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Abstract

Current modelling of effective diffusivity in the Gas Diffusion Layer (GDL) of the Poly-
mer Exchange Membrane Fuel Cell (PEMFC), often relies on semi-empirical equations
with limited accuracy. In particular, there is a need to develop models incorporat-
ing the microscopic structure of the porous GDL when performing flow simulations.
The objective of this thesis is to construct a simulation program based on random walk
methodology, to calculate the effective diffusivity of realistic scanned porous media. This
approach has the advantage of not making any structural assumptions about the mate-
rial other than the resolution of the scanned images, and various aspects of the material
can thus be investigated. The simulation program is validated with literature data of
the effective diffusivity of continuous random fibres, defined by point and direction. This
present study however is performing random walks in uniform grids where the voxels are
either void or solid. A qualitative simulation program was developed and the validation
results showed an relative error of 50% compared to the Bosanquet formula, thus more
work needs to be done.

Keywords: PEMFC, GDL, diffusion, porous media, random walk, Monte Carlo simu-
lations.
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1
Introduction

Recent climate changes urges new methods in energy usage. For instance, the current
combustion engine uses fossil fuels, and transform it into house gases. A promising
candidate to make the necessary shift from the current carbon based technology are
fuel cells, and the significant change they impose is energy conversion. In particular,
hydrogen can be produced from renewable energy sources and when used in fuel cells,
the main reaction product is water.

A number of different types of fuel cells have emerged with their different disadvan-
tages and advantages depending on the application. The Solid Oxide Fuel Cell (SOFC)
has a long durability, but it operates at high temperatures (∼ 1000 ◦C), which put re-
quirements on the material. The Polymer Exchange Membrane Fuel Cell (PEMFC) is,
however, a promising candidate for many types of applications due to its low tempera-
ture, low weight, compactness and sustainability for discontinuous operation [1]. These
properties make the PEMFC suitable for portable power supply, transportation and sta-
tionary power systems [1]. For instance, the PEMFC can work as an Auxiliary Power
Unit (APU) in trucks or sailing yachts, or a small-scale PEMFC can supply energy to a
laptop.

There is, however, a number of challenges to overcome to render a full-scale commer-
cialisation of the PEMFC possible. To address these problems, fuel cell developers are
trying to optimize the design of the PEMFC by computer simulations of the entire sys-
tem [2]. These simulations, however, describe the macroscopic behaviour of the system,
relying on models for the microscopic structure of the components. Without accurate
models for capturing the statistical properties of the microscopic behaviour, the results
of macroscopic modelling will inevitably be imprecise. One such critical component for
the performance of the PEMFC, is the Gas Diffusion Layer (GDL). It is a porous mem-
brane where transport of gas reactants and waste products to and from the catalyst sites
occur, and it is typically built up from fibres with diameters in the micrometer regime.
Due to it’s influence of the flow rates of reactants and products, it is a major component
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1.1. FUEL CELLS CHAPTER 1. INTRODUCTION

Figure 1.1: Schematic figure of a PEMFC.

for the overall performance of the PEMFC.
One transport phenomenon in the GDL is diffusion, which is described quantitatively

by the effective diffusivity. Current full-scale PEMFC modelling, relies mainly on inaccu-
rate theories describing effective diffusivity in porous media [3]. These models for porous
media are not sufficiently accurate for fuel cell modelling, and there is an discrepancy
between theory and experiments [4]. Commonly, models describing diffusion in porous
media are based on structural assumptions of the material, followed by regression of data
retrieved from numerical simulations or analytical studies. However, porous media has
in general a significant complex structure, which render it difficult to model.

The objective of this study is to expand the work of Tomadakis [5], who investigated
the diffusivity properties of geometric fibres modelled as cylinders, and write a simulation
program adapted for scanned porous material obtained from 3D imaging experiments.
Validation will be the major goal, obtaining the same results as Tomadakis for similar
domains. With this program the effective diffusivity can be obtained from realistic
porous domains not restricted to geometric fibres, but for arbitrary domains.

1.1 Fuel Cells

Fuel cells convert chemical energy to electrical energy without the efficiency penalty of
Carnot process. A combustive engine, driven the thermodynamic cycle will not be as
efficient as the fuel cell which take advantage of electromechanical and chemical processes.

A schematic of the Polymer Exchange Membrane Fuel Cell is shown in Fig. 1.1.
Hydrogen splits into electrons and protons at the anode. The electrons forms an electrical
current to drive a load, for instance an electrical motor, and the protons are conducted
through a polymer membrane. Finally, protons and electrons forms water after reduction
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1.1. FUEL CELLS CHAPTER 1. INTRODUCTION

reaction with oxygen at the cathode. The chemical reactions are thus,

Anode: H2 → 2H+ + 2e (1.1a)

Cathode: 1/2O2 + 2H+ + 2e− → H2O (1.1b)

Overall: H2 + 1/2O2 → H2O (1.1c)

As mentioned, a critical part of the fuel cell is the Gas Diffusion Layer (GDL). The
main purpose of the GDL is to provide mechanical stability for the polymer membrane
and the catalyst layer (CL). Therefore oxygen has to be diffused through the GDL to
the CL, where the reduction reaction occurs. The CL contains platinum, to enable and
increase the rate of reactions. Consequently, the power output is proportional to the
reaction rate [6], which is then dependent on the diffusivity of oxygen through the GDL.

