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Sensing or Transmission:

Causal Cognitive Radio Strategies with Censorship
Kasra Haghighi, Member, IEEE, Erik G. Ström, Senior Member, IEEE, and Erik Agrell, Senior Member, IEEE

Abstract—This paper introduces a novel opportunistic trans-
mission strategy for cognitive radios (CRs). The primary user
(PU) is assumed to transmit in a time-slotted manner according
to a two-state Markov model, and the CR is either sensing,
that is, obtaining a causal, noisy observation of a primary user
(PU) state, or transmitting, but not both at the same time.
In other words, the CR observations of the PU are censored
whenever the CR is transmitting. The objective of the CR
transmission strategy is to maximize the utilization ratio (UR),
i.e., the relative number of the PU-idle slots that are used by the
CR, subject to that the interference ratio (IR), i.e., the relative
number of the PU-active slots that are used by the CR, is below
a certain level. We introduce an a-posteriori LLR-based CR
transmission strategy, called CLAPP, and evaluate this strategy
in terms of the achievable UR for different PU model parameters
and received signal-to-noise ratios (SNRs). The performance of
CLAPP is compared with a simple censored energy detection
scheme. Simulation results show that CLAPP has 52% gain in UR
over the best censored energy detection scheme for a maximum
IR level of 10% and an SNR of −2dB.

Index Terms—Spectrum utilization, interference ratio, spec-
trum sensing, cognitive radio, hidden Markov model, oppor-
tunistic spectrum access, DSA, missing observation, censorship,
CLAPP.

I. INTRODUCTION

PROLIFERATION of smartphones and hand-held devices

has elevated the demand for high speed wireless services.

In the United States alone, as part of the national wireless

initiative, there are plans to bring wireless broadband internet

access to 98% of the Americans [1]. This desire for high data-

rate wireless networking creates huge expectations for more

frequency spectrum. However, spectrum is a scarce commod-

ity, which is mostly licensed to certain operators commonly

known as primary users (PUs) of the band, who spent a

considerable amount of investment in retaining the right to

use these bands uninterrupted. Notably, this valuable resource

is severely under-utilized [2] and many spectrum holes exist

in both the time and spatial domains. Due to their great scope

of use and benefits, there is significant interest in techniques

providing opportunistic secondary spectrum access [3], [4];
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these are collectively termed cognitive radio (CR). CRs adapt

to exploit communication opportunities in the spectrum by

making use of it without interfering with legitimate users.

An enabler for dynamic spectrum reuse by the CR is

agile and reliable spectrum sensing [5], which means to

estimate when the PU is not transmitting in the licensed

band. There have been several attempts to design spectrum

sensing schemes that do not need to have a model for PU

transmissions. A straightforward approach is energy detection,

which simply means to sum up the energy of received samples

and compare with a threshold [6]. However, energy detection

performance is limited by the signal-to-noise (SNR) wall,

which is the SNR below which robust detection is impossible

for the given detector [7], due to the low received power of

the PU signal at the CR receiver, as well as uncertainties in

signals, noise, and channel, which ultimately result in large

sensing delays. In wideband spectrum sensing in particular, the

tradeoff between agility and reliability is more noticeable [8],

[9]. This creates a demand for a CR which uses all previous

observations and makes a transmission decision with the

shortest possible delay. Sequential spectrum sensing methods,

which collect samples sequentially until one of two thresholds

is met, are attractive, since they are on average faster than

standard energy detection [6], [10], [11].

In contrast to the models which ignore dependencies be-

tween PU transmissions, measurement campaigns and recent

studies [12] have shown that hidden Markov models (HMM)

fit the PUs behavior in many different bands. Assuming a

Markov model for PU activities provides better reutilization

of the spectrum whilst being representative of reality and is

used in many CR research papers [13]–[19]. To be able to use

HMMs for modeling the PU behavior, the knowledge of model

parameters is necessary. The impact of model parameters

estimation on the CR performance was investigated in [20],

[21], which, overall, appears to be quite promising. Another

PU models with finite backlog is considered in [22].

To exploit the Markov model, the Markov decision process

[13]–[16] and the partially observed Markov decision process

[17], [19] are widely used. Moreover, there exist works in the

prediction of the future state of the PU [18], [23]–[25]. In our

previous work, we have introduced an optimum causal strategy

that utilizes this PU behavior [26], [27] with low complexity.

This approach not only considers the PU transmission model

but also takes the causality of observations into account and

thus provides a better reutilization of the spectrum.

In some CR systems, transmission and reception in the same

frequency band at the same time are not possible because at

a CR receiver, the signal transmitted by the same CR will
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be much stronger than the received PU signal, which the

spectrum sensing mechanism is supposed to detect. To avoid

this, the optimization of the sensing time vs. transmission time

was considered in [28]–[33]. In [34], the energy consumption

of sensing was also considered and attempts were made to

minimize it. These methods have considered a fixed length

of sensing and transmission. In another interesting publication

[35], the probability of detection of the PU was considered as

the constraint, under which the secondary rate was optimized.

