
A Symbolic Approach for
Maximally Permissive Deadlock Avoidance
in Complex Resource Allocation Systems

Zhennan Fei ∗ Spyros Reveliotis ∗∗ Knut Åkesson ∗
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Abstract: To develop an efficient implementation of the maximally permissive deadlock
avoidance policy (DAP) for complex resource allocation systems (RAS), a recent approach
focuses on the identification of a set of critical states of the underlying RAS state-space,
referred to as minimal boundary unsafe states. The availability of this information enables
an expedient one-step-lookahead scheme that prevents the RAS from reaching outside its safe
region. This paper presents a symbolic approach that provides those critical states. Furthermore,
by taking advantage of certain structural properties regarding RAS safety, the presented method
avoids the complete exploration of the underlying RAS state-space. Numerical experimentation
demonstrates the efficiency of the approach for developing the maximally permissive DAP for
complex RAS with large structure and state-spaces, and its potential advantage over similar
approaches that employ more conventional representational and computational methods.
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1. INTRODUCTION

In the Discrete Event Systems (DES) literature, the
concept of the Resource Allocation System is a well-
established abstraction for modeling the resource alloca-
tion dynamics that take place in many technological appli-
cations (Reveliotis (2005); Zhou and Fanti (2004); Campos
et al. (2014)). Following those past developments, in this
work, we define a resource allocation system (RAS) 1 by a
4-tuple Φ = 〈R, C,P,A〉 where: (i) R = {R1, . . . , Rm} is
the set of the system resource types. (ii) C : R → Z+

– where Z+ is the set of strictly positive integers – is
the system capacity function, characterizing the number
of identical units from each resource type available in the
system. Resources are assumed to be reusable, i.e., each
allocation cycle does not affect their functional status or
subsequent availability, and therefore, C(Ri) ≡ Ci consti-
tutes a system invariant for each Ri. (iii) P = {J1, . . . , Jn}
denotes the set of the system process types supported by
the considered system configuration. Each process type
Jj , for j = 1, . . . , n, is a composite element itself; in
particular, Jj = 〈Sj ,Gj〉, where Sj = {Ξj1, . . . ,Ξj,l(j)}
denotes the set of processing stages involved in the def-
inition of process type Jj , and Gj is an acyclic digraph
that defines the sequential logic of process type Jj . The
node set of Gj is in one-to-one correspondence with the
processing-stage set Sj , and each directed path from a
source node to a terminal node of Gj corresponds to a
possible execution sequence (or “process plan”) for process
type Jj . Also, given an edge e ∈ Gj linking Ξjk to Ξjk′ ,
we define e.src ≡ Ξjk and e.dst ≡ Ξjk′ , i.e., e.src and

1 The considered RAS class is known as the class of Disjunc-
tive/Conjunctive RAS in the relevant literature, since it enables
routing flexibility for its process types and requests for arbitrary
resource sets at the various processing stages.

e.dst denote respectively the source and the destination
nodes of edge e. (iv) A :

⋃n
j=1 Sj →

∏m
i=1{0, . . . , Ci} is

the resource allocation function, which associates every
processing stage Ξjk with the resource allocation request
A(j, k) ≡ Ajk. More specifically, each A(j, k) is an m-
dimensional vector, with its i-the component indicating
the number of resource units of resource type Ri necessary
to support the execution of stage Ξjk. Furthermore, it
is assumed that Ajk 6= 0, i.e., every processing stage
requires at least one resource unit for its execution. Finally,
according to the applying resource allocation protocol, a
process instance executing a processing stage Ξjk will be
able to advance to a successor processing stage Ξjk′ , only
after it is allocated the resource differential (Ajk′−Ajk)+;
and it is only upon this advancement that the process will
release the resource units |(Ajk′ − Ajk)−|, that are not
needed anymore. 2

The “hold-while-waiting” protocol that is described above,
when combined with the arbitrary nature of the process
routes and the resource allocation requests that are sup-
ported by the considered RAS model, can give rise to
resource allocation states where a set of processes are wait-
ing upon each other for the release of resources that are
necessary for their advancement to their next processing
stage. Such persisting cyclical-waiting patterns are known
as (partial) deadlocks in the relevant literature, and to the
extent that they disrupt the smooth operation of the un-
derlying system, they must be recognized and eliminated
from the system behavior. The relevant control problem
is known as deadlock avoidance, and a natural framework
for its investigation is that of DES Supervisory Control
Theory (SCT) (Ramadge and Wonham (1989), Cassandras
and Lafortune (2008)). More specifically, in an Finite State

2 We remind the reader that x+ = max{0, x} and x− = min{0, x}.
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Automaton (FSA) representation of the RAS dynamics,
deadlocks appear as states containing a set of activated
process instances and no feasible process-advancing events.
Hence, assuming that the desired outcome of any run of
this FSA is the access of the state where all processes have
successfully completed and the underlying RAS is idle and
empty of any active processes, the presence of deadlock
states can be perceived as blocking behavior. Therefore,
in the context of SCT, effective deadlock avoidance trans-
lates to the development of the maximally permissive non-
blocking supervisor for the RAS-modeling FSA, that will
confine the RAS behavior in the “trim” of this FSA, i.e.,
to the subspace consisting of the states that are reachable
and co-reachable to the RAS idle and empty state.

In the relevant RAS theory, states that are co-reachable
to the RAS idle and empty state are also characterized as
safe, and, correspondingly, states that are not co-reachable
are characterized as unsafe. Of particular interest in the
implementation of the maximally permissive non-blocking
supervisor for the considered RAS are those transitions
leading from safe to unsafe states, since their effective
recognition and blockage can prevent entrance into the
unsafe region. The unsafe states that result from such
problematic transitions are known as the boundary unsafe
states in the relevant literature. Furthermore, for reasons
that will be explained in the sequel, the entire set of the
boundary unsafe states can be effectively recognized from
its minimal elements. Hence, a particular approach for
the implementation of the maximally permissive deadlock
avoidance policy (DAP) for any instantiation of the afore-
mentioned RAS class reduces to the effective enumeration
and the efficient storage of the minimal boundary unsafe
states of the underlying state space. This approach has
been extensively investigated in the recent years, and the
major results together with the supporting literature are
systematically discussed in Reveliotis and Nazeem (2013).