Today, the challenges impeding the PEMFC large scale commercialization are: pro-
long membrane lifetime, increase the power density and reduce platinum loading [7]. One
solution to the two latter, is to increase mass transfer rates in the GDL. It would give
higher current densities, higher reactant concentrations in the CL and less platinum is
required. Hence, there is a need to improve the understanding of the transport phenom-
ena, specifically the diffusion, of the GDL to increase the mass transfer rate. As with
any type of product development, a good methodology is to first evaluate the design
numerically, and then verify by experiments.

1.1.1 Gas Diffusion Layer

The GDL is a porous medium, consisting of different types of materials (e.g. carbon
fibres) organised in different structures (e.g. woven, cloth). A Scanning Electron Micro-
scope (SEM) picture of a GDL shown in Fig. 1.2, depicts one example of the microscopic
structure. As can be seen, the GDL consists of a complex network fibres and binders.
The structure of the GDL allows the gases to spread out as they diffuse to catalyst layer,
in order to maximize the contact surface area between the gases and the catalyst layer.

In addition to diffuse reactant gases, the GDL has to remove the water produced from
the reaction at the cathode [6]. If water production rate is greater than the water removal
rate, water will accumulate in the GDL and reduce the pore size of the porous media, and
consequently decrease the rate of oxygen diffusion. The solution for water management
is to coat the fibres with a hydrophobic layer, and consequently the complexity of the
structure [9] is increased.

Given the complex structure of the GDL, many models treat the GDL microstructure
as a bulk material [10, 11, 12], when performing macroscopic simulations of the fuel cell
system. To obtain the effective diffusivity Deff , a formation factor f is introduced [6],

Deff = f ·D0, (1.2)

and can be interpreted as a correction factor to the reference diffusivity D0. The form
factor f contains all the structural properties of the material influencing the diffusivity,
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1.1. FUEL CELLS CHAPTER 1. INTRODUCTION

Figure 1.2: SEM image of a Toray TGP-H-060 GDL (length bar represents 200 µm) [8],
a GDL typically used in PEMFC.

e.g. the porosity which is the ratio between the volume of the void and the total volume

ε =
Vvoid
Vtotal

=
Vvoid

Vvoid + Vsolid
. (1.3)

The reference diffusivity chosen to be self diffusion coefficient of the species in cylin-
drical pores [5]. Given this definition, the formation factor is a dimensionless transport
coefficient incorporating the microscopic structure of the material. There are numerous
models in previous attempts to formulate a formation factor for porous media and obtain
an quantitative formula considering the structure parameters. A few models are sum-
marized in Tab. 1.1, however, we do not understand the theoretical relationship between
the structure parameters and the formation factor [13]. The physics in porous media
is still an unsolved problem, hence the existence of all the different model approaches.
Zamel et. al. [4] investigated the diffusion coefficient for various GDLs, and found that
existing models overestimated the effective diffusivity.
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Figure 1.3: Comparison of models for the effective diffusivity against the porosity, the
void fraction of the material.

Model Formation factor (f) Method Year

Carman, Kozeny [11] ε/τ , τ ∼ 4
Hypothetical path

length point to point.
1927

Bruggeman [10] ε1.5 Empirical results. 1935

Neale, Nader [12] 2ε/(3− ε). Isotropic medium of

spherical particles.
1973

Tomadakis [5] ε0

(
ε−εp
1−εp

)α Percolation theory for

random fibrous media.

α0 and ε0 are model parameters.

1993

Mezedur [14] (1− (1− ε)0.46)
Two dimensional ordered

and random lattice networks
2002

Table 1.1: Table of models for calculating the effective diffusivity in porous media. τ is the
tortuosity or diffusional path length to be travelled to cross a region with certain thickness.
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1.2. TRANSPORT PHENOMENA CHAPTER 1. INTRODUCTION

1.2 Transport Phenomena

Diffusional transport phenomena in porous media is described by the diffusion equation
(Fick’s Law),

∂cA(r,t)

∂t
= ∇[DA∇cA(r,t)], (1.4)

where cA(~r,t) is the concentration of species A, r is the position vector, t is the time, and
D is the diffusivity tensor for species A. In the most general case, the diffusivity tensor
can vary spatially, on the concentration, in time and on the direction depending on the
domain. Diffusion in static domains such as with porous media, the diffusivity tensor will
not have a temporal dependence, and for diffusion in statistically homogeneous media,
the diffusivity tensor becomes constant is all directions, i.e. (∇D = 0). In statistically
homogeneous media, the equation above can be written as,

∂c

∂t
= D0∇2c, (1.5)

where D0 is the reference diffusivity in equation (1.4). For further notice, we shall refer
the macroscopic diffusion coefficient in porous domain as the effective diffusivity. To
calculate a value for the diffusion coefficient, there are several methods applicable. It
is possible to formulate the problem as a nonlinear least-squares problem [15]. The
author of this study chose random walk simulations [5]. The reason to use random walk
simulation is the flexibility material structures that can be used, which is well suited for
scanned image data. Also, there is no assumption in the shape of the diffusion coefficient
as well.

