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Abstract

This paper considers the modeling and the analysis of the performance of lock-free concurrent data
structures. Lock-free designs employ an optimistic conflict control approach, allowing several processes
to access the shared data object at the same time. The operations on these data structures are typically
designed as compositions of retry loops.

Our main contribution is a new way of modeling and analyzing a general class of lock-free algorithms,
achieving predictions of throughput that are close to what we observe in practice. In our model we
introduce two key metrics that shape the performance of lock-free algorithms: (i) expansion in execution
time of a retry due to memory congestion and (ii) number of wasted retries. We show how to compute
these two metrics, and how to combine them, to calculate the throughput of an arguably large class of
lock-free algorithms. Our analysis also captures the throughput performance of a lock-free algorithm when
executed as part of a larger parallel application. This part of our analysis leads to an analytical method
for calculating a good back-off strategy to finely tune the performance of a lock-free application. Our
experimental results, based on a set of widely used concurrent data structures and on abstract lock-free
designs, show that our analysis follows closely the actual code behavior.

To the best of our knowledge, this is the first attempt to make ends meet between theoretical bounds
on performance and actual measured throughput.
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I. INTRODUCTION

Lock-free programming provides highly concurrent access to data and has been increasing its footprint
in industrial settings. Providing a modeling and an analysis framework capable of describing the
practical performance of lock-free algorithms is an essential, missing resource necessary to the parallel
programming and algorithmic research communities in their effort to build on previous intellectual efforts.
The definition of lock-freedom mainly guarantees that at least one concurrent operation on the data
structure finishes in a finite number of its own steps, regardless of the state of the other operations. On
the individual operation level, lock-freedom cannot guarantee that an operation will not starve.

The goal of this paper is to provide a way to model and analyze the practically observed performance of
lock-free algorithms. We take a first step towards such a framework. Our model allows us to analytically
predict throughput of a general class of lock-free algorithms, while our analytical prediction is close to
what we see in practice, and give us the means to compare analytically different lock-free algorithms,
based on the expected throughput gain as the number of processors increases. In order to model
the behavior of a lock-free data structure in different contention scenarios, our modeling framework
incorporates also the application context. An application is expected to be calling an operation on the
lock-free data structure, and the frequency of these calls impacts the contention in the data structure.
Also, by varying both the frequency of calls for each process and the number of active processes, we
cover a wide contention domain.

Because our modeling framework considers also the application invoking the operations on the data
structures, it can also be used to provide an analytical method for deriving a good back-off strategy to
finely tune the performance of lock-free data structures in different execution settings.

The starting point for building our model is the introduction of two key factors that capture the
performance of lock-free data structure designs. These two key factors are the consequence of the two
types of conflict that take place when performing concurrent operations on the data structures. The first
type of conflicts occurs when accessing atomic primitives and shared memory, and leads to expansion
in execution of a data structure operation. Because lock-free designs allow concurrent operations to
execute at the same time, we have indeed simultaneous calls to atomic primitives (that occur in the retry
loop). These calls collide and conduct to stall time, which results into latency expansion on atomics,
and consequently on the operation itself. The second type of conflicts concerns high level conflicts of
overlapping retry loops when accessing parts of the data structures, and lead to retries (some of which
are inevitable, some others are wasted). In lock-free code, concurrent operations run the same looping
code; when looking into a system execution, concurrent retry loops trying to modify the same parts of
the data structure can fail (and conduct to new retries) as soon as one of them succeeds. The wasted
retries are caused by the synchronization and not because of concurrency. The smaller the time between
the end of a successful retry loop and the beginning of the next one, the better the synchronization, and
the smaller the number of wasted retries.

We then show how throughput, that we consider here as the performance criterion, can be computed by
connecting these two key factors in an iterative way. We start by estimating the expansion probabilistically,
and emulate the effect of stall time introduced by the expansion as extra work added to each thread
experiencing expansion. Then we estimate the number of retries, that in turn lead to additional extra work
produced by the failed retries. We progress by computing again the expansion on a system setting where
those two new amounts of work have been incorporated, and reiterate the process. The convergence is
ensured by a fixed-point search. According to the synchronization between threads, the number of wasted
retries falls into an interval; that is why we actually compute a lower and an upper bound on throughput,
corresponding respectively to the upper and the lower bound on the number of wasted retries.

We consider the class of lock-free algorithms that can be modeled as a linear composition of fixed
size retry loops. This class covers numerous extensively used lock-free designs such as stacks [Tre86]
(Pop, Push), queues [MS96] (Enqueue, Dequeue), counters [DLM13] (Increment, Decrement) and
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priority queues [LJ13] (DeleteMin).
In addition, by relaxing the requirement of fixed size, the model extends to most of the data structures

in the literature, covering a vast number of possible lock-free designs. In particular, several universal
constructions [Bar93], [AM99], [Her91], that make possible the design of a lock-free implementation
from any abstract data type, belong to this class. We see the release of this fixed size constraint and the
consideration of the average size as a next step of continuing this work. Its achievement is strengthened
by the fact that the quality of the predictions are preserved even with varying size parallel sections, and
retry loops which are not strictly constant in practice.

To evaluate the accuracy of our model and analysis framework, we performed first synthetic tests
capturing a wide range of possible abstract algorithmic designs. As a second step, we studied several
reference implementations of extensively studied lock-free data structures: stacks, queues, counters and
priority queues. Our evaluation results reveal that our model is able to capture the behavior of all the
synthetic and real designs for all different numbers of threads and sizes of parallel work (consequently
also contention). We also evaluate the use of our analysis as a tool for tuning the performance of lock-
free code by selecting the appropriate back-off strategy that will maximize throughput by comparing our
method with against widely known back-off policies, namely linear and exponential.

The rest of the paper is organized as follows. We discuss related work in Section II, then the problem
is formally described in Section III. We deal with the computation of the number of wasted retries
in Section IV, while in Section V, we firstly show how to compute the expansion, then combine this
expansion with wasted retries to obtain the final throughput estimate. We describe the experimental results
in Section VI.

II. RELATED WORK

Anderson et al. [ARJ97] evaluated the performance of lock-free objects in a single processor real-time
system by emphasizing the impact of retry loop interference. Tasks can be preempted during the retry
loop execution, which can lead to interference, and consequently to an inflation in retry loop execution
due to retries. They obtained upper bounds for the number of interferences under various scheduling
schemes for periodic real-time tasks.

Intel [Int13] conducted an empirical study to illustrate performance and scalability of locks. They
showed that the critical section size, the time interval between releasing and re-acquiring the lock (that
is similar to our parallel section size) and number of threads contending the lock are vital parameters.

Failed retries do not only lead to useless effort but also degrade the performance of successful ones by
contending the shared resources. Alemany et al. [AF92] have pointed out this fact, that is in accordance
with our two key factors, and, without trying to model it, have mitigated those effects by designing
non-blocking algorithms with operating system support.

Alistarh et al. [ACS14] have studied the same class of lock-free structures that we consider in this
paper. Their analysis assumes a uniform stochastic scheduler, i.e. a memoryless scheduler that schedules
at each step one of the processes within equal probability. They express the limiting behavior (according
to the number of threads) of the expected complexity of the execution of a retry loop in number of steps
of the scheduler. The scheduling assumptions they are based on make the comparison between their and
our bounds not trivial, not to say incongruous.

III. PROBLEM STATEMENT

A. Running Program and Targeted Platform

In this paper, we aim at evaluating the throughput of a multi-threaded lock-free algorithm (code) that
is based on the utilization of a shared lock-free data structure. Such a program can be abstracted by the
Procedure AbstractAlgorithm (see Figure 1) that represents the skeleton of the function which is called
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Procedure AbstractAlgorithm
1 Initialization();
2 while ! done do
3 Parallel_Work();
4 while ! success do
5 current ← Read(AP);
6 new ← Critical_Work(current);
7 success ← CAS(AP, current, new);

Figure 1: Thread procedure

Cycle

T0

T1

T2

T3

Figure 2: Execution with one wasted retry, and one inevitable failure

by each spawned thread. It is decomposed in two main phases: the parallel section, represented on line 3,
and the retry loop, from line 4 to line 7. A retry starts at line 5 and ends at line 7.

As for line 1, the function Initialization shall be seen as an abstraction of the delay between the spawns
of the threads, that is expected not to be null, even when a barrier is used. We then consider that the
threads begin at the exact same time, but have different initialization times.

The parallel section is the part of the code where the thread does not access the shared data structure;
the work that is performed inside this parallel section can possibly depend on the last value that has been
read from the data structure, e.g. in the case of processing an element that has been dequeued from a
FIFO (First-In-First-Out) queue.

In each retry, a thread tries to modify the data structure, and does not exit the retry loop until it has
successfully modified the data structure. It does that by firstly reading the access point AP of the data
structure, then according to the value that has been read, and possibly to other previous computations that
occurred in the past, the thread prepares the new desired value as an access point of the data structure.
Finally, it atomically tries to perform the change through a call to the Compare-And-Swap (CAS) primitive.
If it succeeds, i.e. if the access point has not been changed by another thread between the first Read
and the CAS, then it goes to the next parallel section, otherwise it repeats the process. The retry loop is
composed of at least one retry, and we number the retries starting from 0, since the first iteration of the
retry loop is actually not a retry, but a try.

We analyze the behavior of AbstractAlgorithm from a throughput perspective, which is defined as the
number of successful data structure operations per unit of time. In the context of Procedure AbstractAl-
gorithm, it is equivalent to the number of successful CASs.

The throughput of the lock-free algorithm, that we denote by T , is impacted by several parameters.
• Algorithm parameters: the amount of work inside a call to Parallel_Work (resp. Critical_Work)

denoted by pw (resp. cw ).
• Platform parameters: Read and CAS latencies (rc and cc respectively), and the number P of
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Figure 3: Execution with minimum number of failures

processing units (cores). We assume homogeneity for the latencies, i.e. every thread experiences
the same latency when accessing an uncontended shared data, which is achieved in practice by
pinning threads to the same socket.