The same authors presented efficient spectrum sensing for

CR networks via joint optimization of sensing threshold and

duration in [36].

In this paper, we extend the findings in [27] and use HMMs

as a tool for better sensing and transmitting in spectrum holes.

We introduce a CR strategy which can either transmit or sense,

but not both at the same time. In this strategy, the sensing is

performed as long as it is necessary and then a transmission

lasts as long as it is safe enough to transmit. The PU signal

is considered missing, or “censored,” during transmission.

Furthermore, we introduce a simple and iterative method to

calculate a test statistic from the observations with missing PU

samples, where, in contrast to [37], the missing observations

are dependent on the previous transmission pattern.

Our main contributions are summarized as follows.

• We propose a realistic model, which considers spectrum

sensing with missing observations (due to CR transmis-

sion)

• We introduce a method for calculating a-posteriori proba-

bilities log-likelihood ratio (APP-LLR) for the future PU

transmission from the observation with censorship, which

depends iteratively on previous observations

• A novel transmission strategy for a CR with censored

spectrum observations is established.

The main differences with our previous work in [27] results

from the censorship. In particular, since the censorship is de-

pendent on previous transmission decisions, the LLR statistics

and its cumulative distribution function (CDF) varies over

time. Hence,

• a new method to calculate the LLRs is needed, and

• the calculation of the threshold is quite different, since

the empirical CDF of the LLRs cannot be used.

Moreover, this paper analyses the performance of the strategies

in certain degenerate cases not found in [27].

II. SYSTEM MODEL

A cognitive communication link consists of a CR

transmitter–receiver pair and the channel in between. In this

paper, we are evaluating the interaction between a single PU

and single CR. The wireless channel in between is assumed

to be known.

This section presents the abstract system model as depicted

in Fig. 1, which accounts for the PU signal, CR noise, and

CR reception with censorship. This model demonstrates the

PU activity on top, the CR received signal in the middle, and

the CR transmission strategy at the bottom. Whenever the CR

decides to transmit, the next PU activity is censored. First, a

more general perspective is considered and then a simplified

version will be used.

PU signal model

CR signal model

a01

a10

a00 a11

qk

CN (0, σ2
qk
)

qk = 0 qk = 1

r(iTs)

yk

∑

|r(·)|2

uk

uk+1

StrategyDelay T

Figure 1. System model; qk = 1 indicates a PU transmission in the kth
slot and qk = 0 indicates no transmission. The received samples r(iTs)
are circularly symmetric complex Gaussian random variables, whose variance
depends on the PU state. The CR uses the energy detector output to decide
whether to transmit (uk+1 = 1) or not (uk+1 = 0) in slot k+1. If uk+1 = 1,
then the next observation is censored.

A. PU Transmission Model

A cognitive radio system is designed to utilize spectrum

vacancies. To take advantage of time–frequency slots which

are not used by the PU, the CR must be aware of the PU

activity model. The CR estimates this by collecting samples

from PU transmissions over a noisy channel.

The PU transmissions are assumed to be slotted, since in

most of today’s digital communication systems, transmissions

are confined within a packet, frame, or generally some block

structure of some minimum frame length TF. However, the

CR will model the PU as having a transmission slot length

T , where T ≪ TF. We can think of T as a tuning parame-

ter, whose effect on the CR performance will be explained

below. The PU transmission in the kth time slot, i.e., for

t ∈ [kT, (k + 1)T ), is described by the PU transmission state

qk, where qk = 1 and qk = 0 indicates transmission and no

transmission, respectively. For simplicity, we will assume that

the time slots are synchronized to the PU transmissions. This

is not a very restrictive assumption, since because T ≪ TF, a

synchronization mismatch will only affect a small fraction of

the slots (namely those slots in which the PU starts or ends

a transmission). The PU transmission state sequence qk, for

k = 0, 1, . . ., is assumed to follow a two-state Markov model

with state transition probabilities

aij , Pr{qk+1 = j | qk = i}, i, j ∈ {0, 1}, (1)

as depicted in the top part of Fig. 1. We assume that the PU

does not remain in the same state forever, i.e., that aij > 0 for
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i 6= j. Furthermore, we assume that the Markov chain is in

steady state at k = 0, which implies that the state probabilities

do not depend on k, i.e., that

π0 , Pr{qk = 0} =
a10

a01 + a10
,

π1 , Pr{qk = 1} =
a01

a01 + a10

(2)

for k = 0, 1, . . ., [38]. The transition probabilities are assumed

to be known or accurately estimated from data, e.g., by using

the expectation-maximization algorithm [21], [38].

