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Abstract

In this thesis, we consider two percolation models on the n-dimensional
binary hypercube, known as accessibility percolation and first-passage per-
colation. First-passage percolation randomly assigns non-negative weights,
called passage times, to the edges of a graph and considers the minimal
total weight of a path between given end-points. This quantity is called
the first-passage time. Accessibility percolation is a biologically inspired
model which has appeared in the mathematical literature only recently.
Here, the vertices of a graph are randomly assigned heights, or fitnesses,
and a path is considered accessible if strictly ascending. We let 0̂ and 1̂
denote the all zeroes and all ones vertices respectively.

A natural simplification of both models is the restriction to oriented
paths, i.e. paths that only flip 0:s to 1:s. Paper I considers the existence
of such accessible paths between 0̂ and 1̂ for fitnesses assigned according
to the so-called House-of-Cards and Rough Mount Fuji models. In Paper
II we consider the first-passage time between 0̂ and 1̂ in the case of inde-
pendent standard exponential passage times. It is previously known that,
in the oriented case, this quantity tends to 1 in probability as n →∞. We
show that without this restriction, the limit is instead ln

(
1 +

√
2
)
≈ 0.88.

By adapting ideas in Paper II to unoriented accessibility percolation, we
are able to determine a limiting probability for the existence of accessible
paths from 0̂ to the global fitness maximum. This is presented in Paper
III.
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of cards, rough mount Fuji, first-passage percolation, Richardson’s model,
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Chapter 1

Introduction

Percolation theory is a branch of probability theory which is roughly
speaking concerned with connectivity in a random medium. It en-
compasses many simple, seemingly innocent random models whose
rigorous investigations have turned out highly non-trivial. Since its
introduction in 1957 by Broadbent and Hammersley, this field has
gained much popularity, both for its mathematical appeal and for
its relevance in various applications.

The classical example of percolation is the following model for
a porous stone submerged in a bucket of water: Assume that the
bulk of the stone contains pores placed periodically in the shape of
a d-dimensional integer lattice, Zd, for some integer d ≥ 21. We
shall here consider Zd as a graph by connecting two lattice points
by an edge if their Euclidean distance is 1. For each edge, i.e. for
each pair of adjacent pores, we flip a coin which turns up heads
with probability p, and tails with probability 1− p. If heads, then
the edge is considered open, meaning that the corresponding pores
are connected and water can flow between them. Otherwise, the
edge is considered closed and no water can pass.

Depending on p, we can get two qualitatively different behaviors
of this graph. Either all components formed by the open edges are
finite, or there is an infinite region connected by open edges, which
we interpret as meaning that that water cannot, respectively can,
seep into the stone.

1For a 3-dimensional stone (as most real stones are) one should reasonably
take d = 3, though the problem is mathematically interesting for any d ≥ 2 and
the most studied case is d = 2.
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Introduction

The model described above is often referred to as Bernoulli per-
colation, bond percolation, or simply percolation [14]. Here we de-
fined it specifically on the integer lattice, but we can analogously
define Bernoulli percolation on any graph, though whether or not
a certain question is meaningful may depend on this choice.

In this thesis, we will consider two percolation models, not in
the integer lattice, but instead when the underlying graph is the
n-dimensional binary hypercube, Qn, for large n. This is the graph
whose vertices are the length n binary strings, and where two ver-
tices are connected by an edge if they differ at exactly one posi-
tion. This graph is sometimes also referred to as the Hamming
cube. We shall specifically be concerned with what is known as
accessibility percolation and first-passage percolation on this graph.
First-passage percolation is one of the more well-known variations
of the bond percolation model above. Here all edges are considered
open, but for each edge there is an associated random time, or cost,
required to traverse it. Accessibility percolation is a simple biologi-
cally inspired model for connectivity in an evolutionary landscape,
which has gained some recent attention. This model randomly as-
signs heights to the vertices of a graph and only allows traversing
edges if the new vertex is higher.

Similarly to Bernoulli percolation, the classical setting for first-
passage percolation is on the integer lattice. Fill and Pemantle [11]
proposed first-passage percolation on the hypercube as a way to
capture the high-dimensional limiting behavior of the lattice case.
Because the hypercube has an inherent geometry, it is arguably
also more in the spirit of the classical setting than for example
trees, which is popular alternative to the lattice. In contrast, the
hypercube is the natural choice in accessibility percolation. This
dates back to ideas about the topography of evolutionary landscapes
by Wright in 1932.

Below, we let 0̂ and 1̂ denote the all zeroes and all ones vertices
respectively in the hypercube. For any two length n binary strings,
their Hamming distance is the number of locations where the strings
differ. The oriented binary n-dimensional hypercube, QOn , is the
digraph obtained by orienting each edge of Qn towards the vertex
that has the extra one. Hence, traversing an edge in Qn corresponds
to flipping a bit in the binary string, and traversing an edge in QOn
corresponds to changing a ’0’ to a ’1’.
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Chapter 2

Accessibility Percolation

In Papers I and III we will consider a problem with motivation from
biological evolution. This subject is based on rather old ideas from
the biology literature, but has only appeared in its current form in
the last few years. Due to its similarity to percolation, Nowak and
Krug named this problem accessibility percolation in [21]. Here the
underlying structure is thought of as the possible genotypes of a
species. The idea is to try to capture the notion of whether or not
a certain advantageous genotype is selectively accessible from some
initial position.

Work on accessibility percolation prior to Paper I, e.g. [7, 12],
consists mostly of simulations. Paper I is the first article in the
mathematical literature on this subject, and the first to prove sig-
nificant rigorous results. Since this paper, a number of articles on
the subject have appeared in the mathematical literature. Besides
Papers I and III, there are also [4,5] for accessibility percolation on
the hypercube, and [3,21,23] for accessibility percolation on rooted
regular trees.

2.1 Biological motivation

Suppose we want to model the evolution of a population of hap-
loid organisms, reproducing asexually without recombination. A
common assumption in describing the set of possible genotypes for
such organisms is that their genome contains n loci (i.e. positions
in the genome where specific genes are stored) that are susceptible
to point mutations, and that for each locus there are two possible
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Accessibility Percolation

states (or alleles). One typically thinks of n as very large.
We shall designate the initially most prevalent allele at each lo-

cus its wild state and the less prevalent as the mutated state. By
denoting the wild state by a ’0’ and the mutated one by a ’1’, the
possible genotypes can be encoded as binary strings of length n.
Here it is useful to give this space a graph structure by considering
the possible genotypes as vertices and letting two vertices share an
edge if it is possible for a single mutation to change one genotype
into the other, i.e. if the Hamming distance between their corre-
sponding binary strings is 1. We note that this graph is precisely
the n-dimensional binary hypercube [17,26].

An important concept in evolutionary theory is the notion of
a fitness landscape, as first introduced by Wright in 1932. As-
sume that the reproductive success of an organism can be mea-
sured by a real number ω(v), uniquely defined by its genotype v.
Wright’s fitness landscape is the idea to visualize this relationship
between genotypes and reproductive success by considering the pos-
sible genotypes as positions in a “hilly landscape”, where the height
of each point is given by its fitness. Hence, the evolutionary process
can be seen as a kind of random walk on this landscape with a bias
towards moving uphill.

In a remarkable recent development, a number of experimental
studies have begun to map local regions of empirical fitness land-
scapes by constructing all or a large subset of possible combinations
of up to 9 mutations, and measuring the reproductive success of
each. Surveys of this data are given in [24,25].

Since the relationship between genotype and fitness is compli-
cated and still largely unknown, it makes sense to try to model the
fitnesses by a random distribution. A number of models have been
suggested to this end. One such model that has gained popular-
ity in the biological community is Kauffman’s NK model [17, 18].
Unfortunately, from a mathematical point of view, this model is
very complex and the only rigorous results in the setting we are
interested in seems to be the ones given in [10, 20] for the distri-
bution of local fitness maxima. We shall not delve further into the
NK model in this thesis, and instead restrict our attention to the
simpler House-of-Cards and Rough Mount Fuji models as described
below.

A question of long history in evolutionary theory is how acces-
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Accessibility Percolation

sible real fitness landscapes are to the evolutionary process. Here
there are two conflicting intuitions. On the one hand, as Wright’s
illustration would seem to indicate, the landscape may consist of
many small hills isolated by valleys of considerably lower fitness,
which would mean that evolution would be restricted to a rela-
tively small set of genotypes near a local optimum. On the other
hand, the topography of the hypercube is very different to that of
the plane, and the sheer number of different paths between two ver-
tices in the hypercube would seem to indicate that some paths are
bound to be nice, meaning that a large portion of the viable states
should, at least in principle, be accessible [12].

Following in the footsteps of [13, 17, 26] we shall here take a
rather strict definition of evolutionary accessibility by assuming the
strong selection/weak mutation (SSWM) regime: The population
has one predominant genotype, which may change over time. Oc-
casionally a point mutation generates an organism of a genotype
adjacent to the currently predominant one. If the new organism is
fitter it has a chance to overtake the population. If it is not fitter,
then its lineage will die out before it has a chance to mutate again.
Hence, given an initial predominant genotype 0̂, we see that it is
possible for a genotype v to become the predominant one if and only
if there is a path from 0̂ to v in Qn along which fitness is strictly
increasing.

2.2 Mathematical formulation

Combining the ideas described in the preceding section, the ques-
tion of accessibility in fitness landscapes boils down to a very con-
crete mathematical model: We define a fitness landscape as a graph
G = (V,E) together with a fitness function ω : V → R, which is
generated according to some random distribution. We say that a
path v0 → v1 → . . . → vl in G is accessible if

ω(v0) < ω(v1) < . . . < ω(vl). (2.1)

For u, v ∈ V we say that v is accessible from u if there exists an
accessible path from u to v. Of primary concern is which vertices
are accessible from some given starting point. When G is the hyper-
cube, we will always take this starting point to be 0̂. In particular,
is the global fitness maximum accessible?
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Accessibility Percolation

From the biological perspective, the most natural choice of G is
arguably Qn by the reasoning given in the previous section. How-
ever, the first papers on accessibility percolation on the hypercube,
[7,12], Paper I and [4], instead consider this problem on the oriented
hypercube QOn . The interpretation of replacing Qn by QOn is that
“mutational reversions”, i.e. changing a gene back to its wild state,
become disallowed. In [12], this is motivated by stating that as mu-
tations are assumed rare, the paths without reversions are the most
feasible ones because they require the least number of mutations
to reach the target vertex. It should however be noted that the
oriented hypercube is combinatorially a much simpler graph than
the unoriented one.

For a probabilist, the most natural choice of distribution of fit-
nesses is independent and identically distributed of, say, some con-
tinuous distribution (to avoid ties). By convention, we will use
U(0, 1), the uniform distribution on the interval [0, 1]. This way
to assign fitnesses is often called Kingman’s House-of-Cards model
[19]. Kauffman and Levin [17] instead refer to this as an uncor-
related landscape. For accessibility percolation we will however
modify this slightly by choosing some vertex v̂, which we assign
the fitness 1. As accessibility percolation only considers the order
of fitnesses, this is equivalent to conditioning on v̂ being the global
fitness maximum. In particular, if v̂ is chosen uniformly at random,
this is equivalent to the original formulation of the House-of-Cards
model, with v̂ denoting the global fitness maximum. When con-
sidering this model on the oriented hypercube, one usually takes
v̂ = 1̂.

Another simple way to assign fitnesses which has been proposed
in the literature is the Rough Mount Fuji model [1]. It includes
two parameters, a fixed probability distribution η, and a positive
number θ, called the drift, which may depend on the dimension n.
For each v ∈ Qn, or QOn , one lets

ω(v) = θ · d(v, 0̂) + η(v). (2.2)

In other words, one first assigns a fitness to each node at random,
according to η, and independent of all other nodes. Then the fitness
of each node is shifted upwards by a fixed multiple of the Hamming
distance from 0̂.

It probably comes as no surprise that the House-of-Cards model
is not considered very realistic. House-of-Cards landscapes are ex-
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Accessibility Percolation

tremely rugged with no correlation between adjacent genotypes.
The fitness of a genotype one mutation away from the global fit-
ness maximum is no better on average than the fitness of a random
genotype (in fact, it is slightly worse). Due to its mathematical
simplicity it is often still considered, but presented as a null model.

The Rough Mount Fuji model is a natural way to construct a
smoother landscape and introduce an “arrow of evolution”, since
the drift factor implies that successive 0 → 1 mutations will tend
to increase fitness. Despite its simplicity, comparisons to empirical
fitness landscapes in [24] found that the Rough Mount Fuji model
“captures the features of the experimental landscapes remarkably
well”.

7



Chapter 3

First-Passage Percolation

In appended Paper II, we will consider a variation of percolation
known as first-passage percolation on the n-dimensional binary hy-
percube.

First-passage percolation is a random process on a graph G =
(V,E) proposed by Hammersley and Welsh in 1965. A closely re-
lated model, the Eden growth model, was proposed by Eden in 1961.
In first-passage percolation, the edges of G are assigned weights
{τe}e∈E , called passage times, according to non-negative, indepen-
dent and identically distributed random variables. We define the
passage time of a path Γ by T (Γ) =

∑
e∈Γ τe. For two vertices

u, v ∈ V , we define the first-passage time from u to v by

T (u, v) = inf {T (Γ) : Γ from u to v} . (3.1)

Equivalently T (u, v) denotes the shortest distance from u to v with
respect to the edge weights. We call a path from u to v that attains
the infimum in (3.1) a geodesic between the two points.

Often when considering first-passage percolation, one does not
consider T (u, v) directly, but instead use it to define a random
model for the spread of some property throughout the graph. For
simplicity, we will follow the same convention as for Bernoulli perco-
lation and assume that we are modeling the spread of water through
some random medium (i.e. the property considered is “wetness”).
When seen in this light, first-passage percolation can be described
as the following modification of the original percolation model: We
assume that water can flow between any pair of adjacent pores in
the stone, but flowing across a certain edge e takes some amount

8



First-Passage Percolation

of time τe determined by the random structure of the stone. Hence
the question is no longer if it is possible for water to spread through
the structure, but rather how fast it happens. Let us make this a
bit more precise. Let v0 be some vertex in G. Suppose at time 0
we connect v0 to a water source, and that water then flows from v0

along all possible paths at the speeds dictated by their respective
passage times. It follows that the time at which water first reaches
a vertex v is given by T (v0, v). Hence, the set of vertices that is
reached within time t is given by

Bt = {v ∈ V : T (v0, v) ≤ t} . (3.2)

We will refer to this set as the wet region at time t.
One interesting special case of first-passage percolation is when

passage times are exponentially distributed with mean one. In this
case, it turns out that {Bt}t≥0 is Markovian. This is an implica-
tion of the so-called memory-less property of the exponential dis-
tribution. More precisely, {Bt}t≥0 can equivalently be described
as the following continuous-time Markov chain: Initially we have
B = {v0}, and for each v ∈ V \ B, the transition B → B ∪ {v}
occurs at rate |N(v) ∩B|, where N(v) denotes the neighborhood
of v. This Markov chain is known as Richardson’s model [9, 22].
Instead of modeling the spread of water, this process is often inter-
preted as the spread of an infection, where Bt denotes the set of
infected vertices at time t. Informally, the transition rates can be
interpreted as meaning that, if you are infected, you sneeze on each
of your neighbors according to independent Poisson processes with
rate 1. If you get sneezed on, you get sick.

Similarly to Bernoulli percolation, the classical setting for first-
passage percolation is the lattice case, i.e. when G = Zd for some
d ≥ 2. A central result in this setting is the Shape Theorem which is
due to Cox and Durrett [8], see also [16,22]. For any distribution of
edge weights τ , let Bt denote the corresponding wet region starting
at the origin. We define a smoothed version of Bt given by

Bt = Bt + [−0.5, 0.5]d . (3.3)

The Shape Theorem states that under some regularity conditions
on τ , there exists a compact convex set B∗ ⊆ Rd with non-empty
interior such that for any ε > 0 we almost surely have

(1− ε) B∗ ⊆ 1
t
Bt ⊆ (1 + ε) B∗ (3.4)

9
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for sufficiently large t. The natural interpretation of this statement
is that the wet region grows linearly in t, and when scaled appro-
priately approaches a limit shape B∗.

There is a lot of literature on the subject of first-passage per-
colation on Zd, but many aspects of this process are still poorly
understood. The limit shape is an important example of this. We
know from the Shape Theorem that B∗ is always convex and must
have the obvious symmetries inherited from Zd, but beyond that
very little is known about the geometry of this set. I will not at-
tempt to give an overview of what is known for the integer lattice,
partly because I do not know it sufficiently well. The reader is
instead referred to either of [15,16].

3.1 First-passage percolation on the hyper-
cube

We now turn to the case where G is the n-dimensional hypercube.
Here we will always assume standard exponential passage times,
hence the wet region spreads according to Richardson’s model.

For the hypercube, first-passage percolation has a slightly dif-
ferent flavor than on the lattice. Since Qn is a finite graph for each
n, the behavior of the wet region as t →∞ is trivial; for sufficiently
large t the wet region is simply the entire cube. Instead, we will
consider the limiting behavior of first-passage percolation on Qn as
n → ∞. We will for simplicity always assume that Bt starts from
0̂, though it can be noted that, by symmetry, the choice of starting
vertex does not matter.

We will consider two natural quantities for first-passage perco-
lation on the hypercube. Firstly, the first-passage time between
antipodal vertices (e.g. 0̂ and 1̂). Equivalently, this is the random
time when 1̂ becomes infected. We will denote this time by Tn

rather than T (0̂, 1̂) to emphasize the dependence of the dimension
of the hypercube. Secondly, the covering time of Qn, which is the
random time at which the entire graph becomes infected. We will
denote this by Cn.

One would intuitively expect the vertex antipodal to the source
to be the hardest to reach. More precisely, one would expect that
T (0̂, 1̂) is stochastically larger than T (0̂, v) for any other vertex v.
Interestingly, this seems to be an open problem. This is not to say

10



First-Passage Percolation

that 1̂ is likely to become infected last however, and indeed this
turns out not to be true, see Theorem 3.1 below.

A third and more tractable quantity, the oriented first-passage
time from 0̂ to 1̂ also appears in the literature. This is the first-
passage time from 0̂ to 1̂, but with respect to the oriented hyper-
cube, QOn . We will denote this by TOn . We will couple TOn to Tn

and Cn by using the same edge passage times for QOn as for Qn.
The literature on first-passage percolation on the hypercube

prior to Paper II consists of two papers, [11] by Fill and Pemantle
(1993) and [6] by Bollobás and Kohayakawa (1997). The result for
this process in [11] is summarized in the following theorem. To sim-
plify notation, we say that a sequence of random variables Xn lies
asymptotically between two constants a < b if for each ε > 0 we
have a− ε ≤ Xn ≤ b + ε with probability tending to 1 as n →∞.

Theorem 3.1. (Fill, Pemantle)

1. TOn → 1 in probability as n →∞.

2. Tn lies asymptotically between ln
(
1 +

√
2
)
≈ 0.88 and 1

3. Cn lies asymptotically between 1
2 ln

(
2 +

√
5
)
+ln 2 ≈ 1.41 and

3 + 2 ln
(
4 + 2

√
2
)
≈ 14.0.

This theorem deserves a few comments. It is straight-forward
to show that TOn must be at least 1− o(1) with probability tending
to 1 as n → ∞ by considering the expected number of oriented
paths from 0̂ to 1̂ with passage time at most t. This had previously
been observed by Aldous in [2]. Using a second moment analysis,
Fill and Pemantle were able to prove a corresponding upper bound,
implying that TOn tends to 1 in probability as n →∞. As Tn ≤ TOn ,
this also implies that Tn is at most 1+o(1) with probability tending
to 1 as n → ∞. They remark that they doubt this upper bound
for Tn is sharp, but state that they do not know how to improve it.
Prior to Paper II, this seems to be the best known upper bound on
Tn.

The lower bound on Tn is due to Durrett, even though he is
not officially one of the authors of the paper. The main idea of the
proof is to consider a certain branching process, which Durrett calls
the branching translation process, or BTP, whose individuals live
on the vertices of the hypercube. It is a simple observation that this
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process is an upper bound on Richardson’s model in the sense that,
when coupled appropriately, the vertices get occupied by individuals
in the BTP before they become infected. This means that Tn is
bounded from below by the time the first individual at 1̂ is born.
Durrett shows that this time converges to sinh−1(1) = ln

(
1 +

√
2
)

in probability as n →∞.
In [6] Bollobás and Kohayakawa improved the upper bound on

Cn, by relating it to Tn.

Theorem 3.2. (Bollobás, Kohayakawa) Let

T∞ = inf {t ≥ 0 : P (Tn ≤ t) → 1 as n →∞} . (3.5)

Then, with probability tending to 1 as n →∞, we have Cn ≤ T∞+
ln 2+o(1). In particular by the result of Fill and Pemantle, we have
T∞ ≤ 1, hence asymptotically almost surely Cn ≤ 1.69 · · ·+ o(1).

Actually, their result is more general but also considerably more
technical. Essentially what it states is as follows: Take any two
vertices u, v in Qn. Then, disregarding possible bottlenecks from u
to N(u) and from N(v) to v, it is extremely unlikely that T (u, v) is
larger than T∞+o(1). Applying this to the cover time, it turns out
that the worst-case bottlenecks that are likely to occur are those
where every edge incident to the end-point has passage time at least
ln 2− o(1), hence the additional term of ln 2 in the upper bound of
Cn.

Bollobás and Kohayakawa referred to the quantity T∞ as simply
the first-passage percolation time. Note that if Tn has a limit in
probability as n → ∞, then it must converge to T∞. Indeed, they
conjectured that this was the case, hence the notation T∞.

Prior to Paper II, it has been an open problem how to improve
these results. Fill and Pemantle state that in the same way that
the upper bound for TOn is harder to prove than the lower one, it
is reasonable to expect that the same holds true for Tn. Durrett’s
branching process is the only method to yield significant results for
Tn beyond those obtained from oriented first-passage percolation.
However, beyond the fact that this process dominates Richardson’s
model, the connection between these processes is rather vague, and
it is hence not clear how this process could be used to prove an
upper bound on Tn.
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Chapter 4

Summary of Appended
Papers

4.1 Paper I: On the existence of accessible
paths in various models of fitness land-
scapes

(coauthored with Peter Hegarty)

In this paper, we consider accessibility percolation on QOn as
n → ∞, in the cases where fitnesses are assigned according to the
House-of-Cards or the Rough Mount Fuji models.

Let us first consider the House-of-Cards case, i.e. fitnesses are
assigned according to ω(1̂) = 1 and independently ω(v) ∼ U(0, 1)
for all other vertices. We let X denote the number of accessible
paths from 0̂ to 1̂.

As there are n! oriented paths from 0̂ to 1̂, and each path is
accessible if and only if the n random fitnesses along the path are
in ascending order, we see that

EX = 1. (4.1)

At first glance, this may seem to imply a positive probability of
accessible paths existing. However, a much clearer picture of what
occurs is obtained by conditioning on the fitness of the starting
vertex. Following the convention in [4, 5], for α ∈ [0, 1] we let
Pα and Eα denote conditional probability and expectation given
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ω(0̂) = α. In the paper, we refer to this conditional distribution as
α-constrained House-of-Cards. We see that

EαX = n(1− α)n−1. (4.2)

We can interpret (4.2) in the following way: There is a critical
threshold for α at ln n

n + O
(

1
n

)
such that above this threshold, the

expected number of accessible paths tends to 0 as n →∞. Hence,
asymptotically almost surely there are no accessible paths when α
is above this value. Below the threshold, we have that the expected
number of paths tends to infinity as n → ∞. Strictly speaking,
this by itself does not tell us anything about the probability that
such paths exist (other than that it cannot be exactly zero), but a
natural guess is that the probability should tend to one in this case.

The first main result of Paper I shows that this analysis “tells
the truth” about the behavior of X:

Theorem 4.1. For any sequence {εn}∞n=1 such that nεn → ∞, as
n →∞ we have

P
ln n
n

+εn(X ≥ 1) → 0 (4.3)

P
ln n
n
−εn(X ≥ 1) → 1. (4.4)

Furthermore,

P(X ≥ 1) ∼ lnn

n
. (4.5)

In the case where α = O
(

1
n

)
, this theorem has later been

strengthened by Berestycki, Brunet and Shi [4] who determine a
limit distribution for the number of accessible paths.

In order to state our result when fitnesses are assigned ac-
cording to the Rough Mount Fuji model we require a definition.
For any function f : R → R, we define the support of f , de-
noted Supp(f), as the set of points at which f is non-zero1, i.e.:
Supp(f) = {x : f(x) 6= 0}. We say that f has connected support if
Supp(f) is a connected subset of R. Our result is as follows:

Theorem 4.2. Let η be any probability distribution whose p.d.f. is
continuous on its support and whose support is connected. Let θn

be any strictly positive function of n such that nθn →∞ as n →∞.
Then in the model (2.2), P (X ≥ 1) tends to one as n →∞.

1Sometimes in the mathematical literature, the support of a function is de-
fined to be the closure of this set.
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4.2 Paper II: Unoriented first-passage per-
colation on the n-cube

In this paper, we consider first-passage percolation on Qn with in-
dependent standard exponential passage times on the edges. Of
primary concern is the quantity Tn, the first-passage time from 0̂
to 1̂ in Qn.

Our main result is that Tn converges to ϑ := ln
(
1 +

√
2
)
≈

0.88 in Lp-norm as n → ∞ for any 1 ≤ p < ∞, proving that the
lower bound by Fill and Pemantle is sharp. More precisely, we
show that for any fixed 1 ≤ p < ∞, the Lp-norm of Tn − ϑ is
Θ

(
1
n

)
. In particular, this means that Tn has mean ϑ + O

(
1
n

)
and

standard deviation of order 1
n . A direct implication is that the first-

passage percolation time T∞ in Theorem 3.2 is ϑ, which improves
the best known upper bound on the covering time of the hypercube
to ϑ + ln 2 ≈ 1.57.

We further give a characterization of the geodesic from 0̂ to 1̂,
Γn, i.e. the path from 0̂ to 1̂ that attains the minimal passage time.
As a corollary, we get that the number of edges in Γn is concentrated
around

√
2 ln

(
1 +

√
2
)
n.

A key idea of our proof is to consider a subset of Durrett’s
branching process, which we call the set of uncontested particles.
We show that Richardson’s model is stochastically sandwiched be-
tween the full BTP and this subset. Using this relation, we derive
an explicit lower bound on the probability that 1̂ is infected at time
t.

4.3 Paper III: Accessibility percolation and
first-passage site percolation on the un-
oriented binary hypercube

The third paper considers accessibility percolation on the unori-
ented hypercube. Suppose the vertices of Qn are assigned fitnesses
according to the House-of-Cards model, i.e. we pick some vertex v̂
which we assign the fitness 1, and for all other vertices we indepen-
dently let ω(v) ∼ U(0, 1). Let X denote the number of accessible
paths from 0̂ to v̂.

We will here focus on the case where v̂ is picked uniformly at

15



Summary of Appended Papers

random among the vertices of Qn, though the full result in Paper
III is more general. The problem is then equivalent to assigning all
fitnesses i.i.d. U(0, 1) and asking for the number of accessible paths
from 0̂ to the global fitness maximum.