1.2.1 Solution of the Diffusion Equation

As mentioned, there are no analytically solutions to the diffusion equation in complex
media. However, analytical solutions exists for simple domains. A solution to the diffu-
sion equation in one dimension for free space will be given, and the solution method is
analogue to higher dimensions.

First, we require the solution to vanish in infinity, i.e. c → 0 when x → ±∞. Then
the fourier transform of the diffusion equation (1.5) yields,

∂ĉ(ξ,t)

∂t
= Dx

∫ ∞
−∞

∂2c(x,t)

∂x2
e−ixξdx, (1.6)

which is an ordinary differential equation in t,

∂ĉ(ξ,t)

∂t
= −Dxξ

2ĉ(ξ,t), (1.7)

with the solution,
ĉ(ξ,t) = ĉ(ξ,0)e−Dxξ2t,
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1.2. TRANSPORT PHENOMENA CHAPTER 1. INTRODUCTION

where the function ĉ(ξ,0) is the fourier transform of the initial conditions. To obtain an
expression for the concentration, we apply the inverse fourier transform on the above
expression and readily get:

c(x,t) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

c(x′,0)e−Dxξ2t+iξ(x−x′)dx′dξ.

We proceed by solving the integral in ξ, using Eulers formula eix = cosx + i sinx, and
the final expression for the solution to the diffusion equation in one dimension is:

c(x,t) =
1√

4πDxt

∫ ∞
−∞

c(x′,0)e−(x−x′)2/4Dxtdx. (1.8)

We note that this expression is the convolution with a Gaussian function and the initial
conditions, which says that the transient behaviour of the solution can be interpreted as
particles “spread out” over time. If all the particles are positioned at x0 at t = 0, which
can be represented by setting the initial conditions to a delta function,

c(x,0) = δ(x− x0),

the resulting time evolution of the concentration distribution is,

c(x,t) =
1√

4πDxt
e−(x−x0)2/4Dxt. (1.9)

Any type of initial condition can be expanded into a series of delta functions, hence the
solution to the diffusion equation will be a superposition to the equation above.

In order to use random walk simulations, we need to know statistical properties of
the diffusion equation, and in particular a statistical measurement how to relate the
diffusion coefficient to the random motion of particles. Such a measurement is the Mean
Square Displacement (MSD), and can be found from the diffusion equation given simple
geometries where analytical solutions exist.

To calculate the MSD given an analytical solution, we can interpret the expression

p(r,t) =
c(r,t)

C
,

as the distribution of finding a particle at point r and time t, where C is the total number
of particles. Hence, the expectation value of x2 yields,

〈x2〉 =

∫ ∞
−∞

x2p(x,t)dx =

∫∞
−∞ x

2c(x,t)dx∫∞
−∞ c(x,t)dx

= 2Dxt.

Similar results are obtained for y,z, i.e. 〈y2〉 = 2Dyt and 〈z2〉 = 2Dzt . Then the
total mean square displacement can be expressed, assuming isotropic conditions, i.e
Dy = Dx = Dz ,

〈r2〉 = 〈x2 + y2 + z2〉 = 〈x2〉+ 〈y2〉+ 〈z2〉 = 6Dt,
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1.3. DISCRETE RANDOM WALK CHAPTER 1. INTRODUCTION

Figure 1.4: Schematic figure of a random walk.

which is the relation between MSD and the diffusion constant. If the particle starts at
r(0), the expression yields,

〈(r(0)− r(t))2〉 = 6Dt. (1.10)

This equation means that the MSD is proportional to the diffusion coefficient. With this
statistical measurement, we can estimate the effective diffusivity of complex geometries.
In the next section, we establish the relation between the MSD from a discrete random
walk to the diffusion coefficient.

1.3 Discrete Random Walk

Random walk simulations have been used extensively in many fields, e.g. chemistry,
economics, to investigate stochastic processes [16]. Diffusion is a stochastic process and
can be well described by a random walk. The terms walker and particle will be used
interchangeably. The goal of the random walk is to mimic the behaviour of gas particles
in porous media. From the discrete random walk in a domain, the obtained MSD gives
the diffusion coefficient.

A schematic representation of a random walk, starting at r(0) and ending at r(t) is
shown in Fig. 1.4. Setting r(0) = 0, the displacement of a random walker is expressed
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1.3. DISCRETE RANDOM WALK CHAPTER 1. INTRODUCTION

as the sum of the individual steps,

r =
N∑
i=0

ai.

Then the expectation value of the total displacement is,

〈r〉 = 〈
N∑
i=0

ai〉 =
N∑
i=0

〈ai〉,

due to the linearity of the expectation value. Hence, the expected total displacement is
equal to the sum of the expected value of each step. Assuming every step has the same
distribution, the individual steps can be described by the joint distribution, f(a,n),
with the random variables: n for the direction and a for the step length. Assuming the
direction and length are statistically independent, the joint distribution can be separated
into two distributions,

f(a,n) = g(a)h(n), (1.11)

one for the step direction and one for the step length. Hence, we can write the step as
a = a · n(θ,φ), where n(θ,φ) is a dimensionless unit vector with the angles θ ∈ [0,π] and
φ ∈ [0,2π] defined by spherical coordinates.

