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Abstract: We discuss the optimization of staircase code parameters based on density
evolution. An extension of the original code construction is proposed, leading to codes with
steeper waterfall performance.
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1. Introduction

In [1], Smith et al. proposed a new class of forward error correction (FEC) codes for optical transport networks, named
staircase codes, which offer a 0.42 dB net coding gain (NCG) improvement over the best code from the ITU-T G.975.1
recommendation, while at the same time maintaining a low implementation complexity [1]. Staircase codes are a class
of generalized low-density parity-check (GLDPC) codes where all variable nodes in the underlying Tanner graph have
degree two and the check nodes correspond to Bose–Chaudhuri–Hocquenghem (BCH) codes. The code construction
described in [1, Sec. IV] is specified in terms of the BCH code parameters (n , t,s), where n is the Galois field exten-
sion degree, t the error-correction capability, and s the shortening parameter. In [2], these parameters were optimized
assuming FEC overheads (OHs) ranging from 6.25% to 33.33%. Given a predefined parameter space, the optimization
is based on a brute-force search using extensive software simulations to predict the code performance. Furthermore,
in order to reduce the optimization complexity, a simplified iterative hard-decision decoding (HDD) is assumed. This
iterative HDD does not account for miscorrections in the bounded-distance decoding of the BCH codes.

In this paper, we discuss a different approach to finding good staircase code parameters for a fixed OH. We observe
that, for a certain choice of parameters, staircase codes are contained in the spatially-coupled GLDPC (SC-GLDPC)
code ensemble proposed in [3], whose asymptotic behavior can be analyzed using density evolution (DE). In particular,
we use decoding thresholds (which are defined further below) as the optimization criterion. This approach offers a
significantly reduced optimization time (or the possibility to explore a larger parameter space) and can rigorously
account for miscorrections. The latter is obviously also possible with simulations, i.e., by performing bounded-distance
decoding of the BCH codes, albeit at the cost of an increased optimization time.

A staircase code with parameters optimized with the above approach does not guarantee to provide the best perfor-
mance for a given pre-FEC bit error rate (BER). This is because the performance of staircase codes is not necessarily
well predicted by the asymptotic DE in [3], in particular for small staircase block sizes. To overcome this problem,
we propose an extension of staircase codes with larger staircase block sizes by allowing for multiple code constraints
per row/column in the staircase array. It is shown that the proposed codes have steeper waterfall performance curves
compared to those obtained from the original construction and match the DE prediction more closely.

2. Staircase Codes

Let C be a shortened primitive BCH code with (even) length n = 2n � 1� s and dimension k = 2n � nt � 1� s. A
staircase code with rate R = 2k/n�1 (and OH = 1/R�1) is defined as the set of all matrix sequences Bi 2 {0,1}a⇥a,
i = 0,1,2, . . ., such that the rows in [BT

i�1 Bi] for all i � 1 form valid codewords of C , where a = n/2 and B0 is initialized
to the all-zero matrix. Similar to classical product codes, codewords in a staircase code are naturally represented as two-
dimensional arrays and a is the size of one block in the characteristic staircase array shown in [1, Fig. 4].

Motivated by the work on block-wise braided block codes [4], a SC-GLDPC code ensemble was proposed in [3].
This code ensemble is specified in terms of the parameters (C ,m,L,w), where m is the number of constraint nodes per
spatial position, L the total number of spatial positions, and w the coupling width. Staircase codes are closely related
to block-wise braided block codes [5] and both code classes can be seen as particular codes in the ensemble described
in [3, Def. 2] with a proper interleaver choice. In particular, it can be shown that the staircase code for a given C is
contained in the ensemble for m = n/2, L ! •, and w = 2.
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2.1. Iterative Hard-Decision Decoding

