDict_,
0.09
)
),
Ci_
(
dimensioned<scalar>
(
"c1i",
coeffDict_,
1.4
)
),
C2_
(

: :1lookupOrAddToDict

: :1lookupOrAddToDict

: :1lookupOrAddToDict

70

dimensioned<scalar>

(
"c2",
coeffDict_,
0.3
)
),
CL_
(
dimensioned<scalar>
(
"CL",
coeffDict_,
0.25
)
),
Ceta_
(

dimensioned<scalar>

(

"Ceta",
coeffDict_,
110.0
)
),
Ceps2_
(
dimensioned<scalar>
(
"Ceps2",
coeffDict_,
1.90
)
),
sigmaK_
(
dimensioned<scalar>
(
"sigmaK",
coeffDict_,
1.0
)
),

: :lookupOrAddToDict

: :1lookupOrAddToDict

: :1lookupOrAddToDict

: :1lookupOrAddToDict

: :1lookupOrAddToDict

71

sigmaEps_

(
dimensioned<scalar>::lookupOrAddToDict
(
"sigmaEps",
coeffDict_,
1.3
)
),
k_
(
I0object
(
g
runTime_.timeName(),
mesh_,
I0object: :MUST_READ,
I0object: :AUTO_WRITE
)
mesh_
),
epsilon_
(
I0object
(
"epsilon",
runTime_.timeName(),
mesh_,
I0object: :MUST_READ,
I0object: : AUTO_WRITE
),
mesh_
),
z_
(
I0object
(
g,
runTime_.timeName(),
mesh_,

I0object: :MUST_READ,
IOobject: :AUTO_WRITE

72

),

mesh_
),
f_
(
I0object
(
g
runTime_.timeName(),
mesh_,
I0object: :MUST_READ,
I0object: :AUTO_WRITE
),
mesh_
),
nut_
(
I0object
(
"nut",
runTime_.timeName(),
mesh_,
I0object: :MUST_READ,
I0object: :AUTO_WRITE
),
mesh_
),

zMin_(dimensionedScalar("zMin", z_.dimensions(), SMALL)),
fMin_(dimensionedScalar("fMin", f_.dimensions(), 1e-20))

bound(k_, kMin_);
bound(epsilon_, epsilonMin_);
bound(z_, zMin_);

bound(f_, fMin_);

nut_ = davidsonCorrectNut (Cmu_x*z_*Ts()*k_);
nut_.correctBoundaryConditions () ;

printCoeffs();

// % % % % % x % *x x Member Functions * * % % % % % % % % % % *x //

73

tmp<volSymmTensorField> zf::R() const
{

return tmp<volSymmTensorField>

(
new volSymmTensorField
(
I0object
(
"R,
runTime_.timeName(),
mesh_,
I0object: :NO_READ,
I0object: :NO_WRITE
),
((2.0/3.0)*I)*k_ - nut_*twoSymm(fvc
RBoundaryTypes ()
)
)3

tmp<volSymmTensorField> zf::devReff() const
{

return tmp<volSymmTensorField>

(
new volSymmTensorField
(
I0object
(
"devRhoReff",
runTime_.timeName(),
mesh_,
IO0object: :NO_READ,
I0object: :NO_WRITE
),
-nuEff () *dev (twoSymm(fvc: :grad(U_)))
)
)3

74

i:grad(U_)),

tmp<fvVectorMatrix> zf::divDevReff (volVectorField& U) const

return
(

- fvm::laplacian(nuEff(), U)

- fvc::div(nuEff O *dev(T(fvc: :grad(U))))
)3

tmp<fvVectorMatrix> zf::divDevRhoReff

(
const volScalarField& rho,
volVectorField& U

) const

{
volScalarField muEff ("muEff", rho*nuEff());
return
(

- fvm::laplacian(muEff, U)
- fvc::div(muEff*dev(T(fvc::grad(U))))
)3

bool zf::read()

{

if (RASModel::read())

{
Cmu_.readIlfPresent (coeffDict());
CmuKEps_.readIfPresent (coeffDict());
Cl_.readIfPresent(coeffDict());
C2_.readIfPresent (coeffDict());
CL_.readIfPresent (coeffDict());
Ceta_.readIfPresent (coeffDict());
Ceps2_.readIfPresent (coeffDict());
sigmaK_.readIfPresent (coeffDict());
sigmaEps_.readIfPresent(coeffDict());
return true;

