

Constructing & Evaluating
Context-Aware Recommender System in
a case study with webshop carts and
AB-testing
Master of Science Thesis in Algorithm, Language and Logic

Alexander Lundgren & Linus Lindberg

Department of Computer Science & Engineering
Chalmers University of Technology
Gothenburg, Sweden 2014

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial pur-
pose make it accessible on the Internet. The Author warrants that he/she is the author
to the Work, and warrants that the Work does not contain text, pictures or other mate-
rial that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example
a publisher or a company), acknowledge the third party about this agreement. If the
Author has signed a copyright agreement with a third party regarding the Work, the
Author warrants hereby that he/she has obtained any necessary permission from this
third party to let Chalmers University of Technology and University of Gothenburg store
the Work electronically and make it accessible on the Internet.

Constructing & Evaluating Context-Aware Recommender System in a case study with
webshop carts and AB-testing

Alexander Lundgren
Linus Lindberg

c© Alexander Lundgren, August 2014.
c© Linus Lindberg, August 2014.

Examiner: Devdatt Dubhashi

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden August 2014

Abstract

A potential customer spends around five minutes on a webshop and visits roughly ten
pages. To maximise sales it is crucial that the most relevant products is presented within
those limits. The solution is to use a recommender system that predicts and recommends
items on a personal level to the customer using collaborative filtering. Therefore, the
project aim was to construct a working prototype for 3Bits and Lindex with an AB-
testing phase to validate performance. Such evaluation of the collaborative filtering
paradigm is not very common and as it only focus on on-going carts with binary implicit
feedback, it does not take other information sources into account.

To thoroughly evaluate the performance in this particular configuration five test-
phases was used: experimental prototype cross-validation tests, prototype testing using
historical data sets, prototype testing using contextual pre-filtering, prototype cross-
validation of synthetic generated data and finally AB-testing. A lot of literature and
data was studied in order to be able to construct the evaluation tests. Furthermore, to
enable AB-testing 3Bits had to integrate the prototype into Lindex web page in a way
that maintained the professional level.

The evaluation shows a high accuracy compared to recommendations based on the
most frequent occurring items. Furthermore, results from AB-tests of the project-
algorithm against the old recommendation services at Lindex showed contradicting re-
sults. Additionally, the evaluation also showed that incorporating contextual pre-filtering
to the prototype did not increase performance.

Keywords: Recommender systems, Collaborative filtering, Singular Value Decom-
position, K-means, Context, Concept drift, Distribution, Ranking.

Acknowledgements

Our master thesis could not have been realised without the help and support from
3Bits AB whom have been deeply involved with the project. An excellent and friendly
company to work with! Chalmers University of Technology have our thanks for accepting
and promoting the project. We also want to especially thank:

• Devdatt Dubhashi, our examiner and supervisor from Chalmers, whom brought
reason and direction when we most needed it.

• Jonas Hörnstein, the supervisor from 3Bits, for excellent guidance and feedback.

• The personnel at 3bits, for very friendly support and patiently answering questions
when ever needed.

• Lindex for giving us the opportunity to work with their data and allowing AB-
testing to be performed.

A. Lundgren L. Lindberg, Gothenburg 2014-08-31

Contents

1 Introduction 1
1.1 Background . 2
1.2 Purpose . 3

2 Theory 5
2.1 Definitions & project structure . 5
2.2 Generating feedback . 7
2.3 Creating feature space . 9
2.4 Clustering categories . 15
2.5 Classifying an item . 17
2.6 Finding similar items . 18
2.7 Creating recommendation . 19
2.8 Justifying choices . 27

3 Methods & Materials 30
3.1 Procedure . 30
3.2 Materials . 31
3.3 Participants in study . 32
3.4 ItemRand- & frequent-algorithm . 32
3.5 Test procedures . 33

4 Result 41
4.1 Basic tests . 41
4.2 Time tests . 43
4.3 Context tests . 54
4.4 Synthetic testing . 57
4.5 AB-tests . 58

4.5.1 Product Page . 58
4.5.2 Checkout Page . 58

i

CONTENTS

5 Discussion 60

6 Conclusion 67

Bibliography 69

Appendices 72

ii

1
Introduction

A
n average visitor on an e-commerce site spends roughly five minutes and visits
around ten pages in their visit. This makes it crucial to present the correct
information to the customer in the period of time they are visiting to maximize
the probability of a sale.

The conventional approach of navigation has been static structures of products and
offers, usually in form of hierarchical menus or search functions which assumes the cus-
tomer knows what s/he needs. However, there exists services that can foresee what
products will attract the customer to a purchase. Such services belongs to a category
called recommender system(RS) (Jannach, Zanker, Felfernig, & Friedrich, 2011). Their
main objective is to recommend items the user unknowingly demands. These services is
effectively presenting correct products faster than what a conventional navigation system
would have done (Ricci, Rokach, Shapira, & Kantor, 2011).

On the other hand, some predictions may be inaccurate which will yield less purchases
using such structures. This occur as the system models predict irrelevant products in
the visiting period which does not attract the customer to a purchase. The RS would
preferably be improved to yield even more accurate predictions and hence, better sale
results.

Contextual information can be used in a recommender system to improve the pre-
diction accuracy. Unfortunately, context has many definitions and for the curious reader
there exist a conference who’s main goal is to define context (Polytech, 2013). How-
ever, the general description of contextual information is information that fits a certain
context, which might not be very explanatory. Another way of describing what con-
text is could be the statement of Musto, Semeraro, and Lops (2013, p.130): ”a set of
factors able to influence user perception of the utility of a certain item”. Furthermore,
traditional recommender system only have two entities, users and items (Adomavicius
& Jannach, 2013, p. 1). In contrast, context-aware recommender system(CARS) uses
contextual information such as time, location, weather, the users mood or type of device

1

1.1. BACKGROUND CHAPTER 1. INTRODUCTION

etc. This creates more entities connected to a user than simply just users and items,
which serves as one of the underlying factors that could make CARS generate more
accurate predictions.

1.1 Background

The field of recommender systems have been around a while and much research have
been done, especially on the three major types of recommender systems: collaborative
filtering, content-based and knowledge-based. Their main difference is the information
they use to construct recommendations. Collaborative filtering uses similarities between
users and items. Content-based uses static information about users or items. Such
information can be descriptions where the text is evaluated to generate prediction values
regarding the relevance of a particular item or user. Knowledge-based are dependent on
information that are obtain directly from the users, for example from questions or quiz.

The information recommender systems handles are generally divided into two cate-
gories of relevance feedback: implicit feedback and explicit feedback. A more detailed
description of these concepts is available in the theory section. However, information
given by the user is said to be explicit and gives a high truth value but only for items
the user chose to reveal her preference about. Furthermore Implicit feedback is gathered
by analysing the user behaviour, such as patterns of clicks or number of items sold.

In this thesis the focus is going to be on implicit feedback as the available data does
not contain user ratings and in general very little explicit feedback. To be too dependent
on user ratings might be disadvantageous as time will be spend from both the user and
the system to generate enough data. However, constructing good implicit rating can be
a greater challenge as a large amount of information sources has to be considered.

Unfortunately, the data is usually sparse. To counteract such problems, matrix fac-
torization models that utilizes a concept called principal component analysis can be used,
later explained in the theory section 2. The winners of the Netflix challenge (Thompson,
2008) used a matrix factorization technique called singular value decomposition(SVD)
together with k-nearest neighbors(kNN) (Koren, Bell, & Volinsky, 2009). Furthermore,
SVD uses the PCA concept to reduce the dimensionality of the data. SVD and kNN also
works well together as SVD estimates general structures and kNN localizes relationships
(Koren, 2008). However, the main contribution is the notion of how temporal drift could
be captured.

Gap

It seems to exist much literature on RS but not as much on CARS which is endorsed
by Musto et al. (2013, p. 127), ”Even if there exists a very vast literature on RSs,
the research about context-aware RSs(CARS) is relatively new”. This suggests that the
CARS is of interest for research.

The research field of CARS can be divided into four categories:

2

1.2. PURPOSE CHAPTER 1. INTRODUCTION

1. Fundamental - i.e., understanding the notion of context and modeling
context in recommender systems.

2. Algorithms - i.e., developing recommendation algorithms that can in-
corporate contextual information into recommender systems in advan-
tageous ways.

3. Evaluation - i.e., in-depth evaluation of context-aware recommender sys-
tems performance, their benefits and limitations.

4. Engineering - i.e., designing general-purpose architectures, frameworks,
and approaches to facilitate the development, implementation, deploy-
ment, and use of context-aware recommendation capabilities.

—-Adomavicius and Jannach (2013, p. 2)

However, according to Adomavicius and Jannach (2013, p. 3) , ”As compared to the
”Algorithms” category, the other three aforementioned categories have been relatively un-
derexplored”, seems most of the research to have been done in the algorithm section.
This suggests our objective would be to work on the evaluation and engineering aspects
of CARS.

Problem Description

A potential customer have a finite and usually short period of time s/he spends on
a particular web-shop. To increase sales, it is of interest to present as many relevant
products toward the customer as possible in that time, as relevant products is those that
have a high probability of being purchased by the customer.

However, customers preferences differs, some times a lot. Their preferences might
also change over time, such as around Christmas etc. This suggests the challenge lies in
constructing a recommendation system that can manage drifting customers preferences
but also categorize customers in regard to their personalities.

The key concept needed to solve the problem is context-awareness and concept drift-
ing. These concepts have been around for awhile, but there is no standardized way of
solving the problem using these concept with the constraint to only consider items in
an on going cart. The concept drifting tends to be unique toward the domain of the
problem, in this case e-commerce of cloths and accessories.

As many of the algorithms is explained from previous research, the task will be to
find an efficient way to implement them and evaluate performance.

1.2 Purpose

To construct a CF RS prototype and evaluate it with several tests using historical data,
contextual information and if it passes these test will also AB-testing be performed in
Lindex webshop.

3

1.2. PURPOSE CHAPTER 1. INTRODUCTION

Research Question

Given a user that puts an item into his/her shopping cart, is it possible to create an
implicit-feedback based collaborative filtering recommender system from shopping carts
history that is interchangeable with a explicit-feedback based CF RS? How does this
affect the performance in Neighborhood and factor models? Can the system be enhanced
with contextual information and system adaptiveness in such way that it will improve
performance, perhaps out perform a non-CARS?

Scope

The effort will be most needed in the evaluation and interpretation of concept drift for
this particular data context, as much research have already been done in the algorithmic
and engineering aspects of CARS. To best utilize the twenty working weeks will the focus
be on implicit-cart-based prediction and how context & adaptiveness can be incorporated
to catch concept drifts in the data. The major achievement from this work will be
performance testing of CARS, therefore is it crucial that other aspects of the project
will take second place such that evaluation can be of primary concern. The project will
be delimited to only consider on going carts, but the spectrum can be widen to include
site click, viewing time etc. if time allows.

Thesis outline

Chapter two contains eight sections where the first explains the structure and defines
variables of the six succeeding sections. The six succeeding sections will first go through
the theory needed for the algorithms then explain the algorithms with descriptive pseudo
code. Lastly a section that justify the design chooses done in the algorithms.

Chapter two contains a theory section and a justifying choices section. The theory
section explains the major algorithms used in the project. To fully understand the
discussions, it is important that the reader is well versed in the main theories. The
justifying choices section explains the project algorithm and the different choices made.

Chapter three describes the methods and material used to carry out the project. If
the reader wants to reconstruct the project, this should be possible except from using
the Lindex data set. Furthermore, the tests used to evaluate the project algorithm is
explained in this part of the report as well.

Chapter four contains the results and their corresponding explanation. Chapter five
is the discussion of the results presented in chapter four. Chapter six contains the
conclusion based on the discussion in chapter five.

4

2
Theory

T
his chapter is divided into eight sections. These sections aims to explain how
the structure of the recommendation systems is built in individual components
and how those components are connected. Each component have their own
section that contains an detail explanation. The chapter ends with a section

that wraps all component together and justifies the design choices taken.

2.1 Definitions & project structure

These are the major definitions needed to fully understand the algorithm in the following
sections.

feedback The implicit feedback of N unique customers and M unique
items constitutes an N ×M matrix. The matrix is binary
and has the value 1 for each customer and item that has a
relationship.

dim dim is used in the construction of the feature space, Ω. The
preferred number of dimension Algorithm 2 reduces the Ω
to.

Σ A diagonal matrix of singular values in an decreasing order,
obtained from performing SVD on the feedback matrix.

V The right singular values obtained from performing SVD on
the feedback matrix.

Ω The feature space.

L A List of labels for each item, explaining which cluster the
item belongs to.

5

2.1. DEFINITIONS & PROJECT STRUCTURE CHAPTER 2. THEORY

k The total number of clusters to be used in categorisation
were chosen to have a size of 80% of the unique items in the
training set.

C A list of each cluster’s centroid in feature space.

distribution An ongoing cart can have many personalities/cluster given
a set of items. The distribution of these clusters is contained
in distribution.

dist dist is one probability with its corresponding cluster as
distribution is a set of probabilities with corresponding clus-
ters.

itemDistrubtionPairs A list of tuples containing a list of items from one cluster
and its distribution of the carts in question.

nrRecs The number of items to be recommended.

recommendedItems The list of items that the recommender have generated. It
has the length of nrRecs.

prob The probability that an item from a specific cluster should
be recommended given multiple items.

probSum The aggregation of probabilities given a specific cluster.

hits Numbers of times a cluster exists in manyDistributions.

manyDistribution A concatenated list of all cluster distributions.

newDistribution An aggregation of distributions done in algorithm 4 using
manydistributions.

Time period A specific period in time that usually defines one or more
set(s).

Project Algorithm The recommender algorithm explained in Justifying choices.

randomItem Algorithm Randomly selects an item of all items and recommends it.

Frequency Algorithm Select the most frequent occurring item and recommends it.

Table 2.1

The abstract structure of the prototype is visualized in figure 2.1 which contains five
major component/algorithms. These algorithms is explained one by one with theory and
pseudo-code. After the explanation of the different algorithm will a justification section
follow, that justifies different design choices but also linking the different algorithms
together in an descriptive way.

6

2.2. GENERATING FEEDBACK CHAPTER 2. THEORY

Implicit
feedback

Featurespace
& Categories

Distribution

Ranking items
in cluster

Recommender

feedback

L

distrubution

itemDistributionPair

data

k, dim

item

items

items, nrRec

feedback

L,C

Figure 2.1: Flow chart visualizing the relationship between algorithms 1-6.

2.2 Generating feedback

This section will first introduce the reader to the theory behind the algorithm and end
with a descriptive pseudo code.

Relevance Feedback

The underlying idea behind relevance feedback is simply: how relevant is a particular
item in forthcoming queries? As an example, when recommending movies, how relevant
is an action movie compared to a drama movie towards a particular user? This suggest
the personality of users is captured by obtaining their preferences as feedback, either
explicit or implicit.

An explicit relevance feedback, or just short: explicit feedback, is an active action
from the user. An example of such action is ratings on movies, to follow the previous
example structure, such as a ”five star”-structure or ”1-10”. The most obvious advantage
for explicit feedback is its simplicity, no further calculations is needed. However, the
disadvantage is that feedback will only be collected from what the users chooses to

7

2.2. GENERATING FEEDBACK CHAPTER 2. THEORY

reveal to the system.
Implicit feedback collects a lot of information about the users such as site clicks,

time spent on movie reviews etc. This data can then be transformed in to unintentional
feedback or implicit feedback as the user has indirectly revealed her intention to the
system. An advantage of this approach is that feedback can be obtained without the
users explicit interaction and it might better capture the true personality of the user.
It is also possible to capture preferences that the user might not even know she had
herself, based on the pattern in the collected data. These pattern is usually referred to
as unconscious pattern.

However, these unconscious pattern can only be obtain with the assumption that
the user is simply one user and does not share account or in any other way have a
schizophrenic personality.

Concept Drift

In the field of Machine Learning the term ”concept drift” usually refers to the phe-
nomenon of changing statical properties from a target variable over time. The changes
cannot always be foreseen and as can be imagine is somewhat cumbersome when trying
to apply a predictive model. The trick is to alter the model in such a way that it will be
able to manage the concept drift as well. Unfortunately, this is not easy as the changes
can be unforeseen and needs prospective engineering.

Concept drift is usually perceived as characteristic towards the domain of the prob-
lem. One such concept drift of shopping pattern is occurring towards Christmas times
where more money is spent than usual, and less than usual in January. The opposite
concept drift can be observed regarding the time spent on working which suggests these
two seemingly different activities might have an inverse correlation. However, to avoid
being too philosophical, such perspective is not pursued. Even if most of the world is
connected in one way or another, it might suffice to only consider basic preconception
in e-commerce to capture the sought concept drift, all people spend more money around
Christmas and less in January. Otherwise any attempt to actually compute a model that
taking such massive concept drift into consideration, might turn out to be infeasible.

The Algorithm 1

Algorithm 1 generates binary implicit feedback from historical user purchase data. How
the algorithm is connected to the system in general can be observed in the flow chart
of figure 2.1. An justification of the algorithm and how its used will be done in the

8

2.3. CREATING FEATURE SPACE CHAPTER 2. THEORY

justifying choices section 2.8.

Algorithm 1: Implicit feedback

Data: Customers and corresponding items bought
1 N = the number of unique customers in the dataset
2 M = the number of unique items in the dataset
3 feedback = an N × M matrix
4 for i ∈ N do
5 for j ∈ M do
6 feedbacki,j = 0
7 if customer i have bought item j then
8 feedbacki,j = 1

9 return feedback

2.3 Creating feature space

This section will first introduce the relevant theory behind the algorithm and end with
a descriptive pseudo code, as the previous section did.

Eigenvalue Decomposition

Let A be a quadratic matrix. If the scalar λ and column matrix X satisfy

AX = λX where X 6= 0 (2.1)

X is said to be eigenvector and λ eigenvalue to A (Sparr, 1975, p. 238).
From equation (2.1) it is possible to generate the characteristic polynom for A,

pA(λ) = det(λI −A) (Sparr, 1975, p. 242).

pA(λ) = det(λI −A) = 0 (2.2)

The eigenvectors with corresponding eigenvalues λ is composed from the solution to the
characteristic equation described in equation (2.2).

Furthermore, let e1, . . . ,en and e
′
1, . . . ,e

′
n be two bases in <n (Sparr, 1975, p. 185). If

the linear projection F is described with Y = AX with the base e1, . . . ,en and Y
′

= A
′
X

′

with the base e
′
1, . . . ,e

′
n then:

A
′

= S−1AS (2.3)

Where the matrix used for change of basis S consists of e
′
1, . . . ,e

′
n as column vectors

(Sparr, 1975, p. 247).
And a linear projection F is said to be diagonalizable if there exists a base in which

9

2.3. CREATING FEATURE SPACE CHAPTER 2. THEORY

the projection matrix for F is an diagonal matrix (Sparr, 1975, p. 247):

D =

λ1 0 0

0 λ2 0

0 0 λ3

 (2.4)

From equation (2.3) and (2.4) it then follows that a matrix A can be said to be diagonal-
izable if there exists an invertible matrix S and an diagonal matrix D such that (Sparr,
1975, p. 247):

S−1AS = D (2.5)

And an n× n matrix A is diagonalizable if and only if there is n linear independent
eigenvectors to A. In turn, it follows from equation (2.5) that the column vectors of S
is eigenvectors to A and the diagonal elements in D is the eigenvalues that corresponds
to the eigenvectors (Sparr, 1975, pp. 247-248).

The eigenvectors in S can be obtained by solving equation (2.2) as the observant
reader probably already have grasped.