A natural first step in determining the behavior of X is to try
to mimic the analysis for the oriented hypercube in (4.1) and (4.2).
However, while these derivations were basically one-liners in the
oriented case, the increased complexity introduced by allowing flips
from 1:s to 0:s makes this procedure much more complicated. In a
recent paper by Berestycki, Brunet and Shi [5], it was shown that
for any α ∈ [0, 1]

(EαX)1/n →
√

1
2

sinh(2− 2α) as n →∞. (4.6)

As a consequence, there is a critical value of α∗ = 1− 1
2 sinh−1(2) =

1 − 1
2

(
2 +

√
5
)
≈ 0.28 such that EαX tends to 0 for α > α∗, and

tends to ∞ for α < α∗. This implies that probability of accessible
paths tends to 0 as n →∞ when α > α∗.

The first main result of Paper III shows that, for any α > α∗,
we have Pα (X ≥ 1) → 1 as n → ∞, as conjectured by Berestycki,
Brunet and Shi. Hence, we have P (X ≥ 1) → 1 − 1

2

(
2 +

√
5
)

as
n → ∞. As a second result, we show that accessibility percola-
tion with House-of-Cards fitnesses for any graph of digraph can be
equivalently formulated in terms of first-passage percolation with
U(0, 1) passage times on the vertices rather than edges, as in the
usual formulation of first-passage percolation. Implications for ear-
lier results on accessibility percolation are discussed. The reader is
referred to Theorem 1.4 in appended Paper III for details.
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On the existence of accessible paths in various

models of fitness landscapes

Peter Hegarty and Anders Martinsson

Abstract
We present rigorous mathematical analyses of a number

of well-known mathematical models for genetic mutations. In
these models, the genome is represented by a vertex of the
n-dimensional binary hypercube, for some n, a mutation in-
volves the flipping of a single bit, and each vertex is assigned a
real number, called its fitness, according to some rules. Our
main concern is with the issue of existence of (selectively)
accessible paths, that is, monotonic paths in the hypercube
along which fitness is always increasing. Our main results
resolve open questions about three such models, which in the
biophysics literature are known as House of Cards (HoC),
Constrained House of Cards (CHoC) and Rough Mount Fuji
(RMF). We prove that the probability of there being at least
one accessible path from the all-zeroes node v0 to the all-
ones node v1 tends respectively to 0, 1 and 1, as n tends to
infinity. A crucial idea is the introduction of a generalisation
of the CHoC model, in which the fitness of v0 is set to some
α = αn ∈ [0, 1]. We prove that there is a very sharp thresh-
old at αn = ln n

n for the existence of accessible paths from
v0 to v1. As a corollary we prove significant concentration,
for α below the threshold, of the number of accessible paths
about the expected value (the precise statement is technical,
see Corollary 1.4). In the case of RMF, we prove that the
probability of accessible paths from v0 to v1 existing tends
to 1 provided the drift parameter θ = θn satisfies nθn →∞,
and for any fitness distribution which is continuous on its
support and whose support is connected.

Notation

Throughout this paper, Qn will denote the directed n-dimensional
binary hypercube. This is the directed graph whose nodes are all
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binary strings of length n, with an edge between any pair of nodes
that differ in exactly one bit, the edge being always directed toward
the node with the greater number of ones.

Let g, h : N → R+ be any two functions. We will employ the
following notations throughout, all of which are quite standard:

(i) g(n) ∼ h(n) means that limn→∞
g(n)
h(n) = 1.

(ii) g(n) . h(n) means that lim supn→∞
g(n)
h(n) ≤ 1.

(iii) g(n) & h(n) means that h(n) . g(n).
(iv) g(n) = O(h(n)) means that lim supn→∞

g(n)
h(n) < ∞.

(v) g(n) = Ω(h(n)) means that h(n) = O(g(n)).
(vi) g(n) = Θ(h(n)) means that both g(n) = O(h(n)) and

h(n) = O(g(n)) hold.
(vii) g(n) = o(h(n)) means that limn→∞

g(n)
h(n) = 0.

Now suppose instead that (g(n))∞n=1, (h(n))∞n=1 are two sequences
of random variables. We write g(n) ∼ h(n) if, for all ε1, ε2 > 0 and
n sufficiently large,

P
(

1− ε1 <
g(n)
h(n)

< 1 + ε1

)
> 1− ε2. (0.1)

Similarly, we write g(n) & h(n) if, for all ε1, ε2 > 0 and n sufficiently
large,

P
(

g(n)
h(n)

> 1− ε1

)
> 1− ε2. (0.2)

1 Introduction

In many basic mathematical models of genetic mutations, the genome
is represented as a node of the directed n-dimensional binary hyper-
cube Qn and each mutation involves the flipping of a single bit from
0 (the “wild” state) to 1 (the “mutant” state), hence displacement
along an edge of Qn. Each node v ∈ Qn is assigned a real num-
ber f(v), called its fitness. The fitness of a node is not a constant,
but is drawn from some probability distribution specified by the
model. This distribution may vary from node to node in more or
less complicated ways, depending on the model. Basically, however,
evolution is considered as favoring mutational pathways which, on
average, lead to higher fitness. A fundamental concept in this re-
gard is the following (see [16], [15], [7]):
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Definition 1.1. Let f : Qn → R be a fitness function. A (selec-
tively) accessible path in Qn is a path

v0 → v1 → · · · → vk−1 → vk, (1.1)

such that f(vi) > f(vi−1) for i = 1, . . . , k.

Let v0 = (0, 0, . . . , 0), v1 = (1, 1, . . . , 1) denote the all-zeroes
and all-ones vertices in Qn. A basic question in such models is
whether accessible paths from v0 to v1 exist or not with high prob-
ability. For the remainder of this paper, unless explicitly stated
otherwise, the words “accessible path” will always refer to such a
path which starts at v0 and ends at v1. In fact, it will only be in the
proof of Proposition 2.18 that we will need to consider accessible
paths with other start- and endpoints.

We shall be concerned below with the following three well-known
models, in which no rigorous answer has previously been given to
the question of whether or not accessible paths exist with high prob-
abilty.

Model 1: Unconstrained House of Cards (HoC)

This model is originally attributed to Kingman [10]. In the form
we consider below, it was first studied by Kauffman and Levin [9].
We set f(v1) := 1 and, for every other node v ∈ Qn, independently
let f(v) ∼ U(0, 1), the uniform distribution on the interval [0, 1].

Model 2: Constrained House of Cards (CHoC)

This variant seems to have been considered only more recently, see
for example [11] and [3]. The only difference from Model 1 is that
we fix f(v0) := 0.

Model 3: Rough Mount Fuji (RMF)

This model was first proposed in [1], see also [8]. For each v ∈ Qn

one lets
f(v) = θ · d(v,v0) + η(v), (1.2)

where θ = θn is a positive number, called the drift, d(·, ·) denotes
Hamming distance and the η(v) are independent random variables
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of some fixed distribution. In other words, one first assigns a fit-
ness to each node at random, according to η, and independent of
all other nodes. Then the fitness of each node is shifted upwards
by a fixed multiple of the Hamming distance from v0.

Before proceeding, it is worth noting that the above models are
also of interest in physics in the context of so-called spin glasses
[12]. In this setting, each node of Qn represents a point in the state
space of all possible configurations of spins in a disordered magnet.
The analogue of fitness is in this case energy, or more precisely “en-
ergy times −1”. Accessible paths (not necessarily from v0 to v1)
correspond to trajectories in which energy decreases monotonically,
and which are therefore easily accessible even at zero temperature.
The HoC model appears in the spin glass context as Derrida’s Ran-
dom Energy Model (REM), and the RMF-model is a REM in an
external magnetic field. For further discussion of the connection
between fitness landscapes and spin glasses, see [6].

In all three models, the basic random variable of interest is the
number X = X(n) of accessible paths. One thinks of v0 as the
starting point of some evolutionary process, and v1 as the desirable
endpoint. The HoC model is often referred to as a “null model” for
evolution, since the fitnesses of all nodes other than v1 are assigned
at random and independently of one another. No mechanism is
prescribed which might push an evolutionary process in any par-
ticular direction. The CHoC model is not much better, though it
does specify that the starting point is a global fitness minimum.
The RMF model is a very natural, and simple, way to introduce an
“arrow of evolution”, since the drift factor implies that successive
0 → 1 mutations will tend to increase fitness.

It seems intuitively obvious that the number X of accessible
paths should, on average, be much higher in RMF than in HoC, with
the CHoC model lying somewhere in between. One should be a little
careful here, since in RMF, the node v1 is not assumed to be a global
fitness maximum. Nevertheless, it is easy to verify that E[X] = 1 in
HoC, E[X] = n in CHoC, whereas in many situations E[X] grows
super-exponentially with n in RMF: see [7], along with Propositions
2.1 and 3.1 below. Of more interest, however, is the quantity P =
P (n), which is the probability of there being at least one accessible
path, i.e.: P = P(X > 0). The idea here is that, as long as some
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accessible path exists, then evolution will eventually find it. The
quantity P has been simulated in the biophysics literature. In [7] it
was conjectured explicitly that P → 0 in the HoC model, and that
P → 1 in the RMF model, when η is a normal distribution and θ
is any positive constant. In [3], the CHoC model was simulated for
n ≤ 13, and the authors conjecture, if somewhat implicitly, that P
is monotonic decreasing in n and approaches a limiting value close
to 0.7. In [7], simulations were continued up to n = 19 and these
indicated clearly that P was not, after all, monotonic decreasing.
The authors abstain from making any explicit conjecture about the
limiting behaviour of P in CHoC.

Our main results below resolve all these issues. A crucial idea
is to consider the following slight generalisation of the CHoC model:

Model 4: α-Constrained House of Cards (α-HoC)

Let α ∈ [0, 1]. In this model, fitnesses are assigned as in the CHoC
model, with the exception that we set f(v0) := α. Hence, CHoC is
the case α = 0.

For α ∈ [0, 1], let P (n, α) denote the probability of there being
an accessible path in the α-HoC model. To simplify notation be-
low, we define P (n, α) = P (n, 0) for α < 0 and P (n, α) = P (n, 1)
for α > 1. Note that P (n, α) decreases as α increases. Our first
main result is the following:

Theorem 1.2. Let ε = εn > 0. If nεn →∞ then

lim
n→∞

P

(
n,

lnn

n
− εn

)
= 1 (1.3)

and

lim
n→∞

P

(
n,

lnn

n
+ εn

)
= 0. (1.4)

It follows immediately that P → 1 in the CHoC model and
that P (n, α) → 0 for any strictly positive constant α. The above
result says a lot more, however. It shows that there is a very sharp
threshold at α = αn = ln n

n for the existence of accessible paths in
the α-HoC model. Theorem 1.2 will be proven in Section 2. We
have the following immediate corollary for HoC:
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Corollary 1.3. Let X denote the number of accessible paths in the
HoC model. Then

P (X > 0) ∼ lnn

n
. (1.5)

Proof. As P (n, α) is decreasing in α we know that, for any α ∈
[0, 1], P (X > 0) ≥ αP (n, α). Picking α = ln n

n − εn where nεn

tends to infinity sufficiently slowly, it follows from Theorem 1.2
that P (X > 0) & ln n

n .
To get the upper bound, let α = ln n

n . Now, if the hypercube
has accessible paths, then either v0 has fitness at most α or there is
an accessible path where all nodes involved have fitness at least α.
Obviously the former event occurs with probability α. Concerning
the latter, if

v0 → v1 → · · · → vn−1 → v1 (1.6)

is any path, then the probability of all nodes along it having fitness
at least α is (1 − α)n. The probability of fitness being increasing
along the path is 1/n!. Since there are n! possible paths of the form
(1.6), it follows from a union bound that

P(X > 0) ≤ α + n!
(1− α)n

n!
≤ lnn

n
+

1
n

. (1.7)

Another Corollary of Theorem 1.2 concerns the distribution of
the number of accessible paths in α-HoC for α = ln n

n − εn, where
nεn →∞. It is straightforward to show that the expected number
of paths in α-HoC is n(1 − α)n−1 (see Proposition 2.1), which, for
this choice of α, is ∼ enεn . We have the following result:

Corollary 1.4. Let X denote the number of accessible paths in
α-HoC for α = ln n

n − εn where nεn →∞. If wn →∞ then

lim
n→∞

P
(

1
wn

E[X] ≤ X ≤ wnE[X]
)

= 1. (1.8)

Corollary 1.4 will be proven in Subsection 2.5.
Our second main result concerns the RMF model. For any func-

tion f : R → R, recall that the support of f , denoted Supp(f), is the
set of points at which f is non-zero1, i.e.: Supp(f) = {x : f(x) 6= 0}.

1Sometimes in the mathematical literature, the support of a function is de-
fined to be the closure of this set.
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We say that f has connected support if Supp(f) is a connected sub-
set of R. Our result is the following:

Theorem 1.5. Let η be any probability distribution whose p.d.f. is
continuous on its support and whose support is connected. Let θn

be any strictly positive function of n such that nθn →∞ as n →∞.
Then in the model (1.2), P (n) tends to one as n →∞.

This result is proven in Section 3. The proof follows similar lines
to that of Theorem 1.2, but the analysis is somewhat simpler.

Remark 1.6. More generally, the proof of Theorem 1.5 presented
in this article holds for any distribution η that satisfies, with nota-
tion taken from Section 3, κη,δ = infI⊆Iδ

1
l(I)

∫
I η(x) dx > 0 for any

δ ∈ (0, 1). This condition essentially states that η is not allowed to
have “isolated modes”. For instance, it is satisfied for any unimodal
distribution.

2 Results for the HoC models

For each path i from v0 to v1 let Xi be the indicator function of the
event that i is accessible, and let X =

∑
i Xi denote the number of

accessible paths from v0 to v1. Furthermore, given a path i from
v0 to v1 in the n-dimensional hypercube, let T (n, k) denote the
number of paths from v0 to v1 that intersect i in exactly k − 1
interior nodes (by symmetry, this is independent of i).

Proposition 2.1. Let X denote the number of accessible paths in
the α-HoC model. Then

E[X] = n(1− α)n−1. (2.1)

Proof. There are n! paths through the hypercube. A path is acces-
sible if all n−1 interior nodes have fitness at least α and the fitness
of the interior nodes is increasing along the path. This occurs with
probability (1− α)n−1/(n− 1)!.

Note that for α = ln n
n + εn, the Proposition implies that the

expected number of accessible paths tends to 0 for any sequence εn

satisfying nεn →∞. This directly implies equation (1.4). Similarly,
for α = ln n

n − εn where nεn → ∞, the expected number of paths
tends to infinity.
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To show the remaining part of Theorem 1.2, that the probability
of there being at least one accessible path tends to 1 in the case
α = ln n

n − εn, we will begin by showing that the probability is at
least 1

4 − o(1) by the second moment method. In subsection 2.4 we
will then provide a proof that the probability must tend to 1.

Lemma 2.2. Let X be a random variable with finite expected value
and finite and non-zero second moment. Then

P (X 6= 0) ≥ E[X]2

E[X2]
. (2.2)

Proof. Let 1X 6=0 denote the indicator function of X 6= 0. Then, by
the Cauchy-Schwartz inequality, E[X]2 = E[1X 6=0X]2 ≤ E[12

X 6=0] ·
E[X2] = P(X 6= 0) · E[X2].

See also Exercise 4.8.1 in [2].

Proposition 2.3. Let i and j be paths with exactly k − 1 interior
nodes in common. Then

E [XiXj ] ≤
(
2n−2k
n−k

)
(1− α)2n−k−1

(2n− k − 1)!
, (2.3)

where equality holds if the nodes where i and j differ are consecutive
along the paths, i.e. if i and j diverge at most once. Furthermore,

E[X2] ≤
n∑

k=1

n!T (n, k)

(
2n−2k
n−k

)
(1− α)2n−k−1

(2n− k − 1)!
. (2.4)

Proof. The event that i and j are both accessible occurs if all 2n−
k − 1 interior nodes have fitness at least α and the fitnesses of the
interior nodes are ordered in such a way that fitness increases along
both paths.

Conditioned on the event that all interior nodes have fitness at
least α, all possible ways in which the fitnesses of the interior nodes
can be ordered are equally likely. This implies that the probability
that both paths are accessible is (1− α)2n−k−1/(2n− k− 1)! times
the number of ways to order the fitnesses of the interior nodes such
that fitness increases along both paths.

To count the number of ways this can be done we color the
numbers 1, . . . , 2n − k − 1 in the following way: The number l is
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colored gray if the interior node with the l:th smallest fitness is
contained in both paths, red if it is only contained in i and blue
if only in j. Note that i and j uniquely determine which numbers
must be gray for a valid order, and that any coloring corresponds
to at most one order.

Clearly, any coloring corresponding to a valid order colors half
of the non-gray numbers red and half blue, which implies that there
can be at most

(
2n−2k
n−k

)
such orders. Furthermore, if i and j diverge

at most once, one can always construct a valid order from such a
coloring, so in this case there are exactly

(
2n−2k
n−k

)
such orders.

As the number of ordered pairs of paths that intersect in exactly
k−1 interior nodes is n!T (n, k), (2.4) follows from this estimate.

2.1 Useful formulas for T (n, k)

The numbers T (n, k) already appear in the mathematical litera-
ture. The usual terminology is that T (n, k) is the number of per-
mutations of {1, 2, . . . , n} with k components, where the number of
components of a permutation π1π2 · · ·πn is defined as the number
of choices for 1 ≤ s ≤ n such that π1π2 · · ·πs is a permutation of
{1, 2, . . . , s}. In terms of paths in Qn, we can represent each path
from v0 to v1 by a permutation π1π2 · · ·πn of {1, 2, . . . , n} where
πs denotes which coordinate to increase in step s. If we let i be
the path represented by the identity permutation, then a path j,
represented by π1π2 · · ·πn, intersects i in step s ≥ 1 if and only
if π1π2 · · ·πs is a permutation of {1, 2, . . . , s}. This means that, if
π1π2 · · ·πn has k components, then i and j intersect in k − 1 inte-
rior nodes (the k:th component corresponds to s = n). We can thus
consider a component as an interval [s, t] where i and j intersect in
steps s and t, but at no step in between.

An alternative formulation is that T (n, k) is the number of per-
mutations of {1, 2, . . . , n} with k − 1 global descents. A global
descent in a permutation π1π2 · · ·πn of {1, 2, . . . , n} is a number
t ∈ [1, n − 1] such that πi > πj for all i ≤ t and j > t. There is a
simple 1− 1 correspondence between permutations with k compo-
nents and those with k − 1 global descents obtained by reading a
permutation backwards. In other words, π1π2 · · ·πn has k−1 global
descents if and only if πnπn−1 · · ·π1 has k components.

There is a database of the numbers T (n, k) for small n and k,
see [14]. The book of Comtet [5] referred to at this link contains
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a couple of exercises and an implicit recursion formula for T (n, k).
Comtet has also performed a detailed asymptotic analysis of the
numbers T (n, 1) in [4]. Permutations with one component (i.e.: no
global descents) are variously referred to as connected, indecom-
posable, irreducible. These seem to crop up quite a lot, see [13].
However, estimates of the numbers T (n, k) for general n and k like
those in Propositions 2.9 and 2.11 below do not appear to have been
obtained before.

Proposition 2.4. T (n, 1) is uniquely defined by

n! =
n∑

k=1

T (k, 1)(n− k)!. (2.5)

Proof. Given a path i through Qn, the number of paths j that
intersect i for the first time in step k is T (k, 1)(n − k)!. As any
path through Qn intersects i for the first time after between 1 and
n steps, the Proposition follows.

Proposition 2.5.

n!
(

1−O

(
1
n

))
≤ T (n, 1) ≤ n! (2.6)

Proof. By definition, T (n, 1) ≤ n!. Using this, Proposition 2.4 im-
plies that T (n, 1) is at least n!−

∑n−1
k=1 k!(n−k)! = n!−O ((n− 1)!).

Proposition 2.6.

T (n, k) =
∑

s1,...sk≥1
s1+...sk=n

T (s1, 1) · . . . · T (sk, 1) (2.7)

Proof. Given a path i, the number of paths that intersect i for the
first time after s1 steps, for the second time after s2 more steps
and so on up to the last time (at v1) after n steps is T (s1, 1) ·
. . . T (sk−1, 1) · T (n − s1 − · · · − sk−1, 1). Let sk = n − s1 − · · · −
sk−1. T (n, k) is obtained by summing over all possible values of
s1, . . . sk.

Proposition 2.7. For k ≥ 2, T (n, k) satisfies

T (n, k) =
n−k+1∑

s=1

T (s, 1)T (n− s, k − 1). (2.8)
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Proof. It follows by induction that this sum equals the right hand
side in (2.7).

2.2 Upper bounds for T (n, k)

Proposition 2.8. For any n ≥ k ≥ 1,

T (n, k) ≤ k
∑(n−

k−1∑
j=1

sj)!
k−1∏
j=1

sj !

 (2.9)

where the first sum goes over all (k−1)-tuples of integers s1, . . . sk−1

such that sj ≥ 1 for all j and maxj sj ≤ n−
∑

j sj.

Proof. Consider the formula for T (n, k) in Proposition 2.6. By sym-
metry, T (n, k) is at most k times the contribution from terms where
sj ≤ sk for j = 1, . . . , k − 1. The Proposition follows by applying
T (s, 1) ≤ s!.

Proposition 2.9. There is a positive constant c such that for all
n ≥ k ≥ 1,

T (n, k) ≤ k(n− k + 1)! ec(k−1)/(n−k+1). (2.10)

Proof. We use Proposition 2.8 and make the following approxima-
tions:

• substitute (n−
∑

j sj)! by βn−
∑

j sj where β =

((n− k + 1)!)1/(n−k+1). It follows from log-convexity of l! that
βl ≥ l! for any 0 ≤ l ≤ n− k + 1.

• let all sj go from 1 to b(n− k + 1)/2 + 1c.

This yields

T (n, k) ≤ k(n− k + 1)!

b(n−k+1)/2+1c∑
s=1

s!β1−s

k−1

. (2.11)

We now claim that the sum in the above expression is always
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less than 1 + c/(n− k + 1) for sufficiently large c. Indeed

b(n−k+1)/2+1c∑
s=1

s!β1−s

= 1 + 2β−1 + β−1

b(n−k+1)/2−1c∑
t=1

t!(t + 1)(t + 2)β−t

≤ 1 + 2β−1 + eβ−1

b(n−k+1)/2−1c∑
t=1

√
t(t + 1)(t + 2)·

·
(

n− k + 1
2e

)t(n− k + 1
e

)−t

≤ 1 + 2β−1 + eβ−1
∞∑

t=1

√
t(t + 1)(t + 2)2−t

≤ 1 + c(n− k + 1)−1.

Here we have used that (n − k + 1)/e ≤ β ≤ (n − k + 1) and
that n! ≤ enn+1/2e−n, which follows from standard estimates of
factorials.

The Proposition now follows from this result together with (2.11).

Proposition 2.10. For any fixed l there is a constant Cl > 0 such
that

T (n, n− l) ≤ Cln
l (2.12)

for all n ≥ 1.

Proof. We may, without loss of generality, assume that n ≥ 2l.
Recall the formula for T (n, n− l) in Proposition 2.6. As

s1, . . . , sn−l ≥ 1 and s1 + · · ·+ sn−l = n it is easy to see that all but
at most l variables are equal to 1. This implies that T (n, n − l) is
at most

(
n−l

l

)
times the contribution from all terms where sl+1 =

· · · = sn−l = 1. Using T (1, 1) = 1, we get

T (n, n−l) ≤
(

n− l

l

) ∑
s1,...sl≥1

s1+...sl=2l

T (s1, 1)·. . .·T (sl, 1) ≤ Cln
l. (2.13)
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Proposition 2.11. For sufficiently large c, we have

T (n, n− l) ≤ c(l + 1)
(

n + 2l

5

)l

. (2.14)

Proof. Let

S(n, n− l) = (l + 1)
(

n + 2l

5

)l

(2.15)

i.e.

S(n, k) = (n− k + 1)
(

3n− 2k

5

)n−k

. (2.16)

We will begin by showing that S(n, k) satisfies

S(n, k) ≥
n−k+1∑

i=1

i!S(n− i, k − 1) (2.17)

for k > 1 and sufficiently large n− k. Here we have

n−k+1∑
i=1

i!S(n− i, k − 1)

=
n−k+1∑

i=1

i!(n− k + 2− i)
(

3n− 2k − 3i + 2
5

)n−k−i+1

≤ (n− k + 1)
(

3n− 2k − 1
5

)n−k

+
n−k+1∑

i=2

i!(n− k + 1)
(

3n− 2k

5

)n−k−i+1

= S(n, k)

((
1− 1

3n− 2k

)n−k

+
n−k+1∑

i=2

i!
(

3n− 2k

5

)−i+1
)

,

where (
1− 1

3n− 2k

)n−k

≤ exp
(
− n− k

3n− 2k

)
≤ exp

(
−n− k

3n

)
≤ max

(
1
2
, 1− n− k

6n

)
,
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and

n−k+1∑
i=2

i!
(

3n− 2k

5

)−i+1

≤ 10
3n− 2k

+
5

3n− 2k

n−k−1∑
j=1

j!(j + 1)(j + 2)
(

3n− 2k

5

)−j

≤ 10
3n− 2k

+
5e

3n− 2k

∞∑
j=1

√
j(j + 1)(j + 2)

(
n− k

e

)j (3n− 2k

5

)−j

≤ 1
n

10 + 5e
∞∑

j=1

√
j(j + 1)(j + 2)

(
5
3e

)j


=
C

n
.

It follows directly that (2.17) holds for k > 1 and n− k ≥ 6C.

Now, if we can choose c so that T (n, k) ≤ cS(n, k) for k = 1
and for n − k < 6C, the Proposition will follow from Proposition
2.7 by induction on k. Hence it suffices to show the Proposition for
these two cases.

For k = 1, the inequality holds for sufficiently large c by the
fact that

T (n, 1)
S(n, 1)

≤ n!

n
(

3n−2
5

)n−1

≤ e
√

n
(n

e

)n 1

n
(

3n−2
5

)n−1

=
3e

5
√

n

(
5
3e

)n(
1− 2

3n

)−n+1

→ 0 as n →∞.

For n− k < 6C, just apply Proposition 2.10.
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2.3 Computing E[X2]

Pick δ > 0 sufficiently small. We divide the sum in (2.4) into the
contribution from k ≤ (1− δ)n and that from k > (1− δ)n.

n∑
k=1

n!T (n, k)

(
2n−2k
n−k

)
(1− α)2n−k−1

(2n− k − 1)!

=
(1−δ)n∑

k=1

n!T (n, k)

(
2n−2k
n−k

)
(1− α)2n−k−1

(2n− k − 1)!

+
δn∑
l=0

n!T (n, n− l)

(
2l
l

)
(1− α)n+l−1

(n + l − 1)!

:= S1 + S2.

(2.18)

Proposition 2.12. For k constant and α = o(1)

n!T (n, k)

(
2n−2k
n−k

)
(1− α)2n−k−1

(2n− k − 1)!
∼ k21−kn2(1− α)2n. (2.19)

Proof. A simple lower bound on T (n, k) is the number of per-
mutations with k components where all but one component con-
tains exactly one element. For sufficiently large n this is given
by kT (n − k + 1, 1), which by Proposition 2.5 is ∼ k(n − k + 1)!.
Furthermore, from Proposition 2.9 we know that T (n, k) is most
(1 + o(1)) k(n−k+1)!. Hence for constant k, T (n, k) ∼ k(n−k+1)!.
The Proposition now follows from standard estimates of factori-
als.

Proposition 2.13. Let α = o(1). For any 0 < δ < 1, we have
S1 ∼ 4n2(1− α)2n.

Proof. From Proposition 2.9 it follows that there is a constant Cδ

such that T (n, k) ≤ Cδk(n− k + 1)! whenever k ≤ (1− δ)n. Using
this we have

n!T (n, k)

(
2n−2k
n−k

)
(2n− k − 1)!

