
An Integrated CP/OR Method for Optimal
Control of Modular Hybrid Systems ?

Oskar Wigström ∗ Bengt Lennartson ∗

∗Automation Research Group, Department of Signals and Systems,
Chalmers University of Technology, Gothenburg, Sweden

(oskar.wigstrom+bengt.lennartson@chalmers.se).

Abstract: This paper concerns the optimal control of modular hybrid systems synchronized by
shared variables. Instead of synchronizing the discrete dynamics of the system into one global
mode before optimization, Constraint Programming (CP) is used to model the discrete dynamics
of each modular system separately. Integrated in the CP solver are also classic Operations
Research (OR) models in the form of Nonlinear Programs (NLPs) approximating the continuous
dynamics of the system. Using CP considerably decreases the number of NLPs which must be
solved, compared to that of using a traditional mixed integer nonlinear programming approach.

Keywords: Hybrid modes, Optimal control, Mathematical programming, Constraint
satisfaction problems, Discrete event systems

1. INTRODUCTION

Hybrid systems are systems which contain both contin-
uous and discrete behaviour. Optimization methods for
hybrid systems aim to compute optimal or sub-optimal
trajectories for the systems. In this paper, we present an
optimal control approach for the case of modular hybrid
systems linked by shared variables. The method is specif-
ically suited for problems where the discrete dynamics by
themselves may lead to infeasibilities.

There are several approaches to the computation of op-
timal trajectories for hybrid systems. In some instances,
it can be possible to abstract the continuous time dy-
namics in order to get a convex formulation, Wigström
et al. (2013). But unless some simplification or abstraction
is made, a general hybrid optimal control problem usu-
ally result in a non-convex optimization problem. Meth-
ods include Dynamic Programming Hedlund and Rantzer
(1999), the Maximum Principle Sussmann (1999) and
Mixed Integer Nonlinear Programming (MINLP) Olden-
burg and Marquardt (2008). The method in this paper
improves upon those in the MINLP category.

In a MINLP approach, boolean variables are used to
model the discrete dynamics, and the continuous dynam-
ics approximated by nonlinear constraints. Most often, a
MINLP is solved by branch and bound, in one form or
another. For systems with complex discrete dynamics, a
drawback of the MINLP approach is that infeasibilities
caused by discrete choices may not be detected until far
down into the branches. Because of this, a lot of nodes are
explored unnecessarily, something which is computation-

? This work was carried out at the Wingquist Laboratory VINN
Excellence Center within the Area of Advance – Production at
Chalmers, supported by the Swedish Governmental Agency for
Innovation Systems (VINNOVA) and the Swedish Research Council.
The support is gratefully acknowledged.

ally expensive when each node contains an approximation
of continuous dynamics.

In Wigström and Lennartson (2013), an algorithm which
uses Constraint Programming (CP) integrated with Non-
linear Programming (NLP) was used to solve a scheduling
problem with a nonlinear cost function. The key idea is
to utilize CP in order to reduce the number of nodes,
and in doing so, the number of NLP sub-problems. It
was suggested in Wigström and Lennartson (2014) that
the algorithm may be extended to include continuous dy-
namics. In optimal control problems, collocation is a com-
mon approach used to approximate continuous dynamics
Benson (2005). In this paper, we extend the algorithm
to include collocation of continuous dynamics by psue-
dospectral methods. Also, we add additional functionality
to further reduce the number of NLP sub-problems.

To summarize, the main contribution of this paper is the
utilization of the modular structure of hybrid systems
for optimization including nonlinear cost. CP is used to
reduce the number NLP sub-problems, due to CPs ability
to early detect infeasible solutions. Note that because the
approximation method for the continuous dynamics results
in non-convex constraints, only local optimality of the
generated trajectories may be guaranteed.

2. PROBLEM FORMULATION

The study of hybrid systems has resulted in a large number
of modeling formalisms. In this paper, the Hybrid Automa-
ton (HA) Alur et al. (1992) Cassandras and Lafortune
(2006) is used to describe the individual hybrid systems.
HAs are generalized finite-state machines with the usual
discrete transitions as well as continuous state dynamics
which can vary with each mode (discrete state). The con-
tinuous states may also influence the discrete transitions.