For a random walk in free space, there will be no bias in which direction a walker
can go. Hence, h(n) will have an uniform distribution over the interval for the angles
θ,φ, and the mean displacement of individual step yields,

〈a〉 = 〈a〉〈n〉 =

∫ ∞
0

ag(a)da

∫
S
nh(n)dΩ = 0,

where the domain S is the boundary of a unit sphere. Because an odd function is
integrated over a symmetric interval, the latter integral is zero. Hence, the total mean
displacement is equal to zero.

The mean square displacement can now be calculated for free space, or the second
moment of the total displacement with the joint distribution (1.11),

〈r2〉 = N〈a2〉+
N∑

i,j=0

N∑
i 6=j
〈ai · aj〉 (1.12)

and because the steps are statistically independent, the cross terms (i 6= j) can be written
as

N∑
i,j=0

N∑
i 6=j
〈ai · aj〉 = 〈a〉2

N∑
i,j=0

N∑
i 6=j
〈ni〉 · 〈nj〉︸ ︷︷ ︸
=0

= 0.

9



1.3. DISCRETE RANDOM WALK CHAPTER 1. INTRODUCTION

Finally for free diffusion, the mean square displacement is proportional to the number
of steps taken by the walkers starting at r(0),

〈(r(N)− r(0))2〉 = N〈a2〉, (1.13)

which holds for all dimensions. Equating this equation with the equation (1.10), an
expression for the effective diffusivity is obtained as a function of the number of steps a
random walker takes.

10



2
Random Walk Method

In this section, the methodology for the random walk simulation is described. The goal
is to validate the random walk simulations in domains derived from previous studies
of Tomadakis [17], and then obtain a program to perform random walk simulations in
scanned images of GDL. First, the method for generation of the validation domain will
be explained, and secondly the random walk procedure.

2.1 Validation Domain

GDLs consists mainly of fibres, which can be modelled as cylinders. Tomadakis [17]
performed random walk simulations in a domain built up of cylinders, defined by a
random point, random direction and a radius. Hence it is reasonable to validate the
random walk simulations against the work of Tomadakis [17]. In this report, however,
the domain of simulation will consist of a discrete grid, which will be transferable to the
scanned images of GDLs. Cylinders will be referred as fibres.

First, the algorithm used by Tomadakis [17] for generation of random fibres was
performed, followed by a scheme to render the fibres discrete. In order to simulate
different porous structures, random fibres are grouped into three different categories:
unidirectional, bidirectional and tridirectional, representing fibers oriented in one, two
and three dimensions respectively. The different structures are depicted in Fig. 2.1. In
order to obtain isotropic conditions for the cylinders, the construction of fibres for the
unit cube was carried out by a µ randomness scheme. This procedure ensures that the
calculated diffusion coefficient will not have a spatial dependence [17]. Details about the
different randomness mechanisms are described in Appendix B.

To obtain µ randomness for the fibres in the unit cube with edge length a = 1, one
has to sample uniformly distributed fibres from an infinite plane and select the fibres
that intersect the unit cube. In the code however, a sufficiently big square plane with
side b was chosen (b = 100). The plane can be located anywhere in space, but for

11



2.1. VALIDATION DOMAIN CHAPTER 2. RANDOM WALK METHOD

(a) Unidirectional fibres. (b) Bidirectional fibres. (c) Tridirectional fibres.

Figure 2.1: The different fibre structure used in the random walk simulation (porosity
ε = 0.9).

simplicity was the plane placed at z = 0 and the cube was placed at origo. To obtain
the µ randomness, the polar angle θ had to be sampled based on the cosine law [18] and
the azimuthal angle φ was sampled between [0, 2π] for each fibre. The distribution for
the polar angle is

f(θ)dθ = 2 sin θ cos θdθ = d(cos2),

hence uniform distribution of cos2 θ. Derivation for the polar angle distribution is found
in section B.1. Using two uniformly distributed variables between [0,1], ξ1 and ξ2, the
resulting directions for the fibres are:

cos θ =
√
ξ1 (2.1a)

φ = 2πξ2 (2.1b)

vx = sin θ cosφ (2.1c)

vy = sin θ sinφ (2.1d)

vz = cos θ (2.1e)

Based on probability arguments, it is possible to calculate the porosity ε, defined in
equation (1.3), for a domain of random fibres [17]. The formula for the number of traces
of fibres per unit area on face of the unit cube is,

Nf =
1

l̄d

− log ε

πr2
, (2.2)

where d denotes the directionality of the fibres (d = 1,2,3), l̄ is the mean length of fibres
inside the unit cube and r is the radius of the fibres. For unidirectional fibres l̄ = 1, and
for bidirectional and tridirectional structures it can be shown that l̄ = πA/C [18] and
l̄ = 4V/S [19] respectively, where V denotes the cube volume , S the surface of the cube
and C the circumference of one face of the unit cube. Sampling fibres from a plane with
b = 100 proved sufficient to obtain a number of traces on each face of the cube to be
close enough to Nf .

12



2.2. PARTICLE TRAJECTORIES CHAPTER 2. RANDOM WALK METHOD

(a) Unidirectional fibres. (b) Bidirectional fibres. (c) Tridirectional.

