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Abstract
I  rchitects had a tool to redict uture de ands  odi cation o  the built en iron ent 
could meet the changing behaviors and emerging phenomena in society. Research on ex-
isting building stock, in relation to prediction is reviewed. And an entirely new type of 
architectural tool is proposed.
The algorithm, capable of making predictions in unstructured environments, is present-
ed, and the basis and the idea of the algorithm are described. The discussion focuses on 
possible applications for this new tool, and the paradox of prediction is debated. Finally, 
improvements to the computational system are proposed.
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             1. Introduction
What if we could predict trends, rising phenomena and future necessity in our built envi-
ronment? What if we could trace behaviors and forecast the needs for the future? What 
if we had a tool for proposing architecture, able to point out potentialities and suggest 
additions, subtractions and modi cations?
Our societies nowadays change faster than ever, and as both long term and short term de-
mands change, our physical surroundings need to adapt in a rate where real-time feedback 
is too slow for the time-consuming process of building. There are few ways to react to 
this issue. One is to make use of the existing building mass and only focus on the smallest 
most time-utility effective modi cations. The other is to start modifying before the need 
actually arises; a preemptive strategy, which requires prediction. Prediction easily becomes 
either a technical engineering issue or a philosophical issue. This changes with the grade 
of fuzziness versus determinism of what we must predict. The article does not discuss the 
philosophical aspects of prediction, rather assume prediction from a cognitive viewpoint, 
where experience creates the basis of forecasting - through the ability to remember simi-
lar situations and project their continuation. 
As society, culture and especially demographic setting change, many aspects of the archi-
tecture should follow. As an example, families get smaller, more people live alone in the 
same size apartments as 50 years ago, and density drops causing change in the urban scale. 

rop in density makes it harder to run ef cient public transport, and small-scale local 
shopping demise. If the existing housing mass would continuously adapt to the need, mixed 
use could nurture social integration, less transportation, and lower general consumption. 

uch of this adjustment could be achieved through subdivision in ll buildings or merging 
of existing property (Anne Power, 2008). In addition, enormous amounts of industrial spac-
es have been left empty as the situation for industry in Europe has changed over the last 
35 year, however reliable data are missing in order to form coherent refurbishment plans, 
and in addition it is not high on the agenda of the architecture community, as architectural 
education, by and large, focuses on (new) building designs (Hassler, 2010). 
If we are able to predict phenomena for large-scale environments, the proposals for mod-
i cation could be anything from subdivision of living spaces, opening of ground oors, ad-
dition of balconies, in ll houses, or demolitions to create parks, and urban spaces. Basically 
including all scales of modi cation to the built environment, through both subtraction, 
addition, and modi cation. The importance lies in being able to propose modi cations, in 
the rate of which the demand changes.

Figure 1.
This simple robust structure from 192  was serving initially as garage, but has since been modi ed to t 
several different needs. Through the 80s and the 90s the building has served as a shop for outdoor apparel. 
(Brandt, 1994)
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Figure 2.
As the downtown Akron, Ohio, grew closer to the grain silos of the Quaker Oats Company, it was decided 
to transform the structures into a hotel, now known as the Quaker Hilton. (Brandt, 1994)

              2.1 Related work on prediction used on the existing built envi-
ronment
Kohler and Hassler sums up the research on refurbishment and the building stock, and 
describe the different strands. In addition, I will mention some research done by engineers.
One area is the energy refurbishment research, where buildings are divided into groups 
based on various parameters such as annual consumption, surface area, age, function and 
inhabitants, with the aim to make overall predictions of energy consumption for coming 
years. Hassler comments on these models, saying that rather than predicting the results 
of refurbishment, the need is to form a strategy for future refurbishment (Hassler, 2010).
Research by Stepney that looks more general, and includes social, environmental, and cul-
tural consequences of demolition in comparison to refurbishment, without actually doing 
a prediction, highlights a complex landscape of causal effects - ranging from local through 
political, social and global consequences. She concludes:
 “It is unclear how energy use will work out in practice. So, an approach grounded in the realities 
of our complex built environment seems more hopeful than a theoretical, long-term and largely 
uncosted plan to build and demolish on unprecedented scales within our seriously constrained 
environment.”  