The decoding of staircase codes described in [1, Sec. IV-A] is performed in a sliding-window fashion by iterating
between the BCH decoders for all rows and columns in the staircase array consisting of W received blocks for a
maximum of l iterations. This decoding scheme can be seen as an iterative message-passing algorithm with “hard” (i.e.,
binary) messages in the Tanner graph describing the code. However, it is pointed out in [3] that the message-passing rule
associated with the decoding algorithm in [1] violates the principle that only extrinsic messages should be exchanged
during iterative decoding. Hence, the authors in [3] refer to this decoding as iterative HDD with intrinsic message
passing (IMP). In this paper, we employ the iterative HDD with extrinsic message passing (EMP) proposed in [3], and
adapted to operate in a sliding-window fashion for staircase codes. EMP can provide better performance compared to
IMP [5], and its performance can be analyzed using DE, even in the event of miscorrection [3]. For more details about
this algorithm and the differences with respect to the decoding in [1], we refer the reader to [3] and [5, Algorithm 1].

2.2. Density Evolution

DE is a tool to predict the iterative decoding performance of asymptotically long codes in the waterfall region. DE
mimics the decoding process under a cycle-free graph assumption by tracking how the probability densities of the
exchanged messages evolve with iterations. In [3], a DE analysis is presented for the (C ,m,L,w) SC-GLDPC code
ensemble with iterative HDD and EMP, assuming that m ! •.

Example: Let C1 be a BCH code with parameters (n , t,s) = (9,5,151) [2, Table II]. For the (C1,•,30,2) SC-GLDPC
code ensemble, if we adapt the DE analysis in [3, eq. (9)] to a sliding-window decoder with W = 7 and l = 8, one obtains
the solid blue curve in Fig. 1. The simulated performance (assuming a binary symmetric channel (BSC)) of the staircase
code with C1 (which leads to a block size of a = 180 and OH = 33.33%) using EMP is shown in Fig. 1 by the dashed
blue curve with dots. The performance using IMP is shown by the dashed blue curve with stars, where the data is taken
from [2, Fig. 2]. 4

It can be observed that DE accurately predicts the pre-FEC BER region where the staircase code performance curve
“bends” into the characteristic waterfall behavior. This motivates the use of DE to find good staircase code parameters.
In particular, we use the decoding threshold (for a finite number of decoding iterations), which is defined as the pre-
FEC BER value where the DE curve crosses a certain target post-FEC BER. Decoding thresholds can be computed
numerically using a bisection search over a given pre-FEC BER range. The decoding threshold for the code ensemble
in Example 1 at a post-FEC BER of 10�7 is approximately given by 2.54 ·10�2 and also indicated in Fig. 1.

It can also be observed that the actual performance of the staircase code deviates quite significantly from the DE
prediction once the pre-FEC BER is smaller than the decoding threshold. In this context, it is important to point out that
the DE analysis applies to the SC-GLDPC ensemble for m ! •, whereas staircase codes belong to the ensemble where
m is fixed to half the length of the BCH code. For a random code taken from the ensemble, the parameter m determines
the steepness of the BER curve. Similar observations can be made also for staircase codes, where the steepness of the
BER curves in the waterfall region is determined by the block size a, see [2, Fig. 2].

3. Extended Staircase Codes

By allowing for q > 1 code constraints in each row and column of the staircase array, one can increase the block size
of staircase codes to ã = qa. In order to indicate which bit participates in the j-th code constraint of a particular row or



Table 1. Optimized staircase code parameters based on thresholds (top) and taken from [2] (bottom)
OH [%] 6.25 6.67 7.14 7.69 8.33 9.09 10.00 11.11 12.50 14.29 16.67 20.00 25.00 33.33

n 10 10 10 10 10 10 10 10 9 9 9 9 8 8
11 11 11 11 N/A 10 10 10 10 10 9 9 9 9

t 3 3 3 3 3 4 4 5 3 3 4 4 3 3
4 5 5 5 N/A 4 4 4 4 4 4 4 5 5

s 3 63 123 183 243 63 143 23 25 79 7 79 15 63
551 287 397 507 N/A 63 143 223 303 383 7 79 61 151

a 510 480 450 420 390 480 440 500 243 216 252 216 120 96
748 880 825 770 N/A 480 440 400 360 320 252 216 225 180