Since the PU is assumed to have a minimum transmission

slot TF, a two-state Markov model with slot length T ≪ TF

can only approximate the true PU behavior. The reason for

selecting T ≪ TF is to improve the CR agility, i.e., its ability

to quickly sense changes in the PU state and to mitigate the

impact of synchronization errors. However, we cannot choose

T to be too small, since the resulting Markov model will lose

in accuracy and the SNR will be reduced (as explained below).

Finally, we note that as a consequence of choosing T ≪ TF,

the probability that the PU switches states is small, i.e., we

can safely assume that a01 ≪ a00 and a10 ≪ a11.

Another factor in modeling the PU-CR interaction is the

channel in between. Wireless channels are normally consid-

ered as random fading processes such as Rayleigh, Rician,

Nakagami, etc. [39], [40]. Another approach to modeling the

fading process is to include the fading in the PU transmission

model. Thus, whenever the channel is in a deep fade, it is

assumed that there is no PU transmission, no matter what

the real state of the PU is. Conversely, in case of no deep

fade, the standard PU transmission model is used. Thus, a

simple two-state Markov model can approximate a wide range

of PU transmissions, PU network activities, and even fading

channels.

B. Signal and Noise Model

We model the PU–CR channel as an additive white Gaussian

noise (AWGN) channel. The complex envelope of the CR

received signal, low-pass filtered to the PU signal bandwidth

W , is

r(t) =

{

n(t), qk = 0

s(t) + n(t), qk = 1
, t ∈ [kT, (k + 1)T ),

where n(t) is the filtered AWGN channel noise and the

contribution from the PU transmitted signal, s(t), is modeled

as a circularly symmetric complex Gaussian random process

with bandwidth W . This PU signal model is common in the

literature [41] [4], and is reasonable for many combinations of

PU signal formats and channels (fading as well as nonfading).

If we select the sample interval Ts such that Ts ≫ 1/W ,

then the samples in the kth slot can be approximated as

independent, identically distributed (i.i.d.) complex Gaussian

random variables

r(kT + iTs) = n(kT + iTs) + s(kT + iTs)

∼

{

CN (0, σ2
0), qk = 0

CN (0, σ2
1), qk = 1

, i = 0, 1, . . . ,Kmax,

(3)

where CN (µ, σ2) denotes a circularly symmetric, complex

Gaussian distribution with mean µ and variance σ2, Kmax =
⌊T/Ts⌋ with ⌊x⌋ being the largest integer not greater than

x, σ2
0 is the noise variance, and σ2

1 = σ2
0 + σ2

s where σ2
s

is the signal power. We define the signal-to-noise-ratio as

SNR , σ2
s/σ

2
0 . For ease of presentation, we fixed σ2

0 = 2
in the figures and simulations.

Since we do not have knowledge of the PU signal phase,

the CR uses an energy detector front-end to form the statistics

yk ,

K−1
∑

i=0

|r(kT + iTs)|
2, (4)

where K ≤ Kmax. Hence, since yk is the sum of the squared

magnitude of K i.i.d. complex Gaussian random variables,

or equivalently the sum of 2K squared real-valued Gaussian

random variables, yk is proportional to a standard Chi-squared

random variable with 2K degrees of freedom. To be precise,

yk/(σ
2
0/2) ∼ χ2

2K if qk = 0 and yk/(σ
2
1/2) ∼ χ2

2K if

qk = 1, where χ2
N denotes a standard Chi-squared random

variable with N degrees of freedom. The tuning parameter K
essentially determines the SNR in yk. Since K must be no

greater than Kmax = ⌊T/Ts⌋, we see that reducing T will

eventually limit the maximum SNR.

C. CR model

In this paper, it is assumed that the CR always has informa-

tion to send, i.e., it has a full buffer, and will seek to reuse the

spectrum whenever it is available. However, spectrum sensing

cannot always be performed, as the CR is not able to observe

the spectrum during its transmission periods. This limitation

arises from the fact that, in practice, a transmission from a

CR transmitter will saturate its receiver and, thus, it will be

extremely difficult to sense at the same time in the same

frequency band. The CR strategy decides to transmit or sense

in each time slot. At time slot k, a transmission decision for

the next time slot is represented by uk+1 = 1 and a sensing

decision is denoted by uk+1 = 0. In this paper, we assume that

the transmission strategy has access to the spectrum’s energy

yk only when uk = 0. In other words, the CR will observe

the list y′
k,

y
′
k ,

{

y
′
k−1, if uk = 1,

[y′
k−1 yk], if uk = 0

, k = 1, 2, . . . , (5)

where y
′
0 = [ ], i.e., the empty list. Obviously, the length of

y
′
k is smaller than or equal to k.

So, the actual observation, which is used by the strategy

to make the next transmission decision, is dependent on the

previous transmission decisions.