Shared variables provide a convenient method of synchro-
nization between the individual systems Lennartson et al.

12th IFAC/IEEE Workshop on Discrete Event Systems
Cachan, France. May 14-16, 2014

978-3-902823-61-8/2014 © IFAC 485 10.3182/20140514-3-FR-4046.00130

(2014). As such, shared variables in the form of integers
have been added to the HA. To provide a clearer formula-
tion, these variables are separated from the normal state
variables.

2.1 Hybrid Automaton with Shared Variables

We define an individual HA with shared (integer) variables
(HASV) as (notation based on Cassandras and Lafortune
(2006))

GHASV = 〈Q,S,X,U, f, φ, Inv, guard, ρ, q0, x0〉 (1)

where Q = {q1, ..., qm} is a set of discrete states or modes,
S is the domain of the shared integer variables, S ⊆ Zns ,
X is a continuous state space, X ⊆ Rnx , U is a set of
admissible input signals, U ⊆ Rnu , f is a vector field,
f : Q×X×U → X, φ is a discrete state/variable transition
function φ : Q× S ×X → Q× S, Inv is a set defining an
invariant condition, Inv ⊆ Q×X, guard is a set defining a
guard condition, guard ⊆ Q×Q×X, ρ is a reset function,
ρ : Q×Q×X → X, q0 is the initial discrete state and x0
is the initial continuous state. Note that we have excluded
events from the formulation as the synchronization of HA
will be based on shared variables.

The vector field f describing the dynamics of X takes the
form

ẋ(t) = f(q(t), x(t), u(t)), (2)

for times t 6= tk and tk : k = {1, 2..} are the time instances
when transitions occur.

At each discrete transition, the reset condition ρ updates
the continuous state vector as

x(t+k) = ρ(q(t+k), q(tk), x(tk)) (3)

where tk is an arbitrary time when a discrete transition
occurs. The discrete mode and shared integer variables
are updated as[

q(t+k)
s(t+k)

]
= φ(q(tk), s(tk), x(tk)). (4)

2.2 Synchronization

As previously mentioned, the links between separate indi-
vidual systems are shared integer variables. These are up-
dated by the discrete state/variable transition function φ.
For the purposes of this paper, shared variables act much
like resources which are incremented at allocation and
decremented when deallocated. For example, an allocation
of a shared variable s is stated simply s(t+k) = s(tk) + 1.

The update conditions on a shared variable will disable a
transition if its new value, s(t+k), happens to lie outside
its domain. That is, a transition may only be executed
if s(t+k) ∈ S.

Consider for example n water tanks sharing one input
flow which can be diverted to only one tank at a time.

If each system i, i ∈ 1..n, is defined by tank area Ai,
water level hi(t), input flow ui(t) and an output flow
vi(t). Then each system can be described by two modes:
(i) the initial mode with no input flow is described by

Aiḣi(t) = −vi(t); (ii) the second mode with inflow diverted

to tank i is Aiḣi(t) = ui(t) − vi(t). To make sure the
input flow is used by only one tank at a time, a shared
variable su ∈ [0, 1], s(0) = 0, is defined, together with the
two transition conditions: (i) from initial to second mode
su(t+k) = su(tk) + 1; (ii) from second back to initial mode

su(t+k) = su(tk)− 1.

Synchronizing the systems entails finding the global order
of transitions including shared variables, such that all
shared variables are within their domain.

2.3 Minimization Criteria

In a typical optimal control problem, the cost functional to
be minimized usually includes either or both an endpoint
cost and an integrated cost. The former describes a cost
related to the initial and final state of the system while the
latter expresses a cost accumulated during the execution
of a trajectory. In this paper, these two costs will be
separated for simplicity.

For each HASV there is a cost functional expressing the
integrated cost as

c =

∫ Tf

0

g(q(t), x(t), u(t))dt, (5)

where Tf is the final time of the system and g is a vector
field, g : Q×X × U → R.

Similarly to the discrete mode and shared integer variables
update φ, the endpoint cost Φ is updated as

d(t+k) = Φ(q(t+k), q(tk), x(tk), tk, x(t+k−1), t+k−1) (6)

For a set of HASV, the optimal control problem entails
finding the mode sequence, transition times and controls
which minimize the sum over c and d(Tf) in all systems.