Covariance

Covariance is a measurement of how closely two variables varies relative to one another
(J. S. Milton, 1986). If a variable X varies in the same direction they are said to be
positively related. However, if they are moving in the opposite direction they are said to
be negatively related. This suggest covariance capture the linear relationship between
variables which can be very useful in many applications.

In some situations the covariance is zero, this can be the case when the variables are
independent. Unfortunately, this can not be told by a covariance as the variables might
just vary in such way they yield zero covariance.

Cov(X,Y) = E[(X − µX)(Y − µY)] = E[XY]− E[X]E[Y] (2.6)

Equation (2.6) is the definition of covariance where E[X] is the expectation of X and µX
denotes the mean of X. This equation does not give any measurement on the relation
between variables, it simple state there is a relation. However, the degree of relation
between variables, correlation, can be determined by computing the Pearson coefficient
of correlation.

Principal Component Analysis

The fundamental idea of principal component analysis(PCA) (Shlens, 2005) is to preserve
the most relevant information from a data set while reducing the dimension to a more
manageable size. Some times can data be overwhelming to such degree that it cannot
be used. Such data is regarded as noisy. That is, elements of the data is distorting the
overall picture.

10

2.3. CREATING FEATURE SPACE CHAPTER 2. THEORY

Figure 2.2: Dimension re-
duction, from 3 to 2 dimen-
sion

If the data would be reduced into a lower dimension,
the distorting elements might disappear. This could poten-
tially reveal concentrations that would previously not been
recognized in a higher dimension. Figure 2.2 visualizes the
concept. The top plot shows the original data in three di-
mension. The middle plot shows the same data projected
into a two dimensional plane. The bottom plot is the same
projection but with the variance drawn as red vectors from
the centroid of the data set.

The issue is to figure out what dimensions preserves the
most relevant information as it would be contra productive
to reduce into dimensions that discard relevant information
and amplifies distortion. Distortion or noise in data occurs
as the correlation between elements becomes so intense they
are barely distinguishable. Such premise implies that the
opposite is pursued. That is, dimensions that obtains high
variance of the set but little covariance. High variance of the
set is preferable as elements divergence from the centroid
is increased. If the data set were to be projected toward
the vector of the variance, than less correlation would most
likely be obtained as a result.

This insight suggest dimension reduction should consider
variance vectors in an descending order, a ranking, to best preserve relevant information.
By only considering some of the highest ranked variances, the data might be better
represented as noisy dimension is discarded, this would be lower ranks. Furthermore,
the variance and correlation is obtain from the covariance matrix where the diagonal is
the variance and the remaining elements is the correlation. Zero correlation is pursued
as is illustrated in the following equation:

cov(A) =

E[(A1 − µ1)(A1 − µ1)] 0

. . .

0 E[(An − µn)(An − µn)]

 (2.7)

The vectors of projection constructed from the variance will become the new basis, the
principal component. It is possible to see the basis transformation as a rotation and
a stretch as these vectors will become the new axis. This will work if the vectors are
orthogonal to each other, therefore the second variance have to be orthogonal to the
first.

Y = PX (2.8)

cov(Y) = CY =
1

n
Y Y T (2.9)

These new vectors is used to transform our data set X into Y by doing a rotation
and a stretch with P as in equation (2.8). P has to be constructed in such way that

11

2.3. CREATING FEATURE SPACE CHAPTER 2. THEORY

equation (2.9) satisfy the condition in equation (2.7) , decorrelation. The row of P will
then be the principal component of the data set X. Another way of putting it: CY is
an diagonal matrix D where its diagonal elements is the variance. This matrix can be
obtained by doing eigenvalue decomposition and selecting P as the corresponding matrix
where each row is a eigenvector, P ≡ ET .

CY =
1

n
(PX)(PX)T = P (

1

n
XXT)P T = PCXP

T (2.10)

CY = P (ETDE)P T = PP TDPP T = IDI = D (2.11)

CY can be reformulated to reveal its dependence on the covariance for the data set X,
CX , as is illustrated in equation (2.10). It is also possible to perform eigenvalue decom-
position to obtain CX = EDET as the covariance of X is a square matrix. Furthermore,
the columns of E are orthogonal vectors as CX is a symmetric matrix, satisfying the
constraint on orthonormal basis in order to construct the new euclidean space. In turn,
satisfying decorrelation of CY . This allows equation (2.11) to be derived by using the
eigenvalue decomposition theorem and selecting P ≡ E. The previous equation derives
CY = D where D is a diagonal matrix of eigenvalues corresponding to the eigenvectors
in E.

To summarize: The problem can be reformulated as finding the principal component
to change the basis of the euclidean space such that correlation is minimized assuming
that the problem is of linear nature. This is accomplished by recognizing that large
variances usually yield less correlation where the variance is the eigenvalues derived from
eigenvalue decomposition. The corresponding eigenvectors is the principal component
assuming the eigenvectors is orthogonal, which it is if the covariance of the data set is
symmetric, satisfying the eigenvalue decomposition theorem.

Singular Value Decomposition

Singular Value Decomposition(SVD) (Shlens, 2005; Kalman, 1996; Austin, 2009) is a
technique to factorize matrices. To generate many matrices out of one matrix such that
their product will yield the original matrix. Such factorization is accomplished by first
constructing the eigenvectors from the product between the original matrix, A, and its
conjugate transpose, U = AAT . These eigenvectors is called the left singular values. The
eigenvector of the conjugate transpose times the original matrix will yield the second
factor called right singular values, V = ATA. The last factor, Σ, is obtain by taking the
square root of the none zero Eigenvalues of both U and V . The matrix obtained looks
like this:

Am,n = Un,n · Σn,m · Vm,m s.t a ∈ A, u ∈ U, s ∈ Σ, v ∈ V (2.12)

12

2.3. CREATING FEATURE SPACE CHAPTER 2. THEORY

a1,1 · · · a1,n

...
. . .

...

am,1 · · · am,n

 =

u1,1 · · · u1,n

...
. . .

...

un,1 · · · un,n

s1,1 · · · 0

...
. . .

...

0 · · · sn,m

v1,1 · · · v1,m

...
. . .

...

vm,1 · · · vm,m

 (2.13)

These factors can be manipulated to generate approximation of the original matrix M
by only taking a sub set of Σ in to account. That is, reduce the original dimension of Σ
into k × k such that U and V is enforced to be reduced into U : n × k and V : k ×m.
The resulting matrices is visualized as follows:

Am,n ≈ Un,k · Σk,k · Vk,m s.t a ∈ A, u ∈ U, s ∈ Σ, v ∈ V (2.14)

a1,1 · · · a1,n

...
...

...

am,1 · · · am,n

 =

u1,1 · · · u1,k

...
. . .

...
...

. . .
...

un,1 · · · un,k

s1,1 · · · 0

...
. . .

...

0 · · · sk,k

v1,1 · · · · · · v1,m

...
. . .

. . .
...

vk,1 · · · · · · vk,m

(2.15)

The product of the reduced matrix factors will usually yield a very good approximation
with just a few singular values. This is possible as the singular values is the corresponding
principal component in PCA which explains the intuition behind the algebra. Such
approximation saves memory that is needed to store the matrix or image, depending
on the context, by simply just retain the reduced matrices from SVD and discard the
original matrix. It also reduces sparsity from the original matrix which is desired in
recommender system construction.

Nonnegative Matrix Factorization

None-negative Matrix Factorization(NMF) factorizes its target matrix A into two factor
matrices, W and H, such that their product will produce a close approximation of A,
A ≈ WH. However, SVD does recreate the full matrix A, but yields negative values.
In-contrast, NMF generates only non-negative values as it is bound by such constraints.

F =
1

2
(A−WH)2 (2.16)

The measurement of approximation accuracy is expressed by a cost function F , for
example euclidean distance function described in equation (2.16). A full recreation of
the matrix can only be obtained if F equals zero otherwise some information has been
lost.

L = min(
1

2
(A−WH)2) s.t 0 ≤W, 0 ≤ H (2.17)

13

2.3. CREATING FEATURE SPACE CHAPTER 2. THEORY

∂L

∂W
= (A−WH)HT = 0

∂L

∂H
= W T (A−WH) = 0

(2.18)

The intuition behind the factor generation is to simply minimize the cost function such
that both factors does not break the none-negativity constraints, expressed in equa-
tion 2.17. Thus, finding the factors that satisfies the constraints is an optimization
problem. One of the first solution that comes to mind is gradient descent. Unfortunately,
such solution can be computational expensive; however, there exists more efficient solu-
tion such as multiplicative updates, suggested by Lee and Seung (2001). Unfortunately
both variables will not be convex at the same time, giving little hope of actually finding
a global minimum (Lee & Seung, 2001, p.3). Therefore will any solution most likely
generate an approximation and not find an exact solution.

AHT

WHHT
= 1 (2.19)

Wt+1 = Wt ∗
AHT

WtHHT + ε
(2.20)

Equation (2.19) is derived from the derivative of L, described by equation (2.18). Ad-
ditionally, the update function, described by equation (2.20), is derived from equation
(2.19). To avoid division by zero and guarantee a decrease in each iteration, ε is added
to its denominator.

∂L

∂H
= AHT −WHHT = −0.1

→ AHT

WHHT
= 1− 0.1

WHHT

→ AHT + 0.1

WHHT
= 1

(2.21)

When the derivatives of L equals one, a minimum has been found and Wt+1 = Wt.
However, if there still is a gradient, as is described by equation (2.21), a new W will be
forged by the update function. This explains how the multiplicative update rule of NMF
will eventually converge around a minimum.

Moreover, there exists plenty of NMF variations which is categorized into four genres:

1. Basic NMF (BNMF), which only imposes the non-negativity constraint.

2. Constrained NMF (CNMF), which imposes some additional constraints as regular-
ization.

3. Structured NMF (SNMF), which modifies the standard factorization formulations.

4. Generalized NMF (GNMF), which breaks through the conventional data types or
factorization modes in a broad sense.

14

2.4. CLUSTERING CATEGORIES CHAPTER 2. THEORY

—(Wang & Zhang, 2013, s. 1337)

By looking at the categorisation definition, the example function in equation 2.17 is
a Basic NMF. However, there exists different cost function which is referred to as sub-
categories or types of BNMF. Furthermore, the initialisation of the matrix factor directly
affects the outputs. If an random initialization occurs, an close approximation could be
made in the first runs or the initialization could be way off and consume a lot of time in
order to obtain the desired output.

CNMF adds more constraint to H and W such as regularization terms. Due to such
prior knowledge will the constraints help find a solution faster. Furthermore, the cost
function for the CNMF’s is described by the following equation from Wang and Zhang
(2013, s. 1344):

F = F + αJ1(W) + βJ2(H) (2.22)

The variables J are penalty terms to enforce constraints. The regularization terms α
and β is used to balance the constraints such that over-fitting is minimized.

The algorithm 2

Algorithm 2 constructs the feature space given the implicit feedback from algorithm 1.
There are other variables needed as well such as dim which is used to construct the feature
space, Ω, by simply taking the first dim rows of Σ and V which would correspond to the
principal components. That is, dim is the preferred number of dimension algorithm 2
reduces the feature space to. Other important variables is L and C which is explained
in the definition table in the beginning of this chapter 2.1.

Algorithm 2: Featurespace & Categories

Data: Feedback matrix feedback, Dimensions dim, Number of clusters k
1 [U, Σ, V] ← Perform singular value decomposition on feedback

2 Σ
′ ← Reduce Σ to the dimension dim

3 V
′ ← Reduce V to the dimension dim

4 Ω =
√

Σ′ ∗ V ′

5 [L,C]← Perform k-mean with k clusters on Ω
6 return L & C

2.4 Clustering categories

This section presents the relevant theory to give an understanding of clustering and
categories.

Similarities

Each of the two factors generated from a matrix factorization algorithms, previously
explained, can be used as a feature-space. All the remaining principal component is

15

2.4. CLUSTERING CATEGORIES CHAPTER 2. THEORY

regarded as a feature or a topic, a latent relation. It is unknown what relation is repre-
sented by the features, but they are used as the new basis.

The feature-space, V or U , is a Cartesian coordinate system of n dimensions or fea-
tures, <n. Each dimension/feature of a item/term expresses the level of appurtenant
towards a feature/topic. Enabling the measurement of similarity between terms. How-
ever, there exists different approaches to compute the similarity. The two most common
approaches is euclidean distance and cosine.

V =

0.4 0.2 0.7 0.3 0.8

0.6 0.5 0.3 0.5 0.3

0.1 0.3 0.4 0.6 0.3

 , A = {0.4, 0.6, 0.1}, B = {0.7, 0.3, 0.4} (2.23)

Equation (2.23) describes how two points in the feature-space, <3, cohere. The columns
can then be interpreted as vectors in <n where cosine and euclidean distance express
their correlation between topics.

The most frequently used similarity is cosine in the field of recommendation systems.
However, the choice of similarities is dependent on the particular data set composition. In
some cases does other similarities yield better result, and Qian, Sural, Gu, and Pramanik
(2004) states that similarities in higher dimensional data performs alike.

Another paper (Lathia, Hailes, & Capra, 2008) has evaluated even more similarity
measures and has concluded that in the general case of collaborative filtering is the
accuracy not effected by what similarity measure is being used.

x

z

y

A

B

Figure 2.3: A & B from
equation (2.23) is illustrated
as vectors in feature space

To illustrate the concept better, figure 2.3 shows how
the vectors A and B looks like in the feature-space. Vectors
with high correlation will have a small euclidean distance or
degrees in angle between each other and thus have a higher
probability to form a cluster.

As an example, A could be the term ”tissue”and B could
be ”cells”, both belongs to the cluster that contains terms of
medicine. The topics produced by the matrix factorization
models could have found this relation already but it is more
likely to find several less obvious relations that together form
clusters that would be the true topic, in this case medicine.
The topics, modelled as the Cartesian axis, could be cancer
as z and cell research as x. However, A and B would have
less relation with eyes that might have been the y axis.

K-mean

The K-mean algorithm1 attempts to minimize the mean of the squared euclidean distance
between points in an n-dimensional space. Intuitively, the algorithm tries to find a set of

1http://en.wikipedia.org/wiki/K-means_clustering

16

http://en.wikipedia.org/wiki/K-means_clustering

2.5. CLASSIFYING AN ITEM CHAPTER 2. THEORY

means that are as close as possible to all points. To accomplish this, two steps is taken
for every iteration t.

sti = {xp : ||xp −mt
i||2 < ||xp −mt

j ||2 ∀j, 1 ≤ j ≤ k} (2.24)

mt+1
i =

1

|sti|
∑

xjxj∈St
i

(2.25)

Equation (2.24), which is the first step, defines the set of points belonging to every mean.
A point can only be apart of a particular mean:s set if there are no other mean that
have a smaller euclidean distance toward that point, as is described mathematically in
equation (2.24).

All data points Zoomed in 2 times

Zoomed in 4 times Zoomed in 6 times

Table 2.2: Visualizes how k-mean clusters the data
points in three dimensions using Matlab tools

The goal of the algorithm is to ob-
tain a set of means with an optimal
distance toward all points, which is vi-
sualized in table 2.2. That is, a set
of mean with a minimal euclidean dis-
tance toward all points. However, as
the means is usually randomly initi-
ated, their initial state is seldom the
optimal and it makes sense to update
their position in order to minimize the
distance toward the points further.

The second step of the algorithm,
equation (2.25), actually tries to up-
date the mean to better fit the data
and satisfying the goal. By stepping
toward the new mean, that has been
computed from the set of points de-
fined by the previous iteration:s mean,
the euclidean distance is reduced by
a smaller amount as is also described
mathematically in equation (2.25).

However, it is not unusual for points to change their appurtenant as the mean:s
position change. If too many points has to change appurtenant, which happens when
the mean:s have to big step sizes, the algorithm convergence rate will be decreased, but
that will also occur with a to small step size. Moreover, a global optimum might not be
possible to find, depending on the initialization.

2.5 Classifying an item

The following algorithm computes the distribution of cart personalities given an item
as explained previously. Algorithm 3 takes L from algorithm 2 as input in order to

17

2.6. FINDING SIMILAR ITEMS CHAPTER 2. THEORY

differentiate between the clusters. The variables are defined in table 2.1.

Algorithm 3: Distribution

Data: feedback A, Item item, Cluster Label L
1 similarCustomers← Find customers that have bought item in A
2 for Every customer c in similarCustomers do
3 carts← The carts of customer c
4 for Every cart in carts do
5 if cart contains item then
6 for every item cItem in cart do
7 cLabel← lookup cluster appurtenant for cItem in L
8 distribution[cLabel] += 1

9 return Normalized distribution

Algorithm 3 constructs a distribution given one items. However, an ongoing cart can
contain multiple items, and in these situations is the algorithm enhanced such that for
every item is a distribution fetched and then concatenated into a new single distribution.
Algorithm 4 does exactly that, it concatenates all relevant distributions and returns their
aggregation. To aggregate the distributions is weighting used such that the probabilities
for items occurring multiple times over many distributions have a higher weight in the
new distribution.

Algorithm 4: Many Distribution

Data: manyDistribution
1 for Every cluster c do
2 for Every distribution of manyDistribution do
3 hits← Count the number of occurrence of cluster c
4 probSum← Aggregates the recommendation probability given cluster c

5 prob← 2hits−1 ∗ probSum
6 newDistribution← a pair of c and the probability, prob, of recommending

from c
7 return Normalized newDistribution

2.6 Finding similar items

As algorithm 3 computes the distribution of an ongoing cart does algorithm 5 compute
which items should be recommended from these clusters. To do so is the clusters with the
greatest probability considered, contained in dist. Then is the items in that particular
cluster ranked from their euclidean distance towards the centroid of the cluster such that

18

2.7. CREATING RECOMMENDATION CHAPTER 2. THEORY

those items closes to the centroid is recommended first.

Algorithm 5: Ranking items in cluster

Data: List of customer selected items: items, Centroids C, Cluster labels L
1 distribution← Perform algorithm 3 given items
2 if No distribution generated then // Cold-start problem

3 return List of most frequent items

4 for Every dist in distribution do
5 distItems← Extract items belonging to dist from L
6 for every item in distItems do
7 c← Find centroid in C, corresponding to dist
8 eDistance← Compute euclidean distance between item and c

9 itemList← Sort the eDistance:s in descending order, switch to its items
10 pair ← Construct a tuple of dist and itemList

11 return A list of all itemDistrubtionPairs

Algorithm 5 is necessary to determined which item to select from a cluster such that
the least representative item for the cluster is not selected.

2.7 Creating recommendation

This chapter will explain how to create recommendations based on carts. In the begin-
ning is the theory explained and in the end is the algorithm expressed in pseudo-code.

Recommender Systems

This section will go through the major paradigms of RS in more detail to establish a
better understanding for the reader. A good understanding will be of importance when
discussing why the paradigm called collaborative filtering will be used.

Content-based recommender systems

Using content such as technical descriptions to make recommendations is usually eas-
ier than gather relevance feedback, assuming content exists. Recommendations is con-
structed by finding similarities between items content given the user preference. As
Jannach et al. (2011, p. 54) has put it: ”To make recommendations, content-based sys-
tems typically work by evaluating how strongly a not-yet-seen item is “similar” to items
the active user has liked in the past”.