Figure 2.2: The different fibre structure used in the random walk simulation (porosity
ε = 0.9), discretized domain.

To render the fibres discrete, a lattice with N3
g points was tested for overlap with

the fibres defined by point, direction and radius. Then each lattice point defined a voxel
in an uniform grid, where the voxel was either void or solid. The ratio between the
unit cube length and the radius was chosen to r/a = 0.02, which guarantees statistically
acceptable samples of the structure [17]. Figures of the discretized domain is shown in
Fig. 2.2.

Periodic boundary conditions were used in order to obtain a large simulation space.
In a symmetric unit cell, the particle leaving the cube can be reintroduced at the opposite
face of the cube. A unit cell with random structures however, cannot be periodically
repeated [17]. For instance, if the particle crosses the boundary at x = 1, it cannot
reappear at x = 0 if that voxel is occupied by a fibre. The solution is to place a mirrored
image of the unit cell next to the unit cell. The periodic cell will be 2, 4, 8 unit cells in
one, two, three dimensions respectively.

2.2 Particle Trajectories

The effective diffusivity can be as mentioned in section 1.2.1 calculated from the mean
square displacement of random walkers. Random walks are done over a large number
of walkers, and then an average for the displacement squared can be calculated. The
behaviour of the walkers, is as mentioned to characterize the behaviour of gas particles
in porous media. The algorithm for the random walk is similar to the construction
of random fibres described in previous section 2.1. First the start position r(0) of the
walkers are uniformly distributed inside the domain. If the start position is inside a
solid voxel, then the position is rejected and a new position is sampled. The direction
of walkers in void is sampled according to the distribution described in section 1.3.
The polar angle θ, [0,π], and the azimuthal angle φ, [0,2π], are distributed so that
corresponding points on the boundary of a sphere are uniformly distributed. Performing
a probability integral transform on the solid angle, the angles can be expressed with two

13



2.2. PARTICLE TRAJECTORIES CHAPTER 2. RANDOM WALK METHOD

uniformly distributed variables between [0,1], ξ1 and ξ2, and the resulting equations are,

cos θ = 2ξ1 − 1 (2.3a)

φ = 2πξ2 (2.3b)

wx = sin θ cosφ (2.3c)

wy = sin θ sinφ (2.3d)

wz = cos θ (2.3e)

where uf ,vf ,wf are the directional cosines.
To account for the inter-particle collisions in the gas, each walker is assigned a step

length λ from an exponential distribution parametrized by a mean free path λ̄,

fλ̄(λ) =
1

λ̄
e−λ/λ̄. (2.4)

The derivation of this exponential distribution is done in appendix A. The mean free
path is determined by the macroscopic conditions and the diffusing particles,

λ =
kbT

P
√

2πd2
g

, (2.5)

where kb is the boltzmann constant, T the temperature, P the pressure and dg the diam-
eter of the diffusing particles. According to Tomdakis [17], the exponential distribution
is valid for particles with constant velocity. It is assumed that the particles are hard
spheres and elastic collisions occur between particles. After an inter-particle collision,
the walker is assigned new random directions according to (2.3). This is not valid for
single collisions between between particles, because momentum is conserved, and the
directions after inter-particle collisions is well defined. However, after sufficiently many
inter-particle collisions, the angular distribution after will converge to normal distribu-
tion, the same distribution for collisions in free diffusion, according to the law of large
numbers. This assumption is similar to the assumptions in the Drude Model [20] for
electron collisions.

Given an assigned step length, the walker advances along its random direction. If
the walker collides with a voxel that is a solid (fibre), before it could travel its assigned
length, the walker stops at the intersection between the walker trajectory (a line) and
the colliding side of the voxel (a plane). The surface of the fibres on a microscopic scale
is rough, and a specular collision for the gas particle is highly unlikely. This assumption
has been experimentally verified by Bird [21].

At the collision point the walker is assigned a new sampled step length and a random
direction away from voxel. With the same argument as for the distribution of fibres in
space, the new direction after collision shall not have any bias, hence, isotropic conditions.
This is achieved by giving walker directions according to the equations (2.1). All collision
surfaces in the discretized domain, will have normals parallel and antiparallel to the x,y,z
axes. If the direction is sampled with z as normal, then the direction is rotated to be
parallel with the normal of the plane of collision.
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2.3. ALGORITHM CHAPTER 2. RANDOM WALK METHOD

Figure 2.3: Flowchart for one walk. The dashed box, the check for collision procedure
was the most computationally expensive one.

2.3 Algorithm

The algorithm for one walk described in previous section was implemented using Python
according to the flowchart shown in Fig. 2.3. Python was chosen due to it’s short
development time. The algorithm starts with generating a start position for the walker,
the algorithm continues with generating a random straight line the walker has to walk.
Then a collision detection will determine whenever the walker collided or not the with
structure. After each straight step walked, the displacement was saved while accounting
for the boundary conditions,
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xi+1 = xi + (−1)nx(i)wx(i) (2.6a)

yi+1 = yi + (−1)ny(i)wy(i) (2.6b)

zi+1 = zi + (−1)nz(i)wz(i), (2.6c)

where nj(i) is the number of specular reflections the walker has done on the boundary.
The walker advances until a predefined distance has been accumulated.