3. PRELIMINARIES

A hybrid optimal control problem described in the pre-
vious section can be decomposed into two problems: se-
lecting a mode sequence and finding the continuous con-
trols and transition timings for the specified sequence.
The mode sequence selection problem is discrete, while
the controls and transition timings are continuous. In our
algorithm, we use the complementary strengths of methods
suited for discrete scheduling decisions and approximating
continuous dynamics respectively.

3.1 Discrete Dynamics

The discrete dynamics of an HASV with shared variables
can be modeled as a scheduling problem, either by Mixed
Integer Linear Programming (MILP) or CP. In the former
case, there are a number of procedures for converting
discrete event systems into mixed integer constraints,

WODES 2014
Cachan, France. May 14-16, 2014

486

depending on the original modeling format: Deterministic
Finite Automata, Kobetski and Fabian (2009); Extended
Finite Automata, Thorstensson et al. (2011); or a general
scheduling model, Wigström and Lennartson (2012).

One key assumption we make here is that the discrete
dynamics in each Hybrid Automaton include no looping
behaviour, i.e. each mode is visited at most once. Looping
behaviour can of course be unfolded a preset number of
times before hand to allow optimization.

Optimization of an individual hybrid systems by MINLP
and Generalized Disjunctive Programing is suggested in
for example Oldenburg and Marquardt (2008). While
straight forward, using a mixed integer formulation for
the optimal control of hybrid systems, has its drawbacks.
Applied to scheduling problems, relaxation of the integer
variables do not provide a very tight bounds on the
original problem, Hooker and Osorio (1999). As such,
infeasibilities which are caused by the discrete dynamics
of the systems might not be detected at an early stage.
For a standard scheduling problem with a linear cost
and no additional constraints, this might not matter as
each node is quick to evaluate. However, when continuous
dynamics are included, the computational cost at each
node increases dramatically, and any possible reduction
in the number of evaluated nodes becomes important.

In CP, a branch and bound tree is created much as in
classic Operations Research (OR) methods. But while OR
takes a global approach to the variables and constraints
in each node, CP will process each constraint individually
and try to reduce the domain of the variables included
in the constraint according to some rule-set, this is called
propagation. An introduction to CP can be found in for
example Apt (2003). Note that a constraint might be
subject to propagation more than once in each node. Also,
in contrast to OR methods, CP includes a high number
of specialized constraints, some specifically designed for
scheduling. For example, the mutual exclusion over time
intervals in a unary resource may be modeled by one
single constraint. There are also constraints which model
alternatives.

Converting the discrete dynamics of a set of HASVs to
a CP model is much simpler than to that of a MILP
model, see for example Wigström and Lennartson (2012).
However, because the constraints available in different CP
solvers may differ somewhat, we provide only a general
overview of the procedure. In short, for each modular
HASV, each mode is instantiated by a start and an end
time. The directed graph of the each modular HASV
is traversed and any mode with two or more outgoing
transitions is treated as an alternative.

Finally, the shared variables are processed. If for example
the shared variables are single capacity resources where
the allocation and deallocation come in pairs, a mutual
exclusion constraint may be posted over the allocation
intervals, this is commonly known as a no-overlap or
unary resource constraint, Viĺım (2004). There are also
constraints for the cases where the resources are of multi-
capacity type and/or the allocations/deallocations do not
appear in pairs Aggoun and Beldiceanu (1993).

3.2 Approximation of Continuous Dynamics

The approximation of the continuous dynamics can be
made in a number of ways. In the case of linear dynam-
ics, the whole hybrid optimal control problem could be
modeled with a fixed sample length as a Mixed Integer
Quadratic Program Karaman et al. (2008). While this
would permit proof of global optimality and models with
looping behaviour, it would also for each mode and sample,
require a boolean variable specifying if the mode is active
in the specific sample. For systems with a large number
of modes, the number of boolean variables may grow
intractable. Instead, we allow the sampling time to be free,
dynamics to be nonlinear, and focus on locally optimal
solutions.