Content-based RS mainly process item/user information in three components. First,
the content analysis component where information is processed to be relevant and struc-
tured, an item representation of its content. A typical example is the transformation
of a document into a set of keywords. Second, the profile learner component. It uses
the output from the content analysis and user feedback to generate user profiles. The
feedback could be user browsing or the like/unlike information. The profiles are usually

19

2.7. CREATING RECOMMENDATION CHAPTER 2. THEORY

built by machine learning techniques that generates models for each user, based on the
feedback. Last, the filtering component where the user profiles are exposed to relevant
items to generating a list of items to be recommended (Ricci et al., 2011, p. 75-76).

The advantage is the absence of user interaction required to construct ratings. Rele-
vance feedback sparsity is of no concern as an additional advantage. However, if content
information is not supplied then data sparsity is still a problem. The possibility of such
situations is an disadvantage. So is misguiding information such that only certain aspects
of the content is captured by the system (Ricci et al., 2011, p. 78), leading to erroneous
recommendations. Another disadvantage is the risk of overspecialisation. An example of
overspecialisation is the recommendation of more t-shirts as the user have been browsing
t-skirts. It is not wrong in itself but it’s preferable to recommend other categories that
goes well with t-skirts as a users t-skirt demand will rapidly become saturated.

Knowledge-based recommender systems

There are situations where purchases from the same user is so rare that the user feedback
will be out of date. In these situations will content-based and collaborative filtering
paradigms do no good. However, there is a remedy: the knowledge-based paradigm.

There are mainly two types of this paradigm: case-based and constraint-based(Jannach
et al., 2011, p. 82). Both uses requirements obtained from the users, then tries to con-
struct recommendations based on these requirements. The main difference between the
types is how their requirements differentiate. The case-based type tries to retrieve sim-
ilar items from similarity measurements while the constraint-based type uses a set of
explicit defined rules in order to construct recommendations.

This paradigm is preferably used in a more expensive context such as sales of cameras,
cars, houses etc. These items does not usually generate any quantity of purchases and
therefore produce to sparse data for other paradigms. However, the disadvantage is
acquisition of the knowledge (Adomavicius & Tuzhilin, 2005, p. 23), it is explicit and
users might dislike the enforced interaction.

Collaborative filtering

Collaborative filtering is the paradigm that will be used in this project as has been
mentioned many times before. This chapter aims to explain this paradigm in detail with
both general theory and examples. However, the underlying techniques has been explain
previously in this section and will not be further explained here. The motivation and
composition of theories will be done in the section Justifying choices.

The paradigm takes a matrix of user-item relations as argument then the following
procedure is executed:

a) A (numerical) prediction indicating to what degree the current user will like or dislike
a certain item.

b) A list of n recommended items.

20

2.7. CREATING RECOMMENDATION CHAPTER 2. THEORY

— Jannach et al. (2011, p. 13)

The matrix are built up from a set of users U ∈ {u1,u2...,ui} and a set of products/items
P ∈ {p1,p2...,uj}. The cells of the corresponding U × P matrix consists of ratings ri,j
for all products for each user(Jannach et al., 2011, p. 13). However, if the user have not
rated the product its cell will be 0. This adds up to the following matrix:

A =

p1 p2 . . . pj

u1 r1,1 r1,2 . . . r1,j
u2 r2,1 r2,2 . . . r2,j
...

...
...

. . .
...

ui ri,1 ri,2 . . . ri,j

 (2.26)

The rating in the matrix is either a gap, represented by a zero, or rated in some scale
such as the ”1-5 stars” or 1-10. The goal of the recommender is to present the user with
the top n preferable products that s/he have not yet purchased or seen. In other words
the gaps of the current user. To fill in the gaps and be able to recommend among those
products, the paradigm finds similarity’s between the different users based on historical
data. There are many such similarity measures so lets take a look at a simple one just to
prove the general idea of collaborative filtering. The example measure is the Pearson’s
correlations coefficient. Here’s the example rating matrix:

A =

p1 p2 p3 p4

u1 1 4 3 0
u2 2 2 3 5
u3 3 2 2 5
u4 2 2 1 2

 (2.27)

As can be observed in equation 2.27, a gap exists for product p4 at user u1 as r1,4 =
0. This occurs as u1 have not had any interaction with product p4. Therefore, the
system have to compute artificial ratings to fill in the gap. This task is accomplished by
predicting the rating user u1 would have for product p4 by looking at similar users and
hope they have a preference about the product that can be applied for the current user.

To make the example more simple will only one value be equalised zero. Unfortu-
nately, there is a lot of gaps in real world data and this issue is usually referred to as
sparsity, as has been mentioned previously.

To fill in the gaps, the collaborative filtering technique used in this example com-
putes the correlation between users. In this example is the similarity’s between users
constructed with Pearson’s correlations coefficient, a similarity measure between user-
user, from the following formula(Jannach et al., 2011, p. 14):

sim(a,b) =

∑
p∈P (ra,p − r̄a)(rb,p − r̄b)√∑

p∈P (ra,p − r̄a)2
√∑

p∈P (rb,p − r̄b)2
(2.28)

21

2.7. CREATING RECOMMENDATION CHAPTER 2. THEORY

In the sim(a,b), a and b are users. ra,p and rb,p are ratings of item p for user a resp
b. r̄a and r̄b is the average rating for user a resp b. By applying equation (2.28) on to
matrix (2.27), the following matrix can be constructed:

A =

u1 u2 u3 u4

u1 1 −0.8165 −0.4264 0.8333
u2 −0.8165 1 0.5222 −0.8165
u3 −0.4264 0.5222 1 0
u4 0.8333 −0.8165 0 1

 (2.29)

Each cell represent how similar the two users are as positive value represents positive
correlation and negative values represents negative correlations. However, a value of
zero means it does not exist a relation of linear nature(J. S. Milton, 1986, p. 170). As
the correlation matrix has been generated the remaining task is to finding the nearest
neighbours. It is simply done by taking the user with highest correlation to the current
user, enabling the construction of a rating function:

predRating(a,p) = r̄a +

∑
b∈N sim(a,b) ∗ (rb,p − r̄b)∑

b∈N |sim(a,b)|
(2.30)

In equation 2.30 is N the neighbourhood of users with high correlation to the current
user, in this case it is N = {u2, u4}. Equation (2.31) is the calculations of equation (2.30)
with numbers:

predRating(u1,p4) = 2.667 +
0.8333 ∗ (2− 1.75) +−0.8165 ∗ (5− 3)

0.8333 + 0.8165

= 2.667− 0.4255

= 2.2415

(2.31)

The gap of rating r1,4 in equation (2.27) can now be filled with the result from equa-
tion (2.31), 2.2415. It is now possible to recommend this product based on the new
rating. This is the general idea of the collaborative filtering paradigm.

Collaborative filtering are used in a wast variety of applications such as e-commerce
systems, movie sites, news sites, advertising systems and more. However, the more
successful ones are Netflix and AmazonG Linden (2003) which both uses collaborative
filtering to construct recommendations.

The primary advantage is scalability and that it fits well in many applications. But
there are some disadvantages to collaborative filtering, the most critical one is the lack
of knowledge/information usage compared to content-based and knowledge-based ap-
proaches.

Hybrid recommender systems

It would be profitable to combined the different paradigms to cancel out their weaknesses.
The realisation of such notion is called hybrid recommender system. It is categorized

22

2.7. CREATING RECOMMENDATION CHAPTER 2. THEORY

into three general designs to merge the different paradigms (Jannach et al., 2011, pp.
124-139). The first design is the Monolithic design, it takes two or more paradigms and
combine them such that their input is the same, the best results is chosen to be the
output. The second design is the parallelized design, it takes multiple paradigms and
aggregate their results into one output. The design operates in three patterns: weighted,
mixed & switching. The last design, pip-lined design, simply execute each paradigm after
the other such that the inputs and outputs has to be design to fit the other recommenders
systems. There are also different patterns of this design such as meta-level and cascade
etc.

Context-aware recommender systems

The three primary paradigms has been presented and hopefully some what pedagogically
explained. Their focus is to recommend the most relevant items to users but without
consider contextual information such as time, weather, location, mood etc. Recommen-
dation accuracy could be improved by considering such contextual information. However,
before going down to the technical details lets discuss what context really means.

First of all there are no fundamental definition of context; still, many fields are
using the term and many definitions exists. Fortunately, there is a conference called
CONTEXT that attend this issue and has a great variety of research fields affiliated to
it:

• Computer Science

• Artificial Intelligence and Ubiquitous Computing

• Cognitive Science

• Linguistics

• Organizational Sciences

• Philosophy

• Psychology

• Application areas such as Medicine, Law, domotics, context-aware systems, ...

— Polytech (2013)

The huge variety of research fields indicates the difficulties in constructing a definition
that could be applied to any discipline. Unfortunately, when Bazire and Brézillon (2005)
tried to cover the issue by considering 150 definitions of context, their conclusions was
that no such definition could be found, but a model of definitions. This is no surprising
as some of the fields diverge a lot. Leading to as many definitions as there is research
fields and researchers. In order to give the reader some insights about different views

23

2.7. CREATING RECOMMENDATION CHAPTER 2. THEORY

of context, the closely related fields Data mining, Information retrieval, E-commerce
Personalization and Databases will be examined.

In Data mining is context described by Ricci et al. (2011, p. 220) as ”context is
sometimes defined as those events which characterize the life stages of a customer and
that can determine a change in his/her preferences, status, and value for a company”.
In contrast, the field of E-commerce Personalization sometimes describes context as the
intent of what the customer have for the purchase, gift, for children for them self’s or
some other intent (Ricci et al., 2011). The typical information used in recommender
systems is user identification, item identification and what ratings each user has of a
given item. The context information can be seen as some not typical information that
is to be added into the recommendation phase to make better predictions.

Most of the implementations in information retrieval do not use contextual informa-
tion, they simply use queries and collections to perform retrieval. However there exists
some implementation that consider contextual information and they usually focus on
web searching and immediate user interactions, for fast recommendations (Ricci et al.,
2011, p. 222).

The last field is databases that uses context when returning queries. Some SQL-
dialects have integrated ranking of the user precedences when the data is inserted into
the database.

To get a general intuition of where in the recommendation process the contextual
information is added the following example is presented: A matrix of ratings is used to
construct recommendations as in previous sections such that rating gaps needs to be
filled out. Fortunately, Ricci et al. (2011, p. 223) is able to do so with the function:

R : User × Item→ Ratings (2.32)

Equation (2.32) construct ratings to fill the gaps based on users and items only. However,
when contextual information is incorporated, such that the system becomes context-
aware, the equation is changed by Ricci et al. (2011, p. 224) in to:

R : User × Item× Context→ Ratings (2.33)

There are two general approaches when constructing ratings using contextual informa-
tion:

• Context-driven querying and search

• Contextual preference elicitation and estimation

— Ricci et al. (2011, p. 224)

The first approach uses contextual information directly in the query/search when go-
ing through the data storage, presenting the best matching result from the query/search.
The second approach tries to model the user preferences by adding the contextual in-
formation to the model which will return user preferences that might not have been

24

2.7. CREATING RECOMMENDATION CHAPTER 2. THEORY

discovered otherwise. To manage this the recommender system paradigms can be ex-
tended or use machine learning techniques to learn the preferences.

In the context-aware recommender systems there are three major paradigms called
pre-filtering, post-filtering and model-based context-aware paradigm. The first two are
the opposite of each other so lets start with them. The pre-filtering context-aware
paradigm uses the context to filter the input while post-filtering uses the context to
filter the output. The third model-based paradigm adds the contextual information into
the process of creating the model, most commonly by adding another dimension.

Figure 2.4: The figure depicts three context aware paradigms

The variables in figure 2.4 (Borrowed from Ricci et al. (2011, p. 233)) have the following
definition:

• U: Set of users.

• I: Set of items.

• R: Set of ratings.

• C: Set of contextual information.

• i1,i2,...,in: recommended items in order of which to recommend.

There are three flow chart in figure 2.4, each of them depicts one of the three paradigms
described above. Flow a) shows the pre-filtering where c explains where the context is
added. Flow b) is the inverted flow of a) such that the context input c has moved to be
added after the recommendation. Flow c) is the model-based approach where context is
managed both inside the model and outside.

25

2.7. CREATING RECOMMENDATION CHAPTER 2. THEORY

The Algorithm 6

This is the recommender algorithm used in this project that combining all the techniques
to create recommendations. Table 2.1 visualizes how the different techniques is linked
together. However, an important remark on algorithm 6: If not enough items is generated
than the most frequent items will fill out the empty recommendations left. This is not
explained in the pseudo-code but is still important to mention as it affects results.

Algorithm 6: Recommender

Data: Database, Customer selected items: items, Number of recommendation
acquired: nrRecs

1 feedback ← Algorithm 1 given data from database
2 dim = 10
3 k = 80% of unique items size
4 [L,C]← Algorithm 2 given feedback,dim & k
5 distributions← Algorithm 3 given feedback, items & L
6 pList← Algorithm 5 given items, C & L
7 for each dist in distribution do

// distribution is descending, highest probability first

// a pair consists of the given distribution probability with

// the corresponding cluster label

8 pair ← Select a pair in pList, corresponding to dist
9 while There is items in pair do

10 item← first item of pair
11 Add item to recommendedItems
12 Remove item from pair
13 if size of recommendedItems == nrRecs then
14 return recommendedItems

15 return recommendedItems

26

2.8. JUSTIFYING CHOICES CHAPTER 2. THEORY

2.8 Justifying choices

The construction of a recommender system is nothing new, it has been done before.
Thus, a vast abundance of literature and conferences exists with the focus of exploring
and amplifying the technology. A consequence of such research wealth is the effort
needed to go through all information, to create a foundation of theory that will increase
the probability of making the right decisions. Furthermore, the preliminary literature
study revealed three major paradigms (see section 2.7). As it is of major concern for
performance to choose the correct theory, in this case a paradigm depending on data,
it would only be logical to analyse the project data. Such analysis was done in parallel
with the preliminary literature study as a pre-study. A healthy exercise that not only
gave valuable insight and decision basis of what paradigm to chose, but also determined
if it was possible to realise the project in the short time given for a master thesis.

The pre-study showed that the data set would not break any new size records. How-
ever, consisting of roughly 400 000 items ordered by ca 99 000 unique customers from
ca 23500 unique products with ca 3800 unique styles, the data is still large enough to
overload systems. Unfortunately, some data fields was not consistent over time. One
such field was the technical description of items that lacked uniqueness and was rather
sparse in appearance. Such inadequacy resulted in the decision of not pursuing the
content-based paradigm as it is deemed to yield lesser result without proper data as its
foundation.

Additionally, the argument for a knowledge-based paradigm is weak as it demands
time consuming interaction. A paradigm perhaps better suited applications with a mod-
est data set, usually defined by a low frequency of purchases (Jannach et al., 2011, p. 81).
However, this is not the case for this project where the data possesses a high purchase
intensity.

Fortunately, as the data analysis had ruled out two paradigms, the preliminary liter-
ature study gave positive indications for the collaborative filtering paradigm. The study
revealed promising results toward context-aware recommender systems which mainly
builds upon the collaborative filtering paradigm. Seemingly, it is also the most dom-
inant paradigm after its performance in the Netflix prize challenge (Thompson, 2008)
where a solution using factorization models and nearest neighbour won. Furthermore,
the data analysis showed that the data set is large enough to support such paradigm.

With a reasonably strong decision basis, provided by the pre-study, collaborative
filtering was selected as the ”best fit” paradigm to the project. Another insight from the
preliminary literature study was the potential increase in prediction accuracy obtained
by incorporating contextual awareness into recommender systems. It is an approach to
capture the concept drift(see section 2.2) of customers. Due to the potential performance
gains, it was decided that such a solution should be evaluated as well.

A custom-tailored implementation of the paradigm was deemed necessary as the
specific project data departed from the established data set used in research. The data
has a freshness factor, provided by the high throughput of items over a relatively short
time period. Furthermore, a recommender system for Lindex will be forced to man-

27

2.8. JUSTIFYING CHOICES CHAPTER 2. THEORY

age shopping carts which might contain several personalities, adding complexity to the
problem. Additionally, customers will be affected by crowd psychology which suggest
concept drifting is of importance and might increase the problem complexity further as
contextual awareness will be introduced.

The task of implementing the project algorithm could not have been delegated to
others as a straightforward blueprint could not be made without performance evaluations
of different configurations, implementations and techniques. Therefore it was deemed to
be a somewhat stumbling road to a prototype, needing a great deal of analysing skills.
A task suitable for master thesis students of computer science.

In order to create the prototype, different techniques and theories had to be com-
bined. The main theories were relevance feedback, SVD, k-means, a cart-personality-
distribution algorithm and an item-ranking algorithm. The justification of using these
techniques and theories is the following:

To construct the prototype, the most basic step, relevance feedback, was acquired;
unfortunately, the lack of explicit feedback enforce the creation of implicit feedback.
Such task is aggravated by the project constraint of only consider ongoing carts, thereby
excluding useful information. Perhaps the obvious ”easy fix” would be to revoke such
constraint and consider all information sources. However, the constraints was set to
ensure that the project scope would not be exceeded. It was established due to the
time insufficiency a single semester brings. That notion, that complexity exhaust time
resources, is a general presumption that also appears in this project. It have coloured
many design choices, one of those choices is to use binary implicit feedback as it yields
promising results and yet remains simple in nature. The relation it captures is the items
a customer have bought; what it does not capture is the quantity of the item.

Unfortunately, the feedback is rather sparse and does not generate enough diffusion.
Without the necessary amount of diffusion, the recommendations could become uniform.
PCA is used to solve such issue. Essentially it amplifies diffusion by doing a basis change
such that the PCA constraints is satisfied. Still, sparsity remains a problem. It is
solved by reducing the dimension of the feature space such that redundant dimensions is
discarded. That is, to only use a delimited set of the highest ranked principal components
in an descending order. Such solution is derived from the intuition behind PCA: only
the most relevant information will be used while the distortion is removed.

Still, PCA is primarily a concept. There are other techniques utilising the same
concept; who yields other advantages. Such techniques is SVD and NMF which are
preferred to PCA (Ricci et al., 2011, p. 45). SVD is a more general solution, allowing
any matrix to be used (Shlens, 2005, p. 7). Unfortunately, it consumes considerable
amount of resources in its computation which serves as an argument to pursue other
techniques, such as NMF. However, evaluate the superior technique would not be possible
in the short time frame given. Additionally, SVD always returns a unique solution which
simplifies result evaluation. Thus, SVD was selected over the others.

Regardless of the techniques, a feature space was constructed. Then K-mean was
applied to the space to obtain categories. An algorithm used widely for that purpose. It
features simplicity and speed with a time complexity of exponential size (Vattani, 2011);

28

2.8. JUSTIFYING CHOICES CHAPTER 2. THEORY

nonetheless, polynomial in practice (Arthur et al., 2009). k-means can be used with
different similarities to obtain the clusters, all with their own advantages (see section 2.4).
Unfortunately, cosine similarity could not be used in the prototype constructed in Matlab
as some items was to closely located. Meanwhile, euclidean distance returned acceptable
results and was therefore used over cosine. Of course there are other similarities to be
used; unfortunately, time constraints did not allow to thoroughly test them and the
literature did not indicate any major performance increase.

The produced categories from k-means is intended to reflect the personalities of
customers. Moreover, a cart might consists of multiple personalities such as a skaters
and a hip-hopper. Such diverseness, occurring seemingly sporadic, expresses a compound
personality which usually describes multiple individuals such as a mother and her child
etc. In order to better capture such compound personalities, the distribution of such
categories is calculated. It would then be used to determine what categories the items
should belong to, given a specific ongoing cart.

To increase prediction accuracy, a ranking of the items will be made relative to its
cluster centroid. Again euclidean distance was used, mainly as it is the similarity selected
in the k-means algorithm.