(Stepney, 2008)
Another strand is the traditional research in conservation that focuses on conservation of 
historically signi cant buildings. This refers - depending on country or region- to as little 
as 1-2  of the building stock (Hassler, 2010) and one of the discussions in this eld is to 
what extent the original functions of the building should be maintained in opposition to 
suggesting and refurbishing for new functions and possible uses. 
Kaklauskas and his colleagues make a full multi-criteria analysis, where all criteria like cost, 
aesthetics comfort and quality are quanti ed in tables. They are basing the system on set 
of weighted criteria, which would probably change weight or value depending on the envi-
ronment in which the refurbishment is taking place (Kaklauskas, 2004).
Yet other research into prediction of the building stock development, has focused on en-
ergy consumption and uses production statistics and implicit trend models to predict the 
future behavior of the stock. Those studies look at average trend curves from the entire 
environment, in single separate dimensions and project many years into the future, with 

large margins (IEA, 1995).
However, sustainability, heritage and refurbishment have both to do with the past and the 
future of our built environment. While architectural heritage is concerned with sustaining 
culturally valuable buildings for the future, refurbishment is about adapting the built envi-
ronment to future needs of its inhabitants, so that new sets of demands can be met. But, 
how do we determine what the demands are, and what attributes of heritage we should 
attempt to keep? Do we keep cultural values and resources through conservation, preser-
vation or protection? Maybe it is done through maintaining utility and nurturing active use 
of our built environment. An approach could be to use existing potentials in combination 
with future trends, occurrences and phenomena. 
If that is the case, attention is no longer on the design and formal expression and aesthetics 
of the physical matter in the environment. Rather, the subject can be seen as constituted 
by the events and occurrences in the environment. A matter composed by events, activities 
and episodes. 
“An episode is a collection of events that occur relatively close to each other in a given partial 
order.”  

(Manilla, 1997)
Events make up episodes, which are perceived less through conventional spatial metrics 
and categories, more through our human sensorial apparatus and cognitive sense making. 
Episodes are often considered to pass over time, but when understanding them as series 
of events, time is not preconditioned, it may or may not be regarded.
The article seeks to understand the paradoxical consequence of using prediction in ar-
chitecture and speculates on ways of implementing prediction as a tool for proposing 
modi cations to our built environment. The chosen research approach, is referred to as 
Propositional Architecture and is described in the paper “Propositional Architecture using 
Induced Representation”(Nielsen and Dancu, 2014).  It uses sensor technology, cognition, 
and augmentation combined, in order to achieve an ongoing stepless refurbishment of the 
existing building mass. The approach consists of a few steps. A: data collection from the 
environment, B: machine cognition, learning, prediction, and, C: proposition, visualization, 
and embodied representations for quick implementation. The paper outlines the factual 
and theoretical basis for this approach, and discusses three experiments, each one of which 
deals with steps A, B and C.

              2.2 Machines understanding events
Already in the 90s, when sensor technology was recognized as one of the important 
emerging  technologies, the ability to process sensor data in software became an import-
ant area of development (Toko 2000, Laughlin 2002, Murphy 1996). Nowadays sensors 
are heavily enhanced by more advanced software methods such as ‘Sequential Pattern 
Mining’ and ‘K-means clustering’, Self Organizing Maps, and others (Gershman, 2012, Ca-
banes, 2010). The combination of these different types of algorithms, can result in systems 
performing machine learning and cognitive processes. Systems that can reveal hidden rela-
tions in large unstructured data, learn to recognize consumer patterns, objects in images, 
handwriting, or faces.
Through using different algorithms in combination, this (accumulate) algorithm can pro-
pose the occurrence of future phenomena, provided that it has an amount of experience. 
That means that the algorithm can be assigned to a higher level than analytical machines or 
design machines, namely that of initiative and proposition. The algorithm permits the iden-
ti cation of behaviors and thus it is able to propose what is necessary in the future. The ac-
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cumulate algorithm might permit us to build and modify for future events and phenomena.
 