B. Examples and Issues

We first present two straightforward upper bounds on the throughput, and describe the two main
impacting factors that keep the actual throughput away from those upper bounds.

1) Immediate Upper Bounds: Trivially, the minimum amount of work rlw (-) in a given retry is rlw (-) =
rc + cw + cc, as we should pay at least the memory accesses and the critical work cw in between.

Thread-wise: A given thread can at most perform one successful retry every pw + rlw (-) units of
time. In the best case, P threads can then lead to a throughput of P/(pw + rlw (-)).

System-wise: By definition, two successful retries cannot overlap, hence we have at most 1 successful
retry every rlw (-) units of time.

Altogether, the throughput T is bounded by

T ≤ min

(
1

rc + cw + cc
,

P

pw + rc + cw + cc

)
,

which can be rewritten as

T ≤
{ 1

rc+cw+cc if pw ≤ (P − 1)(rc + cw + cc)
P

pw+rc+cw+cc otherwise. (1)

2) Lowering Factors:
Wasted retries: Equation 1 expresses the fact that when pw is small enough, i.e. when pw ≤

(P − 1)rlw (-), we cannot expect that every thread performs a successful retry every pw + rlw (-) units
of time, since it is more than what the retry loop can support. As a result, some unsuccessful retries will
be inevitable.

However, different executions can lead to different numbers of failures, which end up with different
throughput values. Figures 2 and 3 depict two executions, where the black parts are the calls to
Initialization, the blue parts are the parallel sections, and the retries can be either unsuccessful — in
red — or successful — in green. We experiment different initialization times, and observe different
synchronizations, hence different numbers of wasted retries. After the initial transient state, the execution
depicted in Figure 3 comprises only the inevitable unsuccessful retries, while the execution of Figure 2
contains one wasted retry.

We can see on those two examples that a cyclic execution is reached after the transient behavior;
actually, we show in Section IV that every execution will become periodic, if the initialization times
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Figure 4: Expansion

are spaced enough. In addition, we prove that the shortest period is such that, during this period, every
thread succeeds exactly once. This finally leads us to define the additional failures as wasted, since we
can directly link the throughput with this number of wasted retries: a higher number of wasted retries
implying a lower throughput.

Expansion in retry loops: The requirement of atomicity compels the ownership of the data in an
exclusive manner by the executing core. This fact prohibits concurrent execution of atomic instructions
if they are operating on the same data. Therefore, overlapping parts of atomic instructions are serialized
by the hardware, leading to stalls in subsequently issued ones. For our target lock-free algorithm, these
stalls that we refer to as expansion become an important slowdown factor in case threads interfere in the
retry loop. As illustrated in Figure 4, the latency for CAS can expand and cause remarkable decreases in
throughput since the CAS of a successful thread is then expanded by others; for this reason, the amount
of work inside a retry is not constant, but is, generally speaking, a function depending on the number of
threads that are inside the retry loop.

3) Process: We consider the estimation of the expansion and the estimation of the wasted retries as
two separate problems, that we connect together through the fixed-point iterative convergence.

In Section V-A, we compute the expansion in execution time of a retry, noted e, by following a
probabilistic approach. The estimation takes as input the expected number of threads inside the retry loop
at any time, and returns the expected increase in the execution time of a retry due to the serialization of
atomic primitives.

In Section IV, we are given a fully-parallelizable program, i.e. where no hardware conflicts can occur
and any instruction of any thread can be done in parallel with any instruction of any other thread, described
by the size of the parallel section pw (+) and the size of a retry rlw (+). We compute upper and lower
bounds on the throughput T , the number of wasted retries w, and the average number of threads inside
the retry loop Prl. Without loss of generality, we can normalize those execution times by the execution
time of a retry, and define the parallel section size as pw (+) = q + r, where q is a non-negative integer
and r is such that 0 ≤ r < 1. This pair (together with the number of threads P ) constitutes the actual
input of the estimation.

Finally, we combine those two outcomes in Section V-B and obtain the full estimation of the throughput.

IV. FULLY-PARALLEL PROGRAM

We show in this section that the execution becomes periodic, which eases the calculation of the
throughput. We start by defining some useful concepts: (f, P )-cyclic executions are special kind of
periodic executions such that within the shortest period, each thread performs exactly f unsuccessful
retries and 1 successful retry. The well-formed seed is a set of events that allows us to detect an (f, P )-
cyclic execution early, and the gaps are a measure of the quality of the synchronization between threads.
The idea is to iteratively add threads into the game and show that the periodicity is maintained. Theorem 1
establishes a fundamental relation between gaps and well-formed seeds, while Theorem 2 proves the
periodicity, relying on the disjoint cases of Lemma 1, 3, and 4.

Finally, we exhibit upper and lower bounds on throughput and number of failures, along with the
average number of threads inside the retry loop.
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Figure 5: Lemma 1 configuration
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Figure 6: Lemma 3 configuration

A. Setting

1) Initial Restrictions:

Remark 1. Concerning correctness, we assume that the reference point of the Read and the CAS occurs
when the thread enters and exits any retry, respectively.

Remark 2. We do not consider simultaneous events, so all inequalities that refer to time comparison are
strict, and can be viewed as follows: time instants are real numbers, and can be equal, but every event
is associated with a thread; also, in order to obtain a strict order relation, we break ties according to the
thread numbers (for instance with the relation <).

2) Notations and Definitions: We recall that P threads are executing the pseudo-code described in
Procedure AbstractAlgorithm, one retry is of unit-size, and the parallel section is of size pw (+) = q + r,
where q is a non-negative integer and r is such that 0 ≤ r < 1. Considering a thread Tn which succeeds
at time Sn; this thread completes a whole retry in 1 unit of time, then executes the parallel section of
size pw (+), and attempts to perform again the operation every unit of time, until one of the attempt is
successful. We note Rkn the kth retry so that Rkn = Sn + 1 + q + r + k. Also, at a given time t where
not any thread is currently succeeding, the next successful attempt will be at time minn∈J0,P−1K{Rkn =
Sn + 1+ q + r+ k > t ; Sn is the last success of Tn}, and n gives the thread number of the successful
thread.

T0

T1

T2

T3

Figure 7: Lemma 4 configuration
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Definition 1. An execution with P threads is called (C,P )-cyclic execution if and only if (i) the execution
is periodic, i.e. at every time, every thread is in the same state as one period before, (ii) the shortest
period contains exactly one successful attempt per thread, (iii) the shortest period is 1 + q + r + C.

Definition 2. Let S = (Ti, Si)i∈J0,P−1K, where Ti are threads and Si ordered times, i.e. such that S0 <
S1 < · · · < SP−1. S is a seed if and only if for all i ∈ J0, P − 1K, Ti does not succeed between S0 and
Si, and starts a retry at Si.

We define f (S) as the smallest non-negative integer such that S0 + 1 + q + r + f (S) > SP−1 + 1,
i.e. f (S) = max (0, dSP−1 − S0 − q − re). When S is clear from the context, we denote f (S) by f .

Definition 3. S is a well-formed seed if and only if for each i ∈ J0, P − 1K, the execution of thread Ti
contains the following sequence: firstly a success beginning at Si, the parallel section, f unsuccessful
retries, and finally a successful retry.

Those definitions are coupled through the two natural following properties:

Property 1. Given a (C,P )-cyclic execution, any seed S including P consecutive successes is a well-
formed seed, with f (S) = C.

Proof. Choosing any set of P consecutive successes, we are ensured, by the definition of a (f, P )-cyclic
execution, that for each thread, after the first success, the next success will be obtained after f failures.
The order will be preserved, and this shows that a seed including our set of successes is actually a
well-formed seed.

Property 2. If there exists a well-formed seed in an execution, then after every thread has succeeded
once, the execution coincides with an (f, P )-cyclic execution.

Proof. By the definition of a well-formed seed, we know that the threads will first succeed in order,
fails f times, and succeed again in the same order. Considering the second set of successes in a new
well-formed seed, we observe that the threads will succeed a third time in the same order, after failing
f times. By induction, the execution coincides with an (f, P )-cyclic execution.

Together with the seed concept, we define the notion of gap that we will use extensively in the next
subsection. The general idea of those gaps is that within an (f, P )-cyclic execution, the period is higher
than P ×1, which is the total execution time of all the successful retries within the period. The difference
between the period (that lasts 1+q+r+f ) and P , reduced by r (so that we obtain an integer), is referred
as lagging time in the following. If the threads are numbered according to their order of success (modulo
P ), as the time elapsed between the successes of two given consecutive threads is constant (during the
next period, this time will remain the same), this lagging time can be seen in a circular manner (see
Figure 8): the threads are represented on a circle whose length is the lagging time increased by r, and
the length between two consecutive threads is the time between the end of the successful retry of the first
thread and the begin of the successful retry of the second one. More formally, for all (n, k) ∈ J0, P − 1K2,
we define the gap G(k)

n between Tn and its kth predecessor based on the gap with the first predecessor:{
∀n ∈ J1, P − 1K ; G

(1)
n = Sn − Sn−1 − 1

G
(1)
0 = S0 + q + r + f − SP−1

,

which leads to the definition of higher order gaps:

∀n ∈ J0, P − 1K ; ∀k > 0 ; G(k)
n =

n∑
j=n−k+1

G
(1)
j mod P .

For consistency, for all n ∈ J0, P − 1K, G(0)
n = 0.
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P−1∑
n=0

G(1)
n

T0
T1

T2

TP−1

G
(1)
1

G
(1)
2

G
(2)
0

Figure 8: Gaps

Equally, the gaps can be obtained directly from the successes: for all k ∈ J1, P − 1K,

G(k)
n =

{
Sn − Sn−k − k if n > k
Sn − SP+n−k + 1 + q + r + f − k otherwise

(2)

Note that, in an (f, P )-cyclic execution, the lagging time is the sum of all first order gaps, reduced
by r.

Now we extend the concept of well-formed seed to weakly-formed seed.