≤ Cδn!k(n− k + 1)!

(
2n−2k
n−k

)
(2n− k − 1)!

(2.20)

for all k ≤ (1 − δ)n. Now by extensive use of Stirling’s formula

35



there is a constant C > 0 such that:

Cδn!k(n− k + 1)!

(
2n−2k
n−k

)
(2n− k − 1)!

≤ CδCk
√

n
(n

e

)n√
n− k

(
n− k

e

)n−k

·

· (n− k + 1)
4n−k
√

n−k
(2n− k)

√
2n− k

(
2n−k

e

)2n−k

= CδCk(n− k + 1)
√

n(2n− k)2−k·

·

((
1− k

n

)n
k
−1(

1− k

2n

)− 2n
k

+1
)k

,

where(
1− k

n

)n
k
−1(

1− k

2n

)− 2n
k

+1

≤
(

1− k

2n

) 2n
k
−2(

1− k

2n

)− 2n
k

+1

=
(

1− k

2n

)−1

≤
(

1− 1− δ

2

)−1

=
2

1 + δ
.

This means that, for all δ > 0, there exists a constant C ′
δ such that,

for k ≤ (1− δ)n and sufficiently large n, we have

n!T (n, k)

(
2n−2k
n−k

)
(1− α)2n−k−1

(2n− k − 1)!
≤ C ′

δn
2(1−α)2nk (1 + δ)−k (1−α)−k.

(2.21)
Since

∑
k(1+δ)−k(1−α)−k converges for sufficiently small α we

have shown that S1 = O
(
n2(1− α)2n

)
. Furthermore, if we assume

that n is sufficiently large so that (1 + δ)(1− α) ≥ (1 + δ
2), then as

the terms in the sum

(1−δ)n∑
k=1

1
n2(1− α)2n

n!T (n, k)

(
2n−2k
n−k

)
(1− α)2n−k−1

(2n− k − 1)!
(2.22)
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are dominated by the terms in

∞∑
k=1

C ′
δk

(
1 +

δ

2

)−k

(2.23)

which converges, it follows by dominated convergence together with
Proposition 2.12 that

(1−δ)n∑
k=1

1
n2(1− α)2n

n!T (n, k)

(
2n−2k
n−k

)
(1− α)2n−k−1

(2n− k − 1)!
−→

∞∑
k=1

k21−k = 4

as n →∞.

Proposition 2.14. For sufficiently small δ > 0 and α = o(1), we
have S2 = O (n(1− α)n).

Proof. Using Proposition 2.11 there is a constant C such that this
sum is bounded by

δn∑
l=0

n!T (n, n− l)

(
2l
l

)
(1− α)n+l−1

(n + l − 1)!

≤ C
δn∑
l=0

n!(l + 1)
(

n + 2l

5

)l
(
2l
l

)
(1− α)n+l−1

(n + l − 1)!

≤ C(1− α)n−1
δn∑
l=0

n1−l(l + 1)
(

n + 2l

5

)l

4l

≤ Cn(1− α)n−1
∞∑
l=0

(l + 1)
(

4(1 + 2δ)
5

)l

where the last sum clearly converges for sufficiently small δ.

Proposition 2.15. Let X be the number of accessible paths in the
α-HoC model where α = ln n

n − εn where nεn →∞. Then

E[X2] ∼ 4n2(1− α)2n. (2.24)

Proof. From Proposition 2.3 together with Propositions 2.13 and
2.14 we know that

E[X2] ≤ (4 + o(1))n2(1− α)2n + O (n(1− α)n) , (2.25)
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where one can show that n(1 − α)n = o
(
n2(1− α)2n

)
, provided

nεn →∞.
To derive a tight lower bound for E[X2], consider the sum of

E[XiXj ] over all pairs of paths whose number of common interior
nodes, k − 1, is at most n

2 − 1 and that diverge at most once.
Expressed in terms of components of permutations, for a fixed i
and k, the number of paths j that satisfy this equals the number
of permutations with k components, where all but one component
contains exactly one element. This can clearly be done in kT (n −
k + 1, 1) ∼ k(n− k + 1)! ways.

By Proposition 2.3 this yields

E[X2] ≥
n/2∑
k=1

n!kT (n− k + 1, 1)

(
2n−2k
n−k

)
(1− α)2n−k−1

(2n− k − 1)!
. (2.26)

Proceeding in a manner similar to the proof of Proposition 2.13, we
get that

n/2∑
k=1

n!kT (n−k+1, 1)

(
2n−2k
n−k

)
(1− α)2n−k−1

(2n− k − 1)!
∼ 4n2(1−α)2n (2.27)

which concludes the proof.

From this proof we can observe that almost all of the contribu-
tion to E[X2] comes from pairs of paths we considered in the lower
bound. This implies the following:

Corollary 2.16. Assume α = ln n
n − εn where nεn → ∞. For any

0 < δ < 1, the contribution to E[X2] from all pairs of paths that
either share more than (1−δ)n common nodes or that diverge more
than once is o

(
n2(1− α)2n

)
.

2.4 Proof of Theorem 1.2

Let X as above denote the number of accessible paths in α-HoC,
where α = ln n

n − εn, 0 ≤ εn ≤ ln n
n and nεn → ∞. Applying

Lemma 2.2 to X and using the expressions for E[X] and E[X2]
from Propositions 2.1 and 2.15 respectively, yields the lower bound

lim inf
n→∞

P

(
n,

lnn

n
− εn

)
≥ 1

4
. (2.28)
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In this subsection, we will prove that this probability can be “boot-
strapped” up to 1, proving the remaining part of Theorem 1.2.

Lemma 2.17. Let 0 ≤ a ≤ 1 − b ≤ 1 and let f : Qn → R be a
fitness function whose values are generated independently according
to

f(v) =


a if v = v0

1− b if v = v1

∼ U(0, 1) otherwise.

(2.29)

Then the probability of accessible paths with respect to f equals
P (n, a + b).

Proof. Define the function g : Qn → R by setting g(v) = f(v)+ b if
f(v) ≤ 1− b and g(v) = f(v)−1+ b otherwise. Then g(v0) = a+ b,
g(v1) = 1 and g(v) ∼ U(0, 1) independently for all other v, so g
is distributed as in α-HoC with α = a + b. As this transformation
only constitutes a translation for any node on an accessible path,
we see that a path is accessible with respect to f if and only if it is
so with respect to g.

Proposition 2.18. Assume there is a positive constant C such
that lim infn→∞ P (n, ln n

n − εn) ≥ C whenever 0 ≤ εn ≤ ln n
n is a

sequence satisfying nεn →∞. Then, the same inequality holds if C
is replaced by 1− (1− C)(1− C

2 ).

Proof. Let α = ln n
n − εn. We wish to pick four nodes, a1, a2, b1, b2,

satisfying the following conditions:
(i) d(a1,v

0) = d(a2,v
0) = 1, and a1, a2 each has fitness in the

range [α, α + εn/3].
(ii) d(b1,v

1) = d(b2,v
1) = 1 and b1, b2 each has fitness at least

1− εn/3.
(iii) none of the four pairs (ai, bj) are antipodal (in the undi-

rected hypercube).
By (i), the number of possibilities for each ai is binomially dis-
tributed with parameters Bin(n, εn/3). Then, by (ii) and (iii), the
number of options for each bj is distributed as Bin(n − 2, εn/3).
Since nεn/3 →∞, it follows that it is possible to choose four nodes
satisfying (i)-(iii) with probability 1− on(1).

Condition on the fitness of all vertices v with d(v,v0) = 1 or
d(v,v1) = 1. Let H1 and H2 be the induced subgraphs consisting
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of all nodes on paths from a1 to b1 and from a2 to b2 respectively
and let H ′

2 be the induced subgraph consisting of all nodes on paths
between a2 and b2 that does not intersect H1 in any vertex. Then
H1 and H2 are isomorphic to Qn−2. Note that any accessible path
from a1 to b1 or a2 to b2 can be extended to an accessible path from
v0 to v1.

Let us denote the probability of accessible paths through the
respective induced subgraphs by pH1 , pH2 and pH′

2
. By construc-

tion, H1 and H ′
2 are vertex disjoint, so the events of accessible

paths through the two subgraphs are independent. By Lemma 2.17,
pH1 = P (n−2, f(a1)+1−f(b1)) ≥ P (n−2, α+ 2εn

3 ). It is straight-
forward to show that this is still below the threshold, which implies
that pH1 ≥ C − on(1).

To estimate pH′
2
, we note that a path in H2 from a2 to b2 is

contained in H ′
2 if and only if it “flips the bit that is 1 in a1 after

that which is 0 in b1”. In the cases where there is an accessible path
through H2, let γ be chosen uniformly among all such paths. Then,
by symmetry, we know that it flips the two bits corresponding to
a1 and b1 in the allowed order, and is thus contained in H ′

2, with
probability 1

2 . Hence pH′
2
≥ 1

2pH2 = 1
2pH1 .

As the events of accessible paths through H1 and H ′
2 are in-

dependent, we get P (n, α) ≥ 1 − (1 − pH1)(1 − pH′
2
) − on(1) ≥

1− (1− C)(1− C
2 )− on(1) and the Proposition follows.

Now to conclude the proof of Theorem 1.2. By equation (2.28)
and repeated use of Proposition 2.18 we can construct a sequence
{Ck}∞k=0 such that Ck → 1 and lim infn→∞ P (n, α) ≥ Ck for all k.
Hence we must have lim infn→∞ P (n, α) = 1.

2.5 Proof of Corollary 1.4

Similar to the proof of Theorem 1.2, that of Corollary 1.4 will use an
alternative formulation of the α-HoC model. A key observation is
that if one generates fitnesses according to α-HoC but then removes
interior vertices independently with some probability δ, then this
results in a model equivalent to α′-HoC for some α′ > α. The
intuition is that if α is far below the threshold ln n

n , then not only is
there an accessible path with probability 1− on(1), but even if we
remove a sufficient amount of vertices so that most paths become
forbidden, we will still be below the threshold and so will still have
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accessible paths with probability 1−on(1). This intuitively requires
the original number of accessible paths to be large. Interestingly,
this argument only requires the first equation in Theorem 1.2 even
though the Corollary itself is a stronger form of that statement.

This idea is formalized in the following Lemmas:

Lemma 2.19. Let α, δ ∈ [0, 1]. Consider the fitness model that
first assigns fitnesses as in α-HoC, but then independently removes
each vertex in Qn \{v0,v1} with probability δ. Then the probability
of accessible paths using only the remaining vertices is P (n, 1−(1−
α)(1− δ)).

Proof. Let α′ = 1−(1−α)(1−δ). We compare the model described
above with α′-HoC.

Let us make the slight modification to α′-HoC and the above
model that we additionally consider any vertex removed if it is less
fit than v0. As no such node can be part of an accessible path,
this will not change accessibility in either model. We see that these
formulations are equivalent up to a translation and scaling, so they
will have the same distribution of accessible paths.

Lemma 2.20. Let Ω be a finite universal set and let R be a random
subset of Ω given by P(r ∈ R) = pr, these events being mutually
independent over r ∈ Ω. Let {Ai}i∈I be subsets of Ω, I a finite
index set. Let Bi be the event Ai ⊆ R. Then

∏
i∈I

P(B̄i) ≤ P

(∧
i∈I

B̄i

)
. (2.30)

This inequality is commonly used as a lower bound in Janson’s
inequality. See for instance Theorem 8.1.1 in [2].

Proof of Corollary 1.4. The upper bound is simply Markov’s in-
equality. We now turn to the lower bound. To simplify calculations
we may, without loss of generality, assume that wn = o(nεn) and
that 1 ≤ wn ≤ enεn for all n.

Let δn = εn − ln wn
n and let Y denote the number of intact ac-

cessible paths using the same fitness function as for X but after
removing each node except v0 and v1 independently with proba-
bility δn. By assumption, we know that 0 ≤ δn ≤ εn ≤ ln n

n , so δn

is always a valid probability.
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Using Lemma 2.19 we see that P(Y > 0) = P (n, α′n) where
α′n = 1− (1− α)(1− δn) = ln n

n − o(1)+ln wn

n . As o(1) + ln wn → ∞
as n →∞ it follows from Theorem 1.2 that limn→∞ P(Y = 0) = 0.

Condition on the set of accessible paths before removing ver-
tices. Let I be the set of accessible paths, R the random set of
non-removed vertices and Bi the event that path i ∈ I only con-
sist of non-removed vertices. Then we are in the setting of Lemma
2.20. As the probability that each accessible path remains intact is
(1− δn)n−1, averaging conditioned on X we get the inequality

P(Y = 0 | X) ≥
(
1− (1− δn)n−1

)X
. (2.31)

But since limn→∞ P(Y = 0) = 0 and
(
1− (1− δn)n−1

)X =
e−(1+o(1))e−nδnX it follows that e−nδnX must tend to infinity in
probability. To conclude the proof we note that e−nδnX = X

enεn/wn
∼

X
E[X]/wn

.

Remark 2.21. Note that Proposition 2.15 implies that Var(X) ∼
3E[X]2 for α in this regime, so no significant improvement on Corol-
lary 1.4 can be made by a naive application of Chebyshev’s inequal-
ity.

3 Results for the RMF model

Let n ∈ N and let ε = εn be some strictly positive function. Con-
sider the n-dimensional hypercube in which v0 and v1 are present,
and where every other vertex is present with probability εn, inde-
pendently of all other vertices. Let Y = Yn,εn denote the number
of accessible paths from v0 to v1, where in this model a path is
accessible if Hamming distance from v0 is strictly increasing and
all vertices along the path are present. The following proposition
may be well-known, as it can be interpreted in the context of site
percolation on the directed hypercube. However, we were not able
to locate a suitable reference.

Proposition 3.1. (i) E[Y ] = n! · εn−1
n .

(ii) Let n → ∞ and suppose that nεn → ∞. Then Var(Y ) =
o(E[Y ]2), and hence

Y ∼ E[Y ] ∼
√

2πn

εn

(nεn

e

)n
. (3.1)
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Proof. There are n! possible paths in the n-hypercube. Each path
contains n− 1 interior vertices, each of which is present with prob-
ability εn. This proves (i). Set µ = µn := n!εn−1

n . Now suppose
nεn → ∞. Let Yi be the indicator of the event that the i:th in-
creasing path is accessible, where the paths have been ordered in
any way. Fix any path i0. Then, by a standard second moment
estimate (see Section 2),

Var(Y ) ≤ µ + n! ·
∑
j∼i0

E(Yi0Yj), (3.2)

where the sum is taken over all paths j which intersect the path i0
in at least one interior vertex. Let k be the number of intersection
points. This leaves T (n, k+1) possibilities for the path j. The paths
i0 and j contain a total of 2n−2−k different interior vertices, hence
the probability of both being present is ε2n−2−k

n . Hence

Var(Y ) ≤ µ + n! ·
n∑

k=2

T (n, k)ε2n−1−k
n ≤ µ + µ2 ·

n∑
k=2

T (n, k)
n!εk−1

n

. (3.3)

Hence, since µ →∞ when nεn →∞, it suffices to show that

n∑
k=2

T (n, k)
n!εk−1

n

= o(1). (3.4)

We now follow the same strategy as in Section 2, but the analysis
here is much simpler. Let δ ∈ (0, 1). We divide the sum in (3.4) into
two parts, one for k ≤ (1−δ)n and the other for k > (1−δ)n. From
Proposition 2.9 and Lebesgue’s dominated convergence theorem, it
follows easily that, for any δ > 0, the sum over terms k ≤ (1− δ)n
is bounded by (1+on(1))

∑∞
k=2

k
(nεn)k−1 = O( 1

nεn
) = o(1), provided

nεn →∞. Similarly, from Proposition 2.11 it follows that the sum
over terms k > (1− δ)n is bounded by

c

µ

δn∑
l=0

(l + 1)
(

1 + 2δ

5
· nεn

)l

, (3.5)

where c is an absolute constant. Since nεn → ∞, the sum in (3.5)
is bounded by 1+o(1) times the last term, and hence is O((nεn)δn),
which is in turn o(µ). This proves (3.4) and completes the proof of
the proposition.
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We now turn to the RMF model and prove Theorem 1.5.
We shall abuse notation and also use η to denote the p.d.f. of

the probability distribution under consideration. So suppose η has
connected support and is continuous there. Let δ > 0 be given.
Then there exists a bounded, closed interval I = Iδ ⊆ Supp(η)
such that

∫
Iδ

η(x) dx > 1 − δ. The quantity cη,δ = minx∈Iδ
η(x)

exists, is non-zero and, obviously, depends only on η and δ. Now
let n ∈ N and θ = θn > 0 be given. Without loss of generality, we
may assume that the interval Iδ has length l(Iδ) > θn/2 (in fact
any multiple cθn, where 0 < c < 1, would do in the argument that
follows). By definition of Iδ, with probability at least (1− δ)2 each
of η(v0) and η(v1) lie in Iδ. Let Xδ,n,θn be the number of accessible
paths in the n-hypercube, where fitnesses are assigned as in (1.2),
and conditioning on the fact that both η(v0) and η(v1) lie in Iδ.
We claim that, if n is sufficiently large, then Xδ,n,θn stochastically
dominates the random variable Yn,εn in Proposition 3.1, where εn =
cη,δ · θn

2 .
To see this, first note that, as long as l(Iδ) > θn/2 then, for

any point x ∈ Iδ, there will be an interval Ix of length at least
θn/2, which contains x and lies entirely within Iδ. By assumption,
any such interval captures at least cη,δ · θn

2 of the distribution η.
For any adjacent pair (v, v′) of vertices in the hypercube such that
d(v′,v0) = d(v,v0) + 1, if η(v′) > η(v) − θn, then v′ is accessible
from v. Assuming η(v0) ∈ Iδ, it follows that we can choose, for
each layer i in the hypercube, an interval Ii ⊆ Iδ of length θn/2
such that any path

v0 → v1 → v2 · · · → vn−1 (3.6)

for which η(vi) ∈ Ii for all i = 1, . . . , n − 1, is accessible. If n is
sufficiently large, we can also ensure that the interval In−1 contains
η(v1), so that any viable path (3.6) can definitely be continued
to v1. The stochastic domination of Yn,εn by Xδ,n,θn now follows.
Then one just needs to apply Proposition 3.1 and Theorem 1.5
follows immediately.

Remark 3.2. Suppose Supp(η) is also bounded, and that θ is a
constant, independent of n. Let

Cη,θ := min
l(I)=θ/2, I⊆Supp(η)

∫
I
η(x) dx, (3.7)
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where I denotes a closed interval. Then this minimum exists and is
non-zero. It follows from Proposition 3.1 and the argument above
that the number X = X(n) of accessible paths in this case satisfies

X & n! · Cn−1
η,θ , (3.8)

The point is that Cη,θ ∈ (0,1] is a constant depending only on η
and θ.
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Paper II





Unoriented first-passage percolation on the

n-cube

Anders Martinsson

Abstract

The n-dimensional binary hypercube is the graph whose
vertices are the binary n-tuples {0, 1}n and where two vertices
are connected by an edge if they differ at exactly one coor-
dinate. We prove that if the edges are assigned independent
mean 1 exponential costs, the minimum length Tn of a path
from (0, 0, . . . , 0) to (1, 1, . . . , 1) converges in probability to
ln(1+

√
2) ≈ 0.881. It has previously been shown by Fill and

Pemantle (1993) that this so-called first-passage time asymp-
totically almost surely satisfies ln(1 +

√
2) − o(1) ≤ Tn ≤

1+ o(1), and has been conjectured to converge in probability
by Bollobás and Kohayakawa (1997). A key idea of our proof
is to consider a lower bound on Richardson’s model, closely
related to the branching process used in the article by Fill
and Pemantle to obtain the bound Tn ≥ ln

(
1 +

√
2
)
− o(1).

We derive an explicit lower bound on the probability that a
vertex is infected at a given time. This result is formulated
for a general graph and may be applicable in a more general
setting.

1 Introduction

The n-dimensional binary hypercube Qn is the graph with vertex
set {0, 1}n where two vertices share an edge if they differ at exactly
one coordinate. We let 0̂ and 1̂ denote the all zeroes and all ones
vertices respectively. For any vertex v ∈ Qn, we let |v| denote the
number of coordinates of v that are 1. A path v0 → v1 → · · · → vk
in Qn is called oriented if |vi| is strictly increasing along the path.

First-passage percolation is a random process on a graph G,
which was introduced by Hammersley and Welsh. In this process,
each edge e in the graph is assigned a random variable We called
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the passage time of e. In this paper, the passage times will al-
ways be independent exponentially distributed random variables
with expected value 1. The usual way in which this process is de-
scribed is that there exists some vertex v0 ∈ G which is assigned
some property, usually either that it is infected (v0 is the source
of some disease) or wet (v0 is connected to a water source), which
then spreads throughout the graph. The passage time of an edge
corresponds to the time it takes for an infection to spread in any
direction along the edge, that is, when a vertex v gets infected the
infection spreads to each neighbor w after W{v,w} time, assuming
w is not already infected at that time. More concretely, we can
let the edge weights generate a metric on G. For a path γ in G
we define the passage time of γ as the sum of passage times of the
edges along γ. Moreover, for any two vertices v, w ∈ G, we say
that the first-passage time from v to w, denoted by dW (v, w), is the
infimum of passage times over all paths from v to w in G. Then for
any v ∈ G, the time at which v is infected is given by dW (v0, v).

An alternative way to formulate first-passage percolation with
independent exponentially distributed passage times is to consider
the process {R(·, t)}t≥0, where for each t ≥ 0, R(v, t) is the map
from the vertex set of G to {0, 1} given by

R(v, t) =

{
1 if dW (v0, v) ≤ t

0 otherwise,
(1.1)

that is, R(v, t) is the indicator function for the event that v is
infected at time t. When the edge passage times are independent
exponentially distributed with mean one, the memory-less property
implies that the process {R(·, t)}t≥0 is Markovian, and its distribu-
tion is given by the initial condition R(·, 0) = δv0,· together with
the transitions {R(·) → R(·) + δv,·} at rate equal to the number
of infected neighbors of v if v is healthy, and 0 if v is infected, see
[1]. Here δ·,· denotes the Kronecker delta function. This Markov
process is known as Richardson’s model.

First-passage percolation and Richardson’s model on the hy-
percube have previously been studied by Fill and Pemantle [2], and
later by Bollobás and Kohayakawa [3]. For Richardson’s model we
always assume that the original infected vertex is 0̂, though by
transitivity of the hypercube it is clear that the analogous state-
ments hold for any starting vertex. The quantities considered in
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these articles of most relevance to this paper are the first-passage
time from 0̂ to 1̂, which we denote by Tn, the oriented first-passage
time from 0̂ to 1̂, and the covering time. Note that, in terms of
Richardson’s model, Tn is the time until the vertex furthest from
the starting point gets infected. The oriented first-passage time is
a simplified version of the first-passage time, first proposed by Al-
dous [5], where the minimum is only taken over all oriented paths
from 0̂ to 1̂. The covering time is the random amount of time in
Richardson’s model on Qn until all vertices are infected or, equiv-
alently, maxv∈Qn dW (0̂, v), the maximum first-passage time from 0̂
to any other vertex in Qn.

In case of oriented first-passage percolation, it was shown by
Fill and Pemantle that the oriented first-passage time from 0̂ to 1̂
converges to 1 in probability as n → ∞. The fact that 1 − o(1) is
an asymptotic almost sure lower bound had already been observed
by Aldous in [5], and can be shown in a straight-forward manner by
considering the expected number of oriented paths from 0̂ to 1̂ with
passage time at most t. The argument by Fill and Pemantle for the
upper bound is essentially a second moment analysis on the number
of such paths, though as they remark, a direct application of the
second moment method can only show that the probability that
the oriented first-passage time is at most 1 + ε is bounded away
from 0. To circumvent this, they consider a “variance reduction
trick”, which effectively means that they consider a slightly different
random variable.

For the unoriented first-passage time from 0̂ to 1̂, Fill and Pe-
mantle showed that, as n→∞, we have

ln
(
1 +

√
2
)
− o(1) ≤ Tn ≤ 1 + o(1) (1.2)

with probability 1−o(1). The upper bound follows directly from the
oriented first-passage time. They remark that they doubt the upper
bound is sharp, but state that they do not know how to improve it.
Prior to this article, this seems to be the best known upper bound
on Tn. For the lower bound, Fill and Pemantle relayed an argument
by Durrett. In this argument we consider a random process on Qn,
which Durrett calls a branching translation process (BTP). We will
postpone the definition of this process to the next section, but the
essential difference to Richardson’s model is that we allow each site
to contain multiple instances of the infection at the same time. Dur-
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rett argues that this process stochastically dominates Richardson’s
model in the sense that it is possible to couple the models such that
the infected vertices in Richardson’s model are always a subset of
the so-called occupied vertices in the BTP. He proves that the time
at which 1̂ becomes occupied tends to ln

(
1 +

√
2
)

in probability
as n → ∞. As BTP stochastically dominates Richardson’s model,
this directly implies that Tn ≥ ln

(
1 +

√
2
)
− o(1) = 0.881 · · · − o(1)

with probability 1− o(1).
Bollobás and Kohayakawa [3] showed that many global first-

passage percolation properties on Qn, such as the covering time
and the graph diameter with respect to dW (·, ·), can be bounded
from above in terms of Tn. They defined the quantity

T∞ = inf {t ∈ R|P (Tn ≤ t) → 1 as n→∞} . (1.3)

Their main result is that asymptotically almost surely the covering
time is at most T∞ + ln 2 + o(1) and the graph diameter is at most
T∞ + 2 ln 2 + o(1). Note that it follows from the results by Fill
and Pemantle that ln

(
1 +

√
2
)
≤ T∞ ≤ 1. Furthermore, it is easy

to see that if Tn converges in probability as n → ∞, then it must
converge to T∞. In fact, Bollobás and Kohayakawa explicitly con-
jectured that this is the case, and they consequently referred to T∞
as simply the first-passage percolation time between two antipodal
vertices in Qn. While their article does not prove that Tn converges
in probability, the ideas do have some implications for Tn. For in-
stance, with some small modifications of their proof it follows that
if Tn converges in distribution, then the limit must be concentrated
on one point, meaning that Tn converges in probability.

Besides first-passage percolation, percolation on the hypercube
with restriction to oriented paths has also been considered in re-
gards to Bernoulli percolation by Fill and Pemantle (in the same
article), and, more recently, accessibility percolation1 by Hegarty
and the author in [4]. Common for these three cases of oriented
percolation is that the proofs are based on second moment analyses.
Arguably, this is made possible by the relatively simple combinato-
rial properties of oriented paths. We have n! oriented paths from
0̂ to 1̂ in Qn, all of length n and all equivalent up to permutation
of coordinates. Perhaps more importantly, one can derive good es-
timates on the number of pairs of oriented paths from 0̂ to 1̂ that

1The name accessibility percolation is not mentioned in the cited article.
The term was coined by Joachim Krug and Stefan Nowak after its writing.
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intersect a given number of times, something which is made possi-
ble by the natural representation of oriented paths as permutations.
In contrast, general paths from 0̂ to 1̂ do not seem to have a sim-
ilar representation in any meaningful way, and in any case, there
is certainly a lot more variation between general paths than ori-
ented such. Hence, it seems that these type of ideas from oriented
percolation on the hypercube cannot be transferred to unoriented
percolation.

The most promising approach to improve the result by Fill and
Pemantle for Tn seems to be the BTP. Comparing the BTP to path-
counting arguments, on the hypercube the former has the advantage
that a number of relevant quantities, such as moment estimates, can
be expressed by explicit analytical expressions, hence circumvent-
ing the problem of counting paths. However, beyond the fact that
the BTP stochastically dominates Richardson’s model, the relation
between the two models is fairly subtle. It is therefore not immedi-
ately clear how proving anything about the BTP could imply upper
bounds on the first-passage time.