The procedure for collision detection between structure and walker was the function
which required most time during the simulation. To calculate the intersecting grid cells
of a walker trajectory, we use the fact that a line segment in a uniform grid has constant
distance between grid cell boundaries. An efficient algorithm is described by Ericson
[22]. The walker has line segment to travel,

p1 = p0 + wtw,

where p0 is the start position, p1 the end position, w the direction (unit length) and
tw is the length sampled from the exponential distribution (2.4). First, calculate which
start cell, il, l = x,y,z, the walker occupies at position p0. From the start cell calculate
the distances along the walker direction w to the closest x,y,z boundary of the adjacent
grid cells, tl0. Then calculate the distance between the boundaries of the grid cells,

∆tl =
M

wl
,

where M is the grid cell length and wl the components of the direction of the walker.
The the walk consists of in each step comparing the tl values,

tl = tl0 + nl∆tl, (2.7)

where nl is the number of times tl was the smallest value among l = x,y,z. When the
component l has the smallest value, it means adding 1 or −1 to il, and then check the
grid cell at ix,iy,iz. The next cell to visit is determine by the updated values of (2.7).

This collision detection imposes a significant amount of array elements, representing
the structure, to be accessed, and it is the reason why it was the most computationally
expensive function of the program. To speed up calculations, this part of the program
was converted into C using Cython [23], because C has more efficient memory allocation
and memory accessing than Python.

As mentioned, periodic boundary conditions with two mirrored unit cells are applied.
This is equivalent to a specular reflection when the walker hits the boundary. By keeping
global and local coordinates in the unit cell for the walker, the total displacement can be
calculated. It is important to know in which cell the walker is located, because a direction
sampled in the unit cell after collision with structure has the component parallel to the
normal of the collision plane reversed.

The simulation program was parallized using Message Passing Interface (MPI), and
the schematic flowchart for the implementation is shown in Fig. 2.5. The library used to
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Figure 2.4: Schematic for collision detection between walker and the structure.

Figure 2.5: Flowchart for MPI operations.
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implement the MPI interface was mpi4py. In this implementation, all processes load an
individual copy of the domain for collision detection, making the program inefficient in
terms of memory usage. To obtain random numbers for all processes, different seeds for
the processes were used. In this simulation program, the rank of the process was used
as the individual process seed. If different seed is not provided, then the walks on each
process would be identical to each other.
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3
Results and Discussion

To illustrate the nature of a random walk in fibrous porous media, one walk is depicted
in Fig. 3.1, where the mean free path is λ = 0.78 and the walker takes 300 steps. As can
be seen, the walker collides significantly with the structure when the step length is more
than half the cube size.

In order to obtain a value for the effective diffusivity, the number of walkers and the
length of the travel distance, s = 〈v〉t had to be estimated. The number of walkers was
chosen to be an order of magnitude larger than the number of steps done for a given
travel distance, which proved sufficient. The travel distance was chosen so that the
ratio between the MSD for diffusion in the structure and free diffusion converged. The
relative MSD for different mean free paths are shown in Fig. 3.2. The number of walkers
is 2.4 ·105 and the number of grid cells is 1283. The porosity calculated by counting cells
that are void and solid is 0.606, close to the value of 0.6 used to parametrise the number
of fibres in the domain using the equation (2.2).

In the ratio between MSD in fibres and free diffusion the simulation artefacts cancel.
For very short travel distances, the ratio is almost one, meaning that the walkers have
not yet “felt” the presence of the structure. As the travel distance increases, the walkers
in the structure collides and the MSD decreases compared to free diffusion, and after a
sufficiently long travel distance the MSD in the structures flattens out. The simulation
with longer mean free paths have a lower relative MSD, because the walkers have a
higher probability of colliding with the fibres on each step compared to free diffusion.

The results for the simulation was validated against the simple Bosanquet formula
(series addition of diffusivities),

1

Dtrans
=

1

Dbulk
+

1

Dknudsen
, (3.1)

commonly used to calculate the effective diffusivity of porous media, and which Tom-
dakis [17] found a good agreement with his results. The diffusivities Dtrans,Dbulk and

19



CHAPTER 3. RESULTS AND DISCUSSION

Figure 3.1: One walk in unidirectional fibres, ε = 0.6, kn = 10 and total length walked
is 300λ̄. Red cross and yellow cross indicates collision with fibre and particle collision
respectively.
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Figure 3.2: The ratio between the MSD in fibres and the MSD for free diffusion plotted
against the travel distance. All simulations has Nwalks = 2.4 · 105, except λ = 0.016 which
has Nwalks = 4 ·105. The porosity is ε = 0.6, 1283 grid cells and the simulation is performed
in tridirectional fibres.

Dknudsen, are the diffusivities in the transition regime, bulk regime and Knudsen regime,
respectively. These regimes are categorized by the Knudsen number,

Kn =
λ

d
, (3.2)

where λ is the mean free path of the particles and d is the characteristic pore size of the
porous media. Diffusion in the bulk regime has a low knudsen number Kn < 0.01, which
means that particles are colliding more with other particles than with the structure. The
knudsen regime describes the opposite, a high knudsen number Kn > 100, and particles
collides much more with the structure than with other walkers. The transition regime is
then the conditions between the bulk and the knudsen regime, 0.01 < Kn < 100.