Definition 4. Let S = (Ti, Si)i∈J0,P−1K be a seed.
S is a weakly-formed seed for P threads if and only if: (Ti, Si)i∈J0,P−2K is a well-formed seed for

P − 1 threads, and the first thread succeeding after TP−2 is TP−1.

Property 3. Let S = (Ti, Si)i∈J0,P−1K be a weakly-formed seed.

Denoting f = f
(
(Ti, Si)i∈J0,P−2K

)
, for each n ∈ J0, P − 1K, G(f)

n < 1.

Proof. We have SP−2 + 1 < SP−1 < Rf0 , and if we note indeed G̃(k)
n the gaps within (Ti, Si)i∈J0,P−2K,

the previous well-formed seed with P − 1 threads, we know that for all n ∈ J1, P − 2K, G̃(1)
n = G

(1)
n ,

and G(1)
P−1 +G

(1)
0 = G̃

(1)
0 , which leads to G(k)

n ≤ G̃
(k)
n , for all n ∈ J0, P − 1K and k; hence the weaker

property.

Lemma 1. Let S be a weakly-formed seed, and f = f
(
(Ti, Si)i∈J0,P−2K

)
. If, for all n ∈ J0, P − 1K,

G
(f+1)
n < 1, then there exists later in the execution a well-formed seed S ′ for P threads such that

f (S ′) = f + 1.

Proof. The proof is straightforward; S is actually a well-formed seed such that f (S) = f + 1. Since
Rf0 − SP−1 < G

(1)
0 < 1, the first success of T0 after the success of TP−1 is its f + 1th retry.

B. Cyclic Executions

Theorem 1. Given a seed S = (Ti, Si)i∈J0,P−1K, S is a well-formed seed if and only if for all n ∈
J0, P − 1K, 0 ≤ G(f)

n < 1.

Proof. Let S = (Ti, Si)i∈J0,P−1K be a seed.
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(⇐) We assume that for all n ∈ J0, P − 1K, 0 < G
(f)
n < 1, and we first show that the first successes

occur in the following order: T0 at S0, T1 at S1, . . . , TP−1 at SP−1, T0 again at Rf0 . The first threads
that are successful executes their parallel section after their success, then enters their second retry loop:
from this moment, they can make the first attempt of the threads, that has not been successful yet, fail.
Therefore, we will look at which retry of which already successful threads could have an impact on
which other threads.

We can notice that for all n ∈ J0, P − 1K, if the first success of Tn occurs at Sn, then its next attempts
will potentially occur at Rkn = Sn+1+ q+ r+ k, where k ≥ 0. More specifically, thanks to Equation 2,
for all n ≤ f , Rkn = SP+n−f +G

(f)
n + k. Also, for all k ≤ f − n,

Rkn − SP+n−f+k = − (SP+n−f+k − SP+n−f − k) +G(f)
n

= G(f)
n −G

(k)
P+n−f+k

Rkn − SP+n−f+k = G(f−k)
n , (3)

and this implies that if k > 0,
SP+n−f+k −Rk−1n = 1−G(f−k)

n . (4)

We know, by hypothesis, that 0 < G
(f−k)
n < 1, equivalently 0 < 1−G(f−k)

n < 1. Therefore Equation 3
states that if a thread Tn′ starts a successful attempt at SP+n−f+k, then this thread will make the kth

retry of Tn fail, since Tn enters a retry while Tn′ is in a successful retry. And Equation 4 shows that,
given a thread Tn′ starting a new retry at SP+n−f+k, the only retry of Tn that can make Tn′ fail on
its attempt is the (k − 1)th one. There is indeed only one retry of Tn that can enter a retry before the
entrance of Tn′ , and exit the retry after it.
T0 is the first thread to succeed at S0, because no other thread is in the retry loop at this time. Its next

attempt will occur at R0
0, and all thread attempts that start before SP−f (included) cannot fail because

of T0, since it runs then the parallel section. Also, since all gaps are positive, the threads T1 to TP−f
will succeed in this order, respectively starting at times S1 to SP−f .

Then, using induction, we can show that TP−f+1, . . . , TP−1 succeed in this order, respectively
starting at times SP−f+1, . . . , SP−1. For j ∈ J0, f − 1K, let (Pj) be the following property: for all
n ∈ J0, P − f + jK, Tn starts a successful retry at Sn. We assume that for a given j, (Pj) is true, and
we show that it implies that TP−f+j+1 will succeed at SP−f+j+1. The successful attempt of TP−f+j at
SP−f+j leads, for all j′ ∈ J0, jK, to the failure of the j′th retry of Tj−j′ (explanation of Equation 3).
But for each Tj′ , this attempt was precisely the one that could have made TP−f+j+1 fail on its attempt
at SP−f+j+1 (explanation of Equation 3). Given that all threads Tn, where n > P − f + j + 1, do not
start any retry loop before SP−f+j+1, TP−f+j+1 will succeed at SP−f+j+1. By induction, (Pj) is true
for all j ∈ J0, f − 1K.

Finally, when TP−1 succeeds, it makes the (f − 1− n)th retry of Tn fail, for all n ∈ J0, f − 1K; also
the next potentially successful attempt for Tn is at Rf−nn . (Naturally, for all n ∈ Jf, P − 1K, the next
potentially successful attempt for Tn is at R0

n.)
We can observe that for all n < P , j ∈ J0, P − 1− nK, and all k ≥ j,

Rk−jn+j −R
k
n = Sn+j + k − j − (Sn + k)

Rk−jn+j −R
k
n = G

(j)
n+j , (5)

hence for all n ∈ J1, fK, Rf−nn −Rf0 = G
(n)
n > 0.

Rf−nn −Rf0 = G(n)
n > 0.

As we have as well, for all n ∈ Jf + 1, P − 1K, R0
n > R0

f , we obtain that among all the threads, the
earliest possibly successful attempt is Rf0 . Following TP−1, T0 is consequently the next successful thread
in its f th retry.
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To conclude this part, we can renumber the threads (Tn+1 becoming now Tn if n > 0, and T0 becoming
TP−1), and follow the same line of reasoning. The only difference is the fact that TP−1 (according to
the new numbering) enters the retry loop f units of time before SP−1, but it does not interfere with the
other threads, since we know that those attempts will fail.

There remains the case where there exists n ∈ J0, P − 1K such that G(f)
n = 0. This implies that f = 0,

thus we have a well-formed seed.

(⇒) We prove now the implication by contraposition; we assume that there exists n ∈ J0, P − 1K such
that G(f)

n > 1 or G(f)
n < 0, and show that S is not a well-formed seed.

We assume first that an f th order gap is negative. As it is a sum of 1st order gaps, then there exists
n′ such that G(1)

n′ is negative; let n′′ be the highest one.
If n′′ > 0, then either the threads T0, . . . , Tn′′−1 succeeded in order at their 0th retry, and then Tn′′−1

makes Tn′′ fail at its 0th retry (we have a seed, hence by definition, Sn′′−1 < Sn′′ , and G
(1)
n′′ < 0, thus

Sn′′−1 < Sn′′ < Sn′′−1 + 1 ), or they did not succeed in order at their first try. In both cases, S is not a
well-formed seed.

If n′′ = 0, let us assume that S is a well-formed seed. Let also a new seed be S ′ = (Ti, S′i)i∈J0,P−1K,
where for all n ∈ J0, P − 2K, S′n+1 = Sn, and S′0 = SP−1− (q+1+ f + r). Like S, S ′ is a well-formed
seed; however, G(1)

1 is negative, and we fall back into the previous case, which shows that S ′ is not a
well-formed seed. This is absurd, hence S is not a well-formed seed.

We assume now that every gap is positive and choose n0 defined by: n0 = min{n ; ∃k ∈
J0, P − 1K /G(k)

n+k > 1}, and f0 = min{k ; G
(k)
n0+k

> 1}: among the gaps that exceed 1, we pick
those that concern the earliest thread, and among them the one with the lowest order.

Let us assume that threads T0, . . . , TP−1 succeed at their 0th retry in this order, then T0, . . . , Tn0

complete their second successful retry loop at their f th retry, in this order. If this is not the case, then
S is not a well-formed seed, and the proof is completed. According to Equation 5, we have, on the one
hand, Rf0−1n0+1 − R

f0
n0 = G

(1)
n0+1, which implies Rf0n0+1 − 1 − Rf0n0 = G

(1)
n0+1, thus Rfn0+1 − (Rfn0 + 1) =

G
(1)
n0+1; and on the other hand, R0

n0+f0
− Rf0n0 = G

(f0)
n0+f0

implying Rf−f0n0+f0
−
(
Rfn0 + 1

)
= G

(f0)
n0+f0

− 1.

As we know that G(f0)
n0+f0

− G
(1)
n0+1 = G

(f0−1)
n0+f0

< 1 by definition of f0 (and n0), we can derive that
Rfn0+1 − (Rfn0 + 1) > Rf−f0n0+f0

− (Rfn0 + 1). We have assumed that Tn0
succeeds at its f th retry, which

will end at Rfn0 + 1. The previous inequality states then that Tn0+1 cannot be successful at its f th retry,
since either a thread succeeds before Tn0+f0 and makes both Tn0+f0 and Tn0+1 fail, or Tn0+f0 succeeds
and makes Tn0+1 fail. We have shown that S is not a well-formed seed.

Lemma 2. Assuming r 6= 0, if a new thread is added to an (f, P )-cyclic execution, it will eventually
succeed.

Proof. Let R0
P be the time of the 0th retry of the new thread, that we number TP . If this retry is successful,

we are done; let us assume now that this retry is a failure, and let us shift the thread numbers (for the
threads T0, . . . , TP−1) so that T0 makes TP fail on its first attempt. We distinguish two cases, depending
on whether G(P )

0 > R0
P − S0 or not.