In this article, we propose a way to do precisely this. A central
idea of our approach is to consider a subprocess of the BTP with
two important properties: Firstly, Richardson’s model is stochas-
tically sandwiched between the full BTP and this subprocess, and
secondly, it is possible to derive an explicit lower bound on the
probability that a vertex is occupied at a given time in this subpro-
cess, expressed in tractable quantities for the BTP. Applying these
ideas to the hypercube, we are able to resolve the problem of deter-
mining the limit of Tn. This result is summarized in the following
Theorem, which is the main result of this paper:

Theorem 1.1. Let Tn denote the first-passage time from 0̂ to 1̂ in
Qn with exponentially distributed edge costs with mean 1. For any
1 ≤ p < ∞ we have ‖Tn − ln

(
1 +

√
2
)
‖p = Θ

(
1
n

)
. In particular,

we have ETn = ln
(
1 +

√
2
)

+O
(

1
n

)
and Var (Tn) = Θ

(
1
n2

)
.

A direct consequence of this result is that T∞ = ln
(
1 +

√
2
)
,

which in particular improves the best known upper bound on the
covering time to ln

(
1 +

√
2
)

+ ln 2 + o(1) = 1.574 · · · + o(1). One
can compare this with the best known lower bound 1

2 ln
(
2 +

√
5
)
+

ln 2− o(1) = 1.414 · · · − o(1), as shown by Fill and Pemantle.
Given this result for Tn, the question naturally arises how the
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path from 0̂ to 1̂ with the smallest first-passage time typically be-
haves. In particular, how long is this path (here length means the
number of edges along the path), and how are the “backsteps” dis-
tributed along it. Let us denote this path by Γn. This question
may also be interesting from the point of view of accessibility per-
colation. Though strictly speaking not part of the mathematical
formulation of accessibility percolation, shorter paths are consid-
ered more biologically feasible. Hence, an important question for
unoriented accessibility percolation on the hypercube is how much
longer typical accessible paths are in this case compared to oriented
accessibility percolation.

We propose the following way to describe the asymptotic prop-
erties of Γn: Run a simple random walk on Qn starting at 0̂ with
rate n for ln

(
1 +

√
2
)

time, and condition on the event that the
walk stops at 1̂. Let σn denote the traversed path.

Theorem 1.2. Any asymptotically almost sure property of σn is
also an asymptotically almost sure property of Γn. In particular, the
length of Γn is asymptotically almost surely

√
2 ln

(
1 +

√
2
)
n±o(n).

In applying Theorem 1.2, it is helpful to note that each coordi-
nate of a simple random walk on Qn with rate n is an independent
simple random walk on {0, 1} with rate 1.

The remainder of the paper will be structured in the following
way: In Section 2 we define the BTP and describe our stochastical
sandwiching of Richardson’s model. At the end of this section, we
give an outline of the proof of Theorem 1.1. This proof is divided
into three steps, which are shown in Sections 3, 4 and 5 respectively.
Lastly, in Section 6 we give a short proof of Theorem 1.2 based on
ideas from the preceding section.

2 Richardson’s model, the BTP, and uncon-
tested particles

We first give an overview of the technique used by Durrett to obtain
the lower bound on Tn in [2]. To accommodate Theorem 2.2 below,
we present this technique in terms of a general graph G rather than
just the hypercube. We remark that though Durrett only defined
the branching translation process for the hypercube, the process can
be extended to a general graph unambiguously. We let v0 denote
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a fixed vertex in G. For simplicity, we will assume that G is finite,
connected and simple.

The branching translation process (BTP), as introduced by Dur-
rett, is a branching process on G defined in the following way: At
time 0 we place a particle at v0. After this, each existing parti-
cle generates offspring independently at rate equal to the degree
of the vertex it is placed at. Each offspring is then placed with
uniform probability at any neighboring vertex. Equivalently, each
existing particle generates offspring at each neighboring vertex in-
dependently with rate 1. For a fixed G and fixed location of the
first particle v0 ∈ G, we let Z(v, t) denote the number of parti-
cles at vertex v at time t in the BTP (originating at v0) and de-
fine m(v, t) = EZ(v, t). One can observe that {Z(·, t)}t≥0 is a
Markov process with the initial value Z(v, 0) = δv,v0 and where, for
each vertex v, the transition {Z(·) → Z(·) + δ·,v} occurs at rate∑

w∈N(v) Z(w) where N(v) denotes the neighborhood of v. It can
be noted that in [2], the BTP was formally defined as this Markov
process. However, this way to describe the states contains an insuf-
ficient amount of information for our applications since there is no
way to discern ancestry. We will return to the problem of formally
defining the state space of the BTP in Section 3. For now, the
reader not satisfied with the informal definition of the BTP given
here is free to consider any state space in which the particles can
be individually identified and for each particle except the first, it is
possible to determine its parent.

Below, we will use the terms ancestor and descendant of a par-
ticle to denote the natural partial order of particles generated by
the BTP. For convenience, we use the convention that a particle
is both an ancestor and a descendant of itself. We will sometimes
write x ≥ y to denote that x is a descendant of y, and x ≤ y to
denote that x is an ancestor of y. The terms parent and child are
defined in the natural way. In order to indicate the location of a
child of a particle x, we will sometimes use the term e-child of x
to denote a child of x which at the time of its birth was displaced
along an edge e. We define the ancestral line of a particle x as
the ordered set of all ancestors of x (including x itself). If σ is the
path obtained by following the locations of the vertices along the
ancestral line of a particle x, then we say that the ancestral line
of x follows σ, and we say that the ancestral line of x is simple if
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this path is simple. In certain parts of our proof we will need to
consider BTPs where the location of the initial particle can vary.
In that case, we will refer to a BTP where the original particle is
placed at v as the BTP originating at v.

As pointed out in [2], the BTP stochastically dominates Richard-
son’s model in the sense that, for a common starting vertex v0, the
models can be coupled in such a way that R(v, t) ≤ Z(v, t) for all
v ∈ G and t ≥ 0. This is clear from a comparison of the transition
rates of Z and R. However, for our applications we need to consider
this relation more closely. To this end, we imagine that we partition
the particles in the BTP into two sets, which we call the set of alive
particles and the set of ghosts. We stress that the state of a particle
is decided at the time of its birth, and is then never changed. The
original particle is placed in the set of alive particles. After this,
whenever a new particle is born it is placed in the set of ghosts if
its parent is a ghost or if its location is already occupied by an alive
particle, and placed in the set of alive particles otherwise. Clearly,
the subprocess of the BTP consisting of all alive particles initially
contains one particle, located at v0, and it is straightforward to see
that the rate at which alive particles are born at a given vertex v
equals the number of adjacent vertices that contain alive particles
if v does not currently contain an alive particle, and 0 if it does. As
this is the same transition rate as for the corresponding transition
in Richardson’s model, we can consider Richardson’s model as the
subprocess of the BTP consisting of all alive particles. In a sense,
for an observer not able to see the ghosts, the BTP will look like
Richardson’s model. Hence, with this coupling, the time at which
a vertex gets infected is equal to one of the arrival times at the cor-
responding vertex in the full BTP, though not necessarily the first.
We may here note that as at most one particle can be alive at each
vertex, we can interpret R(v, t) as the number of alive particles at
v at time t.

A simplified version of the proof of the lower bound on Tn in
[2] can now be summarized as follows: Consider a BTP on Qn

originating at 0̂. Since the BTP dominates Richardson’s model it
suffices to show that with probability 1− o(1), no particle occupies
1̂ at time ln

(
1 +

√
2
)
−ε for all ε > 0 fixed. This is shown by a first

moment method. It follows from standard methods in the theory of
continuous-time Markov chains that m(v, t) is the unique solution
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to the initial value problem

d

dt
m(v, t) =

∑
w∈N(v)

m(w, t), t > 0

m(v, 0) = δv,v0 .

(2.1)

In the case where G = Qn and v0 = 0̂, it is straightforward to check
that the solution to (2.1) is

m(v, t) = (sinh t)|v| (cosh t)n−|v| (2.2)

and hence m(1̂, t) = (sinh t)n. Clearly, this tends to 0 as n → ∞
for any t < sinh−1 1 = ln

(
1 +

√
2
)
, as desired.

Inspired by the coupling between Richardson’s model and the
BTP as above, we introduce the notion of a particle being uncon-
tested. For a particle x in a BTP, we let c(x) denote the number
of pairs of distinct particles y, z such that

• y is an ancestor of x

• y and z occupy the same vertex

• z was born before y.

Note that, according to our definition of ancestor, it is allowed for
y to be equal to x. We let a(x) denote the number of such pairs
where z is an ancestor of x, and let b(x) denote the number of pairs
where z is not an ancestor of x. Clearly a(x)+ b(x) = c(x). We say
that a particle x is uncontested if c(x) = 0.

Lemma 2.1. We have the following properties:

i) a(x) = 0 if and only if the ancestral line of x is simple

ii) if a particle is uncontested, then it is the first particle to be
born at its location

iii) if a particle is uncontested, then it is alive.

Proof. i) This is obvious. ii) If some particle z was born before
x at a vertex, then the pair (x, z) is counted in c(x). iii) For any
ghost x in the BTP, there must exist an earliest ancestor y which
is a ghost. As the original particle is, by definition, alive, y must
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have a parent in the BTP. As the parent of y is alive but y is a
ghost, the vertex occupied by y must already have been occupied
by some alive particle z at the time of birth of y. The pair (y, z) is
then counted in c(x).

The third property is of particular interest as it allows us to
express a lower bound on Richardson’s model in terms of the BTP.
Letting Zk(v, t) denote the number of particles x at vertex v at time
t such that c(x) = k, we conclude that

Z0

d
≤ Richardson’s model

d
≤ Z, (2.3)

and with the proposed coupling between BTP and Richardson’s
model above we even have Z0 ≤ R ≤ Z. However, it should be
noted that, unlike Z and R, there is no reason why Z0(v) could
not remain 0 forever. In fact, with the exception of the case where
G is a chain of length 1, this occurs with positive probability. In
order to see this, one can observe that if the first particle to ar-
rive at a vertex is contested, which occurs with positive probability,
then this particle will prevent all subsequent particles from being
uncontested. On the other hand, in the event that Z0(v) is even-
tually non-zero, it follows from the second and third properties in
Lemma 2.1 that the uncontested particle must have been the first
particle at v and that this particle must have been alive. Hence,
either Z0(v) remains 0 forever, or the time of the first arrival at v
coincides in all three models.

2.1 Outline of proof of Theorem 1.1

For each vertex v and t ≥ 0, we define A(v, t) and B(v, t) as the
expected value of

∑
x a(x) and

∑
x b(x) respectively, where the sums

goes over all particles at vertex v at time t in the BTP. We similarly
define S(v, t) as the expected number of particles at vertex v at
time t with simple ancestral lines, that is, the expected number
of particles x at v at time t such that a(x) = 0. The core of
finding upper bounds on the first-passage time using the BTP is
the following theorem, which will be shown in Section 3:

Theorem 2.2. Let G be a finite connected simple graph. Consider
the BTP on G originating at v0, and let Z0(v, t), B(v, t) and S(v, t)
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be as above. Then, for any vertex v and t ≥ 0 we have

P (Z0(v, t) > 0) ≥ S(v, t)e−
B(v,t)
S(v,t) . (2.4)

In essence, Theorem 2.2 states that if, at a time t, the expected
number of particles with simple ancestral line at v in the BTP is
bounded away from 0, and if B(v, t) is bounded, then with prob-
ability bounded away from 0 there is a particle at v at this time
such that a(x) = b(x) = 0. Using the relation between the BTP
and Richardson’s model in (2.3), this immediately implies a lower
bound on the probability that the first-passage time from v0 to v
in G is at most t. We remark that while the left-hand side of (2.4)
certainly is increasing in t, the right-hand side is generally not, and
instead typically attains a maximum for t such that m(v, t) ≈ 1.

We now apply this result to the hypercube. We let G = Qn,
v0 = 0̂ and t = ϑ := ln

(
1 +

√
2
)
. In this case, the quantities A(1̂, ϑ)

and B
(
1̂, ϑ

)
can be expressed analytically in a similar manner to

the variance calculations for the BTP in [2]. This will be done in
Section 4. The result of this can be summarized as follows:

Proposition 2.3. For ϑ = ln
(
1 +

√
2
)
, we have

A
(
1̂, ϑ

)
=

ϑ√
2

+ o(1) = 0.623 · · ·+ o(1) (2.5)

B
(
1̂, ϑ

)
= ϑ+

1
3− 2

√
2

+ o(1) = 6.709 · · ·+ o(1). (2.6)

In order to bound S(1̂, ϑ), we observe that A(v, t) is an upper
bound on the expected number of particles at v at time t whose
ancestral lines are not simple. This follows directly from the defini-
tion of A(v, t) as a(x) is an upper bound on the indicator function
for the event that a(x) is non-zero. We conclude that

m(v, t)−A(v, t) ≤ S(v, t) ≤ m(v, t), (2.7)

and in particular, 1− ϑ√
2
− o(1) = 0.376 · · · − o(1) ≤ S(1̂, ϑ) ≤ 1.

Plugging these values into Theorem 2.2 we conclude the follow-
ing:

Corollary 2.4. Let Tn denote the first-passage time from 0̂ to 1̂
in Qn and let ϑ = ln

(
1 +

√
2
)
. There exists a constant ε > 0 such

that P(Tn ≤ ϑ) ≥ ε for all n, and in particular lim infn→∞ P(Tn ≤
ϑ) ≥ 6.9 · 10−9.
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Proof. The asymptotic lower bound on P(Tn ≤ ϑ) is obtained di-
rectly from Theorem 2.2 and Proposition 2.3. From this, the uni-
form bound follows by the observation that P(Tn ≤ ϑ) is non-zero
for all n.

For our applications, we will need a more technical version of
Corollary 2.4, Proposition 5.3, but other than that we are done
with the BTP given this result. It may seem like Corollary 2.4 is
far from our claimed result of convergence in Lp-norm, but given
this result there are in fact a number of different ways to show
that Tn converges to ϑ at least in probability, using the self-similar
structure of the hypercube. One could for instance apply the ideas
by Bollobás and Kohayakawa in [3]. In this paper we will instead
apply a bootstrapping argument similar to one given in [4], which
has the benefit of letting us get good bounds on the Lp-norms of
Tn − ϑ. This will be shown in Section 5, completing the proof of
Theorem 1.1.

3 Proof of Theorem 2.2

Before proceeding with the proof, we need to discuss the parametriza-
tion of the BTP more carefully. For a BTP originating at a ver-
tex v, a particle is identified by a finite sequence {e1t1e2t2 . . . ektk}
where e1, e2, . . . , ek are edges forming a path that starts at v and
t1, t2, . . . , tk are positive real numbers. The original particle is iden-
tified by {}, the empty sequence. For any other particle x, e1e2 . . . ek
denotes the edges along the path followed by the ancestral line of x,
and if x0, x1, . . . , xk = x are the ancestors of x in ascending order,
then for each 1 ≤ i ≤ k, we have ti equal to the time from the birth
of xi−1 to the birth of xi. It is easy to see that such a sequence
uniquely defines the location and birth time of x. In particular, as,
almost surely, no two particles are born at exactly the same time,
this means that this representation is unique for each particle in the
BTP. Note that this means that the parent of x = {e1t1e2t2 . . . ektk}
is {e1t1e2t2 . . . ek−1tk−1}. More generally, the ancestors of x are the
prefixes of x of even length. By a BTP originating at a vertex v
we formally mean a random set of particles, which is interpreted as
the set of all particles that will ever be born in the BTP, and, of
course, whose distribution is given according to the transition rates
as described above. We remark that this means that the event that
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a particle x = {e1t1e2t2 . . . ektk} exists is interpreted as the event
that the original particle has a e1-child at time t1, that this child
has an e2-child at time t1 + t2 and so on.

Below will use ⊕ to denote concatenation of sequences. For in-
stance, if y is a child of x, born a time t after its parent and displaced
along the edge e, then we may write y = x⊕ {et}. For a sequence
a and a set of sequences B, we define a⊕B = {a⊕ b|b ∈ B}.

It is easy to see that, in a BTP, each vertex can at most contain
one uncontested particle, see for instance property ii) in Lemma
2.1. This means that the probability that a vertex v contains an
uncontested particle at time t is equal to the expected number of
such particles. Hence the conclusion of Theorem 2.2 basically states
that among the particles at v at time t such that a(x) = 0, the
probability that b(x) = 0 is on average at least exp

(
−B(v,t)
S(v,t)

)
. In

principle, it is possible to show this by considering the conditional
distributions of b(x) given the event that the particle x exists in the
BTP. However, it is not formally possible by the usual definitions
of conditional expectation and conditional distribution to condition
on the event that a particle exists in the BTP since the event occurs
with probability 0 and the particle itself is not the output of some
well-defined random variable. In order to solve this problem, we
need some ideas from Palm theory, and, in particular, the following
special case of the Slivnyak-Mecke formula. The proof of this can
be found in various text books on point processes. See for instance
Corollary 3.2.3 in [6].

Theorem 3.1. (Slivnyak-Mecke formula) Let T be a Poisson point
process on the positive part of the real line with with constant in-
tensity 1. Let G be a function mapping pairs (T, t) where T is a
discrete subset of R+ and t ∈ T to non-negative real numbers. Then

E
∑
t∈T

G(T, t) =
∫ ∞

0
EG (T ∪ {t}, t) dt. (3.1)

If instead of a Poisson process on R+, we imagine T being a
random subset of a finite, or even countable set, then we clearly
have

E
∑
t∈T

G(T, t) =
∑
t

P (t ∈ T) E [G(T, t)|t ∈ T] . (3.2)

By the standard way to translate this statement, if T is a Pois-
son process on R+ with constant intensity 1, then we would expect
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the sum over t to translate to an integral and P (t ∈ T) to dt, the
Lebesgue measure on R+. Hence, the theorem states that if T is a
Poisson process as above, then we should translate E [G(T, t)|t ∈ T]
to EG (T ∪ {t}, t), and so we may interpret T ∪ {t} as the condi-
tional distribution of T given t ∈ T.

The following lemma proves a corresponding result for the BTP.
In a similar manner as above, we may interpret the lemma as that,
conditioned on the event that a particle xz1,...,zl exists in the BTP
X0, the conditional distribution of the process is given by Xz1,...,zl ,
where xz1,...,zl and Xz1,...,zl are as defined below. This result may
be well-known from the properties of more general processes.

Lemma 3.2. Let σ be a path of length l ≥ 1. We denote the vertices
along the path v0, . . . , vl and the edges σ1, . . . , σl. Let X0,X1, . . . ,Xl

be independent branching translation processes where Xi for 0 ≤ i ≤
l is a BTP originating at vertex vi. Let f be a function taking pairs
(X,x), X a realization of a BTP and x a particle in X, to non-
negative real numbers. Let Vσ = Vσ (X) denote the set of particles
at vertex vl (no matter when they are born) whose ancestral line
follows σ. Then, we have

E
∑

x∈Vσ(X0)

f(X0, x) =
∫ ∞

0
. . .

∫ ∞

0
E f(Xz1,...,zl , xz1,...,zl) dz1 . . . dzl

(3.3)
where

Xz1,...,zl = X0 ∪ ({σ1z1} ⊕X1) ∪ ({σ1z1σ2z2} ⊕X2)
∪ · · · ∪ ({σ1z1σ2z2 . . . σlzl} ⊕Xl)

(3.4)

and xz1,...,zl = {σ1z1σ2z2 . . . σlzl}.

Proof. For a vertex v and an edge e we let e 3 v denote that v is
one of the end points of e. For each edge e 3 v0, we let Te denote
the set of birth times of the e-children of the original particle in
X0. Clearly, Te for e 3 v0 are independent Poisson processes on
R+ with constant intensity 1.

A central property of the BTP is that, after a particle is born,
the set of its descendants is itself distributed as a BTP. Further-
more, this subprocess is then independent of the behavior of any
other particle. Hence we can express X0 recursively by

X0 =
⋃
e3v0

⋃
ti∈Te

{eti} ⊕Ye,i (3.5)
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where for each e 3 v0 and each i = 1, 2, . . . , we have Ye,i inde-
pendently distributed as a BTP originating at the vertex opposite
to v0 along e. For any discrete set T ⊂ R+ we let X0(T ) de-
note the random variable obtained by replacing Tσ1 by T in (3.5).
Then X0(·) is a random function independent of Tσ1 , and we have
X0 = X0(Tσ1). Note that, by independence, X0(T ) is a version of
the conditional distribution of X0 given Tσ1 = T .

For each T as above and t ∈ T , we define

F (T ) = E
∑

x∈Vσ(X0(T ))

f(X0(T ), x) (3.6)

F (T, t) = E
∑

x∈Vσ(X0(T ))
x≥{σ1t}

f(X0(T ), x). (3.7)

It is clear from the definition that, for any fixed T , we have F (T ) =∑
t∈T F (T, t). Furthermore, as Tσ1 and X0(·) are independent we

have EF (Tσ1) = E
∑

x∈Vσ(X0) f(X0, x). Hence by the Slivnyak-
Mecke formula we have

E
∑

x∈Vσ(X0)

f(X0, x) = E
∑
t∈Tσ1

F (Tσ1 , t) =
∫ ∞

0
EF (Tσ1∪{z1}, z1) dz1.

(3.8)
By independence of X0(·) and Tσ1 ∪ {z1} we can conclude that

E
∑

x∈Vσ(X0)

f(X0, x)

=
∫ ∞

0
E

∑
x∈Vσ(X0(Tσ1∪{z1}))

x≥{σ1z1}

f(X0(Tσ1 ∪ {z1}), x) dz1.
(3.9)

Let us now consider the random process X0(Tσ1 ∪ {z1}). We
can interpret the expression for X0 in (3.5) and the subsequent
definition of X0(T ) as that these processes are generated by first
determining the birth time for each child of the original particle,
and then for each child independently generating a BTP which de-
termines its descendants. When seen in this light, it is clear that
the only difference between X0 and X0(Tσ1∪{z1}) is that the latter
has an additional particle in generation 1. Hence, X0(Tσ1 ∪ {z1})
has the same distribution as X0 ∪ ({σ1z1} ⊕X1}), and so we can
replace X0(Tσ1 ∪ {z1}) in (3.9) by this other random process.
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Letting σ̃ = {σ2, σ3, . . . , σl}, we note that the subset of ele-
ments in Vσ (X0 ∪ ({σ1z1} ⊕X1})) that are descendants of {σ1z1}
is precisely the set {σ1z1} ⊕ Vσ̃ (X1). Hence (3.9) simplifies to

E
∑

x∈Vσ(X0)

f(X0, x)

=
∫ ∞

0
E

∑
x∈Vσ̃(X1)

f (X0 ∪ ({σ1z1} ⊕X1}) , {σ1z1} ⊕ x) dz1.

(3.10)

The lemma follows by induction. If l = 1, then the only particle
in Vσ̃(X1) is {}, the original particle in X1, and so equation (3.10)
simplifies to

E
∑

x∈Vσ(X0)

f(X0, x) =
∫ ∞

0
Ef(Xz1 , {σ1z1}) dz1 (3.11)

as desired.
Now assume l > 1. By the induction hypothesis we have for

any non-negative function f̃

E
∑

x∈Vσ̃(X1)

f̃(X1, x) =
∫ ∞

0
. . .

∫ ∞

0
Ef̃(X̃z2,...,zl , x̃z2,...,zl) dz2 . . . dzl,

(3.12)
where

X̃z2,...,zl = X1 ∪ ({σ2z2} ⊕X2) ∪ ({σ2z2σ3z3} ⊕X3)
∪ · · · ∪ ({σ2z2σ3z3 . . . σlzl} ⊕Xl)

(3.13)

and x̃z2,...,zl = {σ2z2σ3z3 . . . σlzl}.
Let us consider the expression

E
∑

x∈Vσ̃(X1)

f (X0 ∪ ({σ1z1} ⊕X1}) , {σ1z1} ⊕ x) , (3.14)

the integrand on the right-hand side of equation (3.10). If we fix
z1 > 0 and condition on X0 = X0, then f

(
X0 ∪ ({σ1z1} ⊕X1}) ,

{σ1z1} ⊕ x
)

is a function of X1 and x only. By the induction
hypothesis,

E
∑

x∈Vσ̃(X1)

f (X0 ∪ ({σ1z1} ⊕X1}) , {σ1z1} ⊕ x) =
∫ ∞

0
. . .

∫ ∞

0

Ef(X0 ∪ {σ1z1} ⊕ X̃z2,...,zl , {σ1z1} ⊕ x̃z2,...,zl) dz2 . . . dzl.
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Hence, by integrating this expression over z1 and X0 we conclude
that

E
∑

x∈Vσ(X0)

f(X0, x) =
∫ ∞

0
. . .

∫ ∞

0

Ef(X0 ∪ {σ1z1} ⊕ X̃z2,...,zl , {σ1z1} ⊕ x̃z2,...,zl) dz1 . . . dzl,

where clearly Xz1,...,zl = X0∪{σ1z1}X̃z2,...,zl and xz1,...,zl = {σ1z1}⊕
x̃z2,...,zl .

Lemma 3.3. Let X be a BTP originating at a vertex v. Let ϕ be
an indicator function defined over the set of potential particles. If
ϕ({}) = 0, then

P (ϕ(x) = 0 ∀x ∈ X) ≥ exp

(
−E

∑
x∈X

ϕ(x)

)
. (3.15)

Proof. For any particle x ∈ X, let ψ(x) be the indicator func-
tion for the event that ϕ(y) = 1 for at least one descendant y of
x. Clearly, we have

∑
x in gen 1 ψ(x) ≤

∑
x∈X ϕ(x). Furthermore,∑

x in gen 1 ψ(x) = 0 if and only if
∑

x∈X ϕ(x) = 0.
Let d denote the degree of the vertex v. Then the particles

in generation one are born according to a Poisson process on Rd
+.

Conditioned on the particles in generation one, the random vari-
ables ψ(x) for each such particle x are independent, and are one
with probability only depending on the location and birth time of
x. Hence, by the random selection property of a Poisson process,
the particles in generation one that satisfy ψ(x) = 1 are also born
according to a Poisson process, and, in particular, the number of
such particles is Poisson distributed.

We conclude that the probability that ϕ(x) = 0 for all x ∈ X is
e−E

P
x in gen 1 ψ(x), which is at least e−E

P
x∈X ϕ(x).

Proof of Theorem 2.2. For any path σ from v0 to v, let Sσ(v, t) and
Bσ(v, t) denote the contributions to S(v, t) and B(v, t) respectively
from particles whose ancestral lines follow σ. Similarly, we define
P (v, t) = EZ0(v, t) and Pσ(v, t) the contribution to P (v, t) from
particles whose ancestral lines follow σ. As no two particles at the
same vertex can both be uncontested, Z0(v, t) can only assume the
values 0 and 1, so P (v, t) is indeed the probability that Z0(v, t) is
non-zero.
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We start by considering the case where σ is a non-simple path.
As S(v, t) is the expected number of particles at vertex v at time
t whose ancestral line follows a simple path, it is clear that the
contribution to S(v, t) from any non-simple path is zero. Similarly,
if the ancestral line of a particle follows a non-simple path, then the
particle cannot be uncontested. Hence for any non-simple path σ
we have Sσ(v, t) = Pσ(v, t) = 0, and trivially Bσ(v, t) ≥ 0.