              2.3 A new type of computational aid for architecture and the 
built environment
Machines throughout the past century have increasingly managed design; perspective 
perception apparatus for hand drawing and parallel drawing machines for geometrically 
constructed perspectives. In the last few decades, computer aided design machines have 
evolved, and the late twenty years computerized parametric machines have come about. 
The parametric machines allow architects to manage complex geometry, data and rela-
tions, and some simulation models already simulate notions of events and occurrences in 
the environments they model. Such technologies enable architects on a level of design and 
development of ideas that are already conceived. 
If we change the focus from handling geometry to the task of handling behaviors and 
events in matter, maybe we can use computational and sensory machines for the very 
conception of ideas. The computation and technology in this research is not for the design 
of existing ideas, rather aiding in the very conception of ideas. Propositional Architecture 
could point out potentialities in the environment and suggest modi cations. 
A learning algorithm is proposed that is able to detect phenomena and make predictions 
on events in any given environment, real-time. The algorithm can be fed any input data, in 
any number of dimensions, and the algorithm can easily adapt to any timescale.
The algorithm searches its memory and when pointing to a part of the memory, it indicates 
that there is a certain phenomenal similarity between the current and past experiences. 
Representation of the projected memory can be in any form of medium, but this is the 
prediction.
These are the steps which is performed in continuous repetition:

A: Collect and memorize multiple types of data from the environment.
B: Produce an internal representation of events and phenomena. (This representa-
tion constantly shifts depending on the character of the data.)
C: Compare the current series of events to all previous series of events and nd 
behavioral similarities, and recurrent phenomena. 
D: The forecast takes the ‘soon to come’ events from the most similar previous 
phenomena, and projects it into the future. 

              3 Forecasting method

Most of the simple forecasting methods are based on running averages, linear regression, 
trends, or curve- tting models, all included in linear prediction. Non-linear prediction is 
also rich presented as frequency identi cation or Fourier transform analysis for more 
complex curves (Antunes, 2001) or statistical methods using, for example, the Bayesian 
theorem (Gershman, 2012). Also neural networks have been used (Dorffner, 1996), but 
these methods suffer from the problem of long training time. 
The algorithm presented in this article can be placed within the group of ‘Advanced 
time-series forecasting methods’, and the most similar approach can be found in the article 
‘Rule discovery from time series’ (Das, 1998).
In this case, where the changing factors are spatially distributed and it is in fact not clear 
what exactly we need to forecast, this work takes an approach favoring robustness and 
speed, while still being able to have a real-time graphic representation.

If we assume for a moment, that all events and phenomena are constituents of other small-
er or larger events, then if a certain sequence of partial events takes place, we should be 
able to remember it and project the next few parts of that event, provided that we have 
experienced a similar series of events before. This means that we need a system, which can 
separate the occurrences in the environment into different partial events, and then com-
pare the current sequence of partial events to all the similar sequence of partial events in 
memory. Laplace describes determinism like in the quote below, but he assumes that we 
must know, through science, all meaning of the individual parts in the entire universe, but 
we may just need to look for similarities to previous occurrences, without knowing the 
meaning of the events. 
“We ought to regard the present state of the universe as the effect of its antecedent state and 
as the cause of the state that is to follow. An intelligence knowing all the forces acting in nature at 
a given instant, as well as the momentary positions of all things in the universe, would be able to 
comprehend in one single formula the motions of the largest bodies as well as the lightest atoms 
in the world, provided that its intellect were suf ciently powerful to sub ect all data to analysis  
to it nothing would be uncertain, the future as well as the past would be present to its eyes. The 
perfection that the human mind has been able to give to astronomy affords but a feeble outline 
of such an intelligence.” 