We assume that G(P )
0 > R0

P − S0. We know that n 7→ G
(n)
n is increasing on J0, P − 1K and that

G
(0)
0 = 0, hence let n0 = min{n ∈ J0, P − 1K ; G

(n)
n < R0

P − S0}. For all k ∈ J0, n0K, we have
RkP −Sk = k+R0

P −(G
(k)
k +S0+k) = R0

P −S0−G
(k)
k hence RkP −Sk > 0 and RkP −Sk < R0

P −S0 < 1.
This shows that T0, . . . , Tn0

, because of their successes at S0, . . . , Sn0
, successively make 0th, . . . ,

nth0 retries (respectively) of TP fail. The next attempt for TP is at Rn0+1
P , which fulfills the following
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inequality: Rn0+1
P − (Sn0

+ 1) < Sn0+1 − (Sn0
+ 1) since

Rn0+1
P − Sn0+1 = (n0 + 1 +R0

P )− (G
(n0+1)
n0+1 + S0 + n0 + 1)

Rn0+1
P − Sn0+1 > 0.

Tn0+1 should have been the successful thread, but TP starts a retry before Sn0+1, and is therefore
succeeding.

We consider now the reverse case by assuming that G(P )
0 < R0

P − S0. With the previous line of
reasoning, we can show that T0, . . . , TP−1, because of their successes at S0, . . . , SP−1, successively
make 0th, . . . , (P −1)th retries (respectively) of TP fail. Then we are back in the same situation when T0
made TP fail for the first time (T0 makes TP fail), except that the success of T0 starts at S′0 = S0+G

(P )
0 .

As G(P )
0 = q + r + f − P > 0 and q, f and P are integers, we have that G(P )

0 ≥ r. By the way, if we
had G

(P )
0 > r, we would have G(P )

0 ≥ 1 + r > R0
P − S0, which is absurd. S0 makes indeed R0

P fail,
therefore G(P )

0 should be less than 1. Consequently, we are ensured that G(P )
0 = r. We define

k0 =

⌊
R0
P − S0
r

⌋
;

also, for every k ∈ J1, k0K, r < R0
P − (S0 + k × r) and r > R0

P − (S0 + (k0 + 1) × r): the cycle of
successes of T0, . . . , TP−1 is executed k0 times. Then the situation is similar to the first case, and TP
will succeed.

Lemma 3. Let S be a weakly-formed seed, and f = f
(
(Ti, Si)i∈J0,P−2K

)
. If G(f+1)

f > 1, and if the
second success of TP−1 does not occur before the second success of Tf−1, then we can find in the
execution a well-formed seed S ′ for P threads such that f (S ′) = f .

Proof. Let us first remark that, by the definition of a weakly-formed seed, all threads will succeed once,
in order. Then two ordered groups of threads will compete for each of the next successes, until Tf−1
succeeds for the second time.

Let e be the smallest integer of Jf, P − 1K such that the second success of Te occurs after the second
success of Tf−1. Let then S1 and S2 be the two groups of threads that are in competition, defined by

S1 = {Tn ; n ∈ J0, f − 1K}
S2 = {Tn ; n ∈ Jf, e− 1K}

For all n ∈ J0, e− 1K, we note

rank (n) =

{
G

(n+1)
n if Tn ∈ S1

G
(n+1)
n − 1 if Tn ∈ S2

.

We define σ, a permutation of J0, e− 1K that describes the reordering of the threads during the round of the
second successes, such that, for all (i, j) ∈ J0, e− 1K2, σ (i) < σ (j) if and only if rank (i) < rank (j).

We also define a function that will help in expressing the σ−1 (k)’s:

m2 : J0, e− 1K −→ Jf, e− 1K
k 7−→ max {` ∈ Jf, e− 1K ; T` ∈ S2 ; σ (`) ≤ k}

.
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We note that rank
∣∣
J0,f−1K is increasing, as well as rank

∣∣
Jf,e−1K. This shows that #{T` ∈ S2 ; σ (`) ≤

k} = m2 (k)− (f − 1). Consequently, if Tσ−1(k) ∈ S2, then

m2 (k) = #{T` ∈ S2 ; σ (`) ≤ k}+ f − 1

= #{T` ∈ S2 ; ` ≤ σ−1 (k)}+ f − 1

= σ−1 (k)− f + 1 + f − 1

m2 (k) = σ−1 (k) .

Conversely, if Tσ−1(k) ∈ S1, among {Tσ(n) ; n ∈ J0, kK}, there are exactly m2 (k)− f + 1 threads in
S2, hence

σ−1 (k) = k + 1− (m2 (k)− f + 1)− 1 = f + k −m2 (k)− 1.

In both cases, among {Tσ(n) ; n ∈ J0, kK}, there are exactly m2 (k) − f + 1 threads in S2, and
m1 (k) = k − (m2 (k)− f) threads in S1.

We prove by induction that after this first round, the next successes will be, respectively, achieved by
Tσ−1(0), Tσ−1(1), . . . , Tσ−1(e−1). In the following, by “kth success”, we mean kth success after the first
success of TP−1, starting from 0, and the Rji ’s denote the attempts of the second round.

Let (PK) be the following property: for all k ≤ K, the kth success is achieved by Tσ−1(k) at
R
f+k−σ−1(k)
σ−1(k) . We assume (PK) true, and we show that the (K + 1)th success is achieved by Tσ−1(K+1)

at Rf+K+1−σ−1(K+1)
σ−1(K+1) .

We first show that if Tσ−1(K) ∈ S1, then

R
m1(K)−1
m2(K)+1 > R

f+K−σ−1(K)
σ−1(K) > R

m1(K)
m2(K). (6)

On the one hand,

R
f+K−σ−1(K)
σ−1(K) = K − σ−1 (K) +Rfσ−1(K)

= K − σ−1 (K) +Rf0 + σ−1 (K) +G
(σ−1(K))
σ−1(K)

= K + SP−1 + 1 +G
(1)
0 +G

(σ−1(K))
σ−1(K)

R
f+K−σ−1(K)
σ−1(K) = K + SP−1 + 1 +G

(σ−1(K)+1)
σ−1(K) .

On the other hand,

R
f+K−m2(K)
m2(K) = (m2 (K)− f) +R

K−(m2(K)−f)
f +G

(m2(K)−f)
m2(K)

= (m2 (K)− f) +K − (m2 (K)− f) +R0
f +G

(m2(K)−f)
m2(K)

= (m2 (K)− f) +K − (m2 (K)− f) + SP−1 + 1 + (G
(f+1)
f − 1) +G

(m2(K)−f)
m2(K)

R
f+K−m2(K)
m2(K) = K + SP−1 + 1 +G

(m2(K)+1)
m2(K) − 1.

Therefore,

R
f+K−σ−1(K)
σ−1(K) −Rm1(K)

m2(K) = R
f+K−σ−1(K)
σ−1(K) −Rf+K−m2(K)

m2(K)

= G
(σ−1(K)+1)
σ−1(K) −

(
G

(m2(K)+1)
m2(K) − 1

)
R
f+K−σ−1(K)
σ−1(K) −Rm1(K)

m2(K) = rank
(
σ−1 (K)

)
− rank (m2 (K)) .
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In a similar way, we can obtain that if Tσ−1(K) ∈ S2, then

R
m2(K)
m1(K) > R

f+K−σ−1(K)
σ−1(K) > R

m2(K)+1
m1(K)−1. (7)

In addition, we recall that if Tσ−1(K) ∈ S2, σ−1 (K) = m2 (K), thus the second inequality of Equation 6
becomes an equality, and if Tσ−1(K) ∈ S1, σ−1 (K) = f +K −m2 (K)− 1, hence the second inequality
of Equation 7 becomes an equality.

Now let us look at which attempt of other threads Tσ−1(K) made fail. From now on, and until explicitly
said otherwise, we assume that Tσ−1(K) ∈ S1. According to Equation 6, we have

R
m1(K)−1
m2(K)+1 > R

f+K−σ−1(K)
σ−1(K) > R

m1(K)
m2(K)

R
m1(K)−j
m2(K)+j −R

m1(K)−1
m2(K)+1 < R

m1(K)−j
m2(K)+j −R

f+K−σ−1(K)
σ−1(K) < R

m1(K)−j
m2(K)+j −R

m1(K)
m2(K)

G
(j−1)
m2(K)+j < R

m1(K)−j
m2(K)+j −R

f+K−σ−1(K)
σ−1(K) < G

(j)
m2(K)+j

This holds for every j ∈ J1,m1 (K)K, implying j ≤ f , since there could not be more than f threads in
S1. Therefore, as by assumptions gaps of at most f th order are between 0 and 1,

0 < R
m1(K)−j
m2(K)+j −R

f+K−σ−1(K)
σ−1(K) < 1;

showing that the success of Tσ−1(K) makes thread Tm2(K)+j fail on its attempt at Rm1(K)−j
m2(K)+j , for all

j ∈ J1,m1 (K)K.
Since Tσ−1(K) ∈ S1, σ−1 (K) = m1 (K)− 1. Also, for all j ∈ J0, f − 1−m1 (K)K,

R
m2(K)−j
m1(K)+j −R

f+K−σ−1(K)
σ−1(K) = R

m2(K)−j
m1(K)+j −R

m2(K)+1
m1(K)−1

=
(
R
m2(K)−j
m1(K)−1 + (j + 1) +G

(j+1)
m1(K)+j

)
−
(
R
m2(K)−j
m1(K)−1 + (j + 1)

)
R
m2(K)−j
m1(K)+j −R

f+K−σ−1(K)
σ−1(K) = G

(j+1)
m1(K)+j

As a result, Tσ−1(K) makes Tm1(K)+j fail on its attempt at Rm2(K)−j
m1(K)+j , for all j ∈ J0, f − 1−m1 (K)K,

and the next attempt will occur at Rm2(K)−j+1
m1(K)+j .

Altogether, the next attempt after the end of the success of Tσ−1(K) for Tm1(K)+j is Rm2(K)−j+1
m1(K)+j , for

j ∈ J0, f − 1−m1 (K)K, and for Tm2(K)+j is Rm1(K)−j+1
m2(K)+j , for all j ∈ J1,m1 (K)K.