D. Definition of a CR transmission strategy

To be able to judge different cognitive radio transmission

strategies with censorship, first we need to establish a proper

mathematical definition for such a strategy. Our goal is to

design the best CR transmission strategy, with the output uk+1,

where uk+1 = 0 and uk+1 = 1 represent no transmission and
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transmission, respectively, in slot k+1 using the observations

until time k, y′
k as defined in (5).

Now, we formally define the CR transmission strategy as

a series of functions fk(·), which produce the transmissions

decisions. In other words, a CR transmission strategy is

F = (f0, f1, f2, . . .), (6)

uk+1 = fk(y
′
k, a01, a10, σ

2
0 , σ

2
1). (7)

Later, for ease of notation, we will omit the PU model

information (a01, a10, σ
2
0 , σ

2
1) and simply denote the decision

functions by fk(y
′
k). This formal definition of a strategy does

however not offer a practically implementable CR algorithm,

due to the prohibitive complexity of storing and processing

the full history y
′
k . In Sec. III, we will develop a recursive

algorithm, which avoids storing y
′
k.

E. Problem Statement

In wireless communications, cognitive radios are employed

to reuse idle spectrum slots by utilizing the spectrum sensing

information, whenever possible. The CR has access to observa-

tions from the spectrum to decide whether to transmit or not.

However, due to the uncertainties in the channel, the noise,

and the PU future states, the CR will create unintentional

interference for the PU. Interference will happen whenever the

CR transmits at the same time as the PU. This interference is

quantified by the interference ratio (IR) ρ, defined as [26], [27]

ρ , Pr{uk+1 = 1|qk+1 = 1}, (8)

where we have implicitly assumed that k is large enough for

the initial transient to have passed and that the system is in

steady state, in the sense that Pr{uk+1|qk+1} does not depend

on k. A CR is supposed not to interfere with the PU more than

a specific limit ρmax.

As explained in Sec. II-C, a CR strategy considers obser-

vations when sensing is allowed and decides about the next

transmission. Utilization of the spectrum occurs whenever the

CR transmits in a vacant time slot, and this is measured by

the spectral utilization ratio (UR), defined as [26], [27]

η , Pr{uk+1 = 1|qk+1 = 0}, (9)

where we have again assumed that k is sufficiently large.

There are major differences between the system model

in this paper and some previous works in the literature,

such as [17], [19], [23], [27]. Firstly, we make transmission

decisions uk+1 based on all previous (causal) observations y′
k,

unlike the methods in [17], [19], [23] which make transmission

decisions based on a single observation. Secondly, previous

transmission decisions control which energy samples we can

observe, which is not the case in [27].

The main difficulty in designing good CR transmission

strategies is the dependence of censorship on previous de-

cisions. This feedback, which is visible in Fig. 1, adds an-

other dependence between observations in addition to the PU

Markov dependence.

Algorithm 1 Baseline strategy

Input: Sense/transmit frame length n and threshold θe

Output: Transmission decisions u1, u2, u3, . . .
1: Initialize k ← 1
2: loop
3: Let uk ← 0 and take an energy sample yk for slot k
4: if yk ≤ θe then
5: Let uk+1 ← 1, . . . , uk+n−1 ← 1, i.e., transmit in n − 1

consecutive slots
6: k ← k + n
7: else
8: k ← k + 1
9: end if

10: end loop

F. Baseline strategy

The baseline strategy, which is using energy detection and

censoring, is explained in Algorithm 1. In this strategy there

are two parameters to optimize: θe and n. These two design

parameters should be chosen to maximize η, subject to the

condition ρ ≤ ρmax. Moreover, we know that UR and IR are

increasing functions of θe [26], [27]. Thus, to find optimum

parameters for the baseline strategy, we first fix n and find

the threshold such that ρ = ρmax through bisection search.

Then we repeat this for different n to maximize the UR. For

different a01, a10, σ2
0 , σ2

1 , and ρmax, different sets of θe and n
must be chosen.

However, this strategy has some limitations. By design,

the baseline CR transmits for n − 1 consecutive slots before

sensing for at least one slot. Hence, even if the CR transmits

as often as it can, i.e., for n − 1 out of n slots, the UR and

IR are upper-bounded: η, ρ ≤ (n− 1)/n = 1− 1/n. Clearly,

we can remove this problem by increasing n. However, as n
increases, we need to decrease the threshold θc to ensure that

ρ ≤ ρmax, and this will lead to fewer transmissions and a

reduced η. Intuitively, we therefore expect that there exists a

finite optimum n for each combination of PU parameters (a01,

a10, σ2
0 , and σ2

1). This intuition is verified by the numerical

results in Sec. IV-B. Hence, the complexity in finding the

optimum n for the baseline strategy is not excessive, and is

anyways not important, since we are not suggesting to use the

baseline strategy in practice.