Let us now fix σ, a simple path from v0 to v. We denote the
length of σ by l. For any realization X of X0 and x ∈ X, let T (X,x)
denote the birth time of x. Then it follows from Lemma 3.2 that

Sσ(v, t)

= E
∑

x∈Vσ(X0)

1T (X0,x)≤t =
∫ ∞

0
. . .

∫ ∞

0
1z1+···+zl≤t dz1 . . . dzl.

(3.16)

In order to express Bσ and Pσ in a similar manner, we need to
revise our notation. Strictly speaking, b(x) is a function not only
of a particle, but also of the realization of the BTP. Following the
convention we have used earlier in this section, we will now denote
this quantity by b(X0, x). Using this notation we have

Bσ(v, t) = E
∑

x∈Vσ(X0)

1T (X0,x)≤tb(X0, x) (3.17)

Pσ(v, t) = E
∑

x∈Vσ(X0)

1T (X0,x)≤t1b(X0,x)=0. (3.18)

Hence, again by Lemma 3.2

Bσ(v, t) =
∫ ∞

0
. . .

∫ ∞

0
1z1+···+zl≤tE [b(Xz1,...,zl , xz1,...,zl)] dz1 . . . dzl

(3.19)
and

Pσ(v, t)

=
∫ ∞

0
. . .

∫ ∞

0
1z1+···+zl≤tP (b(Xz1,...,zl , xz1,...,zl) = 0) dz1 . . . dzl.

(3.20)

Fix z1, . . . , zl > 0 such that z1 + · · · + zl ≤ t and consider
the random variable b(Xz1,...,zl , xz1,...,zl). As σ is a simple path, it
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follows that b(Xz1,...,zl , xz1,...,zl) is equal to the number of particles
x ∈ Xz1,...,zl such that, for some 0 ≤ i ≤ l, x is born at the vertex
vi before time

∑i
k=1 zk. This means that for appropriate indicator

functions ϕ0, . . . , ϕl we have

b(Xz1,...,zl , xz1,...,zl) =
l∑

i=0

∑
x∈Xi

ϕi(x). (3.21)

As the original particles in X0, . . . ,Xl correspond to ancestors of
xz1,...,zl , these are never counted in b and hence the corresponding
indicator functions are always zero. Furthermore, as X0, . . . ,Xl are
independent processes, we have by Lemma 3.3

P (b(Xz1,...,zl , xz1,...,zl) = 0) =
l∏

i=0

P (ϕi(x) = 0 ∀x ∈ Xi)

≥
l∏

i=0

exp

−E
∑
x∈Xi

ϕi(x)


= exp (−Eb(Xz1,...,zl , xz1,...,zl))

(3.22)

Hence, by (3.20),

Pσ(v, t)

≥
∫ ∞

0
. . .

∫ ∞

0
1z1+···+zl≤t exp (−Eb(Xz1,...,zl , xz1,...,zl)) dz1 . . . dzl.

(3.23)

Let r0 ∈ R be fixed. By convexity we have e−r ≥ e−r0(1 +
r0)− e−r0r. Applying this inequality to the integrand in (3.23) and
comparing to (3.16) and (3.19) we get, for any simple path σ,

Pσ(v, t) ≥ e−r0(1 + r0)Sσ(v, t)− e−r0Bσ(v, t). (3.24)

As remarked, for non-simple paths σ we have Pσ = Sσ = 0 and
Bσ ≥ 0, so clearly (3.24) holds for all paths σ from v0 to v. Summing
this inequality over all such paths σ, we get

P (v, t) ≥ e−r0(1 + r0)S(v, t)− e−r0B(v, t). (3.25)

It is easy to verify that the right-hand side is maximized by r0 =
B(v,t)
S(v,t) , which yields the inequality P (v, t) ≥ S(v, t)e−

B(v,t)
S(v,t) as de-

sired.
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4 Proof of Proposition 2.3

Throughout this section we assume that the underlying graph in the
BTP is Qn, and, unless stated otherwise, the BTP is assumed to
originate at 0̂. We will accordingly let m(v, t) denote the expected
number of particles at v at time t for a BTP originating at 0̂, as
given by (2.2). In order to simplify notation, we will interpret the
vertices of Qn as the elements of the additive group Zn2 , the n-
fold group product of Z2, and we let e1, e2, . . . , en ∈ Zn2 denote the
standard basis. We note that for any fixed vertex w ∈ Qn, the map
v 7→ v−w is a graph isomorphism taking w to 0̂. Hence, for a BTP
originating at w, the expected number of particles at v at time t is
given by m(v−w, t). While addition and subtraction are equivalent
in Zn2 , we will sometimes make a formal distinction between them
in order to indicate direction.

Lemma 4.1. For any t > 0 and v ∈ Qn we have

d2

dt2
m(v, t) =

n∑
i=1

n∑
j=1

m(v + ei + ej , t) (4.1)

and

1
2
d2

dt2
m(v, t)2 =

n∑
i=1

n∑
j=1

m(v+ei+ej , t)m(v, t)+m(v+ei, t)m(v+ej , t).

(4.2)

Proof. Recall that m(v, t) satisfies

d

dt
m(v, t) =

n∑
i=1

m(v + ei, t). (4.3)

This directly implies that

d2

dt2
m(v, t) =

d

dt

n∑
i=1

m(v + ei, t)

=
n∑
i=1

d

dt
m(v + ei, t)

=
n∑
i=1

n∑
j=1

m(v + ei + ej , t).
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The second equation now follows from 1
2
d2

dt2
m(v, t)2 = m′′(v, t)m(v, t)+

m′(v, t)m′(v, t).

Lemma 4.2. Let s, t ≥ 0 and v ∈ Qn. Then∑
w∈Qn

m(w, s)m(v + w, t) = m(v, s+ t). (4.4)

Proof. If we condition on the state of the BTP at time s, then, at
subsequent times, the process can be described as a superposition
of independent branching processes, originating from each particle
alive at time s. For each such process originating from a particle at
vertex w, we have, by symmetry of Qn, that the expected number
of particles at vertex v at time t+ s is m(v + w, t). Hence

E [Z(v, s+ t)|Z(s)] =
∑
w∈Qn

Z(w, s)m(v + w, t). (4.5)

The lemma follows by taking the expected value of this expression.

We now turn to the problem of expressing A(1̂, u) and B(1̂, u)
in terms ofm(v, t). Fix u > 0 and let X be a BTP on Qn originating
at 0̂. Let T denote the random set of triples of particles (x, y, z) in
X such that

• x is located at 1̂ at time u

• y is an ancestor of x

• y and z occupy the same vertex

• z was born before y.

We furthermore partition this set into Ta, the set of all such triples
where y is a descendant of z, and Tb, the set of all such triples where
y is not a descendant of z. For any x at 1̂ at time u in X, it is clear
that c(x) gives the number of triples in T where the first element
is x. Hence by summing c(x) over all particles at 1̂ at time u we
obtain the size of T . Similarly we see that

∑
x a(x) and

∑
x b(x)

where x goes over all particles x at 1̂ at time u gives the size of Ta
and Tb respectively. Hence A(1̂, u) = E |Ta|, B(1̂, u) = E |Tb| and
A(1̂, u) +B(1̂, u) = E |T |.
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In the following proposition, we derive explicit expressions for
A(1̂, u) and B(1̂, u) by counting the expected number of elements
in Ta and T respectively. Our argument is reminiscent of the second
moment calculation for Z(1̂, u) by Durrett in [2].

Proposition 4.3. For any u > 0 we have

A(1̂, u) =
∑
v∈Qn

n∑
i=1

n∑
j=1

∫ ∞

0

∫ ∞

0
1s+t≤um(v, s)·

·m(1̂− v, u− s− t)m(ej + ei, t) ds dt

(4.6)

A(1̂, u) +B(1̂, u) =
∑
v∈Qn

∑
w∈Qn

n∑
i=1

n∑
j=1

∫ ∞

0

∫ ∞

0
1s+t≤um(v, s)·

·m(1̂− w, u− s− t)
(
m(w − v, t)m(w − v − ei + ej , t)

+m(w − v − ei, t)m(w − v + ej , t)
)
ds dt.

(4.7)

Proof. Let us start by considering A(1̂, u). For any (x, y, z) ∈ Ta
there are well-defined particles c, the particle subsequent to z in
the ancestral line of x, and p, the parent of y. We note that y is
not a child of z as then y and z would not be located at the same
vertex, hence c must be an ancestor of p. This means that the for
each triple (x, y, z), the particles (x, y, z, c, p) must be related as
illustrated in Graph 1 of Figure 1.

Fix v ∈ Qn, 1 ≤ i, j ≤ n, and infinitesimal time intervals (s, s+
ds] and (s+ t, s+ t+dt] where 0 ≤ s < s+ t < u. We now count the
expected number of such quintuples of particles where the common
location of y and z is v, the location of c is v+ei, the location of p is
v−ej , c is born during (s, s+ds] and y is born during (s+t, s+t+dt].
A particle is a potential z if it is located at v at time s. For each
potential z, a potential c is a child of z born at v + ei during the
time interval (s, s + ds]. For each pair of a potential z and c, a
particle is a potential p if it is a descendant of c located at v− ej at
time s+ t. For each potential triple (z, c, p), a particle is a potential
y if it is a child of p born at v during (s + t, s + t + dt]. Lastly,
for each potential quadruple (z, c, p, y) each particle x at 1̂ at time
u which is a descendant of y forms a triple in Ta. By computing
the expected number of potential particles in each step, we see that
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0̂

v

1̂

ei

ej

Graph 1.

0̂

v

w

1̂

ei

ej

Graph 2.

0̂

v

w

1̂

ei

ej

Graph 3.

Figure 1: Illustration of the possible configurations of ancestral
lines of elements in Ta and T respectively. Graph 1 shows the
configuration of elements in Ta. Here z is located at v, c is a child
of z at v + ei, p is a descendant of c at v − ej , y is a child of p
at v, and x a descendant of y at 1̂. The possible configurations
corresponding to elements in T are shown in Graphs 2 and 3. After
the ancestral lines of x and z split, the unique ancestors of x and
z are given by the left-most and right-most paths respectively. In
both configurations, the last common ancestor of x and z, l, is
located at v, the first particle which is an ancestor of precisely one
of x and z, c, is located at v + ei, the parent of y, p, is located at
w − ej , y and z are located at w, and x is located at 1̂.
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the expected number of elements in Ta corresponding to fixed v, i, j
and fixed time intervals (s, s+ ds] and (s+ t, s+ t+ dt] is

m(v, s) dsm(−ej − ei, t) dtm(v, u− s− t). (4.8)

Equation (4.6) follows by integrating over all s, t > 0 such that
s+ t < u and summing over all v ∈ Qn and all 1 ≤ i, j ≤ n.

We now turn to the formula for E |T |. For each triple (x, y, z) ∈
T we define the particles l, the last common ancestor of x and z,
c the first particle which is an ancestor of precisely one of x and z,
and p the parent of y. Note that c must be a child of l. Similar
to the case of Ta, we note that we cannot have c = y. In order to
see this, we assume that c = y. As c is the first particle to be an
ancestor of precisely one of x and z, but z is older than y it follows
that z must be an ancestor of x, and hence l = z. But then, y = c
and z = l are located at adjacent vertices, which is a contradiction.

In order to count the elements in T , we need to consider two
cases depending on whether c is an ancestor of x or of z. In the
former case, as c 6= y, c must be an ancestor of p and so the particles
x, y, z, l, c and p must be related as illustrated in Graph 2 of Figure
1. Similarly, it is clear that in the latter case, the particles must be
related as illustrated in Graph 3 in Figure 1.

We now fix v, w ∈ Qn, 1 ≤ i, j ≤ n and time intervals (s, s+ ds]
and (s + t, s + t + dt] where 0 ≤ s < s + t < u, and consider the
elements in T where l is located at v, c is located at v + ei, p is lo-
cated at w−ej , y and z are located at w, c is born during (s, s+ds]
and y is born during (s + t, s + t + dt]. We start by counting the
triples where c is an ancestor of x. Here, a particle is a potential l
if it is located at v at time s. For each potential l, a particle is a
corresponding potential c if it is a child of l born at v + ei during
(s, s+ ds]. Hence the expected number of pairs of potential l:s and
c:s is m(v, s) ds. For each pair of a potential l and c, we see that
if one conditions on the BTP at the time of birth of c, the cor-
responding potential triples (p, y, x) originates from c whereas the
potential z:s originate from l. Hence the potential triples (p, y, x)
occur independently of the potential z:s. Furthermore, for each pair
of a potential l and c, we see that the expected number of potential
(p, y, x) is m(w−ej−v−ei, t) dtm(1̂−w, u−s−t), and the expected
number of potential z:s is m(w− v, t). Combining this, we see that
the expected number of elements in T corresponding to fixed v, w,
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i, j, fixed time intervals as above and where c is an ancestor of x is

m(v, s) dsm(w−v, t)m(w−ej−v−ei, t) dtm(1̂−w, u−s−t). (4.9)

Proceeding in a similar manner for the case where c is an ancestor
of z we see that the expected number of corresponding elements in
T is

m(v, s) dsm(w−ej−v, t)m(w−v−ei, t) dtm(1̂−w, u−s−t). (4.10)

The proposition follows by summing these expressions over all v, w ∈
Qn, all 1 ≤ i, j ≤ n and integrating over all s, t > 0 such that
s+ t < u.

Remark 4.4. In the proof of Proposition 4.3, the only crucial prop-
erty of the underlying graph is that it should not contain loops (if
the graph does contain loops our counting argument may miss ele-
ments in Ta and T ). Hence this can directly be generalized to any
loop-free graph by replacing the sums over i and j by sums over
the corresponding neighborhoods.

Proposition 4.5. For ϑ = ln
(
1 +

√
2
)
, we have A(1̂, ϑ) → ϑ√

2
as

n→∞.

Proof. By reordering the sums and integrals in (4.6) we have

A(1̂, ϑ) =
∫ ∞

0

∫ ∞

0
1s+t≤ϑ

∑
v∈Qn

m(v, s)m(1̂− v, ϑ− s− t)·

·
n∑
i=1

n∑
j=1

m(ej − ei, t) ds dt.
(4.11)

Applying Lemmas 4.1 and 4.2, the right-hand side simplifies to

∫ ∞

0

∫ ∞

0
1s+t≤ϑm(1̂, ϑ− t)

d2

dt2
m(0̂, t) ds dt

=
∫ ϑ

0
(ϑ− t)m(1̂, ϑ− t)

d2

dt2
m(0̂, t) dt,

(4.12)
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and by plugging in the analytical formula (2.2) for m(v, t) we get

A(1̂, ϑ) =
∫ ϑ

0
(ϑ− t) (sinh(ϑ− t))n

d2

dt2
(cosh t)n dt

=
∫ ϑ

0
(ϑ− t) (sinh(ϑ− t))n

(
n+ n(n− 1) (tanh t)2

)
(cosh t)n dt

=
∫ ϑ

0
(ϑ− t)

(
n+ n(n− 1) (tanh t)2

)
enf(t) dt,

(4.13)

where f(t) := ln (sinh(ϑ− t) cosh t).
What follows is a textbook application of the Lebesgue domi-

nated convergence theorem. We begin examining the function f .
The first and second derivatives of f are given by

f ′(t) = − coth(ϑ− t) + tanh t (4.14)

f ′′(t) = − csch(ϑ− t)2 + sech(t)2. (4.15)

As sech t ≤ 1 for all t ∈ R and csch t ≥ 1 for 0 < t < ϑ, it follows
that f ′′(t) < 0 for 0 < t < ϑ. Hence f is concave in this interval, so
in particular f(t) ≤ f(0) + f ′(0) t = −

√
2 t. Furthermore, we have

tanh t ≤ Ct for some appropriate C > 0.
Substituting t by z = nt in (4.13), we obtain

A(1̂, ϑ) =
∫ ∞

0
1z≤nϑ

(
ϑ− z

n

)(
1 + (n− 1) tanh

( z
n

)2
)
enf(

z
n) dz.

(4.16)
It is clear that the integrand is bounded for all n by
ϑ
(
1 + Cz2

)
e−

√
2 s, which is integrable over [0,∞). Hence, by dom-

inated convergence, it follows that

A(1̂, ϑ) →
∫ ∞

0
ϑe−

√
2 z dz =

ϑ√
2

as n→∞. (4.17)

Proposition 4.6. For ϑ = ln
(
1 +

√
2
)

we have

A(1̂, ϑ) +B(1̂, ϑ) → ϑeϑ√
2

+
1

3− 2
√

2
as n→∞. (4.18)

Hence, as n→∞ we have B(1̂, ϑ) → ϑ+ 1
3−2

√
2
.
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Proof. By reordering the sums in (4.6) and applying Lemma 4.1 we
see that A(1̂, ϑ) +B(1̂, ϑ) can be expressed as

1
2

∑
v∈Qn

∑
w∈Qn

∫ ∞

0

∫ ∞

0
1s+t≤ϑm(v, s)m(1̂− w, ϑ− s− t)·

· d
2

dt2
m(w − v, t)2 ds dt.

(4.19)

Letting ∆ = w − v, this sum can be rewritten as

1
2

∑
v∈Qn

∑
∆∈Qn

∫ ∞

0

∫ ∞

0
1s+t≤ϑm(v, s)·

·m(1̂−∆ + v, ϑ− s− t)
d2

dt2
m(∆, t)2 ds dt,

(4.20)

which by Lemma 4.2 simplifies to

1
2

∫ ϑ

0
(ϑ− t)

∑
∆∈Qn

m(1̂−∆, ϑ− t)
d2

dt2
m(∆, t)2 dt. (4.21)

To evaluate the sum in the above integral we use a small trick. Let
us replace ϑ − t in this sum by z which we consider as a variable
not depending on t. Then∑

∆∈Qn

m(1̂−∆, z)
d2

dt2
m(∆, t)2 =

∂2

∂t2

∑
∆∈Qn

m(1̂−∆, z)m(∆, t)2.

By grouping all terms with |∆| = k we get∑
∆∈Qn

m(1̂−∆, z)m(∆, t)2

=
n∑
k=0

(
n

k

)
(sinh z)k (cosh z)n−k (sinh t)2n−2k (cosh t)2k

=
n∑
k=0

(
n

k

)(
sinh z (cosh t)2

)k (
cosh z (sinh t)2

)n−k
=
(
sinh z (cosh t)2 + cosh z (sinh t)2

)n
=
(

1
2
ez cosh 2t− 1

2
e−z
)n

.
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Note that 1
2e
z cosh 2t− 1

2e
−z > 0 for any t, z ≥ 0. Hence∑

∆∈Qn

m(1̂−∆, z)
d2

dt2
m(∆, t)2 =

∂2

∂t2

(
1
2
ez cosh 2t− 1

2
e−z
)n

= 2nez cosh t
(

1
2
ez cosh 2t− 1

2
e−z
)n−1

+ n(n− 1)e2z (sinh 2t)2
(

1
2
ez cosh 2t− 1

2
e−z
)n−2

.

Letting

f(t) = ln
(

1
2
eϑ−t cosh 2t− 1

2
e−ϑ+t

)
(4.22)

g(t) = 2eϑ−t cosh t e−f(t) (4.23)

h(t) = e2ϑ−2t (sinh t)2 e−2f(t) (4.24)

we can write

A(1̂, ϑ) +B(1̂, ϑ) =
1
2

∫ ϑ

0
(ϑ− t) (n g(t) + n(n− 1)h(t)) enf(t) dt.

(4.25)
One can check that f(0) = f(ϑ) = 0, f

(
1
2

)
< −1

5 , and that f
has derivatives

f ′(t) = −1 + 2
sinh 2t− e−2ϑ+2t

cosh 2t− e−2ϑ+2t
(4.26)

and

f ′′(t) = 4
1− 2e−2ϑ

(cosh 2t− e−2ϑ+2t)2
. (4.27)

Note that 1
2e
ϑ−t cosh 2t− 1

2e
−ϑ+t = sinh(ϑ− t) (cosh t)2 + cosh(ϑ−

t) (sinh t)2 > 0 for t ∈ [0, ϑ]. Hence it follows that f(t) is convex.
Furthermore, for 0 ≤ t ≤ ϑ, g(t) and h(t) are non-negative bounded
functions and h(t) = O

(
t2
)
.

To evaluate the integral in equation (4.25), we divide it into two
integrals, one over the interval

[
0, 1

2

]
, and one over

[
1
2 , ϑ
]
, that is

into the two integrals∫ 1
2

0
(ϑ− t) (n g(t) + n(n− 1)h(t)) enf(t) dt

=
∫ n

2

0

(
ϑ− z

n

)(
g
( z
n

)
+ (n− 1)h

( z
n

))
enf(

z
n) dz

(4.28)
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and∫ ϑ

1
2

(ϑ− t) (n g(t) + n(n− 1)h(t)) enf(t) dt

=
∫ (ϑ− 1

2)n

0
z

(
1
n
g
(
ϑ− z

n

)
+
n− 1
n

h
(
ϑ− z

n

))
enf(ϑ−

z
n) dz.

(4.29)

Now, using the convexity of f(t) it is a standard calculation to show
that the integrands of these expressions are uniformly dominated
by
C
(
1 + t2

)
e−λt and Cte−λt respectively, for appropriate positive

constants λ and C. Hence, by the Lebesgue dominated convergence
theorem, these integrals converge to∫ ∞

0
2ϑeϑ+f ′(0)z dz =

2ϑeϑ

−f ′(0)
=
√

2ϑeϑ (4.30)

and ∫ ∞

0
z (sinh 2ϑ)2 e−f

′(ϑ)z dz =
8

f ′(ϑ)2
=

2
3− 2

√
2

(4.31)

respectively, as n→∞. We conclude that

A(1̂, ϑ) +B(1̂, ϑ) → 1
2

(√
2ϑeϑ +

2
3− 2

√
2

)
as n→∞. (4.32)

5 Proof of Theorem 1.1

In order to bound ‖Tn − ϑ‖p it is natural to treat the problems of
bounding Tn − ϑ from above and below separately. To this end,
we let T+

n and T−n denote the positive and negative part of Tn − ϑ
respectively, that is, T+

n is the maximum of Tn−ϑ and 0 and T−n is
the maximum of ϑ− Tn and 0. Hence, we can bound ‖Tn − ϑ‖p by
‖T+

n ‖p+ ‖T−n ‖p. We will begin by proving two simple propositions.
The first shows that the variance of Tn and the Lp-norm of Tn−ϑ for
any 1 ≤ p < ∞ are Ω

(
1
n

)
. The second proposition uses the lower

bound on Tn obtained by Durrett to prove that ‖T−n ‖p = O
(

1
n

)
.

The remaining part of the section will be dedicated to bounding
‖T+

n ‖p.
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Proposition 5.1. Tn has fluctuations of order at least 1
n .

Proof. We can write Tn in terms of Richardson’s model as the time
until the first neighbor of 0̂ gets infected plus the time from this
event until 1̂ gets infected. It is easy to see that these are indepen-
dent, and the former is exponentially distributed with mean 1

n .

Proposition 5.2. Let 1 ≤ p <∞ be fixed. Then ‖T−n ‖p = O
(

1
n

)
.

Proof. We have

E
[
(T−n )p

]
= E

∫ ∞

0
1t≤T−n p tp−1 dt =

∫ ∞

0
p tp−1P (Tn ≤ ϑ− t) dt.

(5.1)
To bound this, we use that P (Tn ≤ ϑ− t) ≤ m(1̂, ϑ− t)
= (sinh(ϑ− t))n for any t ≤ ϑ and P (Tn ≤ ϑ− t) = 0 for t > ϑ
(naturally Tn is always non-negative). It is straightforward to show
that ln sinh(ϑ − t) ≤ −

√
2 t for any 0 ≤ t ≤ ϑ. Using this, we

conclude that

E
[
(T−n )p

]
≤
∫ ϑ

0
ptp−1e−

√
2nt dt = O

(
1
np

)
. (5.2)

We now turn to the upper bound on Tn. Assume n ≥ 4.
Let {We}e∈E(Qn) be a collection of independent exponentially dis-
tributed random variables with expected value 1, denoting the pas-
sage times of the edges in Qn. For any vertex v adjacent to 0̂ we
will use Wv to denote the passage time of the edge between 0̂ and
v. Similarly, for any v adjacent to 1̂, Wv denotes the passage time
of the edge between v and 1̂.

Condition on the weights of all edges connected to either 0̂ or
1̂. We pick vertices a1 and a2 adjacent to 0̂ such that Wa1 and
Wa2 have the smallest and second smallest edge weights respectively
among all edges adjacent to 0̂. Among all n−2 neighboring vertices
of 1̂ which are not antipodal to a1 or a2 we then pick b1 and b2 such
that Wb1 and Wb2 have the smallest and second smallest values.
Then Wa1 , Wa2 − Wa1 , Wb1 and Wb2 − Wb1 are independent ex-
ponentially distributed random variables with respective expected
values 1

n , 1
n−1 , 1

n−2 and 1
n−3 .

As a1 and a2 are adjacent to 0̂ and b1 and b2 are adjacent to 1̂,
there is exactly one coordinate in each of a1 and a2 which is 1, and
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exactly one coordinate in b1 and b2 which is 0. Let the locations
of these coordinates in a1, a2, b1 and b2 be denoted by i, j, k and
l respectively. Note that the requirement on a1, a2, b1 and b2 not
to be antipodal means that i, j, k and l are all distinct. We define
H1 as the induced subgraph of Qn consisting of all vertices v ∈ Qn

such that the i:th coordinate is 1 and the k:th coordinate is 0. We
similarly define H2 as the induced subgraph of Qn consisting of
all vertices v ∈ Qn such that the j:th coordinate is 1 and the l:th
coordinate is 0. We furthermore define H ′

2 as the induced subgraph
of Qn whose vertex set is given by H2 \H1. Note that H1 and H ′

2

are vertex disjoint and hence also edge disjoint.
The idea to bound Tn is essentially to express it in terms of

the minimum of the first-passage time from a1 to b1 in H1 and the
first-passage time from a2 to b2 in H ′

2, where the passage times for
the edges are taken from {We}e∈E(Qn). As H1 and H2 are both
isomorphic to Qn−2, where a1 and b1 are antipodal in H1 and a2

and b2 are antipodal in H2, Corollary 2.4 implies that the corre-
sponding first-passage times in each of H1 and H2 are at most ϑ
with probability bounded away from 0. However, for our proof it
is not needed to make this connection. Rather, we will make use
of the slightly stronger statement that the same holds true for H ′

2.
The following proposition is a consequence of Corollary 2.4. We
postpone the proof of this to the end of the section.

Proposition 5.3. There exists a constant ε2 > 0 such that for all
n ≥ 4, with probability at least ε2 the first-passage time in H ′

2 from
a2 to b2 is at most ϑ.

Now, let ξ denote the indicator function for the event that the
first-passage time from a2 to b2 in H ′

2 is at most ϑ. As H1 is
isomorphic to Qn−2 it is clear that the first-passage time from a1

to b1 in H1 is distributed as Tn−2, and so we may couple Tn−2 to
{We}e∈E(Qn) such that Tn−2 denotes this quantity. Note that this
means that ξ and Tn−2 are independent random variables. With
this coupling it is clear that Tn ≤ Wa1 +Wb1 + Tn−2 as this is the
passage time of the path that traverses the edge from 0̂ to a1, then
follows the path to b1 in H1 with minimal passage time and lastly
traverses the edge from b1 to 1̂. Furthermore, if ξ = 1 we similarly
see that Tn ≤Wa2 +Wb2 +ϑ. Combining these bounds we see that
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for any n ≥ 4 we have

Tn ≤ ξ (Wa2 +Wb2 + ϑ) + (1− ξ) (Wa1 +Wb1 + Tn−2) . (5.3)

We may interpret this inequality as follows. We flip a coin ξ.
If the coin turns up heads then Tn is bounded by ϑ plus a small
penalty. If the coin turns up heads, then we can bound Tn by a
small penalty plus Tn−2, where Tn−2 is independent of ξ. Assuming
n is sufficiently large, we can then repeat this process on Tn−2 and
so on until one coin turns up heads. As each coin toss ends up
heads with probability at least ε2 > 0, this is likely to occur after
O(1) steps. Hence the total penalty before this occurs is likely to
be small.