NCG [dB] 9.50 9.56 9.62 9.69 9.76 9.89 9.97 10.08 10.21 10.32 10.52 10.64 10.88 11.03
9.44 9.54 9.60 9.66 N/A 9.82 9.87 9.96 10.05 10.13 10.32 10.41 10.62 10.70

Gap [dB] 0.39 0.41 0.43 0.45 0.48 0.45 0.48 0.51 0.53 0.58 0.58 0.69 0.74 0.95
0.45 0.43 0.45 0.48 N/A 0.52 0.59 0.63 0.68 0.77 0.78 0.92 1.00 1.28

column, one may use q masking matrices M j 2 {0,1}ã⇥ã, j 2 {1,2 . . . ,q}, with a ones in each row such that Âq
j=1 M j is

the all-one matrix. We informally write A\M j to denote the ã⇥a matrix containing the elements from the ã⇥ ã matrix
A where the corresponding entry in M j is equal to one. The extended staircase code with larger block size is defined as
the set of all matrix sequences Bi 2 {0,1}ã⇥ã, i = 0,1,2, . . ., such that the rows in [BT

i�1 \M j Bi \M j] for all i > 0 and
j form valid codewords in C , where B0 is the all-zero matrix. As an example, the staircase array for n = 4 and q = 2
is shown in Fig. 2. We remark that this extension is itself a special case of a more general technique, where the Tanner
graph of the staircase code can be interpreted as a protograph which is lifted in order to obtain a larger graph [6]. Our
particular choice for the lifting factor (i.e., q2) and type of lifting preserves many properties of the original staircase
codes, e.g., the staircase array structure and time-invariant encoding/decoding operations.

4. Results and Discussion

We consider the same parameter space as in [2], i.e., the product set of OH 2 {1/i : i = 3,4, . . . ,16}, n 2
{8,9,10,11,12}, and t 2 {2,3,4,5,6}. In Table 1, we list the parameters that give the best decoding threshold at a
BER of 10�15 for the SC-GLDPC ensemble with L = 30 and w = 2 according to the DE analysis accounting for mis-
correction [3, eq. (9)] and adapted to a sliding-window decoder with W = 7 and l = 8. We also show the NCG at a BER
of 10�15 using the obtained decoding thresholds and the corresponding gap to the maximum NCG for the BSC. To
allow for a direct comparison, we repeat the values that are reported in [2], where results for OH = 8.33% are unfortu-
nately not available. We would like to stress that in [2], software simulations are extrapolated down to 10�15 to estimate
the NCG and gap. Hence, those values are not directly comparable to the ones we obtain by using decoding thresholds.
Rather, the threshold results should be seen as a way to identify further room for improvement, in particular using the
extended staircase code construction. As an example, for OH = 33.33%, we simulated the staircase code based on the
BCH code C2 with (n , t,s) = (8,3,63) together with the extended staircase code for q = 2. The results are shown in
Fig. 1 by the dashed red lines with dots and circles, respectively. The extended staircase code has a steeper waterfall
performance at the expense of a larger block size of ã = 192. The block size is, however, comparable to that of the
staircase code with C1 and, extrapolating the simulation results to 10�15, we expect a gain of approximately 0.11 dB.
If larger block sizes can be tolerated, further improvements (up to around 0.33 dB) can be expected by increasing q.

5. Conclusions

We have shown that the DE analysis in [3] can be used as an effective tool for finding good staircase code parameters.
Compared to the simulation-based method in [2], this approach is less complex (e.g., the parameter space in [2] can be
searched within seconds) and can account for miscorrections assuming iterative HDD with EMP. An extended staircase
code construction was proposed with steeper waterfall performance at the expense of a larger staircase block size.
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