III. CENSORED APP-LLR BASED COGNITIVE

TRANSMISSION STRATEGY

In this section, we introduce a new strategy which observes

spectrum energy samples through censorship by its own trans-

missions. In our previous paper [27], we have shown that the

APP-LLR transmission strategy is optimum in an uncensored

scenario (i.e., when simultaneous sensing and transmission are

allowed). Now, since we are dealing with censored observa-

tions, a straightforward direction for designing a CR strategy

is to extend the non-censored APP-LLR (NCLAPP) strategy in

[27] to the censored APP-LLR (CLAPP R©) strategy described

below. CLAPP (as well as NCLAPP) has the advantages that

• it captures all information about the previous observations

recursively,

• it includes the PU Markov model in its decisions,
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Algorithm 2 CLAPP strategy

Input: System model parameters a01, a10, σ2
0 , σ2

1 and threshold θl

Output: Transmission decisions u1, u2, u3, . . .
1: Initialize k ← 0 and γ0(j)← πj for j ∈ {0, 1}
2: loop

3: z′k ← log γk(1)
γk(0)

4: k ← k + 1
5: if z′k−1 ≤ θl and k ≥ 2 then
6: Let uk ← 1, i.e., transmit in slot k
7: γk(j)← γk−1(0)a0j + γk−1(1)a1j , j ∈ {0, 1}
8: else
9: Let uk ← 0, i.e., take an energy sample yk for slot k

10: γk(j) ← γk−1(0)a0jb0(yk) + γk−1(1)a1jb1(yk), j ∈
{0, 1}

11: end if
12: end loop

• it predicts the next state of the PU.

At the same time, NCLAPP is very simple to implement.

A. Introduction to the CLAPP strategy

In our previous contribution [27], the LLRs were calculated

based on the forward variables αk(j) of all observations.

Specifically, NCLAPP calculates the LLRs as [26, Eqs. (19)–

(21)]

zk , log
Pr{qk+1 = 1|yk}

Pr{qk+1 = 0|yk}
= log

a01αk(0) + a11αk(1)

a00αk(0) + a10αk(1)
,

(10)

where yk , [y1, y2, . . . , yk] and αk(j) , p(qk = j,yk), j ∈
{0, 1}.

The CLAPP algorithm is explained in Algorithm 2. In

CLAPP, we have access only to the censored observations y′
k.

Thus, we have to calculate the LLRs based on y
′
k. We first

define the censored APP LLRs as

z′k , log
Pr{qk+1 = 1|y′

k}

Pr{qk+1 = 0|y′
k}

(11)

and then express z′k in terms of the joint distributions instead

of the conditionals as

z′k = log
p(qk+1 = 1,y′

k)

p(qk+1 = 0,y′
k)

= log
γk(1)

γk(0)
, (12)

where γk(j) , p(qk+1 = j,y′
k). These censored LLRs capture

all the information needed for making decisions based on the

censored observations. Clearly, a decision rule of the general

form (7) requires enormous amounts of memory for storing

all previous censored observations y
′
k. However, Algorithm 2

has the advantage of requiring only the latest observation

for making decisions, which is very suitable for real world

implementations.

One simple approach in NCLAPP, which was proven to be

optimal in terms of η in [27], is the comparison of LLRs

with a fixed threshold. In CLAPP, we also implement the

same approach and compare the censored LLRs with a fixed

threshold. The strategy uk+1 = fk(y
′
k) is thus

fk(y
′
k) =

{

1, if z′k ≤ θl

0, if z′k > θl
, (13)

−3 −2 −1 0 1 2 3
0
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1

η

ρ
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ρmax

Figure 2. CLAPP performance for σ2
0 = 2, SNR = 0 dB, K = 5,

a01 = 0.10, and a10 = 0.01. If the threshold θl is chosen such that ρ =
ρmax = 10%, then η = 62%.

where θl is the threshold found using the bisection search

described below. Fig. 2 demonstrates the performance (IR and

UR) of CLAPP versus the threshold. As expected, UR and IR

approach zero for very low thresholds. For higher thresholds,

both UR and IR approach one (which eventually violates the

IR requirement). As we can see, there is a smooth, monotonic

transition for ρ and η from zero to one as the threshold

increases; the smoothness property holds in general, except

in a degenerate situation which is explained in Section III-C.

This smooth transition enables us to compute the threshold

with a bisection search. This search method is quite fast and

determines a threshold with a resulting IR close to ρmax in a

training period for which energy samples and corresponding

PU states qk are known. The CR can also compute the IR

as a function of the threshold without help from the PU by,

e.g., simulating the PU activity and the resulting observations

(which is possible given the system parameters).