Theories, technique and how they are combined have now been explained and argu-
ments for justification made. However, most of the decision is influenced by the results
from evaluation which will be presented in later chapters. Thus, it is important to
continue reading evaluation method etc.

29

3
Methods & Materials

T
his chapter presents the means necessary to realise the project, but also the
structure of conduct and evaluation procedures. The chapter structure is as
follows: First is the working process explained. Second, what materials where
used. Third, the participants that made this project possible. Last, test

procedures describing how the tests were conducted.

3.1 Procedure

The working procedure does mainly consists of an agile approach where weekly meeting
with the supervisors is held to discuss progress and problems. There are three distin-
guishing steps/iterations:

1. The basics of the recommender system will be constructed such as SVD, similari-
ties, K-mean, cart distribution and recommendation selection.

2. Create a end-product to be used in AB-testing at Lindex.

3. Develop context-awareness of the recommendation system then test and compare
towards the basic system.

Step one and two were completed, but the last step could not be completed due
to time limits. However, some results was made from step three and it was enough to
conduct a discussion about it. The context-awareness step were actually supposed to
occur before the end-product step, but to ensure a stable prototype for AB-testing were
these two steps swapped. This could not wait as the final sprint between 3Bits and
Lindex occured before summer.

30

3.2. MATERIALS CHAPTER 3. METHODS & MATERIALS

3.2 Materials

No special hardware have been used other than simple workstations and a server, with
the capacity of eight cores and 40 gb of ram. Their operating systems was Windows 8.1
and Windows Server R2. Other software that has been used is:

• Matlab

• Microsoft Visual Studio Ultimate x64 2013

• Doxygen

• Sharelatex

• Graphlab

• ConcurrentVisualizer

Matlab is a suitable program for prototype construction and evaluation as the broad sup-
ply of tools and support makes the development faster. Still, there are some drawbacks
such as an excess of run-time errors. A result of not using a type-checker to catch some
of those errors in compile time (Ranta & Forsberg, 2012). Furthermore, the software
employs a non-free licence. Nonetheless, there exists an alternative, Octave, that is free
and similar, but lacks some tools and support.

The licence demand made it necessary to create an implementation in a more suitable
language after a working prototype had been forged. Such language was C# with .net.
Featuring easy integration with depending systems. Furthermore, such experience does
already resides inside 3bits, reducing the effort needed from the company to develop
and maintain the code. Additionally, the Accord1 framework has proved to be a useful
extension that reduced development time, despite inexperience of the framework. It
includes machine learning algorithms such as k-mean but also SVD etc, and is licensed
under LGPL2.

The C# implementations of the algorithms are slow in comparison to identical al-
gorithms in Matlab. Matlab uses a variant called online K-means. It separates the
execution into two phases called batch update and online update. The batch update
phase uses ordinary Lloyd’s batch K-means, describe in the theory chapter.

The second phase for ordinary online K-means selects a randomly chosen point and
reassigns it to the closest neighbouring cluster. It then recalculates the centroids before
the next iteration. However, the Matlab implementation does this step for every point
individually, but only reassigns the displacement to the configuration that decreases the
total sum of the distances the most.

These two phases are executed until convergence. In (Slonim, Aharoni, & Crammer,
2013) there is a corollary arguing that both online and batch returns at least local
minimums. The Accord implementation uses Lloyds’s K-mean as Matlab does but does

1http://accord-framework.net/
2https://www.gnu.org/licenses/lgpl.html

31

3.3. PARTICIPANTS IN STUDY CHAPTER 3. METHODS & MATERIALS

not have a phase two. However, Matlab’s implementation is fairly stable while Accord:s
differs in the second test phase.

The stability issue might not only be explained by a second phase but also the use
of another initialisation. Matlab utilises a ”replicate” function which generates a given
number of random initialisations and selects the configuration with the lowest total
within-cluster point-to-centroid distances. The Matlab implementation in this project
uses a ”replicate” of ten.

3.3 Participants in study

A sub goal of the thesis was to obtain experience from the industry by working for a
company. This company is 3Bits3. They provides the workstations, help with integration
and a supervisor, Jonas Hörnstein. He coordinated the work with 3Bits, gave valuable
general guidance but also insights to how work in the industry is conducted.

The data set is provided by Lindex4 as the system is a prototype for recommendations
in their web-shop. In respect to their business and customers but also to follow the
Swedish law of personal record5, the information regarding the data set in any way is
anonymous.

Obviously, Chalmers also played a part in this project. Providing a supervisor and
examiner, Devdatt Dubhashi. Who supplied support such as literature suggestions,
organizing reviews from institution personnel, personally reviewing report drafts and he
also provided valuable guidance.

3.4 ItemRand- & frequent-algorithm

To obtain a reference point to the project algorithm was results from a lesser and simpler
algorithm needed. These two algorithms was randomItem- and frequency-algorithm.
The first, randItem-algorithm, selects a random item out of all the items and recommends
it. The following pseudo code explains how it works: The second, frequency-algorithm,

Algorithm 7: randItem-algorithm

Data: items, itemsToRec
1 for i=1, i < itemsToRec, i++ do
2 The i:th recommendations ← Randomly generated item from items

3 return recommendations

finds the most frequently ordered item and then recommends them in a descending order.
The following pseudo code explains how it works:

3http://www.3bits.se/sv
4http://www.lindex.com/se/
5http://www.riksdagen.se/sv/Dokument-Lagar/Lagar/Svenskforfattningssamling/

Personuppgiftslag-1998204_sfs-1998-204/?bet=1998:204

32

http://www.lindex.com/se/
http://www.riksdagen.se/sv/Dokument-Lagar/Lagar/Svenskforfattningssamling/Personuppgiftslag-1998204_sfs-1998-204/?bet=1998:204
http://www.riksdagen.se/sv/Dokument-Lagar/Lagar/Svenskforfattningssamling/Personuppgiftslag-1998204_sfs-1998-204/?bet=1998:204

3.5. TEST PROCEDURES CHAPTER 3. METHODS & MATERIALS

Algorithm 8: frequncy-algorithm

Data: items, itemsToRec
1 for i=1, i < itemsToRec, i++ do
2 The i:th recommendations ← The i:th most frequent item from items

3 return recommendations

3.5 Test procedures

The test procedures is an important part of this project. An sequential approach to
testing where conducted. More precisely, a waterfall where the first step is a basic test
that examines if the chosen techniques is wise to use or if it is back to the drawing
board. The second step simulates ”real-world” events using history data. If this step
is passed than the third step will take place. The next step tests how context can be
used to improve accuracy. The last test step was a AB-test phase where the procedure
is described in the last section.

Basic test

The first test-phase of the project algorithm is a ten fold cross validation where the fold
is constructed out of customers. The recommendation procedure is tested by extract-
ing every cart of the test set and only consider those carts that contains at least two
items. This test is constructed such that for every cart, one item A is randomly selected
and separated from the rest of the cart. As an example, item A is then given to the
recommender and in turn a new item X is recommended given item A.

33

3.5. TEST PROCEDURES CHAPTER 3. METHODS & MATERIALS

Algorithm 9: Basic testing algorithm

Data: carts = {cart1 = {itemA, itemB, itemC}, cart2 . . .} , customers
1 indices← generate indices for a 10-fold crossvalidation with the size of customers
2 for k=1; k <= 10; k++ do
3 testCustomers← customers(indices == k)
4 testCarts← carts belonging to testCustomers
5 for i=1, i < size(testCarts), i++ do
6 cart← testCarts(i)
7 if size(cart) >= 2 then
8 selectedItem← select a random item from cart
9 restOfCart← all items in cart that is not selectedItem

10 randItem← randItem-algorithm(selectedItem)
11 freqItem← frequency-algorithm(selectedItem)
12 recItem← project-algorithm(selectedItem)
13 errorRand = 0 if item in restOfCart is equal to randItem else 1
14 freqRand = 0 if item in restOfCart is equal to freqItem else 1
15 recRand = 0 if item in restOfCart is equal to recItem else 1

16 return normalized errors

If any of the remaining items in the rest of the cart is equal to item X, the test is to
be considered successful or otherwise a failure. That is, either one hundred percentage
success or failure. The summary of all test for one fold will in worst case scenario return
a number of failed carts equal to the number of carts given as input. The pseudo code
for the test can be observed in algorithm 9, results and comparisons is presented in the
result chapter 4.

Time test

The second test-phase is to train and test on two different sets of data, separated by
time constraints. An example of such separation would be to train on all working days
but test on the weekend. This test-phase better models real world execution where
the algorithm will not be able to train on the future and test on the past as ten-fold
cross-validation allows.

Further more, sets of sequential periods (table 3.1) will be referred to as categories
in an attempt to increase the simplicity of forthcoming reasoning. These categories is
defined by three columns: A period number, separated train and test set and the time
intervals.

34

3.5. TEST PROCEDURES CHAPTER 3. METHODS & MATERIALS

Category A

1 Training Period 2013-03-26 00:00 — 2013-03-31 10:00

Testing Period 2013-03-31 10:00 — 2013-03-31 12:00

2 Training Period 2013-03-27 00:00 — 2013-04-01 10:00

Testing Period 2013-04-01 10:00 — 2013-04-01 12:00

3 Training Period 2013-03-28 00:00 — 2013-04-02 10:00

Testing Period 2013-04-02 10:00 — 2013-04-02 12:00

4 Training Period 2013-03-29 00:00 — 2013-04-03 10:00

Testing Period 2013-04-03 10:00 — 2013-04-03 12:00

5 Training Period 2013-03-30 00:00 — 2013-04-04 10:00

Testing Period 2013-04-04 10:00 — 2013-04-04 12:00

6 Training Period 2013-03-31 00:00 — 2013-04-05 10:00

Testing Period 2013-04-05 10:00 — 2013-04-05 12:00

7 Training Period 2013-04-01 00:00 — 2013-04-06 10:00

Testing Period 2013-04-06 10:00 — 2013-04-06 12:00

Table 3.1: Testtime example

As the reader just have witnessed, the categories have an ungraceful size and is therefore
located in the appendix.

The test will include three different algorithms to generate recommendation: The
project algorithm, the randomItem-algorithm and the frequency-algorithm. For each
test-iteration, every algorithm will have their recommendation tested towards the re-
maining customer cart.

35

3.5. TEST PROCEDURES CHAPTER 3. METHODS & MATERIALS

Algorithm 10: Time testing algorithm given a Single item

Data: carts = {cart1 = {itemA, itemB, itemC}, cart2 . . .}
1 for iter=0, iter < iterations, iter++ do
2 for i=0, i < size of carts, i++ do
3 cart← i:th cart of carts
4 if size of cart >= 2 then
5 for j=0, j < size of cart, j++ do
6 selectedItem← j:th item of cart
7 restOfCart← all items in cart that is not selectedItem
8 randItem← randItem-algorithm
9 freqItem← frequency-algorithm

10 recItem← project-algorithm given selectedItem
11 errorRand = 0 if item in restOfCart is equal to randItem else 1
12 freqRand = 0 if item in restOfCart is equal to freqItem else 1
13 recRand = 0 if item in restOfCart is equal to recItem else 1

The algorithm 10 explains in pseudo-code how the tests is conducted. Final results are
the ration between the number of errors and the number of carts tested. However, item
duplicates might occur in a shopping cart. Such situation occurs as a multiple purchase
of the same item is done, socks etc. Therefore, it is not invalid to recommend the same
item given to the recommender in these tests, but in a practical application should such
behaviour be avoided as showing new items to the user is the objective of a real world
recommender system. The tests on multiple items is described in algorithm 11.

36

3.5. TEST PROCEDURES CHAPTER 3. METHODS & MATERIALS

Algorithm 11: Time testing algorithm given Multiple items

Data: carts = {cart1 = {itemA, itemB, itemC}, cart2 . . .}, nrItems
1 for iter=0, iter < iterations, iter++ do
2 for i=0, i < size of carts, i++ do
3 cart← i:th cart of carts
4 for j=0, j < nrItems, j++ do
5 int oneItem = 0;
6 while oneItem == 0 AND givenItems contains oneItem do
7 rIndex← create random index of oneCart length
8 oneItem← oneCart[rIndex]

9 givenItems[j]← oneItem

10 if size of cart >= nrItems then
11 for j=0, j < size of cart, j++ do
12 selectedItem← j:th item of cart
13 restOfCart← all items in cart that is not givenItems
14 randItem← randItem-algorithm
15 freqItem← frequency-algorithm
16 recItem← project-algorithm given givenItems
17 errorRand = 0 if item in restOfCart is equal to randItem else 1
18 freqRand = 0 if item in restOfCart is equal to freqItem else 1
19 recRand = 0 if item in restOfCart is equal to recItem else 1

Most test have been constructed such that the test set is no larger than two hours of
data. This decision is an attempt to better test the real world situation that will occur
in the AB-testing. The goal is to re-train the algorithm every two hours, thus the test
set does not have to be any larger than two hours.

Context-aware tests

These test aims to evaluate how contextual information, incorporated in to the system,
affects recommendation accuracy. Due to the lack of time was only pre-filtering tests
conducted. Their structure is very similar to the time test (section 3.5) where the
difference is the input set. There can be multiple input sets such as only Saturdays or
Sundays. Another filtering constraint can be the location, the country as an example;
however, such filters was not thoroughly tested and corresponding result can thus not
be found in the result chapter 4.

Synthetic tests

The size for the Lindex datasets cannot be revealed which restrains the possibility to
recreate and compare results. Therefore was a synthetic dataset created such that its

37

3.5. TEST PROCEDURES CHAPTER 3. METHODS & MATERIALS

size and distribution could be revealed.
The synthetic data size is 500 customers divided in to five group, containing 100

customer each. There are 50 unique items which is also divided into 5 groups with 10
items in each group. Every customer have one cart where each cart contains 5 items.
The distribution of the cart is presented in table 3.2 where the number of items from
each item group is presented for each customer group. The selection of specific items
from a item group have been randomly generated for each cart.

Customer group item groups {i1,i2,i3,i4,i5}
c1 4,1,0,0,0

c2 3,1,1,0,0

c3 1,0,0,3,1

c4 0,1,3,1,0

c5 0,0,2,3,0

Table 3.2: This is the cart distribution for the synthetic data.

The tests that were conducted on the synthetic data is similar to those done on the Time
test. The procedure is thoroughly explained in algorithm 12.

38

3.5. TEST PROCEDURES CHAPTER 3. METHODS & MATERIALS

Algorithm 12: Generate syntetic test set

Data: data, iterations, nrRepeats
1 for repeatProcess=0, repeatProcess < nrRepeats, repeatProcess++ do
2 allFolds← create an array which stores the fold configuration
3 for i=0, i < size of data, i++ do
4 fold = Generate random folds of 10-fold-crossvaildation
5 allFolds[i]← fold

6 for foldNr=0, foldNr < 10, foldNr++ do
7 trainingCarts← Create a set of 9 folds
8 validationData← Create a set out of the last remaining fold
9 for iter=0, iter < iterations, iter++ do

10 for j=0, j < size of cart, j++ do
11 selectedItem← randomly selected validationData carts items
12 restOfCart← all items in cart that is not selectedItem
13 randItem← randItem-algorithm
14 freqItem← frequency-algorithm
15 recItem← project-algorithm given trainingCarts
16 errorRand = 0 if item in restOfCart is equal to randItem else 1
17 freqRand = 0 if item in restOfCart is equal to freqItem else 1
18 recRand = 0 if item in restOfCart is equal to recItem else 1

AB-testing

Most IT-systems is improved over time and to validate performance increase is AB-
testing used. The AB-test works as follows: the new system is referred to as A and
the old system is referred to as B. One of these systems, either A or B but not both, is
presented to the users by random selection and the performance is recorded over time
which will reveal if the new system have increased performance.

In Lindex web-shop there are two AB-tests. The first one is located at the check-
out page, table 3.3 , and the second one is located at the product page, figure 3.1.
The product-page test displays three products while the checkout page test presents six
products.

The checkout page test has incorporated the project-algorithm as its A-system and
no recommendation services as the B-system. Table 3.3 presents the A-system at the left
side and the B-system at the right side. Figure 3.1 visualizes the product-page test where
the project-algorithm is the A-system and the old Lindex recommendation services is
the B-system.

The results from the AB-testing where created using the t-Stat test, where the stan-
dard errors are compared to see what hypothesis testing (A or B) has the most positive
effect.

39

3.5. TEST PROCEDURES CHAPTER 3. METHODS & MATERIALS

Table 3.3: The recommender system location in the web shopping cart. Both cases are
marked in green, to the left our recommendations and the right the empty case.

Figure 3.1: The recommendations location on the product pages is marked in green. This
is how it looks like for the project algorithm and Lindex old algorithm.

40

4
Result

T
he structure of the result is divided into five parts: basic-, time-, context-,
synthetic- and AB-tests. Basic tests reports the test result from the prototype
created in Matlab. Time tests reports the test results of how the configuration
of the C#-implementation was evaluated where most of the result is presented

in figures and tables as so is for most sections. Context tests reports the result of different
time contexts as for example training on morning hours. The synthetic test is conducted
to compensate for not revealing data set sizes which hopefully will give the reader a
better reference. The AB tests report the results of how the algorithm worked online in
a real world setting.

4.1 Basic tests

The result presented here are from the MatLab-implementation and is generated for each
period in a category or many categories. As an example {A,B,C} is the concatenation
of the categories A, B and C and is referred to as many categories. The result is then
the average over all periods in that category of the concatenation of categories. A period
in an category is referred to as A : x where x is the period. All categories can be found
in appendix A. An example on how the results look are depicted in the Table 4.1. The
results are from the MatLab-implementation and are configured by five variables: the
training data set size and test data set size that is referred to as Setsize, the number
of recommendations, number of iterations, clusters size and number of dimensions. The
data set sizes will actually not be revealed as there exists an nondisclosure agreement that
says so, but also to preserve the integrity of Lindex and their customers. To compensate
for the lack of data set sizes was the synthetic data set created, the result from a test
with that data set is presented later in this chapter 4.4. However, a percental difference
between the training data set sizes is presented in section 3.5, Time test, to enable a
discussion of the sizes as they are very important for the recommendation accuracy.

41

4.1. BASIC TESTS CHAPTER 4. RESULT

The cluster size, clusters, presented in table 4.1 was chosen out of observations when
constructing the experimental prototype(for an explanation of the variables, see section
2.1). The number of dimension SVD reduces the implicit feedback into is presented as
dim. Cart, Freq and Random is the label for the project-, frequency and randItem-
algorithm results. rec is simply the number of items that are going too be recommended.
In the test was rec set to ten as that number was suggested from 3bits. The number of
iterations, Iter, is how many times the tests where done to generate more stable results.

Category Set size #rec Iter Clusters Dim Cart Random Freq

D : 1 – × – 10 20 1100 10 31,34% 4,07% 25,26%

D : 2 – × – 10 20 1100 10 31,33% 4,08% 25,22%

D : 3 – × – 10 20 1100 10 30,88% 3,95% 24,69%

D : 4 – × – 10 20 1100 10 30,06% 4,41% 23,37%

D : 5 – × – 10 20 1100 10 30,17% 4,33% 25,29%

D : 6 – × – 10 20 1100 10 31,11% 4,37% 25,08%

D : 7 – × – 10 20 1100 10 31,48% 4,43% 24,90%

D – × – 10 20 1100 10 30,91% 4,23% 24,83%

Table 4.1: Results obtained from 10-fold crossvalidation category D, defined in appendix
A

Figure 4.1 is a line chart of table 4.1 that visualizes the deviations within the category.
An emphasize on the result of each period in category D, instead of an average.