The work presented in this paper seeks to complement the
aforementioned past developments by introducing sym-
bolic methods for the representation of the involved dy-
namics and of the target sets, and for the execution of
the necessary computation. It is well known that, when
properly balanced, symbolic representations of a DES state
space can effect a dramatic compression of the informa-
tion that is expressed by this state space compared to
its more conventional representations. Furthermore, this
compression can also lead to a significant speed-up of the
computational algorithms that process this information for
various analysis and (control) synthesis purposes. Indeed,
the computational results that are presented at the end
of this manuscript corroborate these expectations, and
demonstrate clearly the effected gains in terms of computa-
tional time and memory requirements. On the other hand,
due to the imposed page limits, the rest of this document
is a rather minimal exposition of the pursued approach
and the obtained results. A more expansive and thorough
treatment of this material can be found in Fei et al. (2013).

2. PRELIMINARIES

2.1 Extended Finite Automata

The presented work employs the extended finite automa-
ton (EFA) (Sköldstam et al. (2007)) as a formal represen-
tation of the RAS dynamics. An EFA is an augmentation
of the ordinary FSA model with integer variables that are
employed in a set of guards and are maintained by a set
of actions. A transition in an EFA is enabled if and only if
its corresponding guard is true. Once a transition is taken,

updating actions on the set of variables may follow. By
utilizing these two mechanisms, an EFA can represent the
modeled behavior in a conciser manner than the ordinary
FSA model.

More formally, an Extended Finite Automaton (EFA) over
a set of model variables v = (v1, . . . , vn) is a 5-tuple
E = 〈Q,Σ,→, s0, Q

m〉 where (i) Q : L×D is the extended
finite set of states. L is the finite set of the model locations
and D = D1 × . . . × Dn is the finite domain of the model
variables v = (v1, . . . , vn). (ii) Σ is a nonempty finite set
of events (also known as the alphabet of the model). (iii)
→⊆ L×Σ×G×A×L is the transition relation, describing
a set of transitions that take place among the model
locations upon the occurrence of certain events. However,
these transitions are further qualified by G, which is a
set of guard predicates defined on D, and by A, which
is a collection of actions that update the model variables
as a consequence of an occurring transition. Each action
a ∈ A is an n-tuple of functions (a1, . . . , an), with each
function ai updating the corresponding variable vi. (iv)
s0 = (`0, v0) ∈ L × D is the initial state, where `0 is the
initial location, while v0 denotes the vector of the initial
values for the model variables. (v) Qm ⊆ Lm × Dm ⊆ Q
is the set of marked states. Lm ⊆ L is the set of the
marked locations and Dm ⊆ D denotes the set of the
vectors of marked values for the model variables. For the
sake of brevity, in the following, we shall use the notation

`
σ→g/a `

′ as an abbreviation for (`, σ, g, a, `′) ∈→.

EFA-based modeling of RAS dynamics The formal
construction of an EFA E(Φ) modeling the dynamics of
any given RAS instance Φ = 〈R, C,P,A〉 is presented in
Fei et al. (2011). For the needs of this manuscript, this
construction is briefly illustrated in the following example.
The RAS instance Φ under consideration is shown in Fig.1.
It comprises two process types J1 and J2, each of which is
defined as a sequence of three processing stages; the stages
of process type Jj , j = 1, 2, are denoted by Ξjk, k =
1, 2, 3. The system resource set is R = {R1, R2, R3}, with
capacity Ci = 1 for i = 1, 2, 3. Each processing stage Ξjk
requests only one unit from a single resource type; the
relevant resources are depicted in Fig.1.

J1 : Ξ11

R1

Ξ12

R2

Ξ13

R3

J2 : Ξ21

R3

Ξ22

R2

Ξ23

R1

Fig. 1. A simple RAS

In the approach of Fei
et al. (2011), each pro-
cess type is modeled as
a distinct EFA. Fig. 2
shows the EFA that
models the behavior of
process J1 in the RAS
of Fig. 1. This EFA has
only one location, and
its three transitions cor-
respond to the loading and the process-advancing events
among its different stages. On the other hand, since a
process instance that has reached its final stage can always
leave the system without any further resource requests,
the unloading event is modeled only implicitly through
the event that models the process access to its termi-
nal stage(s). More specifically, in the EFA depicted in
Fig. 2, the evolution of a process instance through the var-
ious processing stages is traced by the instance variables
v1j , j = 1, 2; each of these variables counts the number
of process instances that are executing the corresponding
processing stage. The model does not avail of a variable v13
since it is assumed that a process instance reaching stage
Ξ13 is (eventually) unloaded from the system, without the
need for any further resource allocation action.
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J1

〈J1 loading, Ξ11〉
g : vR1 ≥ 1

a : v11 := v11 + 1; vR1 := vR1 − 1

〈Ξ12, Ξ13〉
g : v12 ≥ 1 ∧ vR3 ≥ 1
a : v12 := v12 − 1;
vR2 := vR2 + 1

〈Ξ11, Ξ12〉
g : v11 ≥ 1 ∧ vR2 ≥ 1
a : v11 := v11 − 1;
v12 := v12 + 1;
vR2 := vR2 − 1;
vR1 := vR1 + 1

Fig. 2. The resource-augmented EFA for J1

The aforementioned EFA E(Φ) that model the process
types J1 and J2 are linked through the global resource
variables vRi, i = 1, 2, 3, where each variable vRi denotes
the number of free units of resource Ri. Obviously, the
domain of variable vRi is {0, . . . , Ci}.
Since, under proper RAS operation, the initial and the
target final state correspond to the empty state, both the
initial and the marked values of each variable vRi are
equal to Ci, and the corresponding values for all instance
variables vjk are equal to zero.