The behavior of CLAPP for a PU with high activity level

(π1 > π0) and long transmission bursts (i.e., periods for

which qk = 1) and a less active PU (π1 < π0) with short

transmission bursts is shown in Figs. 3 and 4, respectively. As

expected, for the PU in Fig. 3, fewer observations are censored

and the CLAPP LLR follows closely the NCLAPP LLR at

the end of the transmission burst. During the period when

qk = 0, some observations should still be made to detect a

change of PU state. As seen from the plots, the CLAPP LLR

increases as a function of time when the CR is transmitting

and will eventually reach the threshold at which the CR ceases

transmission and senses the channel. The LLR is a measure

of how the CR perceives the risk that the PU is transmitting.

Without observations, the risk increases until it reaches the

threshold, and CLAPP decides to sense the channel to make

sure it is on the safe side.

In the next section, we show that CLAPP is a reasonable

choice when our observations are suffering from censorship.
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Figure 3. CLAPP behavior for σ2
0 = 2, SNR = 0 dB, K = 5, π1 = 0.91,

a01 = 0.10, a10 = 0.01, and ρmax = 0.10. The average PU transmission
burst length is 1/a10 = 100 slots. Note that yk is censored when uk = 1,
i.e., when z′

k
≤ θl. The UR is 62%, as indicated by the dashed line in Fig.

2.

Even though we cannot prove that CLAPP is the optimum

censored strategy, we will show that the new method of

calculating the censored LLRs will capture the information

needed to make a decision based on the censored sequence of

observations.

B. Validity and Derivation of CLAPP strategy

During transmission, the observation for that slot will be

missing. Censorship, due to the transmissions, must be re-

flected in the calculation of LLRs. To simplify the analysis

and implementation of CLAPP, the threshold θl for decision-

making on whether to sense or transmit is time-invariant.

In Fig. 5 we depict the relationship between PU state (qk),

received energy (yk), observed energy at CR after censorship

(y′
k), and the CR transmission decision (uk) which causes the

censorship. If the CR decides to transmit (uk = 1), the switch

in Fig. 1 will be open and the energy will not be observed at

the CR.

If the CR decides to sense, the received energy sample

yk, conditioned on qk = j and normalized with σ2
j /2, is

a standard Chi-square random variable with 2K degrees of

freedom. Hence, the conditional pdf for yk is

bj(yk) , p(yk|qk = j)

=

{

1
σ2K
j

(K−1)!
yK−1
k e−yk/σ

2

j , if yk ≥ 0,

0, if yk < 0
. (14)

In the following theorem, we presented an iterative method

for calculating the joint distribution of the censored observa-

tions and the future PU state, known as γk(j).
Theorem 1: For a given sequence of observation y

′
k cen-

sored by uk = fk−1(y
′
k−1), a sequence of transmission

decision functions fk, system model parameters a01, a10, σ2
0 ,

σ2
1 , distributions of yk under noise only and signal plus noise,

b0 and b1, respectively, γk(j) , p(qk+1 = j,y′
k) can be

calculated recursively as γ0(j) = πj and

γk(j) =























1
∑

i=0

γk−1(i)aij , if fk−1(y
′
k−1) = 1,

1
∑

i=0

γk−1(i)aijbi(yk), if fk−1(y
′
k−1) = 0

,

(15)

for k = 1, 2, . . . and j ∈ {0, 1}.

Proof: Theorem 1 is proved in the appendix.

In Theorem 1, we have established the core of CLAPP, by

proving the iterative calculation of γk(j). Thus, calculation

of the APP-LLRs based on γk(j) gives us a plausible test

statistic for making transmission decision. In [27, Th. 2], we

have shown that the CR strategy based on the APP-LLRs

is the optimum casual transmission strategy when there is
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Figure 5. Markov chain of the CR censored observation, transmission
decisions, and PU states.

no censoring. However, since the censored observation vector

y
′
k is dependent on the previous decisions u1, u2, . . . , uk−1,

it is rather difficult to prove that CLAPP is an optimum

strategy for all sequences of observations. Indeed, it is not

even straightforward to define optimality in a CR system with

censorship dependent on previous decisions.

There are cases in which the transition probabilities are

time-varying and hence this simple model does not hold.

However, a more general variant of Markov models, namely

semi-Markov models, can be employed [42]. All derivations

presented in the rest of this paper can be generalized using

semi-Markov models, which is outside the scope of this paper.

C. CLAPP limitation

Both CLAPP and NCLAPP are based on the assumption

that the PU is following a Markov model. However, in the

special case when a01 + a10 = 1, the next state of the

PU is independent of all previous observations. In this case,

since a01 = a11 and a10 = a00, the future state of the

PU qk+1 is independent of the current state qk. Furthermore,

since yk, yk−1, . . . , y1 are functions of qk, qk−1, . . . , q1 and

the noise, qk+1 is independent of all observations yk. Thus,

any causal CR, operating in the presence of such PUs, cannot

perform better than a randomized transmission scheme that

ignores the observations and transmits with probability ρmax,

which implies that η = ρ = ρmax. This is also in accordance

with [27, Eq. (8)], where an upper bound of η for any causal

CR is specified. For a01 + a10 = 1, the upper bound of η is

ρmax. For the case when a01+a10 is close to one, intuitively we

expect that CLAPP and NCLAPP lose their ability to predict

the PU states. Indeed, simulation results presented in Sec. IV-B

show that the problem of unpredictable PU states kicks in not

only when a01 + a10 = 1, but also when a01 + a10 is close to

one.