}

else

{

75

return false;

void zf::correct()

{

RASModel: :correct();

if (!turbulence_)

{

return;

// use N=6 so that f=0 at walls

const

const
const

const
const
const
const

(

dimensionedScalar N("N", dimless, 6.0);

volTensorField gradU(fvc::grad(U_.));
volScalarField S2(2*magSqr (dev(symm(gradu))));

volScalarField G(GName(), nut_x*S2);
volScalarField T(Ts());

volScalarField L2(type() + ".L2", sqr(Ls()));
volScalarField alpha

"zf::alpha",

1.

)

0/T*((C1_ - 1.0)*(z_ - 2.0/3.0))

tmp<volScalarField> Cepsl =

1.

4%(1.0 + 0.05*min(sqrt(1.0/z_), scalar(100.0)));

// Update epsilon (and possibly G) at the wall
epsilon_.boundaryField() .updateCoeffs() ;

// Dissipation equation
tmp<fvScalarMatrix> epsEqn

(

fvm: :ddt (epsilon_)
+ fvm::div(phi_, epsilon_)
- fvm::laplacian(DepsilonEff (), epsilon_)

Ceps1*G/T

76

- fvm::Sp(Ceps2_/T, epsilon_)
)3

epsEqn() .relax();
epsEqn() .boundaryManipulate(epsilon_.boundaryField());

solve (epsEqn) ;
bound(epsilon_, epsilonMin_);

// Turbulent kinetic energy equation
tmp<fvScalarMatrix> kEqn
(
fvm::ddt (k_)
+ fvm::div(phi_, k_)
- fvm::laplacian(DKEff (), k_)

- fvm::Sp(epsilon_/k_, k_)

kEqn() .relax();
solve (kEqn) ;
bound (k_, kMin_);

// Relaxation function equation
tmp<fvScalarMatrix> fEqn
(

fvm::laplacian(f_)

fvm: : SuSp(

1.0/L2

2.0xnu() /f_/k_/L2*(fvc: :grad(z_) & fvc::grad(k_.))
nu()/f_/L2*(fvc::laplacian(z_))

£

- 1.0/L2*(alpha - C2_*G/k_)

)3

fEqn() .relax();
solve (fEqn) ;

77

bound(f_, fMin_);

// Turbulence stress normal to streamlines equation
tmp<fvScalarMatrix> zEqn
(
fvm::ddt(z_)
+ fvm::div(phi_, z_)
- fvm::laplacian(DzEff (), z_)

min(f_, -alpha + C2_%*G/k_)
- fvm::SuSp(G/k_
- 2.0/k_*nut_/sigmaK_x(fvc::grad(z_) & fvc::grad(k_))/z_
> 2)

)

zEqn() .relax();
solve(zEqgn) ;
bound(z_, zMin_);

// Re-calculate viscosity

nut_ = davidsonCorrectNut (Cmu_x*xz_x*xk_x*T) ;
nut_.correctBoundaryConditions() ;

J/ % % % %k % k% k %k % % %k % % % % X % % % % * % *k % %k % % % *k *x x [/

} // End namespace RASModels
} // End namespace incompressible
} // End namespace Foam

[/ Rkkkkskskskskokokkokokokokokkokkokokokkokokokokkkskkkokok ok kokokokkkkskkkokkokokokokokkkkkkkok ok //

78

	Introduction
	Constant Properties
	Channel Geometry
	Transport Properties
	Boundary Conditions

	Chien Low Reynolds kEpsilon Model
	Theory
	Implementation
	Wall Scaling
	Boundary Conditions

	Verification

	EARSM
	Wallin Johansson Formulation
	Theory (for Two Dimensional Mean Flows)
	Theory (for Three Dimensional Mean Flows)
	Implementation (Chien Low Reynolds kEpsilon)
	Verification

	Menter Formulation
	Theory
	Implementation (k BSL)

	-f Model
	Theory
	Implementation
	Verification

	Validation
	Fidelity
	Robustness
	Cost

	Conclusions
	Appendix
	Chien Low Reynolds kEpsilon Model
	EARSM + Chien Low Reynolds kEpsilon Model
	EARSM + k BSL Model
	-f Model