We now employ (5.3) to bound the Lp-norm of T+
n . By sub-

tracting ϑ and taking the positive part of both sides we get

T+
n ≤ ξ (Wa2 +Wb2) + (1− ξ)

(
Wa1 +Wb1 + T+

n−2

)
. (5.4)

As Wa2 ≥ Wa1 and Wb2 ≥ Wb1 we can replace ξ (Wa2 +Wb2) +
(1 − ξ) (Wa1 +Wb1) in the right-hand side of (5.4) by Wa2 +Wb2 .
Taking the Lp-norm of both sides we obtain the inequality

‖T+
n ‖p ≤ ‖Wa2 +Wb2‖p + ‖(1− ξ)T+

n−2‖p. (5.5)

For each fixed p, it is straightforward to show that ‖Wa2 +Wb2‖p =
O
(

1
n

)
. Furthermore, as ξ and T+

n−2 are independent we have ‖(1−
ξ)T+

n−2‖p = ‖(1− ξ)‖p‖T+
n−2‖p ≤ (1− ε2)

1
p ‖T+

n−2‖p. Hence, for any
fixed p we have the inequality

‖T+
n ‖p ≤ O

(
1
n

)
+ (1− ε2)

1
p ‖T+

n−2‖p. (5.6)

As (1−ε2)
1
p < 1 it follows that we must have ‖T+

n ‖p = O
(

1
n

)
. Com-

bining this with the corresponding bound on ‖T−n ‖p from Proposi-
tion 5.2, we have ‖Tn − ϑ‖p = O

(
1
n

)
, as desired.

It only remains to prove Proposition 5.3.
In the following argument, we will identify H2 with Qn−2 by

simply disregarding the two coordinates of the vertices in H2 which
are fixed. Hence we will consider a2 and b2 to be the all zeroes and
all ones vertices in Qn−2 respectively. When seen in this light, is
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clear that H ′
2 is the induced subgraph if H2 consisting of all vertices

where either the i′:th coordinate is 1 or the k′:th coordinate is 0 for
some i′ 6= k′.

It makes sense to think of H ′
2 as half a hypercube. For instance,

exactly half of the oriented paths from a2 to b2 in H2 are contained
in H ′

2, namely those that move in direction i′ before direction k′.
Now, the paths from a2 to b2 in H2 which are relevant for the early
arrivals in the BTP are extremely unlikely to be oriented, but they
are not too far from being oriented either. Our approach to showing
Proposition 5.3 is essentially to show that H ′

2 is a sufficiently large
subset of H2 that when considering a BTP on H2 originating at
a2, if there is an uncontested particle at b2 at time ϑ, then with
probability bounded away from 0, its ancestral line is contained in
H ′

2.
In order to show this, we need a property of the BTP which

was hinted at briefly in [2]. Let X denote a BTP on Qn originating
at 0̂. For any set of paths A in Qn, let Xt(A) denote the expected
number of particles in the BTP at time t whose ancestral line follows
some path in A. Let {y(t)}t≥0 denote a simple random walk on Qn

starting at 0̂ with rate n, and for each t ≥ 0 let σt denote the path
that the random walk has followed up to time t.

Lemma 5.4. Let S denote the set of paths from 0̂ to 1̂ in Qn. For
any S′ ⊆ S and for any t ≥ 0 we have

Xt(S′)
Xt(S)

= P
(
σt ∈ S′

∣∣y(t) = 1̂
)
. (5.7)

Proof. Let σ be any fixed path from 0̂ to 1̂ and let l denote the
length of σ. By applying Lemma 3.2, we get

Xt({σ}) = E
∑

x∈Vσ(X)

1T (X,x)≤t

=
∫ ∞

0
. . .

∫ ∞

0
1z1+···+zl≤t dz1 . . . dzl =

tl

l!
,

(5.8)

where T (X, x) denotes the birth time of x. In comparison, it is
straightforward to see that P (σt = σ) = e−nt t

l

l! . It follows that,
for any set of paths A, we have Xt(A) = entP(σt ∈ A), and so in
particular

Xt(S′)
Xt(S)

=
P(σt ∈ S′)
P(σt ∈ S)

= P
(
σt ∈ S′

∣∣y(t) = 1̂
)
, (5.9)
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as desired.

Lemma 5.5. Let X be a BTP on Qn originating at 0̂. Then with
probability 1− o(1), all particles at 1̂ at time ϑ have ancestral lines
of length

√
2ϑn± o(n).

Proof. We apply Lemma 5.4 with t = ϑ. As Xu(S) = m(1̂, ϑ) = 1
we see that it suffices to show that the number of steps performed
by {y(t)}t≥0 up to time ϑ, conditioned on the event that y(ϑ) = 1̂,
is concentrated around

√
2ϑn.

In order to show this, we note that if y(t) = (y1(t), . . . , yn(t))
is a simple random walk on Qn with rate n, then each coordinate,
yi(t), is an independent simple random walk on {0, 1} with rate one.
Hence, conditioned on the event that y(ϑ) = 1̂, each coordinate
yi(t) is an independent simple random walk on {0, 1} conditioned
on the event that yi(ϑ) = 1. It is easy to see that the expected
number of steps taken by such a process up to time ϑ is

e−ϑ

e−ϑ
ϑ+ ϑ3

2! + ϑ5

4! + . . .

ϑ+ ϑ3

3! + ϑ5

5! + . . .
= ϑ cothϑ =

√
2ϑ. (5.10)

The lemma follows by the law of large numbers.

Proof of Proposition 5.3. Consider the BTP:s X and X′ on H2 and
H ′

2 respectively, both originating at a2. We may couple these pro-
cesses such that X′ consists of all particles in X whose ancestral
lines are contained in H ′

2. Note that any particle in X′ is uncon-
tested in X′ if it is uncontested in X.

As H2 is graph isomorphic to Qn−2, we know from Corollary
2.4 that, with probability bounded away from zero, there exists an
uncontested particle in X at b2 at time ϑ. Furthermore, by Lemma
5.5 we know that if such a particle exists, then with probability
1− o(1) the length of its ancestral line is at most 1.25(n− 2).

Let us now condition on the event that there exists an uncon-
tested particle x in X at 1̂ at time ϑ whose ancestral line is of
length at most 1.25(n − 2). As a path from 0̂ to 1̂ must traverse
edges in each of the n − 2 directions of Qn−2 an odd number of
times, this bound on the length of the ancestral line implies that
there are at least 7

8(n− 2) directions in which the path followed by
the ancestral line of x only traverses one edge. By the symmetry
of the hypercube, the distribution of this path must be invariant
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under permutation of coordinates. Hence, with probability ≈ 49
128 ,

this path only traverses one edge in direction i′ and one in direction
k′, and traverses the edge in direction i′ before that in direction k′.
Hence with probability bounded away from 0, this path is contained
in H ′

2.

We conclude that with probability bounded away from zero,
there exists an uncontested particle at 1̂ at time ϑ in X′. The
proposition follows from the fact that Richardson’s model stochas-
tically dominates the set of uncontested particles in a BTP.

6 Proof of Theorem 1.2

In the following proof we adopt the notationXt(A), {y(t)}t≥0 and σt
from the previous section. Hence, σn in the statement of Theorem
1.2 will here be denoted by σϑ conditioned on y(ϑ) = 1̂. For any
set of paths A in Qn we let Zt(A) denote the expected number of
simple paths in A starting at 0̂ with passage time at most t. As
Γn must be a simple path, it follows from the union bound that for
any c ∈ R and any set A of paths from 0̂ to 1̂ in Qn, we have

P (Γn ∈ A) ≤ Zϑ+ c
n
(A) + P

(
Tn ≥ ϑ+

c

n

)
. (6.1)

In order to bound the right-hand side of this expression in terms of
σϑ, we first observe that for any t ≥ 0 we have

Zt(A) =
∑
σ∈A

σ simple

∫ ∞

0
. . .

∫ ∞

0
1t1+···+t|σ|≤te

−t1−···−t|σ| dt1 . . . dt|σ|

≤
∑
σ∈A

∫ ∞

0
. . .

∫ ∞

0
1t1+···+t|σ|≤t dt1 . . . dt|σ|

=
∑
σ∈A

t|σ|

|σ|!
= Xt(A).
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Secondly, by the Cauchy-Schwarz inequality

Xϑ+ c
n
(A) =

∑
σ∈A

ϑ|σ|

|σ|!
1 ·
(
1 +

c

ϑn

)|σ|
≤

√√√√∑
σ∈A

ϑ|σ|

|σ|!
·

√√√√∑
σ∈A

ϑ|σ|

|σ|!

(
1 +

c

ϑn

)2|σ|

=
√
Xϑ(A) ·

√
X
ϑ(1+ c

ϑn)2(A)

≤
√
Xϑ(A) ·

√
m

(
1̂, ϑ

(
1 +

c

ϑn

)2
)
.

Note that m
(
1̂, ϑ

(
1 + c

ϑn

)2) is bounded as n→∞. It follows from
Lemma 5.4 that

P (Γn ∈ A) ≤ O

(√
P
(
σϑ ∈ A

∣∣y(ϑ) = 1̂
))

+ P
(
Tn ≥ ϑ+

c

n

)
.

(6.2)
Now, consider any asymptotically almost sure property of σϑ

conditioned on y(ϑ) = 1̂. For each n ≥ 1 let An denote the set of
paths from 0̂ to 1̂ in Qn that do not have this property. Then, by
taking lim sup of both sides in (6.2) we get

lim sup
n→∞

P (Γn ∈ An) ≤ lim sup
n→∞

P
(
Tn ≥ ϑ+

c

n

)
. (6.3)

The general case of Theorem 1.2 follows from Theorem 1.1 by letting
c → ∞. For the special case of the length of Γn, see the proof of
Lemma 5.5.
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Accessibility percolation and first-passage site

percolation on the unoriented binary

hypercube

Anders Martinsson

Abstract

Inspired by biological evolution, we consider the follow-
ing so-called accessibility percolation problem: The vertices
of the unoriented n-dimensional binary hypercube are as-
signed independent U(0, 1) weights, referred to as fitnesses. A
path is considered accessible if fitnesses are strictly increasing
along it. We prove that the probability that the global fitness
maximum is accessible from the all zeroes vertex converges
to 1 − 1

2 ln
(
2 +

√
5
)

as n → ∞. Moreover, we prove that if
one conditions on the location of the fitness maximum being
v̂, then provided v̂ is not too close to the all zeroes vertex in
Hamming distance, the probability that v̂ is accessible con-
verges to a function of this distance divided by n as n →∞.
This resolves a conjecture by Berestycki, Brunet and Shi in
almost full generality.

As a second result we show that, for any graph, accessi-
bility percolation can equivalently be formulated in terms of
first-passage site percolation. This connection is of particular
importance for the study of accessibility percolation on trees.

1 Introduction

A number of recent papers [4–10] have studied a percolation prob-
lem known as accessibility percolation, based on ideas of Kauffman
and Levin for modeling biological evolution [1]. In its simplest form,
accessibility percolation consists of a graph G = (V,E), or more
generally a digraph, together with a fitness function ω : V → R
generated according to some random distribution. This is thought
of as representing the landscape of possible evolutionary trajecto-
ries of a species. The vertices in G represent the possible genotypes
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for an organism whose fitness is a measure of how successful an
individual of that genotype is, and the edges the possible ways the
genome can change subject to a single mutation. Here it makes
sense both to consider directed and undirected edges depending on
whether or not a certain mutation is reversible. Of primary concern
is the existence or distribution of so-called accessible paths.

Definition. Let G = (V,E) and ω : V → R be a fitness landscape.
We say that a path v0 → v1 → . . . → vl in G is accessible if

ω(v0) < ω(v1) < . . . < ω(vl). (1.1)

For v, w ∈ V we say that w is accessible from v if there exists an
accessible path from v to w.

For the distribution of ω we will in this paper consider two
variations of Kingman’s House-of-Cards model [3]. Both of which
have previously been considered in accessibility percolation. In fact,
all results in [6–10] consider some variation of the House-of-Cards
model, whereas [4] and [5] also consider the so-called Rough Mount
Fuji model. The first model we will consider here is the original
formulation of the House-of-Cards model, in which the ω(v):s are
independent and U(0, 1)-distributed for all v ∈ V . Kauffman and
Levin refers to this as an uncorrelated landscape. For the second
distribution we modify the House-of-Cards model by introducing
an a priori global fitness maximum v̂ ∈ V by changing ω(v̂) to
one. As accessibility percolation only depends on the relative or-
der of fitnesses, this can be seen as equivalent to conditioning the
House-of-Cards model on v̂ being the global fitness maximum. In
particular, if v̂ is chosen uniformly at random among V , then this is
equivalent to the House-of-Cards model with v̂ denoting the global
fitness maximum.

Our first main result considers accessibility percolation on the
unoriented n-dimensional binary hypercube. The question of pri-
mary concern is whether or not there exists an accessible path from
the all zeroes vertex, 0̂, to the fitness maximum v̂. We prove that,
provided v̂ is not too close to 0̂ in Hamming distance, the proba-
bility that such path exists converges to a non-trivial function of
the Hamming distance between v̂ and 0̂ divided by n, confirming a
conjecture by Berestycki, Brunet and Shi [7] in almost full general-
ity.
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As a second result, we show that accessibility percolation for
a general graph can be equivalently formulated in terms of first-
passage site percolation. This lets us reformulate previous results
in the literature in terms of first-passage site percolation. In partic-
ular, this relation has important implications for accessibility per-
colation on trees, as studied in [6, 8–10].

1.1 Notation

• Whenever talking about a general graph G = (V,E), we allow
both undirected and directed edges. For vertices u, v ∈ V , we
write u ∼ v if there is either an undirected edge between u
and v or a directed edge going from u to v.

• The unoriented n-dimensional binary hypercube, denoted by
Qn, is the graph whose vertices are the binary n-tuplets {0, 1}n

and where two vertices share an edge if their Hamming dis-
tance is one. The oriented n-dimensional binary hypercube,−→
Qn, is the directed graph obtained by directing each edge in
Qn towards the vertex with more ones.

• For a vertex v in the hypercube we let |v| denote the number
of coordinates of v that are one. Addition and subtraction of
vertices in Qn denotes coordinate-wise addition/subtraction
modulo two. We let 0̂ and 1̂ denote the all zeroes and all ones
vertices respectively, and let e1, . . . , en denote the standard
basis.

• Often when considering the House-of-Cards model, it is useful
to condition on the fitness of 0̂. Following the convention in [6,
7], for any α ∈ [0, 1] we let Pα(·) and Eα [·] denote conditional
probability and expectation respectively, given ω(0̂) = α.

1.2 Recent work

Let us take a moment to summarize the results for accessibility
percolation on the binary hypercube with House-of-Cards fitnesses
in [5–7]. We start by consider the simplified version of the problem
where we replace Qn by

−→
Qn. This is equivalent to only considering

paths without backwards mutations. As any coordinate where v̂
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is zero will be constantly zero along any such path, it suffices to
consider the case where v̂ = 1̂.

Let X denote the number of oriented paths from 0̂ to 1̂ which
are accessible. As there are n! oriented paths from 0̂ to 1̂, and
each path is accessible if and only if the n random fitnesses along
the path are in ascending order, we see that EX = 1. At first
glance, this may seem to imply a positive probability of accessible
paths existing. However, a much clearer picture of what occurs
is obtained by conditioning on the fitness of the starting vertex.
Indeed, conditioned on the fitness of 0̂ being α ∈ [0, 1], we have

EαX = n(1− α)n−1. (1.2)

We see that, for large n, this expression is 1 approximately at α =
ln n
n , and rapidly decreasing as α increases. Informally, this means

that unless the fitness of the starting vertex is below ln n
n , accessible

paths are highly unlikely. In fact, by considering (1.2) a bit more
closely it follows that P

(
X ≥ 1 ∧ ω(0̂) > ln n

n

)
≤ 1

n . On the other
hand, the regime where α is smaller than ln n

n turns out to be more
difficult to treat. In [5] it was shown by Hegarty and the author
that the probability of accessible paths in this case tends to 1 as
n →∞.

Theorem 1.1. (Hegarty, Martinsson) For any sequence {εn}∞n=1

such that nεn →∞, as n →∞ we have

P
ln n
n

+εn(X ≥ 1) → 0 (1.3)

P
ln n
n
−εn(X ≥ 1) → 1. (1.4)

Furthermore,

P(X ≥ 1) ∼ lnn

n
. (1.5)

This theorem was later strengthened by Berestycki, Brunet and
Shi in [6] who proved that, in the special case where ω(0̂) = O

(
1
n

)
,

X has a non-trivial limit distribution when scaled appropriately.
Let us now switch back to the unoriented hypercube and see

how this analysis changes. Again, let X denote the number of
accessible paths from 0̂ to v̂. Here, paths are not as combinatorially
well-behaved as for the oriented cube, and first moment estimates
are not as easy to come by. Nevertheless, in a recent paper by
Berestycki, Brunet and Shi [7] it was shown that EαX has the
following asymptotic behavior:
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Theorem 1.2. (Berestycki, Brunet, Shi) Let α ∈ [0, 1] be fixed,
and let v̂ = v̂n ∈ Qn be such that x := limn→∞ |v̂n| /n exists. We
have that as n →∞

(EαX)1/n → sinh(1− α)x cosh(1− α)1−x. (1.6)

As a consequence, for each x there is a critical value α∗(x) = 1 −
ϑ(x) for the fitness of 0̂, given by the unique non-negative solution
to

(sinhϑ)x (coshϑ)1−x = 1, (1.7)

such that

• For α > 1− ϑ(x), Pα (X ≥ 1) goes to 0 exponentially fast as
n →∞.

• For α < 1−ϑ(x), EαX diverges exponentially fast as n →∞.

Hence, the unconditioned probability that X ≥ 1 is at most 1−ϑ(x).

We see a similar behavior of EαX as for the oriented cube. One
important difference though is that unlike the oriented cube the
critical value has a nontrivial limit as n → ∞. The function ϑ(x)
is plotted in Figure 1. This function is continuous and increasing
where ϑ(0) = 0 and ϑ(1) = ln

(
1 +

√
2
)
≈ 0.88. In particular, it

follows that if the a priori global fitness maximum is 1̂, then the
critical fitness is 1 − ln

(
1 +

√
2
)
≈ 0.12, and if chosen uniformly

at random then |v̂| /n will be tightly concentrated around 1
2 and

hence the critical fitness is 1− 1
2 ln

(
2 +

√
5
)
≈ 0.28.

Berestycki et al. further gave two conjectures that (1.6) “tells
the truth” in the sense that Pα (X ≥ 1) tends to 1 as n → ∞ for
α < 1 − ϑ(x). Conjecture 1 of their paper proposes this in the
special case where v̂ = 1̂, and Conjecture 2 in the more general
setting of v̂ = v̂n satisfying |v̂n| /n → x ∈ [0, 1].

1.3 Results

The first result of this paper fully resolves Conjecture 1 by Beresty-
cki, Brunet and Shi [7], and Conjecture 2 under the additional con-
dition that x is not too small.

Theorem 1.3. Let v̂ = v̂n ∈ Qn be a sequence of vertices such that
x := limn→∞ |v̂| /n exists. Let X denote the number of accessible
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Figure 1: The function ϑ(x) as defined in (1.7).

paths from 0̂ to v̂. Let ϑ(x) be as defined in Theorem 1.2. Assuming
x ≥ 0.002, we have

lim
n→∞

Pα (X ≥ 1) =

{
0 if α > 1− ϑ(x)
1 if α < 1− ϑ(x).

(1.8)

In particular, if v̂ = 1̂, then

P (X ≥ 1) → 1− ln
(
1 +

√
2
)

as n →∞ (1.9)

and if v̂ is chosen uniformly at random, then

P (X ≥ 1) → 1− 1
2

ln
(
2 +

√
5
)

as n →∞. (1.10)

The value 0.002 deserves some explanation. In the proof of
Theorem 1.3, or more accurately the proof of Theorem 1.6 below
which is shown to be equivalent to the former, we see that there is
a value x∗ ≈ 0.00167 such that the proof goes through whenever
x > x∗ and breaks down when x < x∗, see Remark 4.8. It seems
likely however that this is simply an artifact of the technique used in
the proof, and that the statement should hold true even for smaller
x. Regardless of whether or not this is true, we can note that the
two cases of most concern, x = 1 and x = 0.5, are far above x∗.

We now turn to the relation between accessibility percolation
and first-passage site percolation for a general graph. Let G =
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(V,E) be a graph with a distinguished vertex 0̂. Note that each edge
of G may either be directed or undirected. For each vertex v ∈ G
randomly assign a cost, denoted by c(v), according to independent
U(0, 1) random variables. For a path u0, u1, . . . , ul in G we define
the site passage time of the path by∑

1≤i≤l

c(ui), (1.11)

and similarly define its reduced site passage time by∑
1≤i<l

c(ui). (1.12)

Note that neither the passage time nor the reduced passage time
of a path include the cost of the first vertex. For each u, v ∈ G we
define the site first-passage time from u to v, denoted by TV (u, v),
and the reduced first passage time from u to v, denoted by T ′V (u, v),
as the minimum of the respective quantity over all paths from u to
v.

Theorem 1.4. Let G be a graph with two distinct vertices 0̂ and
v̂, and let α ∈ [0, 1]. Consider accessibility percolation on G. If
fitnesses are assigned according to the House-of-Cards model with
v̂ as the a priori global fitness maximum, then

Pα
(
v̂ accessible from 0̂

)
= P

(
T ′V (0̂, v̂) ≤ 1− α

)
. (1.13)

If fitnesses are assigned according to the House-of-Cards model with-
out an a priori global maximum, then for any vertex v ∈ G

Pα
(
v accessible from 0̂

)
= P

(
TV (0̂, v) ≤ 1− α

)
. (1.14)

Moreover, in the latter case this claim can be significantly strength-
ened. Conditioned on the fitness of 0̂ being α, the set of vertices
accessible from 0̂ has the same distribution as the set of vertices v
such that TV (0̂, v) ≤ 1− α.

Informally we can think of this theorem as saying that accessi-
bility percolation is equivalent to first-passage site percolation with
independent U(0, 1) vertex passage times. We need to be a bit
careful there though; the theorem only deals with the question of
whether or not a certain vertex is accessible from 0̂ along any path,
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0̂ v

Figure 2: Example of a graph where accessible paths have a differ-
ent distribution than paths with small passage time. We can for
instance note that there can never be exactly three accessible paths
from 0̂ to v, whereas there can certainly be exactly three paths with
reduced passage time at most 1− α.

and it does not for instance say anything about the number of ac-
cessible paths. Indeed, it is not true in general that the number of
accessible paths from 0̂ to v is distributed as the number of paths
from 0̂ to v with reduced passage time at most 1 − α. For graphs
containing non-simple paths this is clear as non-simple paths can
have arbitrarily small passage time but cannot be accessible, but it
can even be false for directed acyclic graphs, see for instance Figure
2. On the other hand, the connection is more general than just
treating which vertices are accessible. For instance, using the proof
ideas in Section 2 one can show that the minimal number of times
you need to move to a less fit vertex to get from 0̂ to v is distributed
as the integer part of TV (0̂, v) + α.

A problem with using Theorem 1.4 to relate known results from
first-passage percolation to accessibility percolation is that the vast
majority of the first-passage percolation literature assigns passage
times to edges rather than vertices. However, a common property
for percolation problems is that it is harder to percolate on vertices
than edges [2]. The following proposition shows that something
similar holds for first-passage percolation.

Proposition 1.5. Suppose the edges of G are assigned independent
U(0, 1) weights. Let TE(u, v) denote the minimum total weight of
any path from u to v in G. Then, it is possible to couple TE(0̂, ·) to
TV (0̂, ·) such that TE(0̂, v) ≤ TV (0̂, v) for all v ∈ G.

For the special case when G is a rooted tree one can see that
this coupling is exact; to go from site to bond percolation we can
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simply consider the passage time of each vertex to instead be as-
signed to the edge leading to it. Accessibility percolation on trees
has been considered in [6,8–10]. With the exception of [6], these ar-
ticles have considered regular rooted trees with degree n and height
h, and where fitnesses are assigned according to the House-of-Cards
model conditioned on the fitness of the root being zero. Of princi-
pal concern is how the number of vertices in generation h that are
accessible from the root varies as a function of n, and in particu-
lar whether this number is non-zero. Using Theorem 1.4 we can
see that this is equivalent to assigning independent U(0, 1) passage
times to the edges of the tree and considering the number of ver-
tices v in generation h such that TE(0̂, v) ≤ 1. In particular, the
question of whether generation h is accessible from 0̂ is equivalent
to to asking if the first-passage time from the root to generation h
is at most 1. It should be mentioned however that the usual setting
in first-passage percolation on regular rooted trees keeps n fixed
and considers the first-passage time from the root to generation h
as h → ∞. While the author is not aware of any results from this
field that have appropriate error bounds to be directly applicable to
accessibility percolation, there seems to be a significant overlap of
ideas between [9,10] and the literature on first-passage percolation
on trees. See for instance [13].

Let us now consider the implications of Theorem 1.4 for the hy-
percube. Using this result, we can immediately translate the result
from Theorem 1.1 to that, for the oriented hypercube, T ′V (0̂, 1̂) is
concentrated around 1 − ln n

n with fluctuations of order 1
n . More

importantly, we have that the following is equivalent to Theorem
1.3:

Theorem 1.6. Let G = Qn and let v̂ = v̂n ∈ Qn be a sequence of
vertices such that x := limn→∞ |v̂| /n exists. Assuming x ≥ 0.002,
as n →∞ we have

T ′V (0̂, v̂) → ϑ(x) (1.15)

in probability.

Note here that the fact that ϑ(x) is an asymptotic lower bound
on the reduced passage time is already implied by Theorem 1.2.

It should be mentioned that basically the same results holds
true for bond percolation. In [11] it was shown that for the oriented
hypercube, we have TE(0̂, 1̂) → 1 in probability as n → ∞. In a
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more recent result by the author [12], it was shown that for the
unoriented hypercube TE(0̂, 1̂) → ln

(
1 +

√
2
)

as n → ∞. Strictly
speaking these results assume standard exponential edge weights,
but it is not too hard to show that the limiting distribution of
TE(0̂, 1̂) only depends on the weight distribution as the righthand
limit of its probability distribution function at 0, hence it will be
the same for U(0, 1) weights.

The remainder of the paper will be structured as follows: In
Section 2 we prove Proposition 1.5 and Theorem 1.4. The remaining
sections, Sections 3, 4 and 5, are dedicated to the proof of Theorem
1.6.

2 Proof of Proposition 1.5 and Theorem 1.4

We may, without loss of generality, assume that for any vertex v
there exists a path from 0̂ to v.