This is, however, not a serious limitation, since as mentioned

in Sec. II-A, we are mainly interested in the case a01 ≪ 1/2
and a10 ≪ 1/2.

IV. PERFORMANCE EVALUATION AND RESULTS

In this section, we compare CLAPP with optimized cen-

sored energy detection (baseline) and NCLAPP (no censor-

ship). All of the comparisons are performed with the same

PU model, the same level of maximum interference ρmax, and

even the same samples to ensure fairness. To find thresholds

in the censored methods, we use a simple bisection search to

obtain an IR as close as possible to ρmax, within a certain

small tolerance, but no more than ρmax. The rest of this

section discusses the evaluation setup by which these CRs are

assessed. It then presents some results and comparisons.

A. Evaluation Setup

In simulating the performance of a CR transmission strategy,

the ratio of received primary signal power (at the CR receiver)

to the CR receiver noise power is important. In this simulation,

K , which is another design parameter, is selected to be 5.

This parameter plays a role for the SNR scaling. The higher

the K , the higher the SNR, which is translated into better

CR performance. However, higher K means more delay in

the decision making. This can in turn reduce the performance

of the CR. The other factor which is important in evaluating

CRs is the maximum allowable IR, ρmax. This parameter is

normally decided by regulatory authorities like the Federal

Communications Commission (FCC). In practice, ρmax must

be small and we have chosen it to be 10% as suggested in [32].

We are interested in examining the impact of an active PU with

long transmission bursts (π1 > π0 and 1/a10 large) and an

infrequently active PU with short transmission bursts (π1 < π0

and 1/a10 small). We further want to observe what happens

when a01 + a10 is close to one. Thus, we have simulated the

cases when (a01, a10) = (0.10, 0.01) ⇒ π1 = 0.91, 1/a10 =
100 slots, (a01, a10) = (0.01, 0.10) ⇒ π1 = 0.091, 1/a10 =
10 slots, and (a01, a10) = (0.45, 0.30). To find the threshold,

106 simulated slots are used. To evaluate the performance,

another 106 slots are simulated.

B. Results

The UR of the different CRs are plotted versus SNR in

Figs. 6 and 7 for different PU parameters. Fig. 6 depicts UR

vs. SNR for an active PU with long transmission bursts. UR

is an increasing function of SNR, as expected. For very low

SNR, there is little information in the observations. Thus, no

strategy can perform better than a random transmission, i.e.,

when the CR transmits with probability ρmax, regardless of the

observations, which results in η = ρmax. However, at SNRs

as low as −10 dB, the impact of including the PU model

knowledge in transmission decisions is apparent. At the SNR

of −2 dB, CLAPP has 52% gain over the best censored energy

detection (the one with n = 5). In the high SNR region, such

as 13 dB, this gain over the censored baseline with n = 5
reduces to 32% and over the best censored baseline with

n = 12 to 10%. This UR gain is due to utilizing PU model

knowledge and memory in the system to predict the future

state of the PU. Censorship costs some utilization gain for the

CLAPP and the baseline strategies compared with NCLAPP.

In Fig. 7, we have evaluated UR vs. SNR for a less active

PU with short transmission bursts. The same general trend is

visible as in Fig. 6. CLAPP has 47% UR gain over the best

censored baseline with n = 3, at a low SNR of −2 dB.

At high SNR, the IR is dominated by the time from a

transition from qk = 0 to 1 until the CR notices this transition

and stops transmitting. If the PU is expected to transmit for a
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Figure 6. UR vs. SNR for ρmax = 10%, π1 = 0.91, a01 = 0.10, and
a10 = 0.01.

long time, the delay between sensing times can be relatively

large without violating the constraint ρ ≤ ρmax. As mentioned

before, the expected duration of a PU transmission is 1/a10.

This value is less in Fig. 7 than in Fig. 6, and hence, the CR

needs to sense more often to maintain the same ρmax. This is

the reason why the censored strategies, CLAPP and baseline,

yield a lower UR at high SNR in Fig. 7 than in Fig. 6. The

uncensored strategy NCLAPP, on the other hand, experiences

a higher UR in Fig. 7 than in Fig. 6, because the UR in this

case approaches 1 − a01 at high SNR (the expected duration

of a period of PU silence is 1/a01 time slots, and the CR

transmits during all except the first of these slots).