(Laplace, 1820)
The idea of the algorithm is that, if several aspects of the environment are observed 
throughout a period of time, a memory of the events taking place is built, and if the most 
recent series of events is found to be similar to a previous series of events, then we may 
presume that the continuation of the current situation is similar to the continuation of the 
event from the memory, so that it becomes the prediction.

              3.1 Experience built from multidimensional data
One sensor can support many simple tasks, but for the data to be usable, it must be both 
calibrated and context aware. Through the technique of sensor chaining, multiple same 
type sensors can perform  without calibration, only with context awareness. Instead of cal-
ibration they make use of their different readings set in relation to their different contexts. 
Context awareness, high precision and adequate reaction speed are required of sensors 
used for sensor chaining (Nielsen, 2012). Sensor Fusion, on the other hand can signi cantly 
reduce the need for both precision and context awareness for the individual sensors, as 
this technique makes use of various criteria, or what we will refer to as ‘dimensions’.
If you cannot nd the sensor you need in any manufacturer s catalogue then you can 
probably make your own - in Software. This is the basic premise behind sensor fusion. The 
idea is that if you combine the data from a variety of different sensors, you will be able to 
measure parameters for which no single sensor exists” (Laughlin, 2002)
With sensor fusion systems, a rough calibration is useful, and this is how we might under-
stand the system described in this paper. This algorithm can be seen as a sensor-fusion 
system, using sensor chaining throughout time. We look at each unit of time as a multidi-
mensional data point, and compare its values to all other time units in order to determine 
which are similar and which are different. We employ a simple K-means clustering algo-
rithm to determine the differences throughout the time-data points. This is the basis for 
creating a sequence.
The K-means algorithm, commonly used for signal processing, is clustering the n-dimen-
sional observations into any given number of clusters, where similar observations are 
grouped together. If we had two-dimensional observations plotted on paper, we could 
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divide them in two different clusters. Then we could calculate the average centerpoint for 
each cluster, and then nd out for each point which centerpoint it is closest to. Then recal-
culate a new position of each centerpoint based on the average of the points belonging to 
the cluster with that centerpoint. 
Increasing the number of clusters could still be visualized, but when we increase the num-
ber of dimensions for the data points, we can no longer visualize them after 3-dimensions. 
However the K-means algorithm uses the same approach, calculating the distance over 
n-dimensions, and comparing the Euclidean distance between clusters and data points 
to tell if the point belongs to one or the other cluster, even for a very large number of 
dimensions. 
When looking at the time-data-points in the order which they are recorded, a sequence 
can be derived where each new element is given the name of the cluster to which the 
time-data-points belong and a length which is determined by the number of consecutive 
time-data-points belonging to that same cluster (Figure 3). We call one such element ‘sub-
sequence’. This method is a strong discretization of the data, but by continuously redistrib-
uting members of the clusters, it is constantly reinterpreting its understanding of the data 
in accordance with the latest experiences. So if no particular phenomena take place, -say 
all sensor input has only minor changes, the distribution will still occur. One might say it 
adapts to the degree of complexity in the environment. 
The last step is to look through that sequence and nd a series of subsequences similar 
to the most recent series of subsequences, -the ‘now’. Once a good match is found from 
the previous event sequence, we can look at how that earlier event unraveled and pro-
pose that same course of events to pass again. A similar approach is described and used 
here (Das, 1998). For this purpose I made an algorithm performing ‘recursive temporal data 
mining’.

Figure 3.
Sensor readings are plotted over the duration of about 100 seconds. The data is analyzed, and vertical time 
sections with similar sensor readings are clustered. The result is shown as the poly-colored bar across the 
middle. Same color time sections have similar sensor readings.