Figure 4.1: Results of 10-fold cross validation on the periods from category D

42

4.2. TIME TESTS CHAPTER 4. RESULT

4.2 Time tests

The results of the time tests will mainly be presented as tables of diagrams with corre-
sponding captions and explanations. The following results are generated from the time
testing phase described in chapter 3.

Category A B C { A,B,C }
Train size — — — —

Test size — — — —

#Items to rec 10 10 10 10

Iterations 500 500 500 500

Clusters 1100 1100 1100 1100

Dimensions 10 10 10 10

Result Cart 36.46% 38.72% 37.19% 37.46%

Result Random 2.82% 2.85% 3.34% 3.00%

Result Freq 23.36% 25.75% 28.09% 25.74%

Table 4.2: Results obtained from execution of different categories, defined in appendix A

There are three different results in table 4.2: First, the result from the project algorithm,
referred to as Cart. Second, the result generated from the randomItem-algorithm, re-
ferred to as Random. Last, the result generated by the frequency-algorithm, referred
to as Freq. The result represents the average success rate for each algorithm over its
different time periods, as is explained in the test procedure section.

Figure 4.2: The performance of the
three algorithms on average for a test-
ing set over two hour at three time pe-
riods.

As in the previous chapter the configuration
parameters had to be evaluated for the C#-
implementation. To do such evaluation a number
of tests where performed such that the following pa-
rameters could be determined: cluster size, dimen-
sion size, training size, testing size, number of items
to recommend, number of test iterations. Fig-
ure 4.2 is a bar diagram of table 4.2 using the sets
{A,B,C}. It illuminates the vague difference be-
tween the sets in the project-algorithm and how the
reverse relation emerge in the frequency-algorithm.
Variation in the result of the project-algorithm dif-
fers which is an important note in the algorithmic
comparison, how much is well described in the later parts of this chapter. It occur as
the test will not yield the exact same results each iteration due to the random nature of
k-mean. Still, the project-algorithm obtains over 10% better results in contrast to the

43

4.2. TIME TESTS CHAPTER 4. RESULT

frequency-algorithm.
As mentioned before the test and train size are neglected. However, it is still possible

to discuss the percent differences between periods in categories etc. A matrix that
compares categories can be observed in table 4.3.

Sep Oct Nov Dec Jan Feb Mars April

September 100% 10% -10% -22% 36% 45% -12% -6%

October -9% 100% -18% -29% 24% 33% -20% -14%

November 11% 22% 100% -13% 51% 62% -2% 4%

December 28% 40% 15% 100% 74% 86% 13% 20%

Januari -27% -20% -34% -43% 100% 7% -35% -31%

Februari -31% -25% -38% -46% -6% 100% -39% -35%

Mars 14% 24% 2% -11% 55% 65% 100% 7%

April 6% 17% -4% -17% 45% 55% -6% 100%
Table 4.3: Comparison of the data size between months too give a intuition of how the
data size effect the results. In the table it can be seen that each month size is divided by
the other months sizes so when looking at each row it represents how much larger a month
is compared to the others.

Importance of cluster size

In order to optimize results, the cluster size had to be dynamic. Still, the question what
size to select remained. To obtain the optimal cluster size tests were made and the result
is presented in Figure 4.3. The different sizes tested was 50% up to 90% of unique item
size with a 10% step size on the categories A,B & C.

Figure 4.3: Visualizes the relation between prediction accuracy and the number of clusters
used. The meaning of Cart50 is that the project algorithm is used with a cluster size of 50%
of unique item size. Cart60 have the same meaning except with 60% instead and so on.

44

4.2. TIME TESTS CHAPTER 4. RESULT

Figure 4.3 reveals a near linear relation between cluster size and accuracy. A dynamic
cluster size of 80% was chosen.

Importance of dimensions

The dimension size needed when doing reduction in SVD had to be determined. Thus,
the following figure was generated:

Figure 4.4: The performance change as the dimensions increase. Performance at the y-axis
and dimension size in the x-axis.

Figure 4.4 does not establish any significant result which in itself reveals that increasing
the dimension size will not increase performance significantly, the test used the P:1 time
category. Consequently, a dimension size of 10 was selected.

Importance of training time

As the dimension and cluster size was established, the natural step was to determine
the training size needed to obtain satisfactory results. The following figures represents
the performance for the different training sets which reveals the ”best fit” size for the
project-algorithm. The first figure presents the result given a single item while the second
presents the result given multiple items.
Table 4.4 presents results on how the system is affected by using different training sizes.
The variance, given a single item, is 0.68% and 0.25% for the project- and randItem-
algorithm. The variance, given multiple items, is 1.54%, 0.7% and 0.46% for the project-,
frequency- and randItem-algorithm. The result is increase with an increase training set
size; however, the increase is not significant enough to justify the increased amount of
resources needed to re-train as it gives an increased time span between re-trainings which
will decrease accuracy over time. Thus the shortest training set, one week, was chosen.

45

4.2. TIME TESTS CHAPTER 4. RESULT

Categories Y , given a single item Categories Y , given a multiple item

Table 4.4: Results using different training sizes

Additionally, a test where made that decreased the training set size. The table 4.5
reflects how results is affected by decreasing the number of sequentially following training
days, resulting in an enormous size difference of the training sets: 1980,74%. Still, such
difference is to be expected as the ration between the dates are 14:1.

Single: Categories N ,O and P Multiple: Categories N ,O and P

Table 4.5: The table shows decreasing training times from 14 days to 1 concerning cate-
gories N , O and P .

46

4.2. TIME TESTS CHAPTER 4. RESULT

Time shift testing

In order to verify stability of the project algorithm over time, test with similar training
and testing set was performed and is presented here, but with a slight shift of time.

The first test was to run the ”shift” tests, training and testing with the same time
parameter except that they are shifted one day forward. The test result from shift test
are represented as figures in a 2× 3 table. Each row will present results from a specific
category, usually defined above the figures. The right side result is generated from ”time
testing algorithm given a single item” and the left side ”time testing algorithm given
multiple items”. However, these two uses the different test algorithms (see section 3.5).

The y-axis represents the percentage of successful recommendations and the x-axis
is the period start of the test, but with hours excluded(see appendix A for the exact
times). Furthermore, the lines represents the success gradient between different periods
and the markings is the exact result given a period. There are different markings for
the algorithms such that results can be interpreted in black and white as well. In turn
the tables structures remains the same but differentiates in months such as A, B and C
represents different periods in March:

12-Oct 12-Nov 12-Dec 13-Mar

E,F & G H, I & J K,L & M A,B & C

Table 4.6

As previously mentioned, the results have a variance. In the figures of the right half from
table 4.7 is the variance: {1.18%, 1.02%, 1.07%} for the project-algorithm, given the cat-
egories {A, B, C}, and {0.83%, 0.88%, 0.73%} for the randItem-algorithm. There is no
variance for the frequency-algorithm in the test given a single item as they are always the
same, no randomization involved. In contrast, the variance for tests given multiple items
is {2.48%, 2.43%, 2.32%} for the frequency-algorithm. Furthermore, {4.32%, 3.43%,
3.59%} and {1.68%,1.72%, 1.69%} for the project-algorithm and randItem-algorithm.

47

4.2. TIME TESTS CHAPTER 4. RESULT

Single: Categories A,B and C Multiple: Categories A,B and C

Table 4.7: The left side of the table visualizes the results of recommendations made on
shifting data sets of categories A, B & C. The right side is the results of the recommendations
made given two items, still the same categories. Observe that the dates of the diagrams are
the first day of the training set.

Ten iterations was used to obtain these results. More iterations is preferable; unfor-
tunately, the test requires a lot of computational resources which is not justifiable as the
accuracy increase of the test is slim in comparison. Furthermore, ten recommendations
was made in each test as a similar configuration with multiple recommendations would
most likely be used in a real world application. Additionally, some items will be filtered
out in a real world application as some items has already been presented to the user etc.

Table 4.8 have the same configuration as table 4.7 except for the time categories. The
variances for categories {E, F , G} given a single item is: {1.49%, 1.97%, 1.33%} and
{1.32%, 1.35%, 1.23%} for the project- and randItem-algorithm. Given many items:
{5.80%, 5.59%, 5.44%}, {3.39%, 3.56%, 3.02%} and {2.73%, 2.63%, 3.03%} for the
project-, frequency- and randItem-algorithm.

48

4.2. TIME TESTS CHAPTER 4. RESULT

Single: Categories E,F and G Multiple: Categories E,F and G

Table 4.8: The left side of the table visualizes the results of recommendations made on
shifting data sets of categories E, F &G. The right side is the results of the recommendations
made given two items, still the same categories . Observe that the dates of diagrams are the
test day.

Table 4.9 have the same configuration as table 4.7 except for the time categories. The
variances for categories {H, I, J} given a single item is: {1.81%, 1.75%, 1.35%} and
{1.35%, 1.34%, 1.07%} for the project- and randItem-algorithm. Given many items:
{6.5%, 6.26%, 4.88%}, {4.16%, 2.89%, 2.85%} and {3.24%, 3.25%, 2.36%} for the
project-, frequency- and randItem-algorithm.

49

4.2. TIME TESTS CHAPTER 4. RESULT

Single: Categories H,I and J Multiple: Categories H,I and J

Table 4.9: The left side of the table visualizes the results of recommendations made on
shifting data sets of categories H, I & J . The right side is the results of the recommendations
made given two items, still the same categories. Observe that the dates of the diagrams are
the first day of the training set.

Table 4.10 have the same configuration as table 4.9 except for the time categories.
The variances for categories {K, L, M} given a single item is: {1.20%, 1.51%, 1.03%}
and {0.87%, 1.02%, 0.76%} for the project- and randItem-algorithm. Given many items:
{4.84%, 4.70%, 3.67%}, {2.87%, 2.31%, 2.23%} and {1.75%, 1.16%, 1.72%} for the
project-, frequency- and randItem-algorithm.

50

4.2. TIME TESTS CHAPTER 4. RESULT

Single: Categories K,L and M Multiple: Categories K,L and M

Table 4.10: The left side of the table visualizes the results of recommendations made on
shifting data sets of categories K, L & M . The right side is the results of the recommenda-
tions made given two items, still the same categories. Observe that the dates of the diagrams
are the first day of the training set.

The difference between November and December is interesting as the sales is expected
to increase in December, which it does, and the recommender might respond differently
to the increased intensity of sales. The difference is presented in table 4.11 & 4.12.

Category

Carts

Random

Frequency

H K

25.94% 25.55% -0.39

3.34% 2.18% -1.16

16.61% 13.09% -3.52

I L

23.41% 27.77% 4.36

2.74% 2.11% -0.63

13.31% 15.06% 1.75

J M

24.52% 24.33% -0.19

3.23% 2.27% -0.96

18.13% 16.12% -2.01

Table 4.11: Compares the average result from categories visualized in table 4.9 and 4.10
for a Single item.

51

4.2. TIME TESTS CHAPTER 4. RESULT

Category

Carts

Random

Frequency

H K

26.78% 25.57% -1.21

2.59% 1.52% -1.07

15.93% 11.07% -4.86

I L

22.38% 29.77% 7.39

2.37% 1.13% -1.24

11.74% 13.21% 1.47

J M

21.48% 24.00% 2.52

2.33% 0.67% -1.66

14.64% 28.67% 14.03

Table 4.12: Compares the average result from categories visualized in table 4.9 and 4.10
for Multiple items.

Table 4.13 have the same configuration as table 4.9 except for the time categories.
The variances for categories {Q, R, S} given a single item is: {1.61%, 1.74%, 1.21%}
and {1.19%, 1.25%, 0.88%} for the project- and randItem-algorithm. Given many items:
{8.14%, 5.17%, 3.84%}, {2.57%, 3.76%, 2.65%} and {1.91%, 2.95%, 2.08%} for the
project-, frequency- and randItem-algorithm.

Single: Categories Q,R and S Multiple: Categories Q,R and S

Table 4.13: Presents the result form training on the first seven days and test on the last
for the categories Q, R and S.

The maximum size difference of the training sets in categories Q,R & S is 212,09%

52

4.2. TIME TESTS CHAPTER 4. RESULT

which indicate that some months have an higher intensity than others. This is also
depicted in the size difference of table 4.3. As can be seen, some sets sizes differs a lot
such as December with a size 86% bigger than in January.

Category

Carts

Frequency

A B C

37.69% 39.74% 39.95%

23.36% 25.03% 28.81%

14.33 14.69 11.14

E F G

30.58% 32.19% 31.40%

17.06% 18.75% 18.60%

13.52 13.44 12.80

H I J

26.54% 25.43% 27.36%

16.61% 13.31% 18.13%

9.93 12.12 9.23
Table 4.14: Compares the average result between Carts and Frequency from Category A-J
, given a Single item.

Category

Carts

Frequency

K L M

28.34% 31.36% 27.66%

13.09% 15.06% 16.12%

15.25 16.30 11.54

N O P

26,7% 41,76% 34,81%

9,34% 34,69% 34,06%

17.36 7.07 0.75

Q R S

26.17% 34.46% 33.42%

17.71% 24.77% 23.70%

8.46 9.69 9.72
Table 4.15: Compares the average result between Carts and Frequency from Category
K-M , given a Single item.

Table 4.14 and 4.15 compares the results between the project- and frequency-algorithm.
The green text under the percentage is their difference. If it is red it means the frequency
have obtained a better overall result for that particular category. The same comparison
is done in tables 4.16 & 4.17 for multiple items.

Category

Carts

Frequency

A B C

30.33% 35.03% 32.45%

17.46% 21.51% 22.78%

12.87 13.52 9.67

E F G

26.83% 33.76% 27.44%

15.41% 19.40% 18.47%

11.42 14.36 8.97

H I J

26.78% 22.38% 21.48%

15.93% 11.74% 14.64%

10.85 10.91 6.84
Table 4.16: Compares the average result between Carts and Frequency from Category A-J
, given Multiple items.

53

4.3. CONTEXT TESTS CHAPTER 4. RESULT

Category

Carts

Frequency

K L M

25.57% 29.77% 26.73%

11.07% 13.21% 13.94%

14.50 16.56 10.17

N O P

19,6% 30,6% 33,34%

8% 23,25% 28,21%

11.6 7.35 5.13

Q R S

22.67% 28.81% 27.57%

14.48% 18.63% 20.16%

8.19 10.18 7.41
Table 4.17: Compares the average result between Carts and Frequency from Category
K-M , given Multiple items.

4.3 Context tests

This section households the results of contextual pre-filtering testing. The tests is equal
to those of Time-test(see section 3.5) but takes multiple and different input sets that is
explained in their categories.

Category

T:1

T:2

T:3

A:7

B:7

C:7

Carts Frequency

22.45% 18.75% 3.70

11.28% 8.02% 3.26

12.18% 10.51% 1.67

46.19% 22.73% 23.46

36.93% 13.68% 23.25

43.42% 28.40% 13.23

Random

4.27%

3.52%

3.77%

2.67%

2.36%

3.46%

Table 4.18: The first three periods presents results for contextual pre-filtering while the
bottom three presents one weeks execution with the same test set

Category

Carts

Random

Frequency

T:1 A:7

22.45% 46.19% -23.74

4.27% 2.67% 1.60

18.75% 22.73% -3.98

T:2 B:7

11.28% 36.93% -25.65

3.52% 2.36% 1.16

8.02% 13.68% -5.66

T:3 C:7

12.18% 43.42% -31.24

3.77% 3.46% 0.31

10.51% 28.40% -17.89

Table 4.19: Compares the same algorithm with and without contextual pre-filtering. When
the non-contextual algorithm out-perform its contextual counter part, a red negative unit
represents their difference. The opposite is represented as a green positive unit.

Table 4.18 and 4.19 have the following configuration: A cluster size of 80%, 10 dimen-
sions, 100 iterations and a variance, given a single item, of {0.28} and {0.39} for the
project- and randItm-algorithm. The variance given multiple items is {1.14}, {0.83} and
{0.75} for the project-, frequency- and randItem-algorithm.

54

4.3. CONTEXT TESTS CHAPTER 4. RESULT

Category

U:1

U:2

U:3

A:8

B:8

C:8

Carts Frequency

16.09% 16.57% -0.48

14.28% 13.85% 0.43

28.28% 26.86% 1.42

33.55% 24.26% 9.29

37.85% 18.97% 18.88

45.34% 24.73% 20.61

Random

3.22%

2.94%

3.38%

2.72%

2.46%

3.39%

Table 4.20: The first three periods presents results for contextual pre-filtering while the
bottom three presents one weeks execution with the same test set

Category

Carts

Random

Frequency

U:1 A:8

16.09% 33.55% -17.46

3.22% 2.72% 0.50

16.57% 24.26% -7.69

U:2 B:8

14.28% 37.85% -23.57

2.94% 2.46% 0.48

13.85% 18.97% -5.12

U:3 C:8

28.28% 45.35% -17.07

3.38% 3.39% -0.01

26.86% 24.73% 2.13

Table 4.21: Compares the same algorithm with and without contextual pre-filtering. When
the non-contextual algorithm out-perform its contextual counter part, a red negative unit
represents their difference. The opposite is represented as a green positive unit.

Table 4.20 and 4.21 have the following configuration: A cluster size of 80%, 10 dimen-
sions, 100 iterations and a variance, given a single item, of {0.81} and {0.96} for the
project- and randItm-algorithm. The variance given multiple items is {3.24}, {2.70} and
{2.12} for the project-, frequency- and randItem-algorithm.

55

4.3. CONTEXT TESTS CHAPTER 4. RESULT

Single: Categories V ,W and X Multiple: Categories V ,W and X

Table 4.22: The figures visualizes the results from test on either the morning, lunch or
evening of the same day(See appendix for exact description). The training set consists of
15 sequential weekdays of the same time period of the day, mornings etc. Consequentially,
12-11-06 and 12-11-07 does not yield any results as they are not weekdays.

The configuration of Table 4.22 is one hundred iterations, 80% cluster size, 10 dimen-
sions, output of ten recommendation and given one respectively two items. Further-
more, the variance for singular recommendations is {1.35%,0.97%} and {1.05%,0.78%}
for the project- and randItem-algorithm. Multiple recommendation have a variance of
{4.13%,3.50%}, {2.93%,1.73%} and {2.51%,1.74%} for project-, frequency- and randItem-
algorithm.

56

4.4. SYNTHETIC TESTING CHAPTER 4. RESULT

4.4 Synthetic testing

Figure 4.5: Results of 10-fold cross validation on synthetically constructed data, given a
single item.

Figure 4.6: Results of 10-fold cross validation on synthetically constructed data, given
multiple items.

The configuration for figure 4.5 and 4.6 is one hundred iterations with an additional ten
iteration for each fold, 80% cluster size, 10 dimensions, output of ten recommendation
and given one respectively two items. Furthermore, the variance for singular recommen-
dations is 5.33%, 4.3% and 3.56% for the project-, frequency- and randItem-algorithm.
Multiple recommendation have a variance of 21.90%, 22.22% and 18.67% for project-,
frequency- and randItem-algorithm.

57

4.5. AB-TESTS CHAPTER 4. RESULT

4.5 AB-tests

The results gathered from the AB-tests are divided in two cases: product page and
checkout page.

4.5.1 Product Page

The old Lindex recommendation system is the A-test and the B-test is the project-
algorithm. In these tests have different values been measured where the most important
ones are the average value of an order and the number of recommended products in an
order. The average order value for the A-test was slightly better than the B-test, 0,87%
better, but is not statistical valid as can be seen from the t-test values in table 4.23.