In Fig. 8, UR is plotted as a function of IR for different

SNRs and PU Markov parameters. The left column is for rela-

tively low SNR (0 dB) and the right column for relatively high

SNR (10 dB). The top row plots are for a PU with relatively

long transmission bursts (1/a10 = 100 slots), the middle row

is for shorter transmission bursts (1/a10 = 10 slots), and the

bottom row is for a rather unpredictable PU (a10 + a01 =
0.75; recall that the PU is completely unpredictable when

a10 + a01 = 1). As expected, all transmission strategies

perform similarly for the latter case. Otherwise, CLAPP gives

the largest gains compared to the baseline methods for low

SNR (left column), and the loss for CLAPP versus NCLAPP

is smallest for long PU transmission bursts (middle row).

However, in all cases, CLAPP performs better than all baseline

methods, especially for low IRs, which is the more practically

relevant region. As explained earlier, the UR and IR for the

baseline method is upper-bounded by (n − 1)/n. Hence, the

UR versus IR curve for the baseline methods is only defined

for 0 ≤ ρ ≤ (n− 1)/n.

V. CONCLUSION

In this paper, we have introduced a cognitive radio frame-

work which either senses the spectrum or transmits in it, in

the presence of a Markovian PU. To capture all the effects that

the CR will experience, the PU system is modeled as a hidden

Markov model whose continuous-amplitude outputs r(iTs)
are censored by CR transmission decisions. The performance

of each transmission strategy is judged by the maximum
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Figure 7. UR vs. SNR ρmax = 10%, π1 = 0.091, a01 = 0.01, and
a10 = 0.10.

achievable UR, under the constraint that IR does not exceed

a fixed constant ρmax.

A new LLR-based CR strategy, called CLAPP, has a sub-

stantial UR gain over the optimized baseline method. The

gains are more pronounced for low to moderate SNRs. For

high SNRs, the gains are smaller, and for very low SNRs,

all methods perform similarly, which is expected since the

received signal contains very little information about the PU.

However, in all cases, the CLAPP UR is an upper bound to

the baseline method UR.

The loss in UR for CLAPP versus an (idealized) CR that

can sense and transmit at the same time is more significant

for PUs with transmission bursts that are short relative to the

CR slot time. We can, however, partially compensate for this

loss by reducing the CR slot time.

The same is true for an unpredictable PU (i.e., when

knowledge of the current PU state implies little knowledge

about future states).

APPENDIX

PROOF OF THEOREM 1

By forming the joint distribution of p(y′
k, qk+1, qk), factor-

izing it according to the Markov chain presented in Fig. 5,

marginalizing with respect to qk, and utilizing (5), we obtain



9

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ηη

ηη

ηη

ρρ

ρρ

ρρ

n = 2n = 2

n = 2n = 2

n = 2n = 2

n = 3n = 3

n = 3n = 3

n = 3n = 3

n = 5n = 5

n = 5n = 5

n = 5n = 5

n = 9n = 9

n = 9, 12, 15n = 9, 12, 15

n = 9, 12, 15n = 9, 12, 15

a01 = 0.10 and a10 = 0.01a01 = 0.10 and a10 = 0.01

a01 = 0.01 and a10 = 0.10a01 = 0.01 and a10 = 0.10

a01 = 0.45 and a10 = 0.30a01 = 0.45 and a10 = 0.30
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for k = 1, 2, . . . if fk(y
′
k−1) = 1

γk(j) , p(qk+1 = j,y′
k)

=

1
∑

i=0

p(y′
k, qk = i, qk+1 = j)

=

1
∑

i=0

p(y′
k−1, qk = i, qk+1 = j)

=

1
∑

i=0

p(qk = i,y′
k−1) Pr{qk+1 = j|qk = i,y′

k−1}

=

1
∑

i=0

p(qk = i,y′
k−1) Pr{qk+1 = j|qk = i}

=

1
∑

i=0

γk−1(i)aij ,

and if fk(y
′
k−1) = 0

γk(j) , p(qk+1 = j,y′
k)

=

1
∑

i=0

p(y′
k, qk = i, qk+1 = j)

=

1
∑

i=0

p(y′
k−1, yk, qk = i, qk+1 = j)

=

1
∑

i=0

p(qk = i,y′
k−1) Pr{qk+1 = j|qk = i,y′

k−1}

·p(yk|qk = i, qk+1 = j,y′
k−1)

=

1
∑

i=0

p(qk = i,y′
k−1) Pr{qk+1 = j|qk = i}p(yk|qk = i)

=
1

∑

i=0

γk−1(i)aijbi(yk).

The recursion is initiated by γ0(j) = p(q1 = j,y′
0) = Pr{q1 =

j} = πj , since y′
0 = [ ], i.e., the empty list. Hence, the theorem

is proven.
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