Finally, as depicted in Fig. 2, the resource and the instance
variables are used to construct the necessary guards and
actions for the system transitions. The guards determine
whether a process-loading or advancing event can take
place, on the basis of the process and the resource availabil-
ity. Upon the occurrence of such an event, the correspond-
ing actions update accordingly the available resource units
and the process instances that are active at the various
processing stages. For a more detailed discussion on the
EFA-based modeling of RAS and the above example, the
reader is referred to Fei et al. (2011), Fei et al. (2013).

Some further remarks We remind the reader that
every legitimate resource allocation state of the considered
RAS must adhere to the restrictions that are imposed
by the limited capacities of the system resources. In the
representation of the EFA E(Φ), these restrictions are
expressed by the following constraints

∀i ∈ {1, . . . ,m}, vRi +

n∑
j=1

l(j)−1∑
k=1

Ajk[i] ∗ vjk = Ci (1)

In (1), we have taken into consideration the fact that
terminal processing stages are not explicitly accounted for
in the considered EFA model (for the reasons explained
earlier). From a more technical standpoint, the constraints
of (1) can be perceived as a set of (resource-induced)
invariants that must be observed by the dynamics of the
EFA E(Φ) in order to provide a faithful representation
of the actual RAS dynamics. Hence, in the following, we
shall characterize a state s of the EFA E(Φ) with a variable
vector v satisfying the constraints of (1) as a feasible state.

On the other hand, the specification of the state set Q as
Q = L ×

⊗
iD(vRi) ×

⊗
j,k D(vjk), where the domain

sets D(v) of the various variables v are determined as
described in the previous paragraphs, implies that Q may
contain infeasible states, as well. The various guards and
actions that are employed by EFA E(Φ) ensure that
these infeasible states remain unreachable in any proper
execution of E(Φ) that starts from some feasible state.
More generally, as it will be revealed in the following,
the infeasible states that might be included in EFA E(Φ)

do not compromise the analytical power of this model
regarding the traced RAS dynamics.

2.2 Binary Decision Diagrams

Binary decision diagrams (BDDs) (Bryant (1992)) are a
memory-efficient data structure used to represent Boolean
functions as well as to perform set-based operations. To
present the basic BDD theory employed in this work,
let us set B ≡ {0, 1}. Also, for any Boolean function
f : Bn → B, in n Boolean variables X = (x1, . . . , xn),
we denote by f |xi=0(resp. 1) the Boolean function that is
induced from function f by fixing the value of variable xi
to 0 (resp. 1). Then, a BDD-based representation of f is a
graphical representation of this function that is based on
the following identity:

∀xi ∈ X, f = (¬xi ∧ f |xi=0) ∨ (xi ∧ f |xi=1) (2)

More specifically, (2) enables the representation of the
Boolean function f as a single-rooted acyclic digraph with
two types of nodes: decision nodes and terminal nodes. A
terminal node can be labeled either 0 or 1. Each decision
node is labelled by a Boolean variable and it has two
outgoing edges, with each edge corresponding to assigning
the value of the labeling variable to 0 or to 1. The value
of function f for any given pricing of the variable set X
is evaluated by starting from the root of the BDD and
at each visited node following the edge that corresponds
to the selected value for the node-labeling variable; the
value of f is the value of the terminal node that is reached
through the aforementioned path.

The size of a BDD refers to the number of its decision
nodes. A carefully structured BDD can provide a more
compact representation for a Boolean function f than the
corresponding truth table and the decision tree; frequently,
the attained compression is by orders of magnitude. From
a computational standpoint, the power of BDDs lies in
the efficiency that they provide in the execution of binary
operations. Let f and f ′ be two Boolean functions of
X. Then, it should be evident from (2) that a binary
operator ⊗ between (the BDDs representing) f and f ′ can
be recursively computed as

f⊗f ′ = [¬x∧(f |x=0⊗f ′|x=0)]∨ [x∧(f |x=1⊗f ′|x=1)] (3)

where x ∈ X. If dynamic programming is used, the
computation implied by (3) can have a complexity of
O(|f | · |f ′|) where |f | and |f ′| are the sizes of (the BDDs
representing) f and f ′.

A particular operator that is used extensively in the
following is the existential quantification of a function f
over its Boolean variables. For a variable x ∈ X, the
existential quantification of f is defined by ∃x.f = f |x=0∨
f |x=1. Also, if X̄ = (x̄1, . . . , x̄k) ⊆ X, then ∃X̄.f is a
shorthand notation for ∃x̄1.∃x̄2. . . .∃x̄k.f . In plain terms,
∃X̄.f denotes all those truth assignments of the variable
set X \ X̄ that can be extended over the set X̄ in a way
that function f is eventually satisfied.