The diffusivities for the bulk and the knudsen regime is,

Dbulk =
1

3
〈v〉λ (3.3a)

Dknudsen =
1

3
〈v〉d, (3.3b)

where 〈v〉 is the mean velocity of the particles. Then using the definition for the knudsen
number and the equations above, the Bosanquet formula can be rewritten as
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Figure 3.3: The relative diffusivity plotted against the knudsen number. The knudsen
number is estimated with equation (3.5).

Dtrans =
Dbulk

1 +Kn
, (3.4)

which is plotted in Fig. 3.3. The knudsen number for the simulations is estimated from
the formula [17]

Cwm
Cmm

= Kn, (3.5)

where Cwm is the number of molecule-wall collisions and Cmm is the particle-particle
collisions. In the figure, it is seen that the relative diffusivity is smaller than the diffusivity
described by equation (3.1). The relative error is ∼ 0.5 compared to the Bosanquet
formula for all simulation points. A plausible explanation to this discrepancy is the grid
size. The domain used by Tomadakis [17], is defined by continuous fibres, whereas the
fibres in the simulation represented in Fig. 3.3 are discrete. However, at ε = 0.6 the
relative error in porosity, between the discrete domain and the continuous domain, is
∼ 2 · 10−4, which suggest that other systematic errors could be present.
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4
Conclusion

The goal of the thesis, to obtain a simulation program adapted for scanned images of
porous material, is well under construction. The results in figures 3.2 and 3.3 suggest an
expected behaviour from the random walk simulations. The objective of validating the
simulation with the work of Tomadakis, is yet to be done. The discrepancy between the
Bosanquet formula and the results suggests that there may be a systematic error in the
simulation. A plausible phenomenon could be the discretization degree, and changing
the number of grid cells would give more insight of the discretization effect. However,
the Bosanquet formula does not need to be correct. For instance, Baten [24] reported
that the formula overestimate the effective diffusivity for low pore concentrations in
mesopores.

Further, what needs to be done is additional testing of the program, investigating
different porosities and structures of fibres. When the program can replicate the work of
Tomadakis, it is possible to perform studies on scanned materials. A more sophisticated
error analysis would also contribute to the validity of the results.

In order to increase the simulation speed, a suggestion would be to use a compiled
language. The program now is written in Python, an interpreted language, with criti-
cal parts of the program converted into C. An interpreted language have difficulties of
reaching the speed of a compiled language, where it is possible to have efficient memory
allocation and variable declaration. However, the development time in Python is in gen-
eral faster than C, but only to the degree of having an working algorithm qualitatively.
To ensure a quantitatively working program, the simulation speed needs to increase for
debugging purposes. With the algorithm done in Python, the transition to C would be
easier.

To be able to perform the simulation on large domains, a more sophisticated parallel
program is needed. Currently, every processor has its own input data for the structure,
and it is not possible to use domains bigger than the memory of one processor. Because
the program only reads from the structure, the memory usage would decrease if the
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CHAPTER 4. CONCLUSION

processors could share the memory for the domain, or to distribute different parts of the
domain to the processors.

The algorithm described in section 2.2, is a general algorithm for collision detection
in an uniform grid. However, depending on step length and the structure of the domain,
there is significant gains in speed that can be made. By categorizing the structures into
bigger objects, thus obtaining a multigrid, one can apply the concept of broad collision
and narrow collision detection. This is a common approach in the scientific community,
as well as in many computer games.
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A
Mean free path derivations

In this section, we derive the distribution of the mean free path for particles in gases,
and the mean free path for particles colliding with a wall.

Mean free path

The definition of the mean fee path is the average distance between particle collisions,
how far a particle travels in average before it collides with another particle. The deriva-
tion of this distribution is based on the assumption that particles are hard spheres and
they collide elastically. The problem may be also defined as, the distance travelled by
a particle from an arbitrary point before a collision with another particle. Hence, the
probability of a collision for a particle will not depend on the history of the trajectory
of the particle.

To derive the distribution, we look at the probability for a collision to happen beyond
a travelled distance ξ, or complimentary that no collision occurs within distance ξ,

P [x|x > ξ] = F (ξ) =

∫ ∞
ξ

f(x)dx,

Now look at the probability of collision in the interval [ξ, ξ + dξ]. According to Present
[25], the probability of collision in the specified interval is proportional dξ. So we write
the probability of collision in the specified interval as αdξ and α is independent of ξ
because the medium is homogeneous and the chance of collision is the same everywhere.
In general, α depends on the particle density, pressure, particle size and speed. The
probability of no collision in the interval [ξ, ξ+dξ] is then 1−αdξ. Because the probability
of collision is independent of the history of the particle, we can write the probability of
no collision after distance ξ + dξ as the product of the probability at ξ and ξ + dξ:

F (ξ)(1− αdξ) = F (ξ + dξ) = F (ξ) +
dF

dξ
dξ,
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which gives,

dF

dξ
= −αF (ξ).