Additionally, a thread will begin a new retry loop, the 0th retry being at R0
m2(K)+m1(K)+1 = R0

f+K+1.
We note that f +K + 1 could be higher than P − 1, referring to a thread whose number is more than
P − 1. Actually, if n > P − 1, Rjn refers to the jth retry of Trank(n−P+1), after its first two successes.

The two heads, i.e. the two smallest indices, of S1∩σ−1 (JK + 1, e− 1K) and S2∩σ−1 (JK + 1, e− 1K)
will then compete for being successful. Indeed, within S1, for j ∈ J0, f − 1−m1 (K)K,

R
m2(K)−j+1
m1(K)+j −Rm2(K)+1

m1(K) = G
(j)
m1(K)+j > 0,

thus if someone succeeds in S1, it will be Tm1(K). In the same way, for all j ∈ J1,m1 (K) + 1K,

R
m1(K)−j+1
m2(K)+j −Rm1(K)

m2(K)+1 = G
(j−1)
m2(K)+j > 0,

meaning that if someone succeeds in S2, it will be Tm2(K)+1.
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Let us compare now those two candidates:

R
m2(K)+1
m1(K) −Rm1(K)

m2(K)+1 = m2 (K) + 1− f + SP−1 +m1 (K) +G
(m1(K)+1)
m1(K)

−
(
m1 (K) +R0

f +m2 (K) + 1− f +G
(m2(K)+1−f)
m2(K)+1

)
= SP−1 − 1 +G

(m1(K)+1)
m1(K)

−
(
SP−1 +G

(f+1)
f − 1 +G

(m2(K)+1−f)
m2(K)+1

)
= G

(m1(K)+1)
m1(K) −

(
G

(m2(K)+2)
m2(K)+1 − 1

)
R
m2(K)+1
m1(K) −Rm1(K)

m2(K)+1 = rank (m1 (K))− rank (m2 (K) + 1) .

By definition, σ−1 (K + 1) is either m1 (K) or m2 (K) + 1 and corresponds to the next successful
thread. We can follow the same line of reasoning in the case where Tσ−1(K) ∈ S2 and prove in this way
that (PK+1) is true.

(P0) is true, and the property spreads until (Pe−1), where all threads of S1 and S2 have been successful,
in the order ruled by σ−1, i.e. Tσ−1(0), . . . , Tσ−1(e−1). And before those successes the threads Te−1
=Tσ−1(e−1), . . . , TP−1 have been successful as well. The seed composed of those successes is a well-
formed seed. Given a thread, the gap between this thread and the next one in the new order could indeed
not be higher than the gap in the previous order with its next thread. Also the f th order gaps remain
smaller than 1. And as Te−1 succeeds the second time after f failures, it means that the new seed S ′′ is
such that f (S ′′) = f .

Lemma 4. Let S be a weakly-formed seed, and f = f
(
(Ti, Si)i∈J0,P−2K

)
. If G(f+1)

f > 1 and if the
second success of TP−1 occurs before the second success of Tf−1, then we can find in the execution a
well-formed seed S ′ for P threads such that f (S ′) = f .

Proof. Until the second success of TP−1, the execution follows the same pattern as in Lemma 3. Actually,
the case invoked in the current lemma could have been handled in the previous lemma, but it would have
implied tricky notations, when we referred to Trank(n−P+1). Let us deal with this case independently
then, and come back to the instant where TP−1 succeeds for the second time.

We had 0 < R0
f−1 − SP−1 = G

(f)
f−1 < 1. For the thread Tσ(j) to succeed at its kth retry after

the first success of TP−1 and before Tf−1, it should necessary fill the following condition: j + 1 <

Rkσ(j) − SP−1 < j + 1 + G
(f)
f−1. This holds also for the second success of TP−1, which implies that

P ′ < SP−1 + 1+ q+ r+ h− SP−1 < P ′ +G
(f)
f−1, where h is the number of failures of TP−1 before its

second success and P ′ is the number of successes between the two successes of TP−1. As G(f)
f−1 < 1,

and q, P ′ and h are non-negative integers, we have r < G
(f)
f−1 and h = P ′ − 1− q.

To conclude, as any gap at any order is less than the gap between the two successes of TP−1, which
is r < 1, we found a well-formed seed for P ′ threads.

Finally any other thread will eventually succeed (see Lemma 2). We can renumber the threads such
that TP ′ is the first thread that is not in the well-formed seed to succeed, and the threads of the well-
formed seed succeeded previously as T0, . . . , TP ′−1. As explained before, for all (k, n) ∈ J0, P ′ − 1K2,
G

(k)
n < G

(n)
n = r. With the new thread, the first order gaps are changed by decomposing G

(1)
0 into

G
(1)
P ′ and the new G

(1)
0 . All gaps can only be decreased, hence we have a new well-formed seed for

P ′ + 1 threads. We repeat the process until all threads have been encountered, and obtain in the end S ′,
a well-formed seed with P threads such that f (S ′) = P − 1− q, which is an optimal cyclic execution.
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Still, as Tf succeeds between two successes of TP−1 that are separated by r, we had, in the initial
configuration: G(P−1−f)

P−1 < r. As, in addition, we have both G(f)
f−1 < 1 and G(1)

f < 1, we conclude that

the lagging time was initially less than 2 + r. By hypothesis, we know that G(f+1)
f > 1, which implies

that, before the entry of the new thread, the lagging time was 1+ r. In the final execution with one more
thread, the lagging time is r and we have one more success in the cycle, thus f (S ′) = f .

Theorem 2. Assuming r 6= 0, if a new thread is added to an (f, P − 1)-cyclic execution, then all the
threads will eventually form either an (f, P )-cyclic execution, or an (f + 1, P )-cyclic execution.

Proof. According to Lemma 2, the new thread will eventually succeed. In addition, we recall that
Property 2 ensures that before the first success of the new thread, any set of P −1 consecutive successes
is a well-formed seed with P − 1 threads. We then consider a seed (we number the threads accordingly,
and number the new thread as TP−1) such that the success of the new thread occurs between the success
of TP−2 and T0; we obtain in this way a weakly-formed seed S = (Tn, Sn)n∈J0,P−1K&. We differentiate
between two cases.

Firstly, if for all n ∈ J0, P − 1K, G(f+1)
n < 1, according to Lemma 1, we can find later in the execution

a well-formed seed S ′ for P threads such that f (S ′) = f +1, hence we reach eventually an (f +1, P )-
cyclic execution.

Let us assume now that this condition is not fulfilled. There exists n0 ∈ J0, P − 1K such that G(f+1)
n0 >

1. We shift the thread numbers, such that n0 is now f , and we have then G(f+1)
f > 1. Then two cases

are feasible. If the second success of TP−1 occurs before the second success of Tf−1, then Lemma 3
shows that we will reach an (f, P )-cyclic execution. Otherwise, from Lemma 3, we conclude that an
(f, P )-cyclic execution will still occur.

C. Throughput Bounds

Firstly we calculate the expression of throughput and the expected number of threads inside the retry
loop (that is needed when we gather expansion and wasted retries). Then we exhibit upper and lower
bounds on both throughput and the number of failures, and show that those bounds are reached. Finally,
we give the worst case on the number of wasted retries.

Lemma 5. In an (f, P )-cyclic execution, the throughput is

T =
P

q + r + 1 + f
. (8)

Proof. By definition, the execution is periodic, and the period lasts q + r + 1 + f units of time. As P
successes occur during this period, we end up with the claimed expression.

Lemma 6. In an (f, P )-cyclic execution, the average number of threads Prl in the retry loop is given
by

Prl = P × f + 1

q + r + f + 1
.

Proof. Within a period, each thread spends f +1 units of time in the retry loop, among the q+ r+f +1
units of time of the period, hence the Lemma.

Lemma 7. The number of failures is not less than f (-), where

f (-) =

{
P − q − 1 if q ≤ P − 1
0 otherwise

, and accordingly,
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the throughput is bounded by

T ≤

{
P
P+r if q ≤ P − 1
P

q+r+1 otherwise.
(9)

Proof. According to Equation 8, the throughput is maximized when the number of failures is minimized.
In addition, we have two lower bounds on the number of failures: (i) f ≥ 0, and (ii) P successes should
fit within a period, hence q+1+ f ≥ P . Therefore, if P − 1− q < 0, T ≤ P/(q+ r+1+0), otherwise,

T ≤ P

q + r + 1 + P − 1− q
=

P

P + r
.

Remark 3. We notice that if q > P − 1, the upper bound in Equation 9 is actually the same as the
immediate upper bound described in Section III-B1. However, if q ≤ P − 1, Equation 9 refines the
immediate upper bound.

Lemma 8. The number of failures is bounded by

f ≤ f (+) =
⌊
1

2

(
(P − 1− q − r) +

√
(P − 1− q − r)2 + 4P

)⌋
, and accordingly,

the throughput is bounded by

T ≥ P

q + r + 1 + f (+)
.

Proof. We show that a necessary condition so that an (f, P )-cyclic execution, whose lagging time is `,
exists, is f × (`+ r) < P . According to Property 2, any set of P consecutive successes is a well-formed
seed with P threads. Let S be any of them. As we have f failures before success, Theorem 1 ensures
that for all n ∈ J0, P − 1K, G(f)

n < 1. We recall that for all n ∈ J0, P − 1K, we also have G(P )
n = `+ r.

On the one hand, we have
P−1∑
n=0

G(f)
n =

P−1∑
n=0

n∑
j=n−f+1

G
(1)
j mod P

= f ×
P−1∑
n=0

G(1)
n

P−1∑
n=0

G(f)
n = f × (`+ r).

On the other hand,
∑P−1

n=0 G
(f)
n <

∑P−1
n=0 1 = P .

Altogether, the necessary condition states that f × (` + r) < P , which can be rewritten as f × (q +
1+ f −P + r) < P . The proof is complete since minimizing the throughput is equivalent to maximizing
the number of failures.

Lemma 9. For each of the bounds defined in Lemmas 7 and 8, there exists an (f, P )-cyclic execution
that reaches the bound.