EFA encoding through BDDs To represent an EFA E
by a Boolean function, different sets of Boolean variables
are employed to encode the locations, events and integer
variables. For the encoding of the state set Q : L × D,
we employ two Boolean variable sets, denoted by XL and
XD = XD1 ∪ . . . ∪ XDn , to respectively encode the two
sets L and D. Then, each state q = (`, v) ∈ Q is associated
with a unique satisfying assignment of the variables in
XL∪XD. Given a subset Q̄ of Q, its characteristic function
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χQ̄ : Q → {0, 1} assigns the value of 1 to all states q ∈ Q̄
and the value of 0 to all states q /∈ Q̄. 3 The symbolic
representation of the transition relation → relies on the
same idea. A transition is essentially a tuple 〈`, v, σ, `′, v′〉
specifying a source state q = (`, v), an event σ, and a target
state q′ = (`′, v′). Formally, we employ the variable sets
XL and XD to encode the source state q, and a copy of XL

andXD, denoted by X́L and X́D to encode the target state
q′. In addition, we employ the Boolean variable set XΣ

to encode the alphabet of E, and we associate the event
σ with a unique satisfying assignment of the variables in
XΣ. Then, we identify the transition relation→ of E with
the characteristic function

∆(〈q, σ, q′〉) =

{
1 if `

σ→g/a `
′ ∈ →, v |= g, v′ = a(v)

0 otherwise

That is, ∆ assigns the value of 1 to 〈q, σ, q′〉 if there exists
a transition from ` to `′ labelled by σ, the values of the
variables at ` satisfy the guard g, i.e., v |= g, and the values
of the variables v′ at `′ are the result of performing action
a on v.

BDD-based modeling of the RAS behavior Given
a RAS instance Φ and the distinct EFA E1, . . . , En that
model the resource allocation dynamics of the RAS pro-
cess types J1, . . . , Jn, we shall denote by ∆1, . . . ,∆n the
corresponding symbolic representations of E(Φ). The re-
source allocation dynamics generated by Φ can be for-
mally expressed by the extended full synchronous compo-
sition (EFSC), introduced in Sköldstam et al. (2007), that
composes the aforementioned EFA to the “plant” EFA
E = E1|| . . . ||En. More specifically, in view of the above
discussion on the infeasible states that might be contained
in the EFA Ej , the actual dynamics of the considered
RAS Φ are modeled by the subspace of the composed EFA
E that is reachable from the (composed) initial state s0.
A symbolic representation of E will be denoted by ∆E,
and it can be perceived as a symbolic representation of
the underlying RAS state-space (although containing all
the “impurities” that were discussed earlier). ∆E can be
systematically obtained from ∆1, . . . ,∆n by using the ap-
proach introduced in Miremadi et al. (2012); the discussion
of this approach is beyond the scope of this work, and,
thus, we refer to Miremadi et al. (2012) for the details.

Finally, as it will be revealed in the following, the com-
putations pursued in this work do not require the explicit
representation of the event set Σ = Σ1∪. . .∪Σn. Hence, to
reduce the number of Boolean variables employed by ∆E,
in the following we will suppress from ∆E the Boolean vari-
able set XΣ

E , that represents Σ. In addition, since the loca-
tions of the considered EFA do not convey any substantial
information other than characterizing the various process
types as model entities with a distinct behavior modeled
by the corresponding EFA, ∆E can be further compressed
by suppressing the Boolean variable set XL

E = XL
1 ∪ . . . ∪

XL
n , as well. The elimination of the aforementioned sets

of variables from ∆E is technically effected through the
following existential quantification:

∆E := ∃(XΣ
E ∪XL

E).∆E (4)

In the rest of this work, when we refer to the plant model
∆E we shall imply the output of the operation performed
in (4).

3 In the rest of this document, we shall use interchangeably the
original name of a set Q and its characteristic function, χQ, in order
to refer to this set.

3. THE MAIN ALGORITHMS

In this section, we present our symbolic approach for the
retrieval of the set of minimal boundary unsafe states from
the underlying RAS state-space. The presented algorithms
assume the availability of an appropriately constructed
BDD ∆E that is a valid representation of the composed
EFA E = E1|| . . . ||En and it has been compressed through
the existential quantification expressed in (4). On the other
hand, as it will be revealed in the sequel, the algorithms
establish and maintain the feasibility of the various ex-
tracted states by utilizing the characteristic function χF
that expresses state feasibility in the BDD-based repre-
sentational context; this function can be systematically
constructed by first expressing collectively the invariants
of (1) through the Boolean function

m∧
i=1

(
vRi +

n∑
j=1

l(j)−1∑
k=1

Ajk[i] ∗ vjk = Ci
)
, (5)

and subsequently setting χF equal to the BDD that
collects the binary representations of all the value sets for
the variables vRi and vjk that satisfy the Boolean function
of (5).

The presented approach consists of two major stages. The
first stage computes symbolically the entire set of the
feasible boundary unsafe states of the given RAS, and, sub-
sequently, the second stage extracts the minimal elements
of this set. For reasons that are explained in the following,
this particular subset is adequate for the representation of
the entire original set in the implementation of the target
DAP.

3.1 Computing the feasible boundary unsafe states

The symbolic algorithm for computing the feasible bound-
ary unsafe states is also decomposed into two stages. In the
first stage, all the deadlock states w.r.t. the advancement
events in the considered RAS are identified and computed
from the symbolic representation of the state space ∆E. In
the second stage, the deadlock states are used as starting
points for a search procedure over ∆E that identifies all
the boundary unsafe states. The entire computation is
formally expressed by Algorithm 1, that works with ∆E
and χF , and returns the characteristic functions χFD and
χFB that constitute respective symbolic representations
of the sets of the feasible deadlock states and the feasible
boundary unsafe states. In general, the set χFB obtained
from the presented algorithm may include some states that
are not reachable from the initial state s0. However, the
presence of these additional states in the set χFB does not
impede the implementation of the maximally permissive
DAP by means of this set and the one-step-lookahead logic
that was outlined in the earlier parts of this manuscript.
Furthermore, for reasons that will become clear in the
following, it is pertinent to assume that the characteristic
function ∆E is partitioned in the characteristic functions
∆A and ∆L that collect respectively the transitions in ∆E
corresponding to process advancement and process loading
events; obviously, ∆E = ∆A ∨∆L. The rest of this section
elaborates on the various phases of the computation that
is depicted in Algorithm 1; a formal analysis of this algo-
rithm, that establishes its finite termination and provides
a proof for its correctness, can be found in Fei et al. (2013).