A key idea of the proofs of Proposition 1.5 and Theorem 1.4 is
the following procedure for computing TV (0̂, v). We initially con-
sider TV (0̂, v) to be unassigned for each v, except 0̂ for which it is
set to 0, and we let U = {0̂} denote the set of vertices with assigned
first-passage times. Until TV (0̂, v) is assigned for all v, we do the
following operation:

1. Find a pair of vertices u, v that minimizes TV (0̂, u) subject to
(u, v) ∈ E, u ∈ U and v 6∈ U .

2. Let TV (0̂, v) := TV (0̂, u) + c(v)

3. Add v to U .

To see that this assigns first-passage times correctly, suppose that
we are in the step where TV (0̂, v) is assigned. As v is not in U , the
passage time of any path from 0̂ to v must include the passage time
from 0̂ to some vertex u′ in U adjacent to some vertex outside U , as
well as the cost v. Hence TV (0̂, v) ≥ TV (0̂, u′) + c(v) ≥ TV (0̂, u) +
c(v). As there is a path from 0̂ to v with passage time TV (0̂, u) +
c(v), this must be optimal. Hence, if all previous assignments are
correct, TV (0̂, v) will be assigned correctly as well.

Proof of Proposition 1.5. We can modify this algorithm to run on
first-passage bond percolation by replacing c(v) by the weight of the
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edge from u to v. In either case, as no vertex cost or edge weight
respectively is accessed more than once, the accessed values form a
sequence of independent and U(0, 1) random variables. Hence the
distribution of TV (0̂, v) is unaffected. On the other hand, for bond
percolation we get that TV (0̂, v) is the edge passage time of some
path from 0̂ to v (but not necessarily the shortest).

We now turn to the proof of Theorem 1.4. The coupling between
first-passage site percolation and accessibility percolation we will
consider is essentially to let f(v) =

{
α + TV (0̂, v)

}
be the fitness

function, where {x} = x − bxc denotes the fractional part of x.
We will however modify this slightly by putting f(v) = 1 whenever
α+TV (0̂, v) = 1. It is clear that the probability of such v other than
0̂ existing is 0, so the only way this will change the distribution of
f is that f(0̂) = 1 if α = 1.

It is not too hard to see that, for any vertex v except 0̂, f(v)
is U(0, 1)-distributed. The following lemma shows that the f(v):s
are also independent, hence showing that f is distributed accord-
ing to the House-of-Cards model without an a priori global fitness
maximum, conditioned on f(0̂) = α.

Lemma 2.1. f(v) are independent U(0, 1) random variables for
v ∈ V \ {0̂}.

Proof. Suppose that we generate vertex costs in the following way:
Run the procedure above, but with the modification that whenever
the algorithm tries to access c(v), first generate a U(0, 1) random
variable f̃(v) and assign c(v) the value

{
f̃(v)− α− TV (0̂, u)

}
.

It is clear that the c(v):s are independent and U(0, 1)-distributed.
The lemma follows by noting that, in the latter case, we have
f(v) = f̃(v) almost surely for all v ∈ V \ {0̂}.

Proof of Theorem 1.4. We begin by considering the case with no
a priori global fitness maximum. In this case, we can consider
f : V → R to be the fitness function. For simplicity let us assume
that no vertex cost is exactly 0.

Assume TV (0̂, v) ≤ 1 − α, and let 0̂ = v0, v1, . . . , vl = v be the
path with shortest passage time. Then, as 0 < α + TV (0̂, vi) ≤ 1
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for 1 ≤ i ≤ l it follows that

f(vi) = α +
i∑

j=1

c(vj) (2.1)

for 0 ≤ i ≤ l. Hence v0, v1, . . . , vl is accessible. Conversely, suppose
TV (0̂, v) > 1−α and let 0̂ = v0, v1, . . . , vl = v be any path between
0̂ and v. Let i be the lowest index such that TV (0̂, vi) > 1 − α.
Then f(vi) ≤ α + TV (0̂, vi) − 1 ≤ α + TV (0̂, vi−1) + c(vi) − 1 <
α + TV (0̂, vi−1) = f(vi−1). Hence the path is not accessible.

Now for the case where v̂ ∈ V \ {0̂} is the a priori global fitness
maximum. We here keep the same coupling as before between f(v)
and c(v) for v ∈ V , except that we fix f(v̂) = 1. Let U be the set of
vertices v ∈ V such that (v, v̂) ∈ E. Then v̂ being accessible from
0̂ is almost surely equivalent to some vertex in U being accessible
from 0̂. Note that this last statement does not depend on the value
of f(v̂). It follows that v̂ is accessible from 0̂ is almost surely
equivalent to that minv∈U TV (0̂, v) ≤ 1 − α. The theorem follows
by noting that minv∈U TV (0̂, v) = T ′V (0̂, v̂).

3 The Clustering Translation Process

Before proceeding, we will slightly modify T ′V (0̂, v̂) by replacing
the U(0, 1) vertex costs by independent standard exponential such.
Note that the standard exponential distribution stochastically dom-
inates U(0, 1), and hence this modification will only increase T ′V (0̂, v̂).
As the lower bound in Theorem 1.6 follows from Theorem 1.2, it
suffices to show that, with this modification, asymptotically almost
surely T ′V (0̂, v̂) ≤ ϑ(x) + o(1). To do this, we will mimic the argu-
ment in [12] for first-passage bond percolation on Qn.

Let us take a moment to describe some of the underlying ma-
chinery for first-passage bond percolation on Qn. We assume in-
dependent standard exponential edge weights. In [11], Durrett in-
troduced the following process, which he called the the branching
translation process, BTP: At time 0 we place one particle at 0̂ in
Qn. The system then evolves by each existing particle indepen-
dently generating offspring at each vertex adjacent to its position
at rate 1. One can show that for each vertex v ∈ Qn, the time at
which the first particle at v is born is stochastically dominated by
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TE(0̂, v). This follows from the fact that the BTP dominates the
so-called Richardson’s model. The strategy in [12] is basically to
show that, with a certain coupling, there is a probability bounded
away from zero of these quantities being equal.

In order to translate this approach to first-passage site percola-
tion, we need to find a corresponding process to the BTP for this
case. We claim that the following is such a process: We initially
have a finite number of particles, each located at a vertex in Qn.
For each particle, we assign an independent Poisson clock with unit
rate. When a particle’s clock goes off, it simultaneously generates
one new offspring at each vertex adjacent to its position. The new
particles are then assigned new Poisson clocks and the process con-
tinues. We will refer to this process as the clustering translation
process, CTP.

We see that in both the BTP and CTP each particle generates
offspring at each neighboring vertex at rate 1. A big difference
however is that in the BTP this is done independently for each
neighboring vertex, whereas in the CTP a particle generates off-
spring all neighboring vertices simultaneously. Another difference
is that the initial state of the CTP is not fixed.

The most important initial state of the CTP will be one particle
at each neighbor of 0̂. We will refer to a CTP initialized in this
way as a standard CTP. Particles born due to the same Poisson
clock tick will be referred to as identical n-tuplets. To simplify
terminology we will also consider the initial n particles in a standard
CTP as identical n-tuplets. Below we will use the terms ancestor
and descendant of a particle to denote the natural partial order
of particles generated by the CTP. For convenience, we say that a
particle is both an ancestor and a descendant of itself. The terms
parent and child are defined in the natural way. The ancestral line
of a particle x is the ordered set of ancestors of x, and we say that
the ancestral line of x follows the path 0̂ = v0, v1, v2, . . . , vl if the
location of the ancestors of x in chronological order is given by
v1, v2, . . . vl. Note that this path always starts at 0̂ even though the
first ancestor is located at a neighbor of 0̂. We say that a particle
x originates from a particle y at a time t if y is the last particle in
the ancestral line of x that exists at time t.

We can immediately note some properties of this process. Firstly,
it is Markovian. Secondly, let A be a set of vertices in Qn, and let
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MA(v, t) denote the expected number of particles at vertex v at
time t ≥ 0 in the CTP initialized by placing one particle at each
vertex in A. Then it is easy to see that MA(v, t) must solve the
initial value problem

d

dt
MA(v, t) =

∑
w∼v

MA(w, t) for t > 0 (3.1)

MA(v, 0) = 1A(v). (3.2)

In particular, if A = {0̂}, then the unique solution to this problem
is

m(v, t) := (sinh t)|v| (cosh t)n−|v| , (3.3)

and it follows by linearity that for any A, we have

MA(v, t) =
∑
w∈A

m(v − w, t). (3.4)

Recall that addition/subtraction of vertices in Qn are interpreted
as coordinate-wise addition/subtraction modulo 2. It should be
remarked that the exact same analysis holds for the BTP.

We now show that the standard CTP indeed has the desired
relation to first-passage site percolation. To this end, we partition
the particles in this process into two sets, the set of alive particles
and the set of ghosts. Each initial particle is alive. Whenever a new
particle is born, it is alive if its location does not already contain an
alive particle and its parent is alive, and is a ghost otherwise. Note
that at most one particle at each vertex can be alive. Furthermore,
it is easy to show that each vertex will almost surely eventually
contain an alive particle.

Proposition 3.1. Consider first-passage site percolation on Qn

with exponentially distributed costs with unit mean. It is possible
to couple this process to the standard CTP such that for each vertex
v except 0̂, T ′V (0̂, v) denotes the birth time of the alive particle at
v.

Proof. For each vertex v, we let T̃ ′(v) denote the first time t ≥ 0
when v contains an alive particle, and we let c̃(v) denote the time
from the birth of this particle to the first arrival of its clock. Then
c̃(v) for v ∈ Qn are independent exponentially distributed random
variables with unit mean.
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From the definitions of the CTP and alive particles, it follows
that for any vertex v that is not a neighbor of 0̂, the alive particle at
v is born at the first arrival time of an alive particle at an adjacent
vertex. Hence, for any v that is not a neighbor of 0̂, we have

T̃ ′(v) = min
w∼v

(
T̃ ′(w) + c̃(w)

)
, (3.5)

and trivially T̃ ′(v) = 0 when v is a neighbor of 0̂. It is easy to see
that this uniquely defines T̃ ′(v), and that for each vertex v except
0̂, T̃ ′(v) denotes the reduced first-passage time from 0̂ to v with
respect to the vertex costs given by c̃(v).

Given this proposition, we are able to proceed analogously to
Sections 2 and 3 in [12]. In applying this coupling between the
CTP and first-passage site percolation we will consider a stronger
and more tractable property than aliveness. For any particle x in
the CTP, we let c(x) denote the number of pairs of particles y and
z such that

• y and z occupy the same vertex

• y is an ancestor of x

• y was born after z.

We furthermore let a(x) denote the number of such pairs where z
is either an ancestor of x or an identical n-tuple of an ancestor of
x, and define b(x) = c(x) − a(x). We call a particle x uncontested
if c(x) = 0.

It can be noted that a(x) is defined differently for the BTP. This
is because the strategy is loosely speaking to let a(x) denote the
number of pairs (y, z) that deterministically must exist given x. For
the CTP we have additional such pairs, namely those corresponding
to identical n-tuplets of ancestors of x.

Lemma 3.2. If a particle is uncontested, then it is alive.

Proof. If a particle x is a ghost, then it must have an earliest an-
cestor (possibly itself) which is a ghost, y. As y is a ghost but
the parent of y is alive, it follows that the location of y must have
already been occupied by some (alive) particle z. The pair (y, z) is
then counted in c(x).
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It is not hard to see that a(x) only depends on the path followed
by the ancestral line of x. If we know this path, then we know the
locations and order of births of all ancestors and identical n-tuplets
of ancestors of x. Let σ be a path represented as a vertex sequence.
We say that σ is vertex-minimal if there is no proper subsequence
which is a path with the same end points.

Lemma 3.3. Let x be a particle in the CTP. If the ancestral line
of x is vertex-minimal, then a(x) = 0. The converse is true unless
x is located at 0̂.

Proof. Denote the path followed by the ancestral line of x by v0, v1,
. . . , vl and the ancestors of x by x1, x2, . . . , xl = x. We have that
a(x) > 0 if and only if there exist 1 ≤ i < j ≤ l such that xj

occupies the same vertex as either xi or an identical n-tuplet of xi,
that is, vi−1 and vj are adjacent. Hence, if a(x) > 0 the path is
not vertex-minimal. Conversely, if a(x) = 0 it follows that the only
pairs of adjacent vertices are consecutive in the path. It is straight-
forward to show that, unless the path starts and stops at the same
vertex, this implies vertex-minimality.

What follows are two technical lemmas, corresponding to Lem-
mas 3.2 and 3.3 in [12]. Before presenting these, we need to specify
how to formally describe the CTP. Firstly, by a (potential) parti-
cle we mean a word {v1, z1, v2, z2, . . . ,vl−1, zl−1, vl} where v1, . . . , vl

denote vertices and z1, . . . zl−1 positive real numbers. This is inter-
preted as the particle whose ancestors are located at v1, v2, . . . , vl

and born at times 0, z1, z1 + z2 and so on. The CTP is described
by a random set X of potential particles, denoting the set of par-
ticles that will ever be born in the CTP. We will use ⊕ to denote
concatenation of words. We remark that this representation means
that the functions c(x) and b(x) are not functions only of x, and
should more correctly be denoted by c(X, x) and b(X, x). On the
other hand, a(x) is really a function of x as it only depends on the
location of the ancestors of x.

Lemma 3.4. Let σ = {0̂ = v0, v1, . . . , vl−1, vl} be a path. For
0 ≤ i ≤ l − 1 let Xi denote independent CTP:s where Xi is the
CTP obtained by initially placing one particle at each neighbor of
vi. Let f be a function that maps pairs (X, x) to the non-negative
real numbers where X is a realization of a CTP, and x is a particle
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in X. Similarly, let Vσ(X) denote the set of particles in X whose
ancestral lines follow σ. Then for a standard CTP, X, we have

E
∑

x∈Vσ(X)

f(X, x)

=
∫ ∞

0
. . .

∫ ∞

0
Ef (Xz1,...zl−1 , xz1,...,zl−1) dz1 . . . dzl−1,

(3.6)

where

Xz1,...zl−1

= X0 ∪ ({v1z1} ⊕X1) ∪ · · · ∪ ({v1z1v2z2 . . . vl−1zl−1} ⊕Xl−1)
(3.7)

and xz1,...,zl−1 = {v1z1v2z2 . . . vl}.

For compactness, we will only sketch a proof. The reader un-
convinced by this is referred to the proof of Lemma 3.2 in [12].

Proof sketch. Let us first consider the case when f(X, x) only de-
pends on x. In that case, we have

E
∑

x∈Vσ(X)

f(x) =
∫ ∞

0
. . .

∫ ∞

0
f (xz1,...,zl−1) dz1 . . . dzl−1. (3.8)

This is because the original particle at v1 gives birth to particles at
v2 at rate one whereupon, after its birth, each child at v2 of this
original particle gives birth to particles at v3 at rate one, and so
on. When f also depends on the realization of the CTP, the idea
is that we substitute f(X, x) in the left-hand side of this sum by
E [f(X, x)|x ∈ X]. Now, formally this conditioning does not really
make sense, but its meaning is intuitively clear; it denotes the av-
erage value of f(X, x) where the average is taken over all X that
include x. We have

E
∑

x∈Vσ(X)

f(X, x) = E
∑

x∈Vσ(X)

E [f(X, x)|x ∈ X]

=
∫ ∞

0
. . .

∫ ∞

0
E [f(X, xz1,...,zl−1)|xz1,...,zl−1 ∈ X] dz1 . . . dzl−1.

Now, xz1,...,zl−1 exists in X if and only if certain Poisson clocks have
arrivals at certain times. By the independent increment property,
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conditioning on these arrivals does not affect the Poisson clocks at
any other times. Hence, the conditional distribution of X given the
existence of xz1,...,zl−1 is the same as that of a standard CTP, except
with added arrivals, corresponding to the births of the ancestors of
xz1,...,zl−1 . This is precisely the distribution of Xz1,...zl−1 .

Lemma 3.5. Let X be a CTP, and let φ be an indicator function
on the set of potential particles in X. If φ(x) = 0 for all original
particles in the CTP, then

P

(∑
x∈X

φ(x) = 0

)
≥ exp

(
−E

∑
x∈X

φ(x)

)
. (3.9)

Proof. Let us refer to the set of original particles as generation one,
their children as generation two and so on. Let T denote the set
of birth times for particles in generation two in X, and let T′ ⊆ T
be the subset obtained by including t ∈ T if there exists a particle
x ∈ X such that φ(x) = 1 and x is an descendant of a particle in
generation two born at time t. It is clear that |T′| ≤

∑
x∈X φ(x)

and that |T′| = 0 if and only if
∑

x∈X φ(x) = 0.
By definition of the CTP, it is clear that T is a Poisson point

process. Furthermore, as the event that t ∈ T is included in T′ only
depends on descendants of particles in generation two born at time
t, this occurs independently for each t ∈ T. Hence, by the random
selection property, T′ is also a Poisson point process. This implies
that

P

(∑
x∈X

φ(x) = 0

)
= P

(
T′ = ∅

)
= exp

(
−E

∣∣T′∣∣)
≥ exp

(
−E

∑
x∈X

φ(x)

)
,

(3.10)

as desired.

Theorem 3.6. Consider a standard CTP. For any vertex v and
any t ≥ 0, let B(v, t) = E

∑
x b(x) where the sum goes over all par-

ticles at v at time t in the CTP, and let S(v, t) denote the expected
number of particles x at v at time t such that a(x) = 0. The proba-
bility that there is an uncontested particle at v at time t is at least
S(v, t) exp

(
−B(v,t)

S(v,t)

)
.
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Proof. Let P (v, t) denote the probability that v contains an uncon-
tested particle at time t. As at most one particle at each vertex can
be uncontested, this is the same thing as the expected number of
uncontested particles at v at time t. For each path σ from 0̂ to v,
let Pσ(v, t), Bσ(v, t) and Sσ(v, t) denote the contribution to P (v, t),
B(v, t) and S(v, t) respectively from particles whose ancestral line
follows σ.

The idea now is to bound Pσ(v, t) in terms of Bσ(v, t) and
Sσ(v, t) for each path σ from 0̂ to v. Recall that a(x) is constant
over all particles x whose ancestral line follows a fixed σ. We will
denote this constant by a(σ).

Let σ be a path from 0̂ to v such that a(σ) = 0. Applying
Lemma 3.4 we see that

Sσ(v, t) = E
∑

x∈Vσ(X)

1T (x)≤t

=
∫ ∞

0
. . .

∫ ∞

0
1z1+···+zl−1≤t dz1 . . . dzl−1,

(3.11)

where T (x) denotes the time of birth of x. Similarly, for any x ∈
Vσ(X) we have

Bσ(v, t) = E
∑

x∈Vσ(X)

1T (x)≤t b(X, x) =
∫ ∞

0
. . .

∫ ∞

0

1z1+···+zl−1≤t Eb (Xz1,...,zl−1 , xz1,...,zl−1) dz1 . . . dzl−1

(3.12)

and

Pσ(v, t) = E
∑

x∈Vσ(X)

1T (x)≤t1b(X,x)=0 =
∫ ∞

0
. . .

∫ ∞

0

1z1+···+zl−1≤t P (b (Xz1,...,zl−1 , xz1,...,zl−1) = 0) dz1 . . . dzl−1.

(3.13)

As a(xz1,...,zl−1) = 0, no two ancestors of xz1,...,zl−1 occupy the same
vertex. It follows that any pair of particles y and z which is counted
in b (Xz1,...,zl−1 , xz1,...,zl−1) is uniquely determined by z. Fixing σ
and z1, . . . , zl−1, this means that we can define φ(x) as an indicator
function such that

b (Xz1,...,zl−1 , xz1,...,zl−1) =
∑

x∈Xz1,...,zl−1

φ(x). (3.14)
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More precisely, φ(x) is the indicator for x occupying the same ver-
tex as an ancestor of xz1,...,zl−1 and being born before it. By the
definition of b(xz1,...,zl−1), we have that φ(x) is zero for any ances-
tor or identical n-tuplet of an ancestor of xz1,...,zl−1 . It follows by
Lemma 3.5 that

P (b (Xz1,...,zl−1 , xz1,...,zl−1) = 0) ≥ exp (−Eb (Xz1,...,zl−1 , xz1,...,zl−1)) .
(3.15)

By convexity of the exponential function we have e−r ≥ (1 +
r0 − r)e−r0 for any r, r0 ∈ R. Hence

Pσ(v, t) ≥ (1 + r0)e−r0Sσ(v, t)− e−r0Bσ(v, t), (3.16)

for any path σ from 0̂ to v such that a(σ) = 0. For any σ that satis-
fies a(σ) 6= 0 it is clear that Pσ(v, t) = Sσ(v, t) = 0 and Bσ(v, t) ≥ 0,
hence (3.16) holds in this case as well. Summing over all paths σ

from 0̂ to v and optimizing over r0 yields P (v, t) ≥ S(v, t)e−
B(v,t)
S(v,t) ,

as desired.

We will apply Theorem 3.6 as follows: Let {v̂n}∞n=1 be a se-
quence of vertices such that, for each n, v̂n ∈ Qn and x =
limn→∞ |v̂n| /n exists and is non-zero. We may, without loss of gen-
erality, assume that v̂n is never equal to 0̂. For each n, we let ϑn

denote the unique non-negative solution to

m(v̂n, ϑn) =
1
n

. (3.17)

Note that the expected number of particles at v̂n at time ϑn in
a standard CTP on Qn is Θ(1), and that ϑn → ϑ(x) as n → ∞.
By Theorem 3.6 we have that the probability that there is a un-
contested particle at v̂n at time ϑn in the CTP on Qn is at least
S(v̂n, ϑn) exp

(
−B(v̂n,ϑn)

S(v̂n,ϑn)

)
. Hence by Lemma 3.2 and Proposition

3.1 it follows that

P
(
T ′V (0̂, v̂n) ≤ ϑn

)
≥ S(v̂n, ϑn) exp

(
−B(v̂n, ϑn)

S(v̂n, ϑn)

)
. (3.18)

This means that if we can show that S(v̂n, ϑn) = Θ(1) and B(v̂n, ϑn)
= O(1), then we know that T ′V (0̂, v̂n) ≤ ϑn with probability bounded
away from 0 as n →∞.
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Section 4 will be dedicated to estimating S(v̂n, ϑn) and B(v̂n, ϑn).
The proof of Theorem 1.6 is then completed in Section 5 by showing
that if T ′V (0̂, v̂n) ≤ ϑn with probability bounded away from 0, then
a slightly larger upper bound on T ′V (0̂, v̂n) must hold asymptoti-
cally almost surely.

4 Calculus

4.1 Estimating S

We will prove that S(v̂n, ϑn) = Θ(1) in two steps. Firstly, we show
that most particles at v̂n at time ϑn have ancestral lines which are
close to vertex-minimal. Using this, we then give a combinatorial
argument that shows that a positive proportion of these particles
must have vertex-minimal ancestral lines.

Let us formalize the notion of paths being close to vertex-minimal.
Let v, w ∈ Qn be fixed distinct vertices and let σ = {v = v0, v1, . . . ,
vl = w} be a path from v to w. Throughout this section, we will
always think of a path as a finite sequence of vertices. In particular,
by the length of a path we mean the number of vertices in the path.
For any 0 < i ≤ j < l we say that the subsequence vi, vi+1, . . . , vj

is a detour of σ if removing these elements from σ results in a valid
path. Clearly, for v 6= w a path is vertex-minimal if and only if
it has no detours. Inspired by this, we say that a path is almost
vertex-minimal if all detours have length at most 2. Note that as
Qn is bipartite, any detour must have even length. Hence, a path is
almost vertex-minimal if it only has the shortest possible detours.

An important property of almost vertex-minimal paths is that
any such path from v to w can be constructed by taking a vertex-
minimal path with the same end-points and extending it as follows:
Between each two adjacent elements in the sequence either do noth-
ing or insert a detour of length 2.

Lemma 4.1. Let s, t ≥ 0 and v ∈ Qn. Then∑
w∈Qn

m(w, s)m(v + w, t) = m(v, s + t). (4.1)

Proof. Fix s. Observe that equality holds when t = 0 and that both
expressions solves (3.1)
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Proposition 4.2. Let {v̂n}∞n=1 be a sequence of vertices, v̂n ∈ Qn,
such that α = limn→∞ |v̂n| /n exists and is positive. Then, as n →
∞, the expected number of particles in the standard CTP on Qn

which are at v̂n at time ϑn, but that do not have almost vertex-
minimal ancestral lines tends to 0.

Proof. Let Xn denote the number of triples of particles x, y, z in
the CTP on Qn such that

• x is at v̂n at time ϑn

• y and z are located at adjacent vertices

• z is an ancestor of y which is an ancestor of x.

• y and z are neither one nor three generations apart.

We note that if the ancestral line of a given particle x at v̂n at
time ϑn can be constructed using some detour of length d > 2,
then it is clear that x would have a pair of ancestors at adjacent
vertices which are d + 1 generations apart. This means that any
such x is counted at least once in Xn. Hence, it suffices to show
that EXn = o(1).

For each triple x, y, z as above there are uniquely defined par-
ticles c, the particle after z in the ancestral line of x, and p, the
parent of y. Note that the requirement that y is neither the child,
nor the grand-grandchild of z implies that p is a descendant of c,
but not a child of c.

Let T = {0 = t0 < t1 < · · · < tk = ϑn} denote the end-points
of a partition of [0, ϑn) into left-closed right-open subintervals, and
let Xn,T denote the number of triples as above where c and y are
the only ancestors of x born during their respective time intervals.
Pick a, b integers between 0 and k − 1. Consider the number of
triples counted in Xn,T where c is born during [ta, ta+1) and y is
born during [tb, tb+1). Note that this is trivially 0 whenever b ≤ a.

Let us count the expected number of corresponding triples for
a < b. As z and y are located at adjacent vertices, for each such
triple we may denote the locations of z, y, c and p by v, v+ei, v+ej

and v + ei − ek respectively for some v ∈ Qn and 1 ≤ i, j, k ≤ n. A
particle is a potential z if it is born before time ta, hence there are on
average

∑n
l=1 m(v− el, ta) potential z:s at v. For each z, a particle

is a potential c if it is a child of z born during [ta, ta+1). Hence
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for each potential z at v, there are on average ta+1 − ta potential
c:s at v + ej . For each potential c, a particle is a potential p if it
originates from c at time ta+1 and is born before tb, but is not a
child of c. Hence for each potential c at v + ej there are on average
m(ei − ek − ej , tb − ta+1) potential p:s at v + ei − ek if v + ej and
v+ei−ek are not adjacent, and m(ei−ek−ej , tb−ta+1)−(tb−ta+1)
if they are. Lastly, for each potential p, a particle is a potential y
if it is a child of p born during [tb, tb+1), and for each potential y
a particle is a potential x if it is located at v̂n, originates from y
at time tb+1, and is born before time ϑn. Hence for each potential
p at v + ei − ek the expected number of potential y:s at v + ei is
tb+1− tb, and for each potential y at v + ei, the expected number of
x:s is m(v̂n− v− ei, ϑn− tb+1). Combining all of these, we see that

EXn,T =
∑
a<b

∑
v∈Qn

∑
i,j,k,l

m(v − el, ta)(ta+1 − ta)·

·
(

m(ei − ek − ej , tb − ta+1)− 1|ei+ej+ek|=1(tb − ta+1)
)
·

· (tb+1 − tb)m(v̂n − v − ei, ϑn − tb+1).
(4.2)

where the sums over i, j, k and l all go from 1 to n. Letting
T1, T2, . . . be a sequence of increasingly finer partitions of [0, ϑn]
such that the length of the longest interval in Tk tends to 0 as
k → ∞, it follows by monotone convergence that we have EXn =
limk→∞ EXn,T . Combining this with equation (4.2), and recogniz-
ing the right-hand side as a Riemann sum, we get

EXn =
∫ ϑn

0

∫ ϑn

a

∑
v∈Qn

∑
i,j,k,l

m(v − el, a)
(

m(ei − ek − ej , b− a)

− 1|ei+ej+ek|=1(b− a)
)

m(v̂n − v − ei, ϑn − b) da db.