Proof. According to Lemmas 7 and 8, if an (f, P )-cyclic execution exists, then the number of failures
is such that f (-) ≤ f ≤ f (+).
We show now that this double necessary condition is also sufficient. We consider f such that f (-) ≤ f ≤
f (+), and build a well-formed seed S = (Ti, Si)i∈J0,P−1K.

For all n ∈ J0, P − 1K, we define Si as
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Sn = n×
(
q + 1 + f − P + r

P
+ 1

)
.

We first show that f (S) = f . By definition, f (S) = max (0, dSP−1 − S0 − q − re); we have then

f (S) = max

(
0,

⌈
(P − 1)×

(
q + 1 + f − P + r

P
+ 1

)
− q − r

⌉)
= max

(
0,

⌈
(P − 1− q − r) + (q + 1 + f − P + r)− q + 1 + f − P + r

P

⌉)
f (S) = max

(
0,

⌈
f − q + 1 + f − P + r

P

⌉)
.

Firstly, we know that q+1+f−P ≥ 0, thus if f = 0, then the second term of the maximum is not positive,
and f (S) = 0 = f . Secondly, if f > 0, then according to Lemma 7, (q+1+ f −P + r)/P < 1/f ≤ 1.
As we also have (q + 1 + f − P + r)/P ≥ 0, we conclude that f (S) =

⌈
f − q+1+f−P+r

P

⌉
= f .

Additionally, for all n ∈ J0, P − 1K,

G(f)
n =

{
Sn − Sn−f − f if n > f
Sn − SP+n−f + 1 + q + r otherwise

=

 n×
(
q+1+f−P+r

P + 1
)
− (n− f)×

(
q+1+f−P+r

P + 1
)
− f

n×
(
q+1+f−P+r

P + 1
)
− (P + n− f)×

(
q+1+f−P+r

P + 1
)
+ 1 + q + r

=

{
f × q+1+f−P+r

P

−(P − f)− (q + 1 + f − P + r) + f × q+1+f−P+r
P + 1 + q + r

G(f)
n = f × w + r

P

As w ≤ 0 and f ≤ 0, G(f)
n > 0. Since f ≤ f (+), G(f)

n < 1. Theorem 1 implies that S is a well-formed
seed that leads to an (f, P )-cyclic execution.

We have shown that for all f such that f (-) ≤ f ≤ f (+) there exists an (f, P )-cyclic execution; in
particular there exist an (f (+), P )-cyclic execution and an (f (-), P )-cyclic execution.

Corollary 1. The highest possible number of wasted repetitions is
⌈√

P − 1
⌉

and is achieved when
P = q + 1.

Proof. The highest possible number of wasted repetitions w̃(P ) with P threads is given by

w̃(P ) = f (+) − f (-) =
⌊
1

2

(
−a(P ) +

√
a(P )2 + 4P

)
− f (-)

⌋
.

Let a and h be the functions respectively defined as a(P ) = q+1−P +r, which implies a′(P ) = −1,
and h(P ) = (−a(P ) +

√
a(P )2 + 4P )/2− f (-), so that w̃(P ) = bh(P )c.

Let us first assume that a(P ) > 0. In this case, q ≤ P − 1, hence f (-) = 0. We have

2h′(P ) = 1 +
−2a(P ) + 4

2
√
a(P )2 + 4P

2h′(P ) = 2×
2− a(P ) +

√
a(P )2 + 4P

2
√
a(P )2 + 4P
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Therefore, h′(P ) is negative if and only if
√
a(P )2 + 4P < a(P )− 2. It cannot be true if a(P ) < 2. If

a(P ) ≥ 2, then the previous inequality is equivalent to a(P )2 +4P < a(P )2− 4a(P )+ 4, which can be
rewritten in q + 1 + r < 1, which is absurd. We have shown that h is increasing in ]0, q + 1].

Let us now assume that a(P ) ≤ 0. In this case, q > P − 1, hence f (-) = P − q − 1, and h′(P ) =(
a(P ) +

√
a(P )2 + 4P

)
/2 − r. Assuming h′(P ) to be positive leads to the same absurd inequality

q + 1 + r < 1, which proves that h is decreasing on [q + 2,+∞[.
Also, the maximum number of wasted repetitions is achieved as P = q + 1 or P = q + 2. Since

h(q + 1) =
1

2

(
−r +

√
r2 + 4P

)
>

1

2

(
−(r + 1) +

√
r2 + 4P

)
= h(q + 2),

the maximum number of wasted repetitions is w̃(q + 1). In addition,

1

2

(
−r +

√
4P
)

< h(q + 1) <
1

2

(
−r +

√
r2 +

√
4P
)

√
P − r

2
< h(q + 1) <

√
P

√
P − 1 ≤ h(q + 1) <

√
P

We conclude that the maximum number of wasted repetitions is
⌈√

P − 1
⌉

.

V. EXPANSION AND COMPLETE THROUGHPUT ESTIMATION

A. Expansion

Interference of threads does not only lead to failing retries but also to the serialization of operations
which impacts the performance significantly. We model the behavior of the cache coherency protocols
which determine the interaction of overlapping Reads and CASs. By taking MESIF [GH09] as basis, we
come up with the following assumptions. When executing an atomic CAS, the core gets the cache line
in exclusive state and does not forward it to any other requesting core until the instruction is retired.
Therefore, requests stall for the release of the cache line which implies serialization. On the other hand,
ongoing Reads can overlap with other operations. As a result, a CAS introduces expansion only to
overlapping Read and CAS operations that start after it, as illustrated in Figure 4. As a remark, we ignore
memory bandwidth issues which are negligible for our study.

Furthermore, we assume that Reads that are executed just after a CAS do not lead to expansion (as the
thread already owns of the data), which takes effect at the beginning of a retry following a failing attempt.
Thus, read expansions need only to be considered before the 0th retry. In this sense, read expansion can
be moved to parallel section and calculated in the same way as CAS expansion is calculated.

To estimate expansion, we consider the delay that a thread can introduce, provided that there is already
a given number of threads in the retry loop. The starting point of each CAS is a random variable which
is distributed uniformly within an expanded retry. The cost function delay provides the amount of delay
that the additional thread introduces, depending on the point where the starting point of its CAS hits. By
using this cost function we can formulate the expansion increase that each new thread introduces and
derive the differential equation below to calculate the expansion of a CAS.

Lemma 10. The expansion of a CAS operation is the solution of the following system of equations: e′ (Prl) = cc ×
cc
2 + e (Prl)

rc + cw + cc + e (Prl)

e
(
P

(0)
rl

)
= 0

,

where P (0)
rl is the point where expansion begins.
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Proof. We compute e (Prl + h), where h ≤ 1, by assuming that there are already Prl threads in the retry
loop, and that a new thread attempts to CAS during the retry, within a probability h.

e (Prl + h)

=e (Prl) + h×
∫ rlw (+)

0

delay (t)

rlw (+)
dt

=e (Prl) + h×
(∫ rc+cw−cc

0

delay (t)

rlw (+)
dt

+

∫ rc+cw

rc+cw−cc

delay (t)

rlw (+)
dt

+

∫ rc+cw+e(Prl)

rc+cw

delay (t)

rlw (+)
dt

+

∫ rlw (+)

rc+cw+e(Prl)

delay (t)

rlw (+)
dt
)

=e (Prl) + h×
(∫ rc+cw

rc+cw−cc

t

rlw (+)
dt

+

∫ rc+cw+e(Prl)

rc+cw

cc

rlw (+)
dt
)

=e (Prl) + h×
cc2

2 + e (Prl)× cc

rlw (+)

This leads to
e (Prl + h)− e (Prl)

h
=

cc2

2 + e (Prl)× cc

rlw (+)
.

When making h tend to 0, we finally obtain

e′ (Prl) = cc ×
cc
2 + e (Prl)

rc + cw + cc + e (Prl)
.

B. Throughput Estimate

There remains to combine expansion and the number of failures in order to obtain the final upper
and lower bounds on throughput. We are given as an input an expected number of threads Prl inside
the retry loop. We firstly compute the expansion accordingly, by solving numerically the differential
equation of Lemma 10. As explained in the previous subsection, we have pw (+) = pw + e, and rlw (+) =
rc + cw + e+ cc. We can then compute q and r, that are the inputs (together with the total number of
threads P ) of the method described in Section IV. Assuming that the initialization times of the threads
are spaced enough, the execution will superimpose an (f, P )-cyclic execution. Thanks to Lemma 6, we
can compute the average number of threads inside the retry loop, that we note by hf (Prl). A posteriori,
the solution is consistent if this average number of threads inside the retry loop hf (Prl) is equal to the
expected number of threads Prl that has been given as an input.

Several (f, P )-cyclic executions belong to the domain of the possible outcomes, but we are interested
in upper and lower bounds on the number of failures f . We can compute them through Lemmas 7
and 8, along with their corresponding throughput and average number of threads inside the retry loop.
We note by h(+)(Prl) and h(-)(Prl) the average number of threads for the lowest number of failures
and highest one, respectively. Our aim is finally to find P (-)

rl and P (+)
rl , such that h(+)(P (+)

rl ) = P
(+)
rl and
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Procedure Combined
1 Initialization();
2 while ! done do
3 for i ← 1 to S do
4 Parallel_Work(i);
5 while ! success do
6 current ← Read(AP[i]);
7 new ← Critical_Work(i,current);
8 success ← CAS(AP, current, new);

Figure 9: Thread procedure with several retry loops

h(-)(P
(-)
rl ) = P

(-)
rl . If several solutions exist, then we want to keep the smallest, since the retry loop

stops to expand when a stable state is reached.
Note that we also need to provide the point where the expansion begins. It begins when we start to

have failures, while reducing the parallel section. Thus this point is (2P − 1)rlw (-) (resp. (P − 1)rlw (-))
for the lower (resp. upper) bound on the throughput.

Theorem 3. Let (xn) be the sequence defined recursively by x0 = 0 and xn+1 = h(+)(xn). If pw ≥
rc + cw + cc, then

P
(+)
rl = lim

n→+∞
xn.