Identification of the feasible deadlock states. The
symbolic operations for the computation of the character-
istic function χFD are depicted in Lines 1-4 of Algorithm
1, and they can be described as follows: (i) The first step

WODES 2014
Cachan, France. May 14-16, 2014

365



Algorithm 1: Symbolic computation of the boundary
unsafe states
Input: ∆E (as ∆A ∨∆L) and χF
Output: χFB

1χT :=
(
∃XD. (∆A ∨∆L)

)
[X́D → XD]

2χE := ∃X́D. ∆A

3χD := χT ∧ ¬χE ∧ ¬χ{s0}
4χFD := χD ∧ χF
5χUnew

:= χFD, χU := χFD,∆Ûpre
:= 0

6repeat
7∆Û := χUnew

[XD → X́D] ∧∆A

8χSÛ := ∃X́D. ∆Û

9∆SA := χSÛ ∧∆A

10χNU := ∃X́D. (∆SA ∧ ¬∆Û ∧ ¬∆Ûpre
)

11χUcur
:= χSÛ ∧ ¬χNU

12χUnew
:= χUcur

∧ ¬χU
13χU := χU ∨ χUcur

14∆Ûpre
:= (∆Ûpre

∨∆Û ) ∧ ¬χUcur

15until χUnew
= 0

16∆B := χU [XD → X́D] ∧∆E

17∆SB := ∆B ∧ (¬χU )

18χFB := (∃XD. ∆SB)[X́D → XD]

consists of Lines 1-3 and it computes the characteristic
function χD of all the (partial) deadlock states in ∆E,
i.e., those states that are different from the initial state
s0 and they do not enable any process-advancing events.
This function is computed by first extracting into the char-
acteristic function χT all the target states from ∆A ∨∆L
(i.e. from ∆E) and in the characteristic function χE all the
states that enable process-advancing events. Subsequently,
χD is computed as the elements of χT that are not in
χE (i.e., they do not enable any process-advancing events)
or the initial state s0. 4 (ii) Since χD is computed from
the entire set of transitions that is contained in ∆E, it
might contain deadlock states that are infeasible (i.e.,
they violate the resource-induced invariants of (1)). The
presence of these infeasible states in χD would increase
unnecessarily the computational cost of the second stage
of the considered algorithm, that utilizes the identified
deadlock states as starting points for the identification of
the additional set of deadlock-free unsafe states. Hence,
in the last step of the first stage of Algorithm 1, the
obtained state set χD is filtered through its conjunction
with the characteristic function χF in order to obtain the
set of feasible deadlock states; this set is represented by
the characteristic function χFD.

Computation of the feasible boundary unsafe
states. Having obtained the set χFD of the feasible dead-
lock states, the algorithm proceeds with the symbolic
computation of the feasible boundary unsafe states in the
RAS state-space ∆E. These states are collected in the
characteristic function χFB , which is computed in Lines
5-18 of Algorithm 1. A detailed description of this compu-
tation is as follows: (i) At this phase of the computation,
Algorithm 1 employs the set U in order to collect all the

4 The particular operation [X́D → XD], that is involved in the
first step of the presented computation, moves the values that

are obtained during that step from the variable set X́D to the
corresponding variables in the variable set XD, in order to be utilized
in the subsequent steps of the algorithm; c.f. also Step 3.

identified unsafe states. Furthermore, at each iteration,
the set Unew defines the set of the unsafe states that
are to be processed at that iteration, through one-step-
backtracking in ∆A, in an effort to reach and explore
new states. The corresponding symbolic representations
for these two sets, denoted by χU and χUnew , are ini-
tialized to χFD. Finally, we also define the transition set
Ûpre ≡ {(s, u) ∈ ∆A | u ∈ U ∧ s /∈ U}; i.e., during

the entire search process, Ûpre contains the transitions of
∆A where the target states belong to U while the source
states have also transitions to states that currently are not
in U . The characteristic function of Ûpre is initialized to
zero. (ii) During the main iteration of the executed search
process, the algorithm first extracts all the states that
can be reached from the unsafe state set Unew by tracing
backwards some process-advancing transition in ∆A. This
computation is performed in Lines 7-8 of the algorithm,
with the extracted states represented by the characteristic
function χSÛ . Also, the backtraced transitions of ∆A are
represented by the characteristic function ∆Û . (iii) Sub-
sequently, Algorithm 1 tries to resolve which of the states
collected in χSÛ can be classified as unsafe. This resolution
is performed in Lines 9-11 of the algorithm. More specifi-
cally, the algorithm first collects in the transition set ∆SA
all those process-advancing transitions of ∆A that emanate
from states in χSÛ . Subsequently, it removes from ∆SA

those transitions that are known to lead to unsafe states,
namely the transitions that are also in ∆Û and in Ûpre.
The source states for any transitions remaining in ∆SA
after this last operation are collected in χNU ; these are
states that have transitions leading to states currently not
in U , and therefore, they cannot be classified as unsafe (at
least in this iteration). On the other hand, the complement
of χNU w.r.t. the overall set of extracted states χSÛ must
contain states with all their emanating transitions leading
to unsafe states, and therefore, they are themselves unsafe;
these states are identified and collected in set χUcur

in
Line 11. (iv) Lines 12-14 perform the necessary updates
so that all the critical data structures represent correctly
the current outcome of the ongoing search process. Hence,
Line 12 removes from χUcur any states that have already
been classified as unsafe in the previous iterations; the
remaining states are the elements of Unew for the next
iteration. Line 13 adds to the set U the newly identified
unsafe states, and finally, Line 14 updates the transition
set Ûpre; this last update is performed by initially adding

to Ûpre all the transitions in ∆Û (i.e., the transitions
that were backtraced during the current iteration), and
subsequently removing those transitions with source states
identified as unsafe. (v) The iteration described in items
(ii-iv) above terminates when no new unsafe states can
be identified by the algorithm. At this point, Algorithm 1
proceeds to extract the boundary unsafe states from set
χU . For that, at Line 16, the algorithm computes from
∆E all the transitions with the target states belonging
to the unsafe state set χU ; the relevant transition set is
denoted by ∆B. Next, at Line 17, the algorithm retrieves
from ∆B the transition set ∆SB, where the source states
of the included transitions are safe states. Finally, χFB
is obtained by extracting the target states from ∆SB and
performing the replacement of X́D by XD.