Each order contained 0,83 recommended products in the A-test, while the B-test only
contained 0,59 recommended products per order. The t-test results, located in table 4.24,
shows that the values are statistical valid. The tests where conducted between week 32
to 36 in the year of 2014.

t-stat 0.810523507

P(T<=t) one-tail 0.208824516

t Critical one-tail 1.644930037

P(T<=t) two-tail 0.417649032

t Critical two-tail 1.960082944

Table 4.23: t-test for ordervalue: Two sample assuming unequal variance

t-stat 13.70917

P(T<=t) one-tail 7.09 ∗ 10−43

t Critical one-tail 1.644933

P(T<=t) two-tail 1.42 ∗ 10−42

t Critical two-tail 1.960087

Table 4.24: t-test for recommended products per order: Two sample assuming unequal
variance

4.5.2 Checkout Page

The A-test did not contain any recommendation while the B-test used the project-
algorithm to present recommendations. In these tests did the average order value increase
with 0.75% using recommendations from the project-algorithm. Unfortunately are these
values not statistical valid as the difference is to small compare to the number of samples
taken, see table 4.25.

58

4.5. AB-TESTS CHAPTER 4. RESULT

t-stat -0.69386

P(T<=t) one-tail 0.243889

t Critical one-tail 1.644932

P(T<=t) two-tail 0.487778

t Critical two-tail 1.960085

Table 4.25: t-test for ordervalue: Two sample assuming unequal variance

59

5
Discussion

T
his chapter will first do a general discussion of the results presented in the chap-
ter 4. The general discussion will follow the structure of Result and mainly
consists of interpretations and insights made. After the general discussion will
the discussion of the research question take place. The insights obtained from

the general discussion is necessary to give an answer to the research questions.

Discussion of Basic Tests

The results from cross-validation in Matlab mainly serves as an indicator to how future
results of the project algorithm might turn out. Indeed, the next test phase tends to
render similar margins between the project algorithm and the most frequent algorithm.
Actually, table 4.2 appears to have a similar margin as in table 4.1, but elevated five
percentage. Another interesting observation is that the result from randItem-algorithm
is decreased with about one percentage, probably due to the reduction of the test set.
Such behaviour could be explained by the fact that randomly selecting an item out of
all items in a bigger set, and then hope to find the same item in an much smaller set, is
not very likely.

Discussion of the Test Configuration

The configuration for the project algorithm such as cluster size, dimension size and etc.
had to be evaluated and determined. Results of such evaluation are located in figure 4.4
and 4.3 where no significant differences between the dimension sizes can be observed.
It might seem strange as the dimension reduction is large, around 100-1000 times. The
obvious choice is to use a dimension as small as possible to shorten execution times.
Moreover, the cluster size have a fairly linear increase. Still, 80% cluster size is preferred
as more clusters takes time to compute and the increase is not significant. From these
result it was decided a dimension size of ten and cluster size of 80% of unique items size

60

CHAPTER 5. DISCUSSION

should be used as most categories is not larger than two weeks.

Discussion of the Time Test, given a Single Item

To better understand and predict how the algorithm would behave in a real world situa-
tion, a test featuring the same circumstances had to be made. This test has been named
time test (see chapter 3.5). Interestingly enough, some periods used in this test seems
to generate better results than the sequentially next period. Such behaviour might seem
a bit strange; however, the same phenomenon occurs in the most frequent algorithm as
well. In some diagrams the two algorithms even have and inter-operating oscillation.
To some extent such behaviour is explained by how the cold-start problem is managed
by the project algorithm. However, by providing a small test set, much of the items is
bound to already be apart of the training set. Hence, the situations where a cold-start
situation occurs is limited.

It is also important to realise that categories A, B and C is merely a shift of some
hours. Still, their results can be very different which reveals how important the test set is.
The same notion might also explain the difference between periods in the same categories.
An exaggerated example is when a test set only contains the most rare occurring items
in the training data. Such items will rarely be recommended and is definitely not among
the most frequent occurring items. It might not be the most prestigious explanation but
hard test sets yields poor results.

Additionally, when analysing periods with a higher separation of time for the project
algorithm such as in table 4.5, it becomes obvious that some periods yields better result
consequentially over all categories. The ascendancy between November and December
is particularly prominent. Still, there is a strong descendance from January to March
and again an ascendancy between March and April. However, an increase in sales before
Christmas is to be expected and might explain the increase of prediction accuracy in
December. Interestingly enough, the frequency algorithm does not differentiate as much
compared to the results between January and March. Such behaviour suggest the sale
are more diverse in their nature for December but still includes pattern detectable by
the project algorithm.

A plausible explanation for the increased patterns detectability might be the size
difference in the training set. It is increased by roughly 64% from November to December.
The same behaviour is observed between March and April where the frequency algorithm
decreases and the project algorithm increases its accuracy. Yet again, training size
difference is increased, this time by roughly 24%.

Such behaviour suggest that much data in a small time span increases the project
algorithms accuracy compared to the frequency algorithm. It might seem far fetched
but it could be compared to the Nyquist sampling theorem where to few sample does
not recreate the true behaviour of a signal1. In this situation, the signal would be the
user patterns.

Additionally, the project algorithm performs poorly in category P from table 4.5.

1http://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem

61

http://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem

CHAPTER 5. DISCUSSION

As it turns out, the test size is roughly 36% larger for that category compared to the
others. Furthermore, the training size is decreasing between the different periods and all
three categories indicate a decrease in accuracy when the training size is reduced below
six days. Such indicators serves as arguments for the existence of a relation between
test size and training size. However, it does not establish any arguments that increased
intensity of the test set would reduce the project algorithms accuracy.

If the three different categories is compared to each other it becomes obvious that
there is a reduction in the accuracy of the project algorithm relative to the frequency
algorithm. Depending on the perspective taken, it could instead be interpreted as an in-
crease of accuracy for the frequency algorithm. Additionally, the accuracy for the project
algorithm is increased from category N compared to category P , but the frequency algo-
rithm increases more. Such behaviour suggests the test data is not diverse and contains
many most frequent items. Perhaps that tells some about the users behaviour as cate-
gory P only includes purchases done in the evening? However, such behaviour cannot
be observed over a years span in table 4.5 which, on the contrary, suggests that category
P might contain an unfortunate test set.

Such notion begs the question: does categories with a larger time difference yield sig-
nificant diverse results? The averages in table 4.11 indicate no such thing. The greatest
divergence of the project algorithm is a little larger than four percentage which is not
much as a variance of roughly 1.5% exists. Furthermore, the frequency algorithm have a
divergence that exceeds one and a half percentage in table 4.11 for all three comparison
which suggest the different data set are somewhat similar over time. However, the exact
difference can be studied in the visuals of table 4.9 and table 4.10.

To recap what has been said:

• The frequency- and project-algorithm inter-operates to some extent, suggesting
the project-algorithms result differs accordingly to the behaviour of the dataset.

• More intensive periods seems to reveal user patterns better and in turn yield better
result for the project-algorithm.

• There exists a relationship between training size and test size.

• The randomItem-algorithm yields low results for relatively big training sets.

Discussion of algorithmic comparison, given a Single Item

Table 4.14 compares shifting categories and so does table 4.15 for categories K,L &
M . These tests returns a unequivocally result: the project-algorithm outperform the
frequency-algorithm. Not only at specific periods but over many periods, both with
smaller intervals and larger. Additionally, the difference of results is roughly 11.2%
better in average which indicates the project-algorithm finds and uses user patterns
such that its accuracy is improved compared to the frequency-algorithm.

However, if one look more closely on the results, all evening categories return less dif-
ference than the previous. Such behaviour is also revealed in table 4.15 for the categories

62

CHAPTER 5. DISCUSSION

Q, R & S where a decrease of difference occur from mid-morning toward the evening.
Fortunately, so does not the recommendation accuracy for the project-algorithm. It is
simply the frequency-algorithm that have increased in accuracy.

Discussion of the Time Test Phase, given Multiple Items

Up until now have only results from recommendation given a single item been discussed.
However, results from recommendation given two items has also been tested. One such
test is visualized in table 4.12. The results show an decrease in accuracy for both
the frequency- and project-algorithm. However, that is to be expected as there is one
item less to compare the recommended items against. That is, a 25% reduction of
possible comparisons is made on average as the average cart size is five. Furthermore,
the multiple-items-test utilizes random selection of items to the recommender which
increases the variance of the results.

Interestingly enough, the first three periods of H,I & J yields similarly pattern
to its single-item counterpart. However, the patterns is somewhat attenuated and the
sequentially following periods have an increased divergence. This is not the case for
the frequency-algorithm which maintains the pattern structure with some variations.
It suggests the project-algorithm still captures user pattern and beats the frequency-
algorithm. However, it is not possible to strictly compare the results between the two
tests as they are distinctively different (see section 3.5).

Discussion of algorithmic comparison, given Multiple Items

The results from table 4.16 and 4.17 does also reveal positive results toward the project-
algorithm; however, somewhat attenuated as has been stated in the previous section.
Such performance indicates that the results is conclusive, the project-algorithm outper-
forms the frequency with the current data and setting.

Discussion of Behaviour and Context

Previous observations suggests that the users change their behaviour toward the evening
as they purchase the more frequent occurring items. Perhaps, working people with
children does not have the time to conduct e-commerce until the evening when the kids
has gone to bed. Their particular behaviour is probably also influenced as their children
will need cloths as well. Thereby rises another issue, the growth of children such that
they will need larger cloths on a frequent basis. The huge expense associated with that
issue cannot motivate greater diversity of cloths such as trends etc.

Additionally, people that work might not have the same energy needed in the effort of
shopping. In that situation it might be easier to follow campaigns or sales event as they
tend to give the perception of being a good choice. Furthermore, an important factor
is the current clothing trends for grown ups. People that work can usually afford trend
cloths while unemployed’s might have to settle with cheaper alternatives. Of course
there is a presumption that trend cloths is more expensive in this argument and might

63

CHAPTER 5. DISCUSSION

not agree with reality in all situations. However, the factor behind the effect is probably
the same, namely crowd psychology2. Given such hypothesis it might be reasonable to
only train on data from one country or geographical region that house hold the same
trends etc.

Unfortunately, as time is such a rare commodity, it was not possible to do a thor-
ough evaluation of such interesting suggestion given the time frame of a master thesis.
Still, it reveals territories of contextual pre-filtering that is of interest to further studies
given various hypothesis of psychology. Perhaps somewhat data specific to the busi-
ness in clothing e-commerce as the data is very fresh and have a high throughput of
items. Furthermore, one of the most important aspect of the data set is the emphasis
on shallowness. It might not be the most benignant word but it do express the lack of
knowledge of the item such as material qualities, workability and frequency of usage. It
might sound strange but customers prioritise what they see mixed with what they think
other will think of them with such items. It sometimes results in purchases of items
uncomfortable to the user but they are still willing to pay a lot of money for such items.

A more practical example would be occasionally clothing such as a dress to celebrate
new year etc. It is not the most workable clothing, it is expensive and the lack of usage
suggest it might not be the best purchase. Still, almost everyone have such clothing and
usually of expensive trend brands. Moreover, as the frequency of such item is low, it
is hard to capture in a recommender system which further argues for consideration of
contextual information.

Discussion of Contextual Pre-filtering

When testing contextual pre-filtering, categories U & T , it was quickly discovered that
some tests did not return good results such as U : 1 in table 4.20. Additionally, the
period is very sparse on data, the training set is only 4 times larger than the test set.

Another important observation is that the difference between the frequency- and
project-algorithm is very small which suggest a bad performance for the project-algorithm.
Furthermore, the randomItem-algorithm generates good results compared to non-contextual
test as can be observed in table 4.19 and 4.21. Such behaviour has already been explain,
there exists to little training data in comparison to the test size.

As the observant reader have already noticed does the project-algorithm outperform
its contextual counterpart in table 4.19 and 4.21. Interestingly enough, so does the
frequency-algorithm as well. Such behaviour is explained with the same answer: there
exists to little training data in comparison to the test size.

Synthetic testing

Figure 4.5 is very similar to the cross-validation test done for the matlab prototype,
presented in figure 4.1. The difference between the project- and frequency-algorithm is
almost the same but their result is elevated with roughly 8%. This is somewhat to be

2http://en.wikipedia.org/wiki/Crowd_psychology

64

http://en.wikipedia.org/wiki/Crowd_psychology

CHAPTER 5. DISCUSSION

expected as the data is synthetically generated and does not contain any special user
pattern or concept drifts. However, the test given two items, whose results can be located
in figure 4.6, is very different and have a very large variance, 22%, for both the project-
and frequency-algorithm in comparison to a single item configuration that have roughly
5% for the project-algorithm, 0% for the frequency-algorithm.

This suggest that the current distribution equation for many items is unstable. Still,
it is important to remember that the test cases is not the same and the result is there-
fore not entirely comparable but rather a reference. However, the frequency-algorithm
performs equally to the project-algorithm which suggest the project-algorithm yields
unsatisfactory results given multiple items. This indicates that a lot of improvements
can be made for the distribution computations given multiple items.

Another important observation is the rough 8% increase of results compared to the
experimental Matlab prototype. This can be explained by the fact that the basic test
selects items from a cart by random where the time test iterate through all items and thus
have no randomization involved in the test-phase. Furthermore, the implementations of
the different techniques is different such as k-mean which can be another factor for the
higher variance and the elevated results.

Discussion of AB-testing

It is obvious that the project-algorithm is outperformed by the current recommendation
service at Lindex by the number of item recommended. However, the order-value is
almost the same which is somewhat surprising as the Lindex recommendation service
recommends 41.03% more items per order but does not significantly improve the order-
value compared to the project-algorithm.

The increase is in the number or orders containing recommended products which
suggests the project-algorithm predict user patterns but probably only for customers
with a clear purchasing pattern. These shortcomings is a direct consequence of not
utilizing all available data, but instead enforce constraints on data collection.

Moral Perspective

After talking a lot about how peoples virtual data can be used to achieve different goals,
it might be wise to stop and ask if there are some moral issues regarding this kind of
engineering. The system handles personal data and constructs recommendations based
on it. Thus, these recommendation is personal and directed to the user, if the user then
leave the computer and someone else starts using it, s/he will then be in the position
where observation of the recommendations can be made.

By observing the recommendations it could be possible to decipher the previous users
preference about the items. It might not be very harmful in most cases but if it is taken
to the extreme there might be complications. An example: a male have been shopping
female cloths, such actions might reveal personal preferences that can go against the
norm or reveal potential female relations that he would like to keep a secret. Perhaps a
more practical example would be a situation were the user has purchased presents and

65

CHAPTER 5. DISCUSSION

than the person, for whom the presents where intended, uses the computer and sees the
recommendation that clearly reveals the intentions.

Furthermore, cookies could be used to enhance the recommendations by gather a
lot of information from different areas that might not only be web-shop specific, given
the cookies is accepted. Additionally, if the database is compromised, all the data could
potentially be view by anyone. Is it morally right to use the data in this way, given these
issues? What can be done to increase security?

To answer the question, careful consideration of the business and the information
gather have to be done. In this case there are not very many impacts toward the user
if the recommendations is revealed to others. However, there are some potential high
impact on relational basis but with very low probability. Thus, the benefit to the masses
out-weight the few that can actually suffer from miss-usage.

Fortunately, it is possible to protect the user integrity by considering every new cart
as a new user if they have not logged in. This prevents others from getting access to the
personal recommendations, given the user have logged out etc.

Research question

The research questions will be repeated here in order to refresh the readers memory:

Given a user that puts an item into his/her shopping cart, is it possible to create an
implicit-feedback based collaborative filtering recommender system from shopping carts
history that is interchangeable with a explicit-feedback based CF RS? How does this af-
fect the performance in Neighborhood and factor models? Can the system be enhanced
with contextual information and system addictiveness in such way that it will improve
performance, perhaps out perform a non-CARS?

The first question is a bit hard to give a straight yes/no answer as such test were not
conducted. The goal was to compare the project-algorithm to Graphlab, but that goal
was down prioritized in order to ensure a working prototype for AB-testing. Of cause
such test would have been valuable in the evaluation before an AB-test but an AB-test
will give true performance results and is therefore prioritized. A comparison to a recom-
mender system using explicit feedback can be done afterwards if further interests exists.
Still, with high uncertainty, the comparison would probably not differentiate much.

The answer to the second question is that the restrains, on what information is
allowed to be used to construct an recommender system, is not advised if the best
possible recommendation accuracy is sought. However, fairly good accuracy can be
obtain with those restrains and it simplifies the system such that the resources needed
to do the computations is decreased.

In order to answer the last question, one have to implement adaptiveness and thor-
oughly evaluate performance on contextual awareness models and not just pre- and post-
filtering. As this was not done, cannot a straight answer be given. However, contextual
pre-filtering did not increase prediction accuracy given the project data and constraints.

66

6
Conclusion

T
he thesis aim was to construct and evaluate a collaborative filtering recom-
mender systems given data from Lindex. Such system was constructed and
evaluation concerning performance on historical data was done. Even some
test on contextual pre-filtering where performed, but most importantly were

AB-testing done on Lindex web-shop.
Fortunately, the first evaluations returned unequivocal conclusive results: the project-

algorithm outperform the frequency-algorithm. A joy-giving outcome of the Time tests.
However, the complexity of the solution might have been unnecessary and simpler solu-
tion could have sufficed. To obtain such understanding, a comparative evaluation has to
be done. Unfortunately, time did not allow such test to be performed.

Another area that needs more attention is the data set. A comparative evaluation
toward other sets would be in order as the solution could be biased toward the specific
data set. Unfortunately, it is hard to find good and free data sets that contains a
cart-based structure. A ”good” data set have a high intensity of orders in a relatively
short time period. If such set was available, it would have been possible to reveal the
information, sizes etc. That information is important for future research.

The most surprising results was perhaps the low success rate of contextual pre-
filtering where an increase in recommendation accuracy was to be expected from the
pre-study. Unfortunately, the results says otherwise. However, the evaluation is not as
thorough as it could be and an increase is probably still possible.

Future work

As previously said, a more complex model to capture the concept drift should be thor-
oughly evaluated. There are some interesting context-awareness models such as higher
order SVD (Karatzoglou, Amatriain, Baltrunas, & Oliver, 2010, p.3) that could be a
candidate. Such model could go well in-hand with an more adaptive approach such as
incremental SVD(Brand, 2002). As the adaptive approach increase the periods between

67

CHAPTER 6. CONCLUSION

re-trainings of the feature space. However, higher order SVD will be more computational
intensive which indicates there might not be any gains of computational resources. The
most likely benefits would be increased recommendation accuracy.

Other areas of interest would be to incorporate more information in to the system
such as:

• Use URL:s visited by the user and other user to generate output data

• Use search terms created by the user and other users to generate output data

• Measure time spent on particular items

• Interpret trend blogs using natural language or RDFa1 to gain knowledge of what
items might become popular in the future

Furthermore, different psychology hypothesis, mentioned in the discussion chapter,
could be useful in the quest of increasing recommendation accuracy. Particularly in the
paradigm of collaborative filtering as it tries to capture what categories of a person the
user are. Then improvement could be made if it is possible to foresee how customers
would react using models based on theories from psychological science.

1http://en.wikipedia.org/wiki/RDFa

68

http://en.wikipedia.org/wiki/RDFa

Bibliography

Adomavicius, G., & Jannach, D. (2013, March). Preface to the special issue
on context-aware recommender systems. The Journal of Personalization Research,
152 (10.1007/s11257− 013− 9139− 2), 125-136.