Proof. First of all, the average number of threads belongs to ]0, P [, thus for all x ∈ [0, P ], 0 < h(+)(x) <
P . In particular, we have h(+)(0) > 0, and h(+)(P ) < P , which proves that there exist one fixed point
for h(+).

In addition, we show that h(+) is a non-decreasing function. According to Lemma 6,

h(+)(Prl) = P × 1 + f (-)

q + r + f (-) + 1
,

where all variables except P depend actually on Prl. We have

q =

⌊
pw + e

rlw (-) + e

⌋
and r =

pw + e

rlw (-) + e
− q,

hence, if pw ≥ rlw (-), q and r are non-increasing as e is non-decreasing, which is non-decreasing with
Prl. Since f (-) is non-decreasing as a function of q, we have shown that if pw ≥ rlw (-), h(+) is a
non-decreasing function.

Finally, the proof is completed by the theorem of Knaster-Tarski.

The same line of reasoning holds for h(-) as well.
As a remark, we point out that when pw < rlw (-), we scan the interval of solution, and have no

guarantees about the fact that the solution is the smallest one; still it corresponds to very extreme cases.

C. Several Retry Loops

1) Problem Formulation: In this subsection, we consider an execution such that each spawned thread
runs Procedure Combined in Figure 9. Each thread executes a linear combination of S independent retry
loops, i.e. operating on separate variables, interleaved with parallel sections. We note now as rlw

(+)
i and

pw
(+)
i the size of a retry of the ith retry loop and the size of the ith parallel section, respectively, for
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each i ∈ J1, SK. As previously, qi and ri are defined such that pw (+)
i = (qi + ri)× rlw

(+)
i , where qi is a

non-negative integer and ri is smaller than 1.
The Procedure Combined executes the retry loops and parallel sections in a cyclic fashion, so we can

normalize the writing of this procedure by assuming that a retry of the 1st retry loop is the longest one.
More precisely, we consider the initial algorithm, and we define i0 as

i0 = min argmaxi∈J1,SK rlw
(+)
i .

We then renumber the retry loops such that the new ordering is i0, . . . , S, 1, . . . , i0 − 1, and we add in
Initialization the first parallel sections and retry loops on access points from 1 to i0 — according to the
initial ordering.

One success at the system level is defined as one success of the last CAS, and the throughput is defined
accordingly. We note that in steady-state, all retry loops have the same throughput, so the throughput can
be computed from the throughput of the 1st retry loop instead.

2) Wasted Retries:

Lemma 11. Unsuccessful retry loops can only occur in the 1st retry loop.

Proof. We note (tn)n∈[1,+∞[ the sequence of the thread numbers that succeeds in the 1st retry loop, and
(sn)n∈[1,+∞[ the sequence of the corresponding time where they exit the retry loop. We notice that by
construction, for all n ∈ [1,+∞[, sn < sn+1. Let, for i ∈ J2, SK and n ∈ [1,+∞[, (Pi,n) be the following
property: for all i′ ∈ J2, iK, and for all n′ ∈ J1, nK, the thread Ttn′ succeeds in the ith retry loop at its
first attempt.

We assume that for a given (i, n), (Pi+1,n) and (Pi,n+1) is true, and show that (Pi+1,n+1) is true. As
the threads Ttn and Ttn+1

do not have any failure in the first i retry loops, their entrance time in the
i+ 1th retry loop is given by

sn +

i∑
i′=1

(rlw
(+)
i′ + pw

(+)
i′ ) + pw

(+)
i+1 = X1 and sn+1 +

i∑
i′=1

(rlw
(+)
i′ + pw

(+)
i′ ) + pw

(+)
i+1 = X2,

respectively. Thread Ttn does not fail in the i+ 1th retry loop, hence exits at

X1 + rlw
(+)
i+1 < X1 + rlw

(+)
1 = sn +X2 − sn+1 < X2.

As the previous threads Tn−1, . . . , T1 exits the ith retry loop before Tn, and next threads Tn′ , where
n′ > n + 1, enters this retry loop after Tn+1, this implies that the thread Ttn+1

succeeds in the i + 1th

retry loop at its first attempt, and (Pi+1,n+1) is true.
Regarding the first thread that succeeds in the first retry loop, we know that he successes in any retry

loop since there is no other thread to compete with. Therefore, for all i ∈ J2, SK, (Pi,1) is true. Then
we show by induction that all (P2,n) is true, then all (P3,n), etc., until all (PS,n), which concludes the
proof.

Theorem 4. The multi-retry loop Procedure Combined is equivalent to the Procedure AbstractAlgorithm,
where

pw (+) = pw
(+)
1 +

S∑
i=2

(
pw

(+)
i + rlw

(+)
i

)
and rlw (+) = rlw

(+)
1 .

Proof. According to Lemma 11 there is no failure in other retry loop than the first one; therefore, all
retry loops have a constant duration, and can thus be considered as parallel sections.
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3) Expansion: The expansion in the retry loop starts as threads fail inside this retry loop. When threads
are launched, there is no expansion, and Lemma 11 implies that if threads fail, it should be inside the
first retry loop, because it is the longest one. As a result, there will be some stall time in the memory
accesses of this first retry loop, i.e. expansion, and it will get even longer. Failures will thus still occur
in the first retry loop: there is a positive feedback on the expansion of the first retry loop that keeps
this first retry loop as the longest one among all retry loops. Therefore, in accordance to Theorem 4, we
can compute the expansion by considering the equivalent single-retry loop procedure described in the
theorem.

VI. EXPERIMENTAL EVALUATION

We validate our model and analysis framework through a set of successive steps, from synthetic tests,
capturing a wide range of possible abstract algorithmic designs, to several reference implementations of
extensively studied lock-free data structure designs that include cases with non constant parallel section
and retry loop.

A. Setting

We have conducted experiments on two Intel ccNUMA workstation systems. Both systems have similar
architectural features but different CPUs. They are composed of two sockets, each containing eight
physical cores. The systems are equipped with Intel Xeon E5-2650 and Xeon E5-2687W v2 CPUs with
frequency bands 1.2-2.0GHz and 1.2-3.4GHz, respectively. The physical cores have private L1, L2
caches and they share an L3 cache, which is 20MB in the first system and 25MB in the second one. In
a socket, the ring interconnect provides L3 cache accesses and core-to-core communication. Due to the
bi-directionality of the ring interconnect, uncontended latencies for intra-socket communication between
cores do not show significant variability. Our model assumes uniformity in the CAS and Read latencies
on the shared cache line. Thus, threads are pinned to a single socket to minimize non-uniformity in
Read and CAS latencies. In the experiments, we vary the number of threads between 4 and 8 since the
maximum number of threads that can be used in the experiments are bounded by the number of physical
cores that reside in one socket.

In all figures, y-axis provides the throughput, which is the number of successful operations completed
per millisecond. Parallel work is represented in x-axis in cycles. As mentioned in Section IV, the graphs
contain the high and low estimates, corresponding to the lower and upper bound on the wasted retries,
respectively, and an additional curve that shows the average of them.

As mentioned before, the latencies of CAS and Read are parameters of our model. We used the
methodology described in [DGT13] to measure latencies of these operations in a benchmark program by
using two threads that are pinned to the same socket. The aim is to bring the cache line into the state
used in our model. Our assumption is that the Read is conducted on an invalid line. For CAS, the state
of the cache line could be exclusive, forward, shared or invalid. Regardless of the state of the cache line,
CAS requests it for ownership, that compels invalidation in other cores, which in turn incurs a two-way
communication and a memory fence afterwards to assure atomicity. Thus, the latency of CAS does not
show negligible variability with respect to the state of the cache line, as also revealed in our latency
benchmarks.

As for the computation cost, the work inside the parallel section is implemented by a dummy for-loop
of Pause instructions.

B. Synthetic Tests

1) Single retry loop: For the evaluation of our model, we first create synthetic tests that emulate
different design patterns of lock-free data structures (value of cw ) and different application contexts
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cw = 50, threads = 4 cw = 50, threads = 6 cw = 50, threads = 8

cw = 100, threads = 4 cw = 100, threads = 6 cw = 100, threads = 8

cw = 200, threads = 4 cw = 200, threads = 6 cw = 200, threads = 8

cw = 600, threads = 4 cw = 600, threads = 6 cw = 600, threads = 8

cw = 1600, threads = 4 cw = 1600, threads = 6 cw = 1600, threads = 8
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Figure 10: Synthetic program in System 1
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(value of pw ). As described in the previous subsection, in the Procedure AbstractAlgorithm, the amount
of work in both the parallel section and the retry loop are implemented as dummy loops, whose costs
are adjusted through the number of iterations in the loop.

Generally speaking, in Figure 10, we observe two main behaviors: when pw is high, the data structure
is not contended, and threads can operate without failure. When pw is low, the data structure is contended,
and depending on the size of cw (that drives the expansion) a steep decrease in throughput or just a
roughly constant bound on the performance is observed.

The position of the experimental curve between the high and low estimates, depends on cw . It can
be observed that the experimental curve mostly tends upwards as cw gets smaller, possibly because the
serialization of the CASs helps the synchronization of the threads.

Another interesting fact is the waves appearing on the experimental curve, especially when the number
of threads is low or the critical work big. This behavior is originating because of the variation of r with
the change of parallel work, a fact that is captured by our analysis.
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Figure 11: Multiple retry loops with 8 threads in System 1

2) Several retry loops: We have created experiments by combining several retry loops, each operating
on an independent variable which is aligned to a cache line. In Figure 11, results are compared with the
model for single retry loop case where the single retry loop is equal to the longest retry loop, while the
other retry loops are part of the parallel section. The distribution of fails in the retry loops are illustrated
and all throughput curves are normalized with a factor of 175 (to be easily seen in the same graph). Fails
per success values are not normalized and a success is obtained after completing all retry loops.