(4.3)

Lemma 4.1 implies that we may replace the factor
∑

v∈Qn
m(v−

el, a)m (v̂n − v − ei, ϑn − b) in the integrand of equation (4.3) by
m(v̂n + ei + el, ϑn − b + a). Hence, by the substitution t = b − a,

111



the right-hand side of (4.3) simplifies to∫ ϑn

0
(ϑn − t)

∑
i,j,k,l

m(v̂n + ei + el, ϑn − t)·

·
(
m(ei + ej + ek, t)− 1|ei+ej+ek|=1t

)
dt.

(4.4)

Using the fact that sinh t ≤ cosh t for all t ∈ R, we have∑
i,j,k,l

m(v̂n + ei + el, ϑn − t)
(
m(ei + ej + ek, t)− 1|ei+ej+ek|=1t

)
≤ n (sinh(ϑn − t))|v̂n|−2 (cosh(ϑn − t))n−|v̂n|+2 ·

·
∑
i,j,k

(
m(ei + ej + ek, t)− 1|ei+ej+ek|=1t

)
.

It is straight-forward (but messy) to show that∑
i,j,k

(
m(ei + ej + ek, t)− 1|ei+ej+ek|=1t

)
= (cosh t)n O

(
n3t3

)
.

As cosh (ϑn − t) cosh t ≤ coshϑn it follows that

EXn

≤
∫ ϑn

0
n (sinh(ϑn − t) cosh t)|v̂n|−2 (coshϑn)n−|v̂n|+2 O

(
n3t3

)
dt.

(4.5)

Recall that by the definition of ϑn we have

(sinhϑn)|v̂n| (coshϑn)n−|v̂n| =
1
n

. (4.6)

Define the function f(t) = ln sinh(ϑn − t) + ln cosh t. Note that
f ′(t) = − coth(ϑn−t)+tanh t, and f ′′(t) = − csch2(ϑn−t)+sech2 t.
As 0 ≤ sech t ≤ 1 and csch t ≥ 1 for all 0 < t ≤ ϑn it follows
that f is concave, and thus for any 0 ≤ t ≤ ϑn we have f(t) ≤
f(0)− t coth ϑn ≤ f(0)− t. Hence

(sinh(ϑn − t) cosh t)|v̂n|−2 ≤ (sinhϑn)|v̂n|−2 e−(|v̂n|−2)t. (4.7)

Plugging this into equation (4.5), we get

EXn ≤
∫ ϑn

0
e−(|v̂n|−2)t O

(
n3t3

)
dt. (4.8)

As |v̂n| ∼ x · n this implies that EXn = O
(

1
n

)
, as desired.
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Proposition 4.3. For any pair of sequences {v̂n}∞n=1 and {ϑn}∞n=1

as above, we have S(v̂n, ϑn) = Θ(1).

Proof. Let Γn and Γ̃n denote the sets of vertex-minimal and almost
vertex-minimal paths from 0̂ to v̂n respectively. Using Lemma 3.4
with f(X, x) as the indicator function of x being born at time ϑn

and having ancestral line in Γ̃n and Γn respectively, we can write
the expected number particles at v̂n at time ϑn in the CTP whose
ancestral lines are almost vertex-minimal as

∑
σ∈Γ̃n

ϑ
|σ|−2
n

(|σ| − 2)!
(4.9)

and the expected number that are vertex-minimal as

∑
σ∈Γn

ϑ
|σ|−2
n

(|σ| − 2)!
. (4.10)

As the total expected number of particles at v̂n at time ϑn in the
CTP is Θ(1), Proposition 4.2 implies that the sum in (4.9) is also
Θ(1).

The idea now is to group the terms of the sum in (4.9) according
to which vertex-minimal path σ it is an extension of, that is we write

∑
σ∈Γ̃n

ϑ
|σ|−2
n

(|σ| − 2)!
≤
∑

σ∈Γn

∑
σ̃∈Γ̃n
σ̃⊇σ

ϑ
|σ̃|−2
n

(|σ̃| − 2)!
. (4.11)

Here σ̃ ⊇ σ denotes that σ̃ is an extension of σ. Note that the
inequality comes from the fact that σ̃ may be an extension of more
than one vertex-minimal path.

Let us fix a vertex-minimal path σ ∈ Γn consisting of l vertices.
It is straight-forward to show that the number of possible detours of
length 2 that can be inserted between each adjacent pair of elements
in σ is 3(n− 1). Hence, there are at most 3k(n− 1)k

(
l−1
k

)
ways to

extend σ to an almost vertex-minimal path of length l + 2k. This
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means that

∑
σ̃∈Γ̃n
σ̃⊇σ

ϑ
|σ̃|−2
n

(|σ̃| − 2)!
≤

l−1∑
k=0

3k(n− 1)k

(
l − 1

k

)
ϑl−2+2k

n

(l − 2 + 2k)!

≤ ϑl−2
n

(l − 2)!

l−1∑
k=0

3k(n− 1)k

(
l − 1

k

)
ϑ2k

n

(l − 1)2k

=
ϑl−2

n

(l − 2)!

(
1 +

3ϑ2
n(n− 1)

(l − 1)2

)l−1

≤ ϑl−2
n

(l − 2)!
exp

(
3ϑ2

n(n− 1)
l − 1

)
.

As any path from 0̂ to v̂n must have length at least |v̂n| + 1, we
conclude that∑

σ∈Γn

ϑ
|σ|−2
n

(|σ| − 2)!
≥ exp

(
−3ϑ2

n

n− 1
|v̂n|

) ∑
σ∈Γ̃n

ϑ
|σ|−2
n

(|σ| − 2)!
= Θ(1).

(4.12)

4.2 Estimating B

Proposition 4.4. For any v̂ ∈ Qn and any u > 0 we have

B(v̂, u) ≤
∫ u

0

∑
∆∈Qn

∑
i,j,k

m(∆− ek − ei, t)·

·m(∆− ej , t) m(v̂ −∆, u− t) dt

+
∫ u

0
(u− t)

∑
∆∈Qn

∑
i,j,k

m(∆− ek − ej , t)·

·m(∆, t) m(v̂ −∆− ei, u− t) dt

+
∫ u

0
(u− t)

∑
∆∈Qn

∑
i,j,k

m(∆− ek, t)·

·m(∆− ej , t) m(v̂ −∆− ei, u− t) dt

+
∫ t

0
(u− t)

∑
∆∈Qn

∑
i,j,k,l

m(∆− el − ej , t)·

·m(∆− ek, t) m(v̂ −∆− ei, u− t) dt,

(4.13)
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where the sums over i, j, k and l go from 1 to n.

Proof. We observe that B(v̂, u) is bounded by the expected number
of triplets of particles x, y, z in the CTP such that

• x is at v̂ at time u

• y is an ancestor of x

• y and z occupy the same vertex

• z was born before y.

Note the similarity to the quantity Xn in Proposition 4.2. For the
sake of compactness, we will be less rigorous here, and refer to the
proof of that proposition to see how to formalize this argument.

Let us start by considering the number of such triples x, y and z
where z has no ancestors in common with x and y, that is, for some
i 6= j we have that x and y originate from the original particle at
ei whereas z originates from the original particle at ej . Denote the
common location of y and z by v, and pick k such that the parent
of y is located at v − ek. Note that as z is strictly older than y, y
cannot be an original particle and hence has a parent. The lineage
of x, y, z is illustrated in Graph 1 of Figure 3.

Let us count the expected number of such triples corresponding
to a fixed v and where y is born during the time interval [t, t + dt).
The potential z:s corresponding to a fixed j are simply the de-
scendants of the original particle at ej that are at v at time t.
Hence the expected number of such particles is m(v − ej , t). Simi-
larly, for a fixed i the expected number of potential y:s is given by
m(v−ek−ei, t) dt, and for each potential y the expected number of
potential x:s is m(v, u− t). As the potential z:s are born indepen-
dently of the pairs of potential x:s and y:s, we see that the expected
number of triples x, y, z that do not have common ancestors, corre-
sponding to a fixed vertex v and a fixed time interval [t, t + dt) is
given by

n∑
i=1

n∑
j=1
j 6=i

n∑
k=1

m(v − ek − ei, t) m(v − ej , t) m(v̂ − v, u− t) dt. (4.14)

The total expected number of triples x, y, z without common an-
cestors is hence given by summing this expression over all vertices
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0̂

v

v̂

eiej

ek

Graph 1.

0̂

v

w

v̂

ei

ej

ek

Graph 2.

0̂

v

w

v̂

ei

ej

ek

Graph 3.

0̂

v

w

v̂

ei

ek

ej

el

Graph 4.

Figure 3: Illustration of the possible ways x, y and z can be related.
The left-most arrows describe the ancestors of z and the right-most
the ancestors of x and y. Graph 1 shows the case when z has no
ancestor in common with x and y. Here v is the common location
of y and z, and v−ek is the location of the parent of y. For Graphs
2-4, v denotes the location of the last common ancestor of x and
z, and w the common location of y and z. Graph 2 shows the
case where the ancestral lines of x and z split by the birth of a new
ancestor of x, Graph 3 the case where this occurs by a new ancestor
of z and Graph 4 the case where the first unique ancestors of x and
of z are born simultaneously as part of the same group of identical
n-tuplets.

v ∈ Qn and integrating over t from 0 to u. This is clearly bounded
from above by the first term in the right-hand side of equation
(4.13).

We now consider the cases where the three particles x, y, z have
common ancestors. Denote the last common ancestor of the parti-
cles by l and its location by v. As x and z have common ancestors
but neither is a descendant of the other, there must be a time s
when the ancestral lines of x and z split. There are three possible
ways in which this can occur, as illustrated by Graphs 2-4 in Figure
3; either a new ancestor of x is born, a new ancestor of z is born, or
new ancestors of x and z are identical n-tuplets and therefore born
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at the same time. Observe that, in all three cases, y must be born
strictly after this time. We let w denote the common location of y
and z.

We now count the expected number of such triples correspond-
ing to fixed vertices v and w, where the ancestral lines split during
the time interval [s, s+dt) and such that y is born during [s+ t, s+
t+dt). The potential l:s are the particles in the CTP at v at time s,
hence the expected number of potential l:s is

∑n
i=1 m(v−ei, s). For

each potential l, the probability that it gives birth during [s, s+ds)
is ds. Now, for each possibility for the ancestral lines of x and z
to split, conditioned on the process at time s + ds, the pairs of
potential x:s and y:s originate from a different particle than the
potential z:s. Hence these are born independently. By following
the ancestral lines as illustrated in Graphs 2-4 in a similar manner
as above, we see that the expected number of triples with common
ancestors corresponding to fixed v and w, fixed time intervals, and
corresponding to each case for how the ancestral line splits are given
by

n∑
i=1

n∑
j=1

n∑
k=1

m(v − ei, s) m(w − ek − v − ej , t)·

·m(w − v, t) m(v̂ − w, u− s− t) ds dt

(4.15)

n∑
i=1

n∑
j=1

n∑
k=1

m(v − ei, s) m(w − ek − v, t)·

·m(w − v − ej , t) m(v̂ − w, u− s− t) ds dt

(4.16)

n∑
i=1

n∑
j=1

n∑
k=1
k 6=j

n∑
l=1

m(v − ei, s) m(w − el − v − ej , t)·

·m(w − v − ek, t) m(v̂ − w, u− s− t) ds dt

(4.17)

respectively. The total expected number of triples x, y, z with com-
mon ancestors is hence given by summing these three expressions
over all pairs of vertices v, w ∈ Qn and integrating over all s and t
such that s, t ≥ 0 and s + t ≤ u.

It only remains to simplify these expressions. We observe that
summing (4.15), (4.16) and (4.17) over all v, w ∈ Qn removes all
dependence on s. Consider in particular the sum of (4.15) over
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all v, w ∈ Qn. By substituting summing over w by summing over
∆ = w − v and applying Lemma 4.1 we have

∑
v,∆∈Qn

∑
i,j,k

m(v − ei, s) m(∆− ek − ej , t)·

·m(∆, t) m(v̂ −∆− v, u− s− t) ds dt

=
∑

∆∈Qn

∑
i,j,k

m(∆− ek − ej , t) m(∆, t)m(v̂ −∆− ei, u− t) ds dt.

(4.18)

Integrating this expression over all s, t ≥ 0 such that s + t ≤ u, we
see that the expected number of triples of particles x, y, z as above
corresponding to the case illustrated in Graph 2 in Figure 3 is given
by

∫ u

0
(u− t)

∑
∆∈Qn

∑
i,j,k

m(∆− ek− ej , t) m(∆, t)m(v̂−∆− ei, u− t) dt.

(4.19)
Proceeding analogously for (4.16) and (4.17) we see that the ex-
pected number of triples corresponding to Graphs 3 and 4 in Figure
3 are given respectively by

∫ u

0
(u− t)

∑
∆∈Qn

∑
i,j,k

m(∆− ek, t) m(∆− ej , t)m(v̂−∆− ei, u− t) dt

(4.20)
and∫ t

0
(u−t)

∑
∆∈Qn

∑
i,j,k,l
j 6=k

m(∆−el−ej , t) m(∆−ek, t)m(v̂−∆−ei, u−t) dt.

(4.21)
The expressions in (4.19)-(4.21) are clearly bounded from above by
terms 2-4 respectively in the right-hand side of equation (4.13).

Consider the sum
∑

∆∈Qn
m(∆, a)2 m(v̂−∆, b). For any v ∈ Qn

we let vi denote the i:th coordinate of v. Define the function m1 :
{0, 1} × R → R by m1(0, t) = cosh t and m1(1, t) = sinh t. Using
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the fact that m(v, t) =
∏n

i=1 m1(vi, t), we see that∑
∆∈Qn

m(∆, a)2 m(v̂ −∆, b)

=
∑

∆∈Qn

n∏
i=1

m1(∆i, a)2 m1(v̂i + ∆i, b)

=
n∏

i=1

1∑
δ=0

m1(δ, a)2 m1(v̂i + δ, b)

=
(
cosh(a)2 sinh(b) + sinh(a)2 cosh(b)

)k ·
·
(
sinh(a)2 sinh(b) + cosh(a)2 cosh(b)

)n−k

= enb

(
1
2

cosh 2a− 1
2
e−2b

)k (1
2

cosh 2a +
1
2
e−2b

)n−k

,

where k = |v̂|. Let

Gx(a, b) = x ln
(
cosh(a)2 sinh(b) + sinh(a)2 cosh(b)

)
+ (1− x) ln

(
sinh(a)2 sinh(b) + cosh(a)2 cosh(b)

)
= b + x ln

(
1
2

cosh 2a− 1
2
e−2b

)
+ (1− x) ln

(
1
2

cosh 2a +
1
2
e−2b

)
.

(4.22)

Then ∑
∆∈Qn

m(∆, a)2 m(v̂ −∆, b) = exp
(
nG k

n
(a, b)

)
. (4.23)

Proposition 4.5. For any ε > 0 there exists a constant Cε > 0
only depending on ε such that whenever u ∈ [ε, 1] we have

B(v̂, u) ≤ Cε

∫ u

0

[(
n4t3 + n3t + n2

)
(u− t) +

(
n3t3 + n2t + n

)]
·

· exp
(
nG k

n
(t, u− t)

)
dt,

(4.24)

where k = |v̂|.
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Proof. The idea of the proof is to use equation (4.23) to reformulate
equation (4.13) in terms of partial derivatives of Gx(a, b). Note that
by the fact that m(v, t) satisfies (3.1) we have∑

∆∈Qn

∑
i,j,k

m(∆− ek − ej , a) m(∆, a)m(v̂ −∆− ei, b)

+
∑

∆∈Qn

∑
i,j,k

m(∆− ek, a) m(∆− ej , a)m(v̂ −∆− ei, b)

=
∑

∆∈Qn

m′′(∆, a) m(∆, a)m′(v̂ −∆, b)

+ m′(∆, a) m′(∆, a)m′(v̂ −∆, b)

=
1
2

∂3

∂a2 ∂b

∑
∆∈Qn

m(∆, a)2m(v̂ −∆, b)

=
1
2

∂3

∂a2 ∂b
exp

(
nG k

n
(a, b)

)
.

Similarly, using the fact that all derivatives of m(v, t) are non-
negative, we have∑

∆∈Qn

∑
i,j,k,l

m(∆− el − ej , a) m(∆− ek, a)m(v̂ −∆− ei, b)

≤ 1
6

∂4

∂a3 ∂b
exp

(
nG k

n
(a, b)

)
,

and ∑
∆∈Qn

∑
i,j,k

m(∆− ek − ei, a) m(∆− ej , a)m(v̂ −∆, b)

≤ 1
6

∂3

∂a3
exp

(
nG k

n
(a, b)

)
.

Let c denote the minimum of 1
2 cosh 2a− 1

2e−2b over all a, b ≥ 0
such that ε ≤ a + b ≤ 1. It is clear that c > 0. This means that for
any a, b in this range and any 0 ≤ x ≤ 1 we have∣∣∣∣ ∂

∂a
Gx(a, b)

∣∣∣∣
=

∣∣∣∣∣x sinh 2a
1
2 cosh 2a− 1

2e−2b
+ (1− x)

sinh 2a
1
2 cosh 2a + 1

2e−2b

∣∣∣∣∣
≤ c−1 sinh 2a.

(4.25)
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Hence, for sufficiently large C > 0 we have
∣∣ ∂
∂aGx(a, b)

∣∣ ≤ C a
whenever 0 ≤ x ≤ 1 and a, b ≥ 0 such that ε ≤ a+b ≤ 1. Moreover,
as Gx(a, b) is smooth wherever it is defined, we know that for C
sufficiently large all partial derivatives of order up to 4 of Gx(a, b)
are bounded in absolute value by C when the pair (a, b) is in this
domain.

By explicitly writing out the partial derivatives of
exp

(
nG k

n
(a, b)

)
above and combining this with Proposition 4.4 we

see that (4.24) holds for sufficiently large C, as desired.

For a given sequence v̂ = v̂n as above, we define

fn(t) = G k
n
(t, ϑn − t)

= ϑn − t +
k

n
ln
(

1
2

cosh 2t− 1
2
e−2ϑn+2t

)
+

n− k

n
ln
(

1
2

cosh 2t +
1
2
e−2ϑn+2t

) (4.26)

and

f(t) = Gx(t, ϑ(x)− t)

= ϑ(x)− t + x ln
(

1
2

cosh 2t− 1
2
e−2ϑ(x)+2t

)
+ (1− x) ln

(
1
2

cosh 2t +
1
2
e−2ϑ(x)+2t

)
.

(4.27)

Note that f depends on x. From the definition of Gx(a, b) we see
that fn(0) = − ln n

n and fn(ϑn) = −2 ln n
n , and that f(0) = f(ϑ(x)) =

0, see (1.7).
Suppose that fn(t) is “asymptotically U-shaped” in the sense

that exists a constant λ > 0 such that for sufficiently large n we
have

fn(t) ≤ max (fn(0)− λt, fn(ϑn)− λ(ϑn − t)) (4.28)

for any 0 ≤ t ≤ ϑn. If this holds, then by Proposition 4.5 we have

B(v̂n, ϑn) ≤
∫ ∞

0
O
(
n3t3 + n2t + n

)
e−λnt dt, (4.29)

which would imply that B(v̂n, ϑn) = O(1) as desired. It remains to
show for which sequences of vertices v̂ = v̂n, fn is asymptotically
U-shaped. We start by giving a simple sufficient condition for x.
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Proposition 4.6. Suppose that x > 1 − ln(2
√

2)
ln 3 ≈ 0.054. Then

fn(t) is asymptotically U-shaped.

Proof. By some straight-forward but tedious calculations we see
that

f ′′n(t) =
k

n

4(1− 2e−2ϑn)

(cosh 2t− e−2ϑn+2t)2
+

n− k

n

4(1 + 2e−2ϑn)

(cosh 2t + e−2ϑn+2t)2
.

(4.30)
Now, if we assume that ϑn ≥ ln

√
2, then the first term in the right-

hand side is non-negative, and so we have that f ′′n(t) is at least, say,
n−k
100n for all 0 ≤ t ≤ ϑn. It follows that if ϑ(x) > ln

√
2, then fn(t)

is asymptotically U-shaped. The proposition follows by the easily
verified fact that ϑ

(
1− ln(2

√
2)

ln 3

)
= ln

√
2.

It is clear from the proof of Proposition 4.6 that the limit 1 −
ln(2

√
2)

ln 3 is not optimal, and can be lowered by considering f ′′n(t)
more closely. It turns out however that there is a limit for x at
which the convexity of fn breaks down, and more importantly for
sufficiently small x the asymptotic U-shape of fn breaks down. In
the remaining part of this section, we will investigate when this
occurs.

By some more straight-forward but tedious calculations we see
that

f ′n(t) ·
(
cosh 2t− e−2ϑn+2t

)(
cosh 2t + e−2ϑn+2t

)
=
(

1
4
− e−4ϑn

)
e4t − 3

4
e−4t − 1

2
+ 2

n− 2k

n
e−2ϑn .

(4.31)

This expression has the same sign as f ′n(t). We see that depending
on the sign of 1

4 − e−4ϑn it is either increasing or concave, hence fn

changes sign at most twice. Furthermore, if fn changes sign twice
it goes from negative to positive to negative. In the same way, since

f ′(t) ·
(
cosh 2t− e−2ϑ(x)+2t

)(
cosh 2t + e−2ϑ(x)+2t

)
=
(

1
4
− e−4ϑ(x)

)
e4t − 3

4
e−4t − 1

2
+ 2(1− 2x)e−2ϑ(x).

(4.32)

the same must be true for f(t).
Combining this observation with the fact that f ′′n(t) is bounded

it follows that a necessary and sufficient condition for fn being
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Figure 4: Plot of equation (4.34) divided by x as a function of ϑ(x).
We see that as ϑ tends to 0, this converges to its limit of −4. The
curve intersects the ϑ-axis at ϑ(x) ≈ 0.0898, that is at x ≈ 0.00167.

asymptotically U-shaped is that limn→∞ f ′n(0) = f ′(0) < 0 and
limn→∞ f ′n(ϑn) = f ′(ϑ(x)) > 0. In fact, the former condition is
implied by the latter as then f ′n(t) changes sign at most once, but
f(0) = f(ϑ(x)) = 0.

As 1 = (coshϑ) (tanhϑ)x we have

x(ϑ) =
ln coshϑ

− ln tanh ϑ
=

ϑ2

−2 ln ϑ
+ O

(
ϑ4

(lnϑ)2

)
. (4.33)

Hence, we have an explicit expression for (4.32) as a function of
ϑ(x). Plugging t = ϑ(x) into the right-hand side of this expression
we get

1
4
e4ϑ − 3

4
e−4ϑ + 2(1− 2x)e−2ϑ − 3

2
. (4.34)

Note that this has the same sign as f ′(ϑ(x)). By Taylor expanding
this expression in x and ϑ we see that the dominating term for small
ϑ is −4x. Hence fn is not asymptotically U-shaped for sufficiently
small x. To get a picture of what happens when x increases, we
divide (4.34) by x and plot as a function of ϑ, see Figure 4. It is
clear that there is a critical value x∗ slightly less than 0.0017 such
fn is asymptotically U-shaped if and only if x > x∗. This proves
the following proposition:

Proposition 4.7. Let {v̂n}∞n=1 be a sequence of vertices, v̂n ∈ Qn,
such that limn→∞ |v̂n| /n exists and is strictly greater than x∗. Then
for ϑn as defined in (3.17) we have B(v̂n, ϑn) = O(1).
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Remark 4.8. Throughout this section we have only really been in-
terested in deriving a tractable upper bound for B(v̂n, ϑn) without
discussing sharpness. Nevertheless, it is not too hard to convince
oneself that the bound given in Proposition 4.5 is sharp up to, say,
a polynomial factor in n. However, for x < x∗ we know that there
exists an interval of positive length for t where fn(t) is positive,
which would then imply that B(v̂n, ϑn) diverges exponentially fast
in n.

5 Completing the proof of Theorem 1.6

Let {v̂n}∞n=1 be a sequence of vertices, v̂n ∈ Qn for each n, such that
x = limn→∞ |v̂n| /n exists and is at least 0.002 and let {ϑn}∞n=1 be as
in (3.17). Applying the estimates of S(v̂n, ϑn) and B(v̂n, ϑn) from
Propositions 4.3 and 4.7 to Theorem 3.6 it follows by Proposition
3.1 and Lemma 3.2 that there exists a constant c0 > 0 such that

lim inf
n→∞

P
(
T ′V (0̂, v̂n) ≤ ϑn

)
≥ c0. (5.1)

Since ϑn → ϑ(x) as n → ∞, this means in particular that for any
ε > 0 we have

lim inf
n→∞

P
(
T ′V (0̂, v̂n) ≤ ϑ(x) + ε

)
≥ c0. (5.2)

Note that we can assume that c0 is independent of the choice of
sequence.

Proposition 5.1. Let {v̂n}∞n=1 be a sequence as above, and let
x = lim |v̂| /n. Then, for any ε > 0 we have

P
(
T ′V (0̂, v̂n) ≤ ϑ(x) + ε

)
→ 1 (5.3)

as n →∞.

Proof. Let ε > 0 be arbitrary. Condition on the vertex passage
times of all neighbors of 0̂ and v̂n. Assuming |v̂n| ≥ 3, it is easy
to see that the number of coordinate places 1 ≤ i ≤ n with the
property that the i:th coordinate of v̂n is 1, and the cost of both ei

and v̂n−ei are at most ε/3, is distributed as Bin
(
|v̂n| , (1− e−ε/3)2

)
.

Hence as n → ∞ it is clear that, with probability 1 − o(1), there
are at least two such coordiantes. Pick a pair i 6= j.
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Depending on the choice of i and j, we define Q0 as the induced
subgraph of Qn with vertex set {v ∈ Qn : vi = 1, vj = 0}. We
similarly define Q1 as the induced subgraph of Qn with vertex set
{v ∈ Qn : vi = 0, vj = 1}. Note that Q0 and Q1 are vertex disjoint
subgraphs of Qn, both isomorphic to Qn−2.

In light of Q0 and Q1, we have two natural upper bounds for
T ′V (0̂, v̂n), namely c(ei)+c(v̂n−ej) plus the smallest reduced vertex
passage time for any path from ei to v̂n−ej in Q0, and c(ej)+c(v̂n−
ei) plus the smallest reduced vertex passage time for any path from
ej to v̂n − ei in Q1. As the only vertices of Q0 and Q1 which are
neighbors of 0̂ or v̂n are ei, ej , v̂n − ei and v̂n − ej , the reduced
first-passage times in Q0 and Q1 are independent of each other and
each is distributed as the reduced first-passage time between two
vertices at distance |v̂n|−2 in Qn−2. By applying (5.2) to the first-
passage percolation problems in Q0 and Q1, we conclude that for
any ε > 0 and for any sequence {v̂n}∞n=1 where v̂n ∈ Qn for each
n ≥ 1 such that x = limn→∞ |v̂n| /n exists and is at least 0.002, we
have

lim inf
n→∞

P
(
T ′V (0̂, v̂n) ≤ ϑ(x) + ε

)
≥ 1− (1− c0)2. (5.4)

Note that this is the same expression as (5.2), except that the right-
hand side here is strictly larger. Hence, by iteratively applying this
argument, we see that we can replace the right-hand side in (5.4) by
ck = 1− (1− c0)2

k
for any non-negative integer k. The Proposition

follows by letting k →∞.
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