3.2 Computing the minimal boundary unsafe states

An important implication of the invariants of (1) is that,
at any feasible state of the RAS state-space, the values
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of the resource variables vRi can be induced from the
values of the instance variables vjk. Hence, one can obtain
a more compact symbolic representation of the set of
feasible boundary unsafe states, χFB , that is computed
by Algorithm 1, by eliminating from the elements of
χFB the values that correspond to the variables vRi.
Letting XR denote the Boolean variables representing
the values of the resource variables vRi, i = 1, . . . ,m,
this elimination can be performed through the following
existential quantification:

χFB := ∃XR. χFB . (6)

The compressed representation of the set χFB that is
obtained through (6) becomes even more important when
noticing that, according to Reveliotis and Nazeem (2013),
state unsafety is a monotone property in this representa-
tion. More specifically, given any two feasible boundary
unsafe states u1, u2 represented according to the logic of
(6), we consider the ordering relation “≤” on them that is
defined by the application of this relation componentwise;
i.e.,

u1 ≤ u2 ⇐⇒ (∀k = 1, . . . ,K, u1[k] ≤ u2[k]), (7)

where u1[k] and u2[k] are the values of the k-th instance
variable for u1 and u2. Furthermore, we use the notation
‘<’ to denote that condition (7) holds as strict inequality
for at least one component vk ∈ {v1, . . . , vK}. It is shown
in Reveliotis and Nazeem (2013) that if state u1 is unsafe
and state u2 satisfies u1 ≤ u2, then state u2 is also
unsafe. Hence, under the state representation of (6), the
set FB can be effectively defined by the subset of its
minimal elements, a realization that leads to ever greater
economies regarding the storage and processing of the
relevant information. We shall denote this subset by FB,
i.e., FB ≡ {u ∈ FB | @u′ ∈ FB s.t. u′ < u}.
In the rest of this section we present an algorithm for
computing the characteristic function of the set FB
from the characteristic function χFB obtained in (6).
Before we proceed with the discussion of this algo-
rithm, we need to introduce two auxiliary BDD sets,
collectively denoted by {∆=(ṽ1, v1), . . . ,∆=(ṽK , vK)} and
{∆≥(ṽ1, v1), . . . ,∆≥(ṽK , vK)}, which will be useful for
identifying state dominances, according to (7), by the
proposed algorithm. Each pair ∆=(ṽk, vk) and ∆≥(ṽk, vk)
pertains to the corresponding instance variable vk, and it
can be constructed as follows:

∆=(ṽk, vk) :=
∨

∀vk∈Dk

(
X̃Dk(vk) ∧XDk(vk)

)
(8)

∆≥(ṽk, vk) :=
∨

∀vk∈Dk

(
X̃Dk(vk) ∧

∨
∀v′

k
≥vk

XDk(v′k)
)

(9)

In (8) and (9), X̃Dk(vk) denotes the symbolic represen-
tation of the value of k-th variable vk using a new set
of Boolean variables denoted by X̃Dk while XDk(vk) and
XDk(v′k) denote the symbolic representations of the values
vk and v′k, of the same instance variable, using the source
Boolean variables XDk . From a conceptual standpoint,
∆≥(ṽk, vk) associates each value vk with all those values
v′k ∈ Dk that are greater than or equal to vk while
∆=(ṽk, vk) merely associates each value vk with itself.

Taking as input the feasible boundary unsafe state set
χFB and the aforementioned auxiliary BDDs, the sym-
bolic computation of the minimal feasible boundary unsafe
states is formally expressed by Algorithm 2. Specifically,
in Lines 1-2, Algorithm 2 constructs two BDDs, respec-

Algorithm 2: Symbolic computation of the minimal
boundary unsafe states

Input: χFB , {∆=(ṽ1, v1), . . . ,∆=(ṽK , vK)} and
{∆≥(ṽ1, v1), . . . ,∆≥(ṽK , vK)}

Output: χFB

1∆EQ := ∆=(ṽ1, v1) ∧ . . . ∧∆=(ṽK , vK)

2∆GE := ∆≥(ṽ1, v1) ∧ . . . ∧∆≥(ṽK , vK)
3∆GT := ∆GE ∧ ¬∆EQ

4∆BGT := χFB [XD → X̃D] ∧∆GT

5χGB := ∃X̃D. ∆BGT

6χFB := χFB ∧ ¬χBG

tively denoted by ∆EQ and ∆GE , by performing the con-
junction operation on {∆≥(ṽ1, v1), . . . ,∆≥(ṽK , vK)} and
{∆=(ṽ1, v1), . . . ,∆=(ṽK , vK)}. The characteristic function
∆EQ associates each state 〈v1, . . . , vK〉 with two different
symbolic representations using the Boolean variable sets
X̃D and XD, while ∆GE associates each state 〈v1, . . . , vK〉,
represented by X̃D, with a set of states, represented by
XD, which are larger than or equal to 〈v1, . . . , vK〉. Sub-
sequently, the symbolic computation performed at Line 3
of Algorithm 2 removes all the associations of ∆EQ from
∆GE and denotes by ∆GT the resulting set. Line 4 of
Algorithm 2 computes the characteristic function ∆BGT
which associates each state in χFB with the corresponding
dominant states, and, subsequently, Line 5 extracts all
these dominant states into the set χGB . Finally, the set of
minimal feasible boundary unsafe states, χFB , is obtained
in Line 6 by removing from χFB the states in χGB . A
formal proof for the correctness of Algorithm 2 can be
found in Fei et al. (2013).