Adomavicius, G., & Tuzhilin, A. (2005, June). Toward the next generation of rec-
ommender systems: A survey of the state-of-the-art and possible extensions. IEEE
Transactions on Knowledge and Data Engineering , 17 (1), 734-749. doi: 10.1109/
TKDE.2005.99

Arthur, D., Arthur, D., Manthey, B., Manthey, B., Roglin, H., & Roglin, H. (2009).
k-means has polynomial smoothed complexity. In (p. 405-414). IEEE. Retrieved from
www.summon.com

Austin, D. (2009, August). We recommend a singular value decomposition. Ameri-
can Mathematical Society. (http://www.ams.org/samplings/feature-column/fcarc
-svd)

Bazire, M., & Brézillon, P. (2005). Understanding context before using it. CONTEXT
2005, LNAI 3554 , 29-40.

Brand, M. (2002). Incremental singular value decomposition of uncertain data with
missing values. In (Vol. 2350, p. 707-720). Berlin, Heidelberg: Springer Berlin Heidel-
berg.

G Linden, J. Y., B Smith. (2003, January). Amazon.com recommendations: item-
to-item collaborative filtering. Internet Computing, IEEE , 7 . doi: 10.1109/MIC.2003
.1167344

Jannach, D., Zanker, M., Felfernig, A., & Friedrich, G. (2011). Recommender systems
: an introduction. Cambridge University Press.

J. S. Milton, J. C. A. (1986). Introduction to probability and statistics. Mc Graw Hill.

69

www.summon.com
http://www.ams.org/samplings/feature-column/fcarc-svd
http://www.ams.org/samplings/feature-column/fcarc-svd

BIBLIOGRAPHY BIBLIOGRAPHY

Kalman, D. (1996, January). A singularly valuable decomposition: The svd of a matrix.
The College Mathematics Journal , 27 (1), 2-23.

Karatzoglou, A., Amatriain, X., Baltrunas, L., & Oliver, N. (2010). Multiverse rec-
ommendation: N-dimensional tensor factorization for context-aware collaborative fil-
tering. In Proceedings of the fourth acm conference on recommender systems (pp.
79–86). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/

1864708.1864727 doi: 10.1145/1864708.1864727

Koren, Y. (2008). Factorization meets the neighborhood: A multifaceted collab-
orative filtering model. In Proceedings of the 14th acm sigkdd international con-
ference on knowledge discovery and data mining (pp. 426–434). New York, NY,
USA: ACM. Retrieved from http://doi.acm.org/10.1145/1401890.1401944 doi:
10.1145/1401890.1401944

Koren, Y., Bell, R., & Volinsky, C. (2009, January). Matrix factorization techniques
for recommender systems. Computer , 42 , 30-37. doi: 10.1109/MC.2009.263

Lathia, N., Hailes, S., & Capra, L. (2008, Mars). The effect of correlation coefficients
on communities of recommenders. SAC ’08 Proceedings of the 2008 ACM symposium
on Applied computing , 2000-2005. doi: 10.1145/1363686.1364172

Lee, D. D., & Seung, H. S. (2001). Algorithms for non-negative matrix factorization.
In T. Leen, T. Dietterich, & V. Tresp (Eds.), Advances in neural information process-
ing systems 13 (pp. 556–562). MIT Press. Retrieved from http://papers.nips.cc/

paper/1861-algorithms-for-non-negative-matrix-factorization.pdf

Musto, C., Semeraro, G., & Lops, P. (2013, August). Contextual eVSM: A Content-
Based Context-Aware Recommendation Framework Based on Distributional Semantics.
E-Commerce and Web Technologies, 14th International Conference, 152 (10.1007/978−
3− 642− 39878− 0 12), 125-136.

Polytech. (2013, October-November 28-01). Context’13. The Interdisciplinary Com-
munity of Context . (http://www.polytech.univ-savoie.fr/index.php?id=context
-13-call-for-papers&L=0)

Qian, G., Sural, S., Gu, Y., & Pramanik, S. (2004, Mars). Similarity between euclidean
and cosine angle distance for nearest neighbor queries. SAC ’04 Proceedings of the 2004
ACM symposium on Applied computing , 1232-1237. doi: 1-58113-812-1

Ranta, A., & Forsberg, M. (2012). Implementing programming languages: an introduc-
tion to compilers and interpreters (Vol. 16.). London: College Publications. Retrieved
from www.summon.com

Ricci, F., Rokach, L., Shapira, B., & Kantor, P. (2011). Recommender systems hand-
book. Springer.

70

http://doi.acm.org/10.1145/1864708.1864727
http://doi.acm.org/10.1145/1864708.1864727
http://doi.acm.org/10.1145/1401890.1401944
http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf
http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf
http://www.polytech.univ-savoie.fr/index.php?id=context-13-call-for-papers&L=0
http://www.polytech.univ-savoie.fr/index.php?id=context-13-call-for-papers&L=0
www.summon.com

BIBLIOGRAPHY

Shlens, J. (2005). A tutorial on principal component analysis. Systems Neurobiology
Laboratory, University of California at San Diego, 82 .

Slonim, N., Aharoni, E., & Crammer, K. (2013). Hartigan’s k-means versus lloyd’s
k-means: Is it time for a change? In Proceedings of the twenty-third international
joint conference on artificial intelligence (pp. 1677–1684). AAAI Press. Retrieved from
http://dl.acm.org/citation.cfm?id=2540128.2540369

Sparr, G. (1975). Linjär algebra. Studentlitteratur, Lund.

Thompson, C. (2008, November 21). If you liked this, you’re sure to love that. The New
York Times. (http://www.nytimes.com/2008/11/23/magazine/23Netflix-t.html?
_r=0)

Vattani, A. (2011). k-means requires exponentially many iterations even in the plane.
Proceedings of the Twenty-Third International Joint Conference on Artificial Intelli-
gence, 45 (4), 596-616.

Wang, Y.-X., & Zhang, Y.-J. (2013, June). Nonnegative matrix factorization: A
comprehensive review. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA EN-
GINEERING , 25 , 1336-1353. doi: 10.1109/TKDE.2012.51

71

http://dl.acm.org/citation.cfm?id=2540128.2540369
http://www.nytimes.com/2008/11/23/magazine/23Netflix-t.html?_r=0
http://www.nytimes.com/2008/11/23/magazine/23Netflix-t.html?_r=0