C. Treiber’s Stack

The lock-free stack by Treiber [Tre86] is one of the most studied efficient data structures. Pop and
Push both contain a retry loop, such that each retry starts with a Read and ends with CAS on the shared
top pointer. In order to validate our model, we start by using Pops. From a stack which is initiated with
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cw = 50, threads = 8 cw = 250, threads = 8 cw = 500, threads = 8

cw = 750, threads = 8 cw = 1000, threads = 8
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Figure 12: Pop on Treiber’s stack in System 1 with 8 threads

50 million elements, threads continuously pop elements for a given amount of time. We count the total
number of pop operations per millisecond. Each Pop first reads the top pointer and gets the next pointer
of the element to obtain the address of the second element in the stack, before attempting to CAS with
the address of the second element. The access to the next pointer of the first element occurs in between
the Read and the CAS. Thus, it represents the work in cw . This memory access can possibly introduce
a costly cache miss depending on the locality of the popped element.

To validate our model with different cw values, we make use of this costly cache miss possibility.
We allocate a contiguous chunk of memory and align each element to a cache line. Then, we initialize
the stack by pushing elements from contiguous memory either with a single or large stride to disable
the prefetcher. When we measure the latency of cw in Pop for single and large stride cases, we obtain
the values that are approximately 50 and 250 cycles, respectively. As a remark, 250 cycles is the cost
of an L3 miss in our system when it is serviced from the local main memory module. To create more
test cases with larger cw , we extended the stack implementation to pop multiple elements with a single
operation. Thus, each access to the next element could introduce an additional L3 cache miss while
popping multiple elements. By doing so, we created cases in which each thread pops 2, 3, 4 elements,
and cw goes to 500, 750, 1000 cycles, respectively. In Figure 12, comparison of the experimental results
from Treiber’s stack and our model is provided.

As a remark, we did not implemented memory reclamation for our experiments but one can
implement a stack that allows pop and push of multiple elements with small modifications using hazard
pointers [Mic04]. Pushing can be implemented in the same way as single element case. A Pop requires
some modifications for memory reclamation. It can be implemented by making use of hazard pointers just
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by adding the address of the next element to the hazard list before jumping to it. Also, the validity of top
pointer should be checked after adding the pointer to the hazard list to make sure that other threads are
aware of the newly added hazard pointer. By repeating this process, a thread can jump through multiple
elements and pop all of them with a CAS at the end.

Algorithm 1: Multiple Pop
1 Pop (multiple)
2 while true do
3 t = Read(top);
4 for multiple do
5 if t = NULL then
6 return EMPTY;
7 hp* = t;
8 if top != t then
9 break;

10 hp++;
11 next = t.next;
12 if CAS(&top, t, next) then
13 break;
14 RetireNodes (t, multiple);

D. Shared Counter

In [DLM13], the authors have implemented a “scalable statistics counters” relying on the following
idea: when contention is low, the implementation is a regular concurrent counter with a CAS; when the
counter starts to be contended, it switches to a statistical implementation, where the counter is actually
incremented less frequently, but by a higher value. One key point of this algorithm is the switch point,
which is decided thanks to the number of failed increments; our model can be used by providing the peak
point of performance of the regular counter implementation as the switch point. We then have implemented
a shared counter which is basically a Fetch-and-Increment using a CAS, and compared it with our analysis.
The result is illustrated in Figure 13, and shows that the parallel section size corresponding to the peak
point is correctly estimated using our analysis.

E. DeleteMin in Priority List

We have applied our model to DeleteMin of the skiplist based priority queue designed in [LJ13].
DeleteMin traverses the list from the beginning of the lowest level, finds the first node that is not logically
deleted, and tries to delete it by marking. If the operation does not succeed, it continues with the next
node. Physical removal is done in batches when reaching a threshold on the number of deleted prefixes,
and is followed by a restructuring of the list by updating the higher level pointers, which is conducted
by the thread that is successful in redirecting the head to the node deleted by itself.

We consider the last link traversal before the logical deletion as critical work, as it continues with the
next node in case of failure. The rest of the traversal is attributed to the parallel section as the threads
can proceed concurrently without interference. We measured the average cost of a traversal under low
contention for each number of threads, since traversal becomes expensive with more threads. In addition,
average cost of restructuring is also included in the parallel section since it is executed infrequently by
a single thread.
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Figure 13: Increment on a shared counter in System 1 with 8 threads

We initialize the priority queue with a large set of elements. As illustrated in Figure 14, the smallest
pw value is not zero as the average cost of traversal and restructuring is intrinsically included. The peak
point is in the estimated place but the curve does not go down sharply under high contention. This
presumably occurs as the traversal might require more than one steps (link access) after a failed attempt,
which creates a back-off effect.

F. Enqueue-Dequeue on a Queue

In order to demonstrate the validity of the model with several retry loops (see Section V-C), and
that the results covers a wider spectrum of application and designs from the ones we focused in our
model, we studied the following setting: the threads share a queue, and each thread enqueues an element,
executes the parallel section, dequeues an element, and reiterates. We consider the queue implementation
by Michael and Scott [MS96], that is usually viewed as the reference queue while looking at lock-free
queue implementations.

Dequeue operations fit immediately into our model but Enqueue operations need an adjustment due to
the helping mechanism. Note that without this helping mechanism, a simple queue implementation would
fit directly, but we also want to show that the model is malleable, i.e. the fundamental behavior remains
unchanged even if we divert slightly from the initial assumptions. We consider an equivalent execution
that catches up with the model, and use it to approximate the performance of the actual execution of
Enqueue.

Enqueue is composed of two steps. Firstly, the new node is attached to the last node of the queue
via a CAS, that we denote by CASA, leading to a transient state. Secondly, the tail is redirected to point
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Figure 14: DeleteMin on a priority list in System 1 with 8 threads

to the new node via another CAS, that we denote by CASB, which brings back the queue into a steady
state.

A new Enqueue can not proceed before the two steps of previous success are completed. The first step
is the linearization point of operation and the second step could be conducted by a different thread through
the helping mechanism. In order to start a new Enqueue, concurrent Enqueues help the completion of
the second step of the last success if they find the queue in the transient state. Alternatively, they try to
attach their node to the queue if the queue is in the steady state at the instant of check. This process
continues until they manage to attach their node to the queue via a retry loop in which state is checked
and corresponding CAS is executed.

The flow of an Enqueue is determined by this state checks. Thus, an Enqueue could execute multiple
CASB (successful or failing) and multiple CASA (failing) in an interleaved manner, before succeeding in
CASA at the end of the last retry. If we assume that both states are equally probable for a check instant
which will then end up with a retry, the number of CAS s that ends up with a retry are expected to be
distributed equally among CASA and CASB for each thread. In addition, each thread has a successful
CASA (which linearizes the Enqueue) and a CASB at the end of the operation which could either be
successful or failed by a concurrent helper thread.

We imitate such an execution with an equivalent execution in which threads keep the same relative
ordering of the invocation, return from Enqueue together with same result. In equivalent execution,
threads alternate between CASA and CASB in their retries, and both steps of successful operation is
conducted by the same thread. The equivalent execution can be obtained by thread-wise reordering of
CAS s that leads to a retry and exchanging successful CASB s with the failed counterparts at the end
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Figure 15: Enqueue-Dequeue on Michael and Scott queue in System 1 with 8 threads

of an Enqueue, as the latter ones indeed fail because of this success of helper threads. The model can
be applied to this equivalent execution by attributing each CASA-CASB couple to a single iteration and
represent it as a larger retry loop since the successful couple can not overlap with another successful one
and all overlapping ones fail. With a straightforward extension of the expansion formula, we accomodate
the CASA in the critical work which can also expand, and use CASB as the CAS of our model.

In addition, we take one step further outside the analysis by including a new case, where the parallel
section follows a Poisson distribution, instead of being constant. pw is chosen as the mean to generate
Poisson distribution instead of taking it constant. The results are illustrated in Figure 15. Our model
provides good estimates for the constant pw and also reasonable results for the Poisson distribution
case, although this case deviates from (/extends) our model assumptions. The advantage of regularity,
which brings synchronization to threads, can be observed when the constant and Poisson distributions
are compared. In the Poisson distribution, the threads start to fail with larger pw , which smoothes the
curve around the peak of the throughput curve.

G. Back-Off Tuning

Together with the analysis comes a natural back-off strategy: we estimate the pw corresponding to the
peak point of the average curve, and when the parallel section is smaller than the corresponding pw , we
add a back-off in the parallel section, so that the new parallel section is at the peak point.

We have applied exponential, linear and our back-off strategy to the Enqueue/Dequeue experiment
specified above. Our back-off estimate provides good results for both types of distribution. In Figure 16
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Figure 16: Comparison of back-off schemes for Poisson Distribution in System 1

(where the values of back-off are steps of 115 cycles), the comparison is plotted for the Poisson
distribution, which is likely to be the worst for our back-off. Our back-off strategy is better than the
other, except for very small parallel sections, but other back-off strategies should be tuned for each value
of pw .

We obtained the same shapes while removing the distribution law and considering constant values.
The results are illustrated in Figure 17.
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Figure 17: Comparison of back-off schemes for constant pw in System 1
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VII. CONCLUSION

In this paper, we have modeled and analyzed the performance of a general class of lock-free algorithms.
Thanks to this analysis, we have been able to predict the throughput of such algorithms, on actual
executions. The analysis rely on the estimation of two impacting factors that lower the throughput: on
the one hand, the expansion, due to the serialization of the atomic primitives that take place in the retry
loops; on the other hand, the wasted retries, due to a non-optimal synchronization between the running
threads. We have derived methods to calculate those parameters, along with the final throughput estimate,
that is calculated from a combination of these two previous parameters. As a side result of our work, this
accurate prediction enables the design of a back-off technique that performs better than other well-known
techniques, namely linear and exponential back-offs.

As a future work, we envision to enlarge the domain of validity of the model, in order to cope with
data structures whose operations do not have constant retry loop, as well as more advanced lock-free
algorithms. The fact that our results extend outside the model allows us to be optimistic to this side.
Finally, we also foresee studying back-off techniques that would combine a back-off in the parallel section
(for lower contention) and in the retry loops (for higher robustness).
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