4. EXPERIMENTAL RESULTS

The symbolic algorithms that were developed in this work
have been implemented in the DES software tool Suprem-
ica (Åkesson et al. (2006)). In this section, we report the
results from a series of computational experiments 5 in
which we applied the considered algorithms on a number
of randomly generated instantiations of the RAS class
that was defined in Section 1. Moreover, we compare the
performance of Algorithm 1 to the performance of the
BDD-based algorithm of Miremadi et al. (2012); the latter
computes the target unsafe states through the standard
synthesis procedure for non-blocking SC provided by SC
theory (Cassandras and Lafortune (2008)).

Table 1 reports a representative sample of the results
obtained in our experiments. The first section in the ta-
ble is for RAS instances with simple linear process flows
and single-type resource allocation. The second section is
for RAS instances with simple linear process flows and
conjunctive resource allocation. Finally, the last section
of the table is for RAS instances with routing flexibility
and conjunctive resource allocation. In the experiments,
we first applied an extension of the algorithm presented in
Miremadi et al. (2012) and Algorithm 1 to the aforemen-
tioned RAS instances to obtain all the boundary unsafe
states, and then we applied Algorithm 2 to remove the non-
minimal unsafe states from the obtained sets of boundary
unsafe states. Columns 1-2 in Table 1 report the cardinali-
ties of the set of reachable states R and the set of reachable

5 The experiments were carried out on a standard desktop, (2.66
GHz Intel Core Quad CPU, 10GB RAM) running Windows 7
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Table 1. A sample of computational results regarding the efficiency of the presented algorithms.

The algorithm of Miremadi et al. (2012) Algorithm 1 presented in Section 3.1

|R| |RB| tRB ζRB |RB| t
RB

ζ
RB

|FD| |FB| tFB ζFB |FB| t
FB

ζ
FB

635572 180603 5 220504 1513 0 68983 220976 341959 10 216780 2408 0 74850
1463878 227817 11 176658 284 0 22158 55001 324949 31 229082 509 0 32624
404542 95971 7 278983 3084 0 218063 281285 206867 8 226044 5319 0 189842
1508301 267871 2 247264 664 0 29361 133231 340325 3 216089 1011 0 26037
799071 186500 21 527040 6193 1 586529 291592 283962 7 283962 8934 1 551210
1743534 351907 15 479966 2366 0 250208 651211 615057 18 355962 3653 0 361054
1659342 381846 90 1115932 9472 19 3943512 942254 800940 42 796123 17931 7 2046115
1962454 438521 28 607812 6719 2 853680 769090 761399 29 450040 10527 4 929955
4488904 860221 15 499894 642 0 53755 1032734 1560858 75 989925 1928 0 76711
3436211 783794 207 1374268 31236 41 7775958 1590736 1564991 106 1176110 55553 73 8985355
14158338 2615904 180 1731691 31629 11 2709199 1983934 3558362 152 1561971 46048 18 2939342
14521572 3218012 626 3556004 26920 34 8969555 3399416 5696085 642 4999572 51069 102 7920050
22212582 5066271 2150 8019401 31328 60 10435459 4621662 8056766 964 5546176 62996 238 12958398
32380375 8277582 609 4347910 21062 20 2719450 4807088 14320225 904 5415820 40306 109 4506280
14963458 3207511 470 3207511 17990 104 12698346 6898234 5989367 553 4415000 31376 393 17578012
29160898 5496694 184 2126861 15957 11 1976633 3035820 7751451 237 2685162 27138 25 2442037

646746 94821 0 65495 779 0 12588 23876 134569 0 39073 849 0 14890
1767552 308306 0 137372 559 0 4418 29616 351851 0 90427 660 0 4979
915716 166540 2 219628 794 0 54459 199316 276548 11 325337 1072 0 55987
738720 69536 3 260919 4091 0 39553 171581 82408 3 166049 4616 0 60080
2939463 408009 128 1432070 3401 0 97229 142301 531238 97 1043925 5464 0 80869
2430581 547612 15 505697 14120 0 189566 247195 741764 10 226991 16732 0 104188
1962454 438521 33 613613 6719 1 678536 769080 761399 25 649984 10527 2 996436
1712672 306585 83 1590899 6821 0 175493 441376 445092 38 646998 9563 3 318205
3554952 614597 3 282374 2466 0 43964 642882 1212213 34 467604 3520 0 68264
6051299 1087093 134 1547620 4713 0 139537 1189993 1781191 32 575720 6292 0 157214
24430444 5457497 205 2408072 9491 0 323161 1037721 6000747 125 1534599 10699 0 228345
2271288 532934 18 458589 2636 0 261719 771400 947149 21 629325 5601 0 395819
29160898 5496694 211 1898949 15957 11 1976636 3035820 7751451 193 2146384 27138 12 1535306
22212582 5066271 946 6665791 31328 61 10472017 4621662 8056766 815 5182290 62996 244 13028200
106509798 10910823 234 3873700 4035 0 69722 841940 12529669 313 2367893 4368 0 43553
596212152 139238562 3097 6791929 426 0 86650 2033997 169402134 520 6744437 572 0 50278