              3.2 Temporal Data Mining
Temporal data mining is a widely applicable eld, and most real world data can be viewed 
as sequences of events, which can be used as input for temporal data mining. This algorithm 
makes use of recursion to nd the best matching previous event. As the bottom part of 
gure 4 indicates, the recursion starts once for every previous subsequence with the same 

name (or color). In order to investigate the similarity between the current sequence and 
the sequence back in the memory, one step backwards in both sequences is made, and 
if the subsequence has the same name, the recursion is called again. By summing up the 
lengths of sub sequences and giving penalty when the length of the sub sequence pieces 

mismatch in length, the longest, matching sequence can be found.
As already mentioned, there are literally hundreds of different algorithms published within 
the eld of data mining, rule mining and sequential data mining. They are mainly different in 
optimizing speed for searching large data sets, which is in part because the task of nding 
any sequence with any length, and any number of its occurrences, is a task that increases 
exponentially in size with the increase in data. Often the algorithms need to be appointed 
a size of window, from which the sequences can be mined, and a criterion of support may 
also be de ned. The window separates the task in smaller chunks, and the support de nes 
how much to look for patterns (Fournier-Viger, 2014).
Because this algorithm only searches through memory in relation to the latest sequence, 
and because it uses recursion, the mining takes just few milliseconds. Additionally, for the 
recursion to be robust to noise in the sequence, that is built in a criterion of noise tol-
erance. It works like a jump with penalty. If the next sequence piece does not match, the 
second is queried, if that also doesn’t match the third is queried. This maximum number 
of jumps is a variable, a noise tolerance. And the penalty is deducted from the sequence 
length index, which determines what sequence is chosen for the forecast.

Figure 4.
Top; The input dimensions of various data assigned to each time-data-point. Bottom; Recursive temporal 
data mining, and the projected sequence making the prediction: HDFGAB.

              3.3. Pseudocode:
1. Add new data point to memory - assigned with incoming data dimensions
2. Reorganize cluster names for data points using k-means clustering
3. Write whole sequence of subsequences using cluster names from k-means
4. Start recursion for each previous subsequence equal to the current subsequence
-return the longest matching sequence
5. Forecast from the end of returned sequence
6. Continue until better sequence is found
7. If memory is full, start overwriting oldest memory
8. Repeat from 1.

              4. Example of use

The algorithm was tested on an outdoor area of ETH, campus Hönggerberg. The area is 
providing access for pedestrians between the campus buildings and the busses, connecting 



80// 

P
ro

p
o

si
ti

o
n

al
 a

rc
h

it
e

ct
u

re
 a

n
d

 t
h

e
 p

ar
ad

o
x

 o
f 

p
re

d
ic

ti
o

n
St

ig
 A

nt
on

 N
ie

lse
n

81 // ISSN 2309-0103
www.enhsa.net/archidoct
Vol. 2 (2) / February 2015

ISSN 2309-0103
www.enhsa.net/archidoct
Vol. 2 (2) / February 2015 

Propositional architecture and the paradox of 
prediction

the campus to the city. The input dimensions are, in this case, given the color of the pixels 
indicated by grey squares in gures 5 and 6, and the memory was recording a span of about 
5 minutes, before starting to overwrite old memory. The prediction is illustrated as a se-
ries of green traces showing what pixels are going to change in comparison to the normal 
image. Figure 5 is not a real prediction because the algorithm was shown the same exact 
video twice, but it demonstrates how the algorithm shows the most similar previous series 
of events, namely the exact same previous events. Figure 6, on the other hand, was shown 
a continuous video of all events in the area, and although it is obviously not able to predict 
the situation, it is able to nd a series of similar events, where several of the pedestrians 
are seen in the same areas simultaneously. 
This is obviously a very dif cult situation to predict because the environment has little or 
no causal behavior, and almost none of the events are related, but rather spontaneous and 
chaotic.

Figure 5.
Testing and demonstrating the capacity to predict. The algorithm was shown the video twice, and the sec-
ond time it was able to use the rst as prediction. Prediction is displayed in green. 

Figure 6.
The algorithm is shown a long video, and the chosen moment is when the algorithm nds a similar series 
of events. Prediction is displayed in green.