Appendices

72

Appendix A

Category A

1 Training Period 2013-03-25 00:00 — 2013-03-31 10:00

Testing Period 2013-03-31 10:00 — 2013-03-31 12:00

2 Training Period 2013-03-26 00:00 — 2013-04-01 10:00

Testing Period 2013-04-01 10:00 — 2013-04-01 12:00

3 Training Period 2013-03-27 00:00 — 2013-04-02 10:00

Testing Period 2013-04-02 10:00 — 2013-04-02 12:00

4 Training Period 2013-03-28 00:00 — 2013-04-03 10:00

Testing Period 2013-04-03 10:00 — 2013-04-03 12:00

5 Training Period 2013-03-29 00:00 — 2013-04-04 10:00

Testing Period 2013-04-04 10:00 — 2013-04-04 12:00

6 Training Period 2013-03-30 00:00 — 2013-04-05 10:00

Testing Period 2013-04-05 10:00 — 2013-04-05 12:00

7 Training Period 2013-03-31 00:00 — 2013-04-06 10:00

Testing Period 2013-04-06 10:00 — 2013-04-06 12:00

8 Training Period 2013-04-01 00:00 — 2013-04-07 10:00

Testing Period 2013-04-07 10:00 — 2013-04-07 12:00

73

Category B

1 Training Period 2013-03-25 05:00 — 2013-03-31 15:00

Testing Period 2013-03-31 15:00 — 2013-03-31 17:00

2 Training Period 2013-03-26 05:00 — 2013-04-01 15:00

Testing Period 2013-04-01 15:00 — 2013-04-01 17:00

3 Training Period 2013-03-27 05:00 — 2013-04-02 15:00

Testing Period 2013-04-02 15:00 — 2013-04-02 17:00

4 Training Period 2013-03-28 05:00 — 2013-04-03 15:00

Testing Period 2013-04-03 15:00 — 2013-04-03 17:00

5 Training Period 2013-03-29 05:00 — 2013-04-04 15:00

Testing Period 2013-04-04 15:00 — 2013-04-04 17:00

6 Training Period 2013-03-30 05:00 — 2013-04-05 15:00

Testing Period 2013-04-05 15:00 — 2013-04-05 17:00

7 Training Period 2013-03-31 05:00 — 2013-04-06 15:00

Testing Period 2013-04-06 15:00 — 2013-04-06 17:00

8 Training Period 2013-04-01 05:00 — 2013-04-07 15:00

Testing Period 2013-04-07 15:00 — 2013-04-07 17:00

74

Category C

1 Training Period 2013-03-25 09:00 — 2013-03-31 19:00

Testing Period 2013-03-31 19:00 — 2013-03-31 21:00

2 Training Period 2013-03-26 09:00 — 2013-04-01 19:00

Testing Period 2013-04-01 19:00 — 2013-04-01 21:00

3 Training Period 2013-03-27 09:00 — 2013-04-02 19:00

Testing Period 2013-04-02 19:00 — 2013-04-02 21:00

4 Training Period 2013-03-28 09:00 — 2013-04-03 19:00

Testing Period 2013-04-03 19:00 — 2013-04-03 21:00

5 Training Period 2013-03-29 09:00 — 2013-04-04 19:00

Testing Period 2013-04-04 19:00 — 2013-04-04 21:00

6 Training Period 2013-03-30 09:00 — 2013-04-05 19:00

Testing Period 2013-04-05 19:00 — 2013-04-05 21:00

7 Training Period 2013-03-31 09:00 — 2013-04-06 19:00

Testing Period 2013-04-06 19:00 — 2013-04-06 21:00

8 Training Period 2013-04-01 09:00 — 2013-04-07 19:00

Testing Period 2013-04-07 19:00 — 2013-04-07 21:00

Category D

1 Training Period 2013-03-25 00:00 — 2013-03-31 24:00

Testing Period -||-
2 Training Period 2013-03-26 00:00 — 2013-04-01 24:00

Testing Period -||-
3 Training Period 2013-03-27 00:00 — 2013-04-02 24:00

Testing Period -||-
4 Training Period 2013-03-28 00:00 — 2013-04-03 24:00

Testing Period -||-
5 Training Period 2013-03-29 00:00 — 2013-04-04 24:00

Testing Period -||-
6 Training Period 2013-03-30 00:00 — 2013-04-05 24:00

Testing Period -||-
7 Training Period 2013-04-31 00:00 — 2013-04-06 24:00

Testing Period -||-

75

Category E

1 Training Period 2012-10-01 00:00 — 2012-10-08 10:00

Testing Period 2012-10-08 10:00 — 2012-10-08 12:00

2 Training Period 2012-10-02 00:00 — 2012-10-09 10:00

Testing Period 2012-10-09 10:00 — 2012-10-09 12:00

3 Training Period 2012-10-03 00:00 — 2012-10-10 10:00

Testing Period 2012-10-10 10:00 — 2012-10-10 12:00

4 Training Period 2012-10-04 00:00 — 2012-10-11 10:00

Testing Period 2012-10-11 10:00 — 2012-10-11 12:00

5 Training Period 2012-10-05 00:00 — 2012-10-12 10:00

Testing Period 2012-10-12 10:00 — 2012-10-12 12:00

6 Training Period 2012-10-06 00:00 — 2012-10-13 10:00

Testing Period 2012-10-13 10:00 — 2012-10-13 12:00

7 Training Period 2012-10-07 00:00 — 2012-10-14 10:00

Testing Period 2012-10-14 10:00 — 2012-10-14 12:00

8 Training Period 2012-10-08 00:00 — 2012-10-15 10:00

Testing Period 2012-10-15 10:00 — 2012-10-15 12:00

76

Category F

1 Training Period 2012-10-01 05:00 — 2012-10-08 15:00

Testing Period 2012-10-08 15:00 — 2012-10-08 17:00

2 Training Period 2012-10-02 05:00 — 2012-10-09 15:00

Testing Period 2012-10-09 15:00 — 2012-10-09 17:00

3 Training Period 2012-10-03 05:00 — 2012-10-10 15:00

Testing Period 2012-10-10 15:00 — 2012-10-10 17:00

4 Training Period 2012-10-04 05:00 — 2012-10-11 15:00

Testing Period 2012-10-11 15:00 — 2012-10-11 17:00

5 Training Period 2012-10-05 05:00 — 2012-10-12 15:00

Testing Period 2012-10-12 15:00 — 2012-10-12 17:00

6 Training Period 2012-10-06 05:00 — 2012-10-13 15:00

Testing Period 2012-10-13 15:00 — 2012-10-13 17:00

7 Training Period 2012-10-07 05:00 — 2012-10-14 15:00

Testing Period 2012-10-14 15:00 — 2012-10-14 17:00

8 Training Period 2012-10-08 05:00 — 2012-10-15 15:00

Testing Period 2012-10-15 15:00 — 2012-10-15 17:00

77

Category G

1 Training Period 2012-10-01 09:00 — 2012-10-08 19:00

Testing Period 2012-10-08 19:00 — 2012-10-08 21:00

2 Training Period 2012-10-02 09:00 — 2012-10-09 19:00

Testing Period 2012-10-09 19:00 — 2012-10-09 21:00

3 Training Period 2012-10-03 09:00 — 2012-10-10 19:00

Testing Period 2012-10-10 19:00 — 2012-10-10 21:00

4 Training Period 2012-10-04 09:00 — 2012-10-11 19:00

Testing Period 2012-10-11 19:00 — 2012-10-11 21:00

5 Training Period 2012-10-05 09:00 — 2012-10-12 19:00

Testing Period 2012-10-12 19:00 — 2012-10-12 21:00

6 Training Period 2012-10-06 09:00 — 2012-10-13 19:00

Testing Period 2012-10-13 19:00 — 2012-10-13 21:00

7 Training Period 2012-10-07 09:00 — 2012-10-14 19:00

Testing Period 2012-10-14 19:00 — 2012-10-14 21:00

8 Training Period 2012-10-08 09:00 — 2012-10-15 19:00

Testing Period 2012-10-15 19:00 — 2012-10-15 21:00

78

Category H

1 Training Period 2012-11-01 00:00 — 2012-11-08 10:00

Testing Period 2012-11-08 10:00 — 2012-11-08 12:00

2 Training Period 2012-11-02 00:00 — 2012-11-09 10:00

Testing Period 2012-11-09 10:00 — 2012-11-09 12:00

3 Training Period 2012-11-03 00:00 — 2012-11-10 10:00

Testing Period 2012-11-10 10:00 — 2012-11-10 12:00

4 Training Period 2012-11-04 00:00 — 2012-11-11 10:00

Testing Period 2012-11-11 10:00 — 2012-11-11 12:00

5 Training Period 2012-11-05 00:00 — 2012-11-12 10:00

Testing Period 2012-11-12 10:00 — 2012-11-12 12:00

6 Training Period 2012-11-06 00:00 — 2012-11-13 10:00

Testing Period 2012-11-13 10:00 — 2012-11-13 12:00

7 Training Period 2012-11-07 00:00 — 2012-11-14 10:00

Testing Period 2012-11-14 10:00 — 2012-11-14 12:00

8 Training Period 2012-11-08 00:00 — 2012-11-15 10:00

Testing Period 2012-11-15 10:00 — 2012-11-15 12:00

79

Category I

1 Training Period 2012-11-01 05:00 — 2012-11-08 15:00

Testing Period 2012-11-08 15:00 — 2012-11-08 17:00

2 Training Period 2012-11-02 05:00 — 2012-11-09 15:00

Testing Period 2012-11-09 15:00 — 2012-11-09 17:00

3 Training Period 2012-11-03 05:00 — 2012-11-10 15:00

Testing Period 2012-11-10 15:00 — 2012-11-10 17:00

4 Training Period 2012-11-04 05:00 — 2012-11-11 15:00

Testing Period 2012-11-11 15:00 — 2012-11-11 17:00

5 Training Period 2012-11-05 05:00 — 2012-11-12 15:00

Testing Period 2012-11-12 15:00 — 2012-11-12 17:00

6 Training Period 2012-11-06 05:00 — 2012-11-13 15:00

Testing Period 2012-11-13 15:00 — 2012-11-13 17:00

7 Training Period 2012-11-07 05:00 — 2012-11-14 15:00

Testing Period 2012-11-14 15:00 — 2012-11-14 17:00

8 Training Period 2012-11-08 05:00 — 2012-11-15 15:00

Testing Period 2012-11-15 15:00 — 2012-11-15 17:00

80

Category J

1 Training Period 2012-11-01 09:00 — 2012-11-08 19:00

Testing Period 2012-11-08 19:00 — 2012-11-08 21:00

2 Training Period 2012-11-02 09:00 — 2012-11-09 19:00

Testing Period 2012-11-09 19:00 — 2012-11-09 21:00

3 Training Period 2012-11-03 09:00 — 2012-11-10 19:00

Testing Period 2012-11-10 19:00 — 2012-11-10 21:00

4 Training Period 2012-11-04 09:00 — 2012-11-11 19:00

Testing Period 2012-11-11 19:00 — 2012-11-11 21:00

5 Training Period 2012-11-05 09:00 — 2012-11-12 19:00

Testing Period 2012-11-12 19:00 — 2012-11-12 21:00

6 Training Period 2012-11-06 09:00 — 2012-11-13 19:00

Testing Period 2012-11-13 19:00 — 2012-11-13 21:00

7 Training Period 2012-11-07 09:00 — 2012-11-14 19:00

Testing Period 2012-11-14 19:00 — 2012-11-14 21:00

8 Training Period 2012-11-08 09:00 — 2012-11-15 19:00

Testing Period 2012-11-15 19:00 — 2012-11-15 21:00

81

Category K

1 Training Period 2012-12-01 00:00 — 2012-12-08 10:00

Testing Period 2012-12-08 10:00 — 2012-12-08 12:00

2 Training Period 2012-12-02 00:00 — 2012-12-09 10:00

Testing Period 2012-12-09 10:00 — 2012-12-09 12:00

3 Training Period 2012-12-03 00:00 — 2012-12-10 10:00

Testing Period 2012-12-10 10:00 — 2012-12-10 12:00

4 Training Period 2012-12-04 00:00 — 2012-12-11 10:00

Testing Period 2012-12-11 10:00 — 2012-12-11 12:00

5 Training Period 2012-12-05 00:00 — 2012-12-12 10:00

Testing Period 2012-12-12 10:00 — 2012-12-12 12:00

6 Training Period 2012-12-06 00:00 — 2012-12-13 10:00

Testing Period 2012-12-13 10:00 — 2012-12-13 12:00

7 Training Period 2012-12-07 00:00 — 2012-12-14 10:00

Testing Period 2012-12-14 10:00 — 2012-12-14 12:00

8 Training Period 2012-12-08 00:00 — 2012-12-15 10:00

Testing Period 2012-12-15 10:00 — 2012-12-15 12:00

82

Category L

1 Training Period 2012-12-01 05:00 — 2012-12-08 15:00

Testing Period 2012-12-08 15:00 — 2012-12-08 17:00

2 Training Period 2012-12-02 05:00 — 2012-12-09 15:00

Testing Period 2012-12-09 15:00 — 2012-12-09 17:00

3 Training Period 2012-12-03 05:00 — 2012-12-10 15:00

Testing Period 2012-12-10 15:00 — 2012-12-10 17:00

4 Training Period 2012-12-04 05:00 — 2012-12-11 15:00

Testing Period 2012-12-11 15:00 — 2012-12-11 17:00

5 Training Period 2012-12-05 05:00 — 2012-12-12 15:00

Testing Period 2012-12-12 15:00 — 2012-12-12 17:00

6 Training Period 2012-12-06 05:00 — 2012-12-13 15:00

Testing Period 2012-12-13 15:00 — 2012-12-13 17:00

7 Training Period 2012-12-07 05:00 — 2012-12-14 15:00

Testing Period 2012-12-14 15:00 — 2012-12-14 17:00

8 Training Period 2012-12-08 05:00 — 2012-12-15 15:00

Testing Period 2012-12-15 15:00 — 2012-12-15 17:00

83

Category M

1 Training Period 2012-12-01 09:00 — 2012-12-08 19:00

Testing Period 2012-12-08 19:00 — 2012-12-08 21:00

2 Training Period 2012-12-02 09:00 — 2012-12-09 19:00

Testing Period 2012-12-09 19:00 — 2012-12-09 21:00

3 Training Period 2012-12-03 09:00 — 2012-12-10 19:00

Testing Period 2012-12-10 19:00 — 2012-12-10 21:00

4 Training Period 2012-12-04 09:00 — 2012-12-11 19:00

Testing Period 2012-12-11 19:00 — 2012-12-11 21:00

5 Training Period 2012-12-05 09:00 — 2012-12-12 19:00

Testing Period 2012-12-12 19:00 — 2012-12-12 21:00

6 Training Period 2012-12-06 09:00 — 2012-12-13 19:00

Testing Period 2012-12-13 19:00 — 2012-12-13 21:00

7 Training Period 2012-12-07 09:00 — 2012-12-14 19:00

Testing Period 2012-12-14 19:00 — 2012-12-14 21:00

8 Training Period 2012-12-08 09:00 — 2012-12-15 19:00

Testing Period 2012-12-15 19:00 — 2012-12-15 21:00

84

Category N

1 Training Period 2013-03-17 00:00 — 2013-03-31 10:00

Testing Period 2013-03-31 10:00 — 2013-03-31 12:00

2 Training Period 2013-03-18 00:00 — 2013-03-31 10:00

Testing Period 2013-03-31 10:00 — 2013-03-31 12:00

3 Training Period 2013-03-19 00:00 — 2013-03-31 10:00

Testing Period 2013-03-31 10:00 — 2013-03-31 12:00

4 Training Period 2013-03-20 00:00 — 2013-03-31 10:00

Testing Period 2013-03-31 10:00 — 2013-03-31 12:00

5 Training Period 2013-03-21 00:00 — 2013-03-31 10:00

Testing Period 2013-03-31 10:00 — 2013-03-31 12:00

6 Training Period 2013-03-22 00:00 — 2013-03-31 10:00

Testing Period 2013-03-31 10:00 — 2013-03-31 12:00

7 Training Period 2013-03-23 00:00 — 2013-03-31 10:00

Testing Period 2013-03-31 10:00 — 2013-03-31 12:00

8 Training Period 2013-03-24 00:00 — 2013-03-31 10:00

Testing Period 2013-03-31 10:00 — 2013-03-31 12:00

9 Training Period 2013-03-25 00:00 — 2013-03-31 10:00

Testing Period 2013-03-31 10:00 — 2013-03-31 12:00

10 Training Period 2013-03-26 00:00 — 2013-03-31 10:00

Testing Period 2013-03-31 10:00 — 2013-03-31 12:00

11 Training Period 2013-03-27 00:00 — 2013-03-31 10:00

Testing Period 2013-03-31 10:00 — 2013-03-31 12:00

12 Training Period 2013-03-28 00:00 — 2013-03-31 10:00

Testing Period 2013-03-31 10:00 — 2013-03-31 12:00

13 Training Period 2013-03-29 00:00 — 2013-03-31 10:00

Testing Period 2013-03-31 10:00 — 2013-03-31 12:00

14 Training Period 2013-03-30 00:00 — 2013-03-31 10:00

Testing Period 2013-03-31 10:00 — 2013-03-31 12:00

85

Category O

1 Training Period 2013-03-17 05:00 — 2013-03-31 15:00

Testing Period 2013-03-31 15:00 — 2013-03-31 17:00

2 Training Period 2013-03-18 05:00 — 2013-03-31 15:00

Testing Period 2013-03-31 15:00 — 2013-03-31 17:00

3 Training Period 2013-03-19 05:00 — 2013-03-31 15:00

Testing Period 2013-03-31 15:00 — 2013-03-31 17:00

4 Training Period 2013-03-20 05:00 — 2013-03-31 15:00

Testing Period 2013-03-31 15:00 — 2013-03-31 17:00

5 Training Period 2013-03-21 05:00 — 2013-03-31 15:00

Testing Period 2013-03-31 15:00 — 2013-03-31 17:00

6 Training Period 2013-03-22 05:00 — 2013-03-31 15:00

Testing Period 2013-03-31 15:00 — 2013-03-31 17:00

7 Training Period 2013-03-23 05:00 — 2013-03-31 15:00

Testing Period 2013-03-31 15:00 — 2013-03-31 17:00

8 Training Period 2013-03-24 05:00 — 2013-03-31 15:00

Testing Period 2013-03-31 15:00 — 2013-03-31 17:00

9 Training Period 2013-03-25 05:00 — 2013-03-31 15:00

Testing Period 2013-03-31 15:00 — 2013-03-31 17:00

10 Training Period 2013-03-26 05:00 — 2013-03-31 15:00

Testing Period 2013-03-31 15:00 — 2013-03-31 17:00

11 Training Period 2013-03-27 05:00 — 2013-03-31 15:00

Testing Period 2013-03-31 15:00 — 2013-03-31 17:00

12 Training Period 2013-03-28 05:00 — 2013-03-31 15:00

Testing Period 2013-03-31 15:00 — 2013-03-31 17:00

13 Training Period 2013-03-29 05:00 — 2013-03-31 15:00

Testing Period 2013-03-31 15:00 — 2013-03-31 17:00

14 Training Period 2013-03-30 05:00 — 2013-03-31 15:00

Testing Period 2013-03-31 15:00 — 2013-03-31 17:00

86

Category P

1 Training Period 2013-03-17 09:00 — 2013-03-31 19:00

Testing Period 2013-03-31 19:00 — 2013-03-31 21:00

2 Training Period 2013-03-18 09:00 — 2013-03-31 19:00

Testing Period 2013-03-31 19:00 — 2013-03-31 21:00

3 Training Period 2013-03-19 09:00 — 2013-03-31 19:00

Testing Period 2013-03-31 19:00 — 2013-03-31 21:00

4 Training Period 2013-03-20 09:00 — 2013-03-31 19:00

Testing Period 2013-03-31 19:00 — 2013-03-31 21:00

5 Training Period 2013-03-21 09:00 — 2013-03-31 19:00

Testing Period 2013-03-31 19:00 — 2013-03-31 21:00

6 Training Period 2013-03-22 09:00 — 2013-03-31 19:00

Testing Period 2013-03-31 19:00 — 2013-03-31 21:00

7 Training Period 2013-03-23 09:00 — 2013-03-31 19:00

Testing Period 2013-03-31 19:00 — 2013-03-31 21:00

8 Training Period 2013-03-24 09:00 — 2013-03-31 19:00

Testing Period 2013-03-31 19:00 — 2013-03-31 21:00

9 Training Period 2013-03-25 09:00 — 2013-03-31 19:00

Testing Period 2013-03-31 19:00 — 2013-03-31 21:00

10 Training Period 2013-03-26 09:00 — 2013-03-31 19:00

Testing Period 2013-03-31 19:00 — 2013-03-31 21:00

11 Training Period 2013-03-27 09:00 — 2013-03-31 19:00

Testing Period 2013-03-31 19:00 — 2013-03-31 21:00

12 Training Period 2013-03-28 09:00 — 2013-03-31 19:00

Testing Period 2013-03-31 19:00 — 2013-03-31 21:00

13 Training Period 2013-03-29 09:00 — 2013-03-31 19:00

Testing Period 2013-03-31 19:00 — 2013-03-31 21:00

14 Training Period 2013-03-30 09:00 — 2013-03-31 19:00

Testing Period 2013-03-31 19:00 — 2013-03-31 21:00

87

Category Q

1 Training Period 2012-09-01 00:00 — 2012-09-07 10:00

Testing Period 2012-09-07 10:00 — 2012-09-07 12:00

2 Training Period 2012-10-01 00:00 — 2012-10-07 10:00

Testing Period 2012-10-07 10:00 — 2012-10-07 12:00

3 Training Period 2012-11-01 00:00 — 2012-11-07 10:00

Testing Period 2012-11-07 10:00 — 2012-11-07 12:00

4 Training Period 2012-12-01 00:00 — 2012-12-07 10:00

Testing Period 2012-12-07 10:00 — 2012-12-07 12:00

5 Training Period 2013-01-01 00:00 — 2013-01-07 10:00

Testing Period 2013-01-07 10:00 — 2013-01-07 12:00

6 Training Period 2013-02-01 00:00 — 2013-02-07 10:00

Testing Period 2013-02-07 10:00 — 2013-02-07 12:00

7 Training Period 2013-03-01 00:00 — 2013-03-07 10:00

Testing Period 2013-03-07 10:00 — 2013-03-07 12:00

8 Training Period 2013-04-01 00:00 — 2013-04-07 10:00

Testing Period 2013-04-07 10:00 — 2013-04-07 12:00

9 Training Period 2013-05-01 00:00 — 2013-05-07 10:00

Testing Period 2013-05-07 10:00 — 2013-05-07 12:00

88

Category R

1 Training Period 2012-09-01 05:00 — 2012-09-07 15:00

Testing Period 2012-09-07 15:00 — 2012-09-07 17:00

2 Training Period 2012-10-01 05:00 — 2012-10-07 15:00

Testing Period 2012-10-07 15:00 — 2012-10-07 17:00

3 Training Period 2012-11-01 05:00 — 2012-11-07 15:00

Testing Period 2012-11-07 15:00 — 2012-11-07 17:00

4 Training Period 2012-12-01 05:00 — 2012-12-07 15:00

Testing Period 2012-12-07 15:00 — 2012-12-07 17:00

5 Training Period 2013-01-01 05:00 — 2013-01-07 15:00

Testing Period 2013-01-07 15:00 — 2013-01-07 17:00

6 Training Period 2013-02-01 05:00 — 2013-02-07 15:00

Testing Period 2013-02-07 15:00 — 2013-02-07 17:00

7 Training Period 2013-03-01 05:00 — 2013-03-07 15:00

Testing Period 2013-03-07 15:00 — 2013-03-07 17:00

8 Training Period 2013-04-01 05:00 — 2013-04-07 15:00

Testing Period 2013-04-07 15:00 — 2013-04-07 17:00

9 Training Period 2013-05-01 05:00 — 2013-05-07 15:00

Testing Period 2013-05-07 15:00 — 2013-05-07 17:00

89

Category S

1 Training Period 2012-09-01 09:00 — 2012-09-07 19:00

Testing Period 2012-09-07 19:00 — 2012-09-07 21:00

2 Training Period 2012-10-01 09:00 — 2012-10-07 19:00

Testing Period 2012-10-07 19:00 — 2012-10-07 21:00

3 Training Period 2012-11-01 09:00 — 2012-11-07 19:00

Testing Period 2012-11-07 19:00 — 2012-11-07 21:00

4 Training Period 2012-12-01 09:00 — 2012-12-07 19:00

Testing Period 2012-12-07 19:00 — 2012-12-07 21:00

5 Training Period 2013-01-01 09:00 — 2013-01-07 19:00

Testing Period 2013-01-07 19:00 — 2013-01-07 21:00

6 Training Period 2013-02-01 09:00 — 2013-02-07 19:00

Testing Period 2013-02-07 19:00 — 2013-02-07 21:00

7 Training Period 2013-03-01 09:00 — 2013-03-07 19:00

Testing Period 2013-03-07 19:00 — 2013-03-07 21:00

8 Training Period 2013-04-01 09:00 — 2013-04-07 19:00

Testing Period 2013-04-07 19:00 — 2013-04-07 21:00

9 Training Period 2013-05-01 09:00 — 2013-05-07 19:00

Testing Period 2013-05-07 19:00 — 2013-05-07 21:00

90

Category T

1 Training Period 2013-03-02 10:00 — 2013-03-02 12:00

Training Period 2013-03-09 10:00 — 2013-03-09 12:00

Training Period 2013-03-16 10:00 — 2013-03-16 12:00

Training Period 2013-03-23 10:00 — 2013-03-23 12:00

Training Period 2013-03-30 10:00 — 2013-03-30 12:00

Test Testing Period 2013-04-06 10:00 — 2013-04-06 12:00

2 Training Period 2013-03-02 15:00 — 2013-03-02 17:00

Training Period 2013-03-09 15:00 — 2013-03-09 17:00

Training Period 2013-03-16 15:00 — 2013-03-16 17:00

Training Period 2013-03-23 15:00 — 2013-03-23 17:00

Training Period 2013-03-30 15:00 — 2013-03-30 17:00

Test Testing Period 2013-04-06 15:00 — 2013-04-06 17:00

3 Training Period 2013-03-02 19:00 — 2013-03-02 21:00

Training Period 2013-03-09 19:00 — 2013-03-09 21:00

Training Period 2013-03-16 19:00 — 2013-03-16 21:00

Training Period 2013-03-23 19:00 — 2013-03-23 21:00

Training Period 2013-03-30 19:00 — 2013-03-30 21:00

Test Testing Period 2013-04-06 19:00 — 2013-04-06 21:00

91

Category U

1 Training Period 2013-03-03 10:00 — 2013-03-03 12:00

Training Period 2013-03-10 10:00 — 2013-03-10 12:00

Training Period 2013-03-17 10:00 — 2013-03-17 12:00

Training Period 2013-03-24 10:00 — 2013-03-24 12:00

Training Period 2013-03-31 10:00 — 2013-03-31 12:00

Test Testing Period 2013-04-07 10:00 — 2013-04-07 12:00

2 Training Period 2013-03-03 15:00 — 2013-03-03 17:00

Training Period 2013-03-10 15:00 — 2013-03-10 17:00

Training Period 2013-03-17 15:00 — 2013-03-17 17:00

Training Period 2013-03-24 15:00 — 2013-03-24 17:00

Training Period 2013-03-31 15:00 — 2013-03-31 17:00

Test Testing Period 2013-04-07 15:00 — 2013-04-07 17:00

3 Training Period 2013-03-03 19:00 — 2013-03-03 21:00

Training Period 2013-03-10 19:00 — 2013-03-10 21:00

Training Period 2013-03-17 19:00 — 2013-03-17 21:00

Training Period 2013-03-24 19:00 — 2013-03-24 21:00

Training Period 2013-03-31 19:00 — 2013-03-31 21:00

Test Testing Period 2013-04-07 19:00 — 2013-04-07 21:00

92

Category V (Training/testing only on weekdays, not on weekends)

1 Training Period 2012-11-01 00:00 — 2012-11-19 10:00

Testing Period 2012-11-22 00:00 — 2012-11-22 10:00

2 Training Period 2012-11-02 00:00 — 2012-11-22 10:00

Testing Period 2012-11-23 00:00 — 2012-11-23 10:00

3 Training Period 2012-11-03 00:00 — 2012-11-23 10:00

Testing Period 2012-11-24 00:00 — 2012-11-24 10:00

4 Training Period 2012-11-04 00:00 — 2012-11-24 10:00

Testing Period 2012-11-25 00:00 — 2012-11-25 10:00

5 Training Period 2012-11-05 00:00 — 2012-11-25 10:00

Testing Period 2012-11-26 00:00 — 2012-11-26 10:00

6 Training Period 2012-11-08 00:00 — 2012-11-26 10:00

Testing Period 2012-11-29 00:00 — 2012-11-29 10:00

7 Training Period 2012-11-09 00:00 — 2012-11-29 10:00

Testing Period 2012-11-30 00:00 — 2012-11-30 10:00

8 Training Period 2012-11-10 00:00 — 2012-11-30 10:00

Testing Period 2012-11-31 00:00 — 2012-11-31 10:00

93

Category W (Training/testing only on weekdays, not on weekends)

1 Training Period 2012-11-01 10:00 — 2012-11-19 17:00

Testing Period 2012-11-22 10:00 — 2012-11-22 17:00

2 Training Period 2012-11-02 10:00 — 2012-11-22 17:00

Testing Period 2012-11-23 10:00 — 2012-11-23 17:00

3 Training Period 2012-11-03 10:00 — 2012-11-23 17:00

Testing Period 2012-11-24 10:00 — 2012-11-24 17:00

4 Training Period 2012-11-04 10:00 — 2012-11-24 17:00

Testing Period 2012-11-25 10:00 — 2012-11-25 17:00

5 Training Period 2012-11-05 10:00 — 2012-11-25 17:00

Testing Period 2012-11-26 10:00 — 2012-11-26 17:00

6 Training Period 2012-11-08 10:00 — 2012-11-26 17:00

Testing Period 2012-11-29 10:00 — 2012-11-29 17:00

7 Training Period 2012-11-09 10:00 — 2012-11-29 17:00

Testing Period 2012-11-30 10:00 — 2012-11-30 17:00

8 Training Period 2012-11-10 10:00 — 2012-11-30 17:00

Testing Period 2012-11-31 10:00 — 2012-11-31 17:00

94

Category X (Training/testing only on weekdays, not on weekends)

1 Training Period 2012-11-01 17:00 — 2012-11-19 00:00

Testing Period 2012-11-22 17:00 — 2012-11-23 00:00

2 Training Period 2012-11-02 17:00 — 2012-11-22 00:00

Testing Period 2012-11-23 17:00 — 2012-11-24 00:00

3 Training Period 2012-11-03 17:00 — 2012-11-23 00:00

Testing Period 2012-11-24 17:00 — 2012-11-25 00:00

4 Training Period 2012-11-04 17:00 — 2012-11-24 00:00

Testing Period 2012-11-25 17:00 — 2012-11-26 00:00

5 Training Period 2012-11-05 17:00 — 2012-11-25 00:00

Testing Period 2012-11-26 17:00 — 2012-11-27 00:00

6 Training Period 2012-11-08 17:00 — 2012-11-26 00:00

Testing Period 2012-11-29 17:00 — 2012-11-30 00:00

7 Training Period 2012-11-09 17:00 — 2012-11-29 00:00

Testing Period 2012-11-30 17:00 — 2012-11-31 00:00

8 Training Period 2012-11-10 17:00 — 2012-11-30 00:00

Testing Period 2012-11-31 17:00 — 2012-12-01 00:00

Category Y

1 Training Period 2013-01-01 00:00 — 2013-03-31 00:00

Testing Period 2013-03-31 00:00 — 2013-04-01 00:00

2 Training Period 2013-03-01 00:00 — 2013-03-31 00:00

Testing Period 2013-03-31 00:00 — 2013-04-01 00:00

3 Training Period 2013-03-24 00:00 — 2013-03-31 00:00

Testing Period 2013-03-31 00:00 — 2013-04-01 00:00

Appendix B

95

Cluster test

Table 1: The graphs show how the cluster size changes the performance on the average of
catagories A,B and C.

96

	Introduction
	Background
	Purpose

	Theory
	Definitions & project structure
	Generating feedback
	Creating feature space
	Clustering categories
	Classifying an item
	Finding similar items
	Creating recommendation
	Justifying choices

	Methods & Materials
	Procedure
	Materials
	Participants in study
	ItemRand- & frequent-algorithm
	Test procedures

	Result
	Basic tests
	Time tests
	Context tests
	Synthetic testing
	AB-tests
	Product Page
	Checkout Page

	Discussion
	Conclusion
	Bibliography
	Appendices