571536 0 0 189732 0 0 0 0 0 0 4908 0 0 0
2771880 11925 0 367188 28 0 1715 1445 12306 0 21102 28 0 1806
1229688 26088 13 663513 241 0 2019 21046 39120 0 112433 271 0 2558
2693250 29286 1 108440 79 0 1363 3193 29292 0 64316 79 0 1433
3416000 78400 0 269513 1 0 288 49 78400 0 80758 1 0 315
2448000 330768 1 129663 9 0 1872 10076 336144 2 255463 9 0 1881
1663534 130825 1 175736 2665 0 27102 185177 262514 1 129084 6189 0 30140
2340408 342098 12 525047 1458 0 15405 114926 603701 2 230807 2283 0 13289
7885856 425741 28 1199596 2323 0 17084 383129 594828 1 262861 2628 0 11999
30397584 568889 24 3544487 16526 0 62048 349953 853537 3 229892 22318 0 39358

1219947240 18531807 4987 49835897 381 0 639461 86535 72055380 460 7959586 516 0 495417
81285120 2027904 2 314728 1215 0 1971 110656 4676480 0 120387 1245 0 1860
96438720 5401790 365 3031243 24 0 11703 1648506 6321838 106 2526813 31 0 6592

3547065654 41135520 3892 20605813 6635 0 57369 1812728 93980859 74 3595817 8117 0 92971
399477600 45541152 2802 14511314 792 0 58762 2027551 122636544 59 2939165 1975 0 20899
3749923584 222163176 8773 38249085 2320 0 343680 4177807 269219724 99 2441987 5171 0 189467

boundary unsafe states RB that are computed by the
algorithm of Miremadi et al. (2012). Columns 3-4 report
the required computation time, tRB (in seconds), and the
maximal number of BDD nodes, ζRB , employed during the
algorithm execution. Having the set of all reachable bound-
ary unsafe states, Column 5 reports the cardinality of the
set of the minimal boundary unsafe states RB, obtained
through Algorithm 2. Columns 6-7 show the computation
time tRB and the maximal number of BDD nodes, ζRB ,
during the execution of Algorithm 2. With respect to the
related results of Algorithm 1, Columns 8-9 report the
cardinalities of the set of deadlock states FD and the
set of boundary unsafe states FB, while Columns 10-11
report the computation time tFB and the peak of the BDD
nodes during the execution of Algorithm 1. Analogously,
Columns 12-14 report the cardinality of the set of minimal
boundary unsafe states FB, the computation time tFB ,
and the maximal number of BDD nodes ζFB when using
Algorithm 2 to remove the non-minimal states from FB.

Thanks to the compactness offered by the employed sym-
bolic representations, both, the symbolic algorithm of
Miremadi et al. (2012) and Algorithm 1 are capable of
handling RAS instances that have billions of states in their
underlying state-spaces, and they manage to compute the
set of boundary unsafe states with limited memory and

time. Table 1 also reveals that functions like the removal
of non-minimal boundary unsafe states from the originally
computed sets RB and FB can be performed very effi-
ciently through symbolic computation.

Next, we focus on the comparison of the computation time
and the maximal memory usage between the algorithm
of Miremadi et al. (2012) and Algorithm 1. By taking
advantage of the particular structure and properties of
the considered RAS state spaces, Algorithm 1 avoids the
full exploration of these state-spaces. Hence, compared to
the more conventional symbolic algorithm of Miremadi
et al. (2012), Algorithm 1 requires fewer iterations to
compute the target boundary unsafe states, and it tends
to have a better computation time. Furthermore, the
avoidance of the exploration of the whole RAS state-space
enables Algorithm 1 to consume less memory during its
execution, especially for RAS instances with small unsafe
state regions. As depicted in Figures 3 and 4, Algorithm 1
outperforms the algorithm of Miremadi et al. (2012), on
average. This performance dominance is more emphatic
for RAS instances with routing flexibility, since, for these
RAS, the cardinality of the set of reachable states is orders
of magnitude larger than that of the set of boundary unsafe
states, and therefore, the partial state-space exploration
that is effected by Algorithm 1 establishes a stronger
competitive advantage.
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Fig. 3. Comparing the computation times (in sec.) of the
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Fig. 4. Comparing the maximal memory usage of the
algorithm of Miremadi et al. (2012) and Algorithm 1,
based on their maximal BDD node requirements

Finally, we briefly report on some further experimen-
tal results presented in Fei et al. (2013), that compare
the total computation time of the combined execution
of Algorithms 1 and 2 to the computation time of the
algorithm that is presented in (Nazeem and Reveliotis
(2014)). According to the findings reported in Fei et al.
(2013), for the RAS instances with simple linear process
flows and conjunctive resource allocation, the sequential
execution of Algorithms 1 and 2 outperforms the algorithm
of Nazeem and Reveliotis (2014). Some of the largest cases
suggest that the gains attained by the symbolic algorithms
can be up to 100 times faster. On the other hand, for
RAS instances possessing routing flexibility, the algorithm
of Nazeem and Reveliotis (2014) is competitive to the
proposed algorithms. We believe that this comparative
improvement of the computational efficiency of the algo-
rithm of Nazeem and Reveliotis (2014) for these particular
RAS instances stems from the fact that the algorithm
of Nazeem and Reveliotis (2014) focuses explicitly upon
minimal deadlocks and unsafe states in its computation,
and therefore, it effects an even more limited search in the
underlying RAS state space compared to the algorithms
that are developed herein.

5. CONCLUSION

This paper has complemented recent developments con-
cerning the effective deployment of the maximally per-
missive DAP for complex RAS, with the representational
and computational strengths that are offered by symbolic
computation based on BDDs. The reported experimental
results also demonstrate the substantial gains that can be
attained, even in the context of symbolic computation,
through the pertinent exploitation of the special structure
that might be inherent in the underlying problem.

In our future work, we shall seek to further enhance the
performance of the presented algorithms by identifying
and exploiting additional special structure that might be
present in the considered supervisory control problem, and
we shall also extend these algorithms so that they can be
applied to RAS with even more complex behavior.
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