              5.1 Paradox of prediction
How do we verify a prediction if we intentionally change the environ-
ment in which it were to play out? And should the prediction be created 
from memory of modi cation based on prediction?  
The questions suggest two different ways of using the algorithm, one where the memory is 
based on past cases of refurbishment, it would, given the data from a vast amount of other 
cases, be able to suggest the most similar outcome, and provide data on more aspects 
such as built time, cost and other detailed data from the past case(s); for example, if mem-
ory was made up of a number of refurbishments in different locations, where each was 
tracked over time with essential criteria. Then when another refurbishment is started, the 
most similar can be found and predictions can be based on that previous refurbishment. 
Of course as the refurbishment progresses, the prediction would change, as other better 
ts might be found. That way future potentials might be seen earlier and exploited better. 

The alternative is without using past refurbishment as memory, instead using occurrences 
of events and trends in the environment, in order to produce designs that support the 
events. This could, for example, be shifts in functions of a certain area. In case we have 
multiple dimensional data over time with information about how inhabitants and industry 
behave in the city, then recurring events of movement to a new part of the city can create 
the sequential memory. The algorithm will be able to make a prediction of which inhabi-
tants are likely to move within a given time.  
If input dimensions are imperceptible, might we predict on impercepti-
ble phenomena? 
If we make use of dimensions imperceptible to humans, we might identify series of events 
that are otherwise imperceptible. What Immanuel Kant describes as noumenon. Predicting 
may work the same or better, it needs to be experimented with (Rescher, 1972).
How can we provoke reactions for faster learning of relevant phenom-
ena? 
An example is the unfamiliar water faucet, one might not know what happens when it is 
turned versus levered. The approach to learn is to affect it. In this way, after a few opera-
tions, it is learnt which operation supplies water pressure and which operation regulates 
temperature, but gaining this experience, is impossible through just passively observing the 
faucet. 
Interplaying with the environment might increase the rate of which learning information, 
suf cient for prediction, can be gained. But this points back to the rst question in this 
discussion.

              5.2. Improvements to the forecasting method
How could we improve the choice of sequence? 
One of the most important aspects of the prediction is to choose the sequence to use for 
prediction, and it is obviously already dependent on the differentiation of time data points 
and the granularity of the sequence. The approach of nding the longest possible set seems 
like a reasonable strategy for the very diverse forecasting environment. 
How might we improve the input dimensions? 
Another very important criterion is to choose relevant input dimensions. These should be 
related to the situation relevant to the prediction. Essentially according to the idea of fu-
sion sensors, improving the number of different sensorial aspects improves the robustness. 
Dimensions for which nothing happens will be non-in uential, and only dimensions with no 
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causal relation to the situation of relevance can be creating noise. It would be relevant to 
construct learning lters which are able to ‘sharpen the senses’, thus reducing the in uence 
of noise dimensions. 
Such lters might be constructed through supporting the dimensions, which are active 
when recurring sequences are found, and inhibiting the dimensions that are inactive when 
recurring sequences are found. 
Can we use Induced Representations as input dimensions? 
The more qualitative the input can get the better, so if we were to supply the prediction 
algorithm with pre-analyzed data e.i. representations, as opposed to raw sensor data, the 
algorithm might perform well on different environments in parallel. For example city parts 
may be compared and occurrences from one city part can be used as memory for another. 

              6. Conclusion

The article presents an approach to architecture where, instead of the conventional archi-
tecture design approach, a tool for proposition of new interventions is presented; a shift 
from designing existing ideas towards that of proposing new ideas for intervention.
An algorithm which, provided multiple dimensional data, can make predictions of events 
and phenomena in highly uctuating and diverse environments, and if applied correctly, it 
can identify and propose new ideas for interventions.
The algorithm is presented and described in detail. Possible unexplored applications for 
the algorithm as well as improvements are discussed and in the future research, aspects 
such as multiple layers of memory, as well as partial predictions should be explored. There 
seems to be both vast applications for prediction, as well as many opportunities for using 
the concept of Propositional Architecture.
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