Solving this equation with initial condition F (0) = 1 (probability of collision in the whole
domain) yields,

F (ξ) = e−αξ.

The probability of no collision in the interval [ξ, ξ + dξ] can now be expressed with the
PDF,

f(ξ)dξ = F (ξ)− F (ξ + dξ) = −dF
dξ
dξ,

which gives,

f(ξ) = αe−αξ.

The expectation value of the distance between collisions is,

λ = 〈ξ〉 =

∫ ∞
0

ξf(ξ)dξ = α

∫ ∞
0

ξe−αξdξ =
1

α
, (A.1)

also known as the mean free path λ. The PDF can then be written in terms of the mean
free path:

f(ξ) =
e−ξ/λ

λ
, (A.2)

hence the exponential form of the distribution. We can readily also calculate the second
moment of the exponential distribution,

〈ξ2〉 =

∫ ∞
0

ξ2 e
−ξ/λ

λ
dξ = 2λ2 (A.3)

Mean free path distribution after collision

The derivation of the mean free path distribution after collision with a wall is based
on Maxwell velocity distribution arguments [26]. The situation that describes collisions
with a wall, is equivalent to particles crossing an imaginary plane when considering
completely elastic collisions. The goal is to find the mean free path distribution of those
particles crossing that plane.

The velocity distribution of particles hitting a wall G(v), is found to be the velocity
distribution of the gas as whole g(v), but with a weighting factor of v,

G ∝ vg(v).
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In analogy, for the mean free path distribution for particles colliding with a wall L(ξ),
the weighting factor is ξ. The mean free path distribution of the gas as whole is l(ξ)
(same as (A.2)). Hence, we obtain the relation

L(ξ) ∝ ξl(ξ).

To find the proportionality constant, we normalize L(ξ),

1 =

∫ ∞
0

L(ξ)dξ = C

∫ ∞
0

ξl(ξ)dξ = Cλ,

where λ is the mean free path we calculated in equation (A.1). We calculate the new
mean free path for particles passing the imaginary plane,

λ′ =

∫ ∞
0

ξL(ξ)dξ =
1

λ

∫ ∞
0

ξ2l(ξ)dξ = 2λ.

Hence, the mean free path for particles colliding with a wall have the double mean free
path than the gas as whole.
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B
Randomness mechanisms

When Tomadakis[17] is building up the unit cell with random distribution of cylinders in
space, the goal is to have an uniform porosity through out the unit cell. The underlying
problem is how to draw chords between distinct boundary points of the unit cell, or more
generally in a convex body to obtain different statistical properties. There are several
ways of distributing the chords and describing their probability distributions, but the
main ones are:

• µ randomness: A chord of a convex body is defined by a point and a direction in
the Euclidian space. The point and the direction are from independent uniform
distributions. This randomness results if the convex body is exposed to a uniform,
isotropic field of straight infinite lines.

• Interior radiator randomness (I randomness). A chord is defined by a point in the
interior of the convex body and a direction. The point and the direction are from
independent uniform distributions.

• Surface radiator randomness (S randomness). A chord is of a convex body is
defined by a point on its surface and a direction. The point and the direction are
from independent uniform distributions.

B.1 Cosine Law

In this section the cosine law distribution is derived to obtain µ randomness for chords
distributed in a convex body.

Consider figure B.1, where a convex body is depicted with volume V , surface area
S. Then a secant is defined as the line segment y between two points on the surface as
shown in the figure. Then from each end of the secants, another secant is put out. To
calculate the average length of the secants, which is defined as the mean chord length ,
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Figure B.1: Schematic figure of a lines in a convex body.

Figure B.2: Schematic figure of sphere in an unidirectional field of lines.

〈l(y)〉 = lim
n→∞

1

n

[
l(y) + l(Ry) + l(R2y) + ...+ l(Rny)

]
, (B.1)

where l(Rny) is the secant after reflection n. If this value exist, we want to make it
independent of the angle of reflection, hence reflection invariant. This invariance would
also rise if we put a convex body in an isotropic field of infinite lines, as described in the
µ randomness description. The question arises how to put out the secants in the convex
body to obtain the µ randomness.

In the µ randomness algorithm, a fix infinite plane is defined where points are uni-
formly distributed. These points will be the intersection of the lines and the plane. Then
we want to derive the angular distribution for the angle between the normal of the fix
plane and the lines.

From a surface element on a convex body, the distribution of incident angle of the
line does not depend on the orientation of surface element. Considering a sphere as a
convex body. One can assume a unidirectional field, because in this case all the angles
will be represented on the sphere. The idea is depicted in figure B.2. The angle between
the surface normal and the lines is θ, and we want to relate the angle to the cross section
of the sphere. The total cross section of the sphere will be,
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Atot = πr2,

and the cross section spanned by θ will be

A1 = πr2 sin θ.

The complimentary area will be,

A2 = πr2 − πr2 sin2 θ = πr2 cos2 θ.

Then the probability of the angle exceeding θ is

Fµ(θ) = A2/Atot =
πr2 cos2 θ

πr2
= cos2 θ.

The probability density function is the derivative of the Fµ,

∂Fµ(θ)

∂θ
dθ = fµdθ = 2 sin θ cos θdθ, 0 < θ < π/2
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