The lack of analytical solutions for optimal control prob-
lems with nonlinear dynamics has lead to a number of
numerical methods for solving optimal control problems.
These methods can be divided into two categories: indirect
methods and direct methods. Indirect methods apply cal-
culus of variations to determine the first-order necessary
optimality conditions. Direct methods approximate the
continuous time problem by a finite-dimensional NLP. An
introduction to indirect and direct methods can be found
in Garg (2011).

In this paper direct methods are used to approximate the
continuous dynamics of the problem. Within the class of
direct methods, there are several approaches available. We
have opted for the Gauss pseudospectral method Benson
(2005). The following will provide a brief description of
how the continuous dynamics in a single mode can be
approximated.

The Gauss pseudospectral method differs from other pseu-
dospectral methods in that the differential equation is not
collocated at the boundary points. Also, the approximat-
ing polynomial, X(t), is of degree N , such that N + 1
points are required to determine its derivative.

Let L`(t), (` = 0, ..., N), be a basis of Lagrange polynomi-
als, Davis (1975), on the interval from [−1, 1] given by

L`(t) =

N∏
i=0
i 6=`

t− ti
t` − ti

, ` = 0, ..., N. (7)

We see that

L`(ti) =

{
1 if ` = i

0 if ` 6= i
(8)

The state vector x(t) is approximated by X(t) as

x(t) ≈ X(t) =

N∑
`=0

x(t`) · L`(t). (9)

Recall that the polynomial is defined on the interval [-1,1].
As such, the interpolation points used are the boundary
point, −1, and the N Gaussian quadrature points, t`,
` = 1, · · · , N . Thus, by (8)

X(t`) = x(t`), ` = 0, ..., N. (10)

WODES 2014
Cachan, France. May 14-16, 2014

487

Differentiation of (9) yields the following expression for the

approximated state derivatives Ẋ(ti)

ẋ(ti) ≈ Ẋ(ti) = x(−1) · D̄i +

N∑
`=1

x(t`) ·Di`, (11)

where Di` = L̇`(ti) and D̄i = L̇0(ti).

Now, if an modular HASV occupies a mode mode qj
during [t+k ... tk+1], then the dynamics (2) during that
time interval can be approximated by

2

(tk+1 − t+k)
D̄i ·X(t+k) +

2

(tk+1 − t+k)

N∑
`=1

Di` ·X(t`) =

f(qj , X(t`), U(t`), t`), i = 1, · · · , N. (12)

The terminal states are enforced by quadrature approxi-
mation of the dynamics as

X(tf) = X(t0) +
(tk+1 − t+k)

2

N∑
`=1

w` · f(qj , X(t`), U(t`), t`).

(13)

where U(t`) is an N − 1 degree approximation of the
controls u(t) collocated at the Gauss points; w` are the

gauss weights;
(tk+1−t+k)

2 comes from transforming the

problem from t ∈ [−1, 1] into [t+k , tk+1].

The cost (5) can in each mode be approximated using a
Gauss quadrature such that

cj =

∫ tk+1

t+
k

g(qj , x(t), u(t))dt ≈

(tk+1 − t+k)

2

N∑
`=1

w` · g(qj , X(t`), U(t`), t`). (14)

The decision variables for each mode qj are the states,
X(t`), controls U(t`), transition times t+k and tk+1.

4. INTEGRATED METHOD

The general execution of the integrated algorithm pre-
sented in this paper is stated in Algorithm 1. The following
provides a short summary.

First of all, a branch and bound procedure is initiated
on the master problem, with the discrete decisions as the
branching variables.

In Wigström and Lennartson (2013), where the non-
linear functions treated are convex, a computationally
inexpensive linear approximation of the NLP was solved in
all but the leaf nodes. Because the NLPs in each node are
now much more expensive, measures to reduce the number
of NLPs must be taken.

For each node in the master problem, two separate CP
models are created, one for each direct child of the current
node. These two CP models are solved to determine if

there child nodes contain feasible solutions with regard to
the discrete dynamics in the hybrid model.

In the case of neither child node containing a feasible
solution, the current node is marked as infeasible.

If only one child contains a feasible solution in its sub-tree,
there is no reason to create an NLP in the current node.
This is because we know the master CP will later remove
the infeasible branch and also process to the feasible one.
This is unless of course solving an NLP can bound the
current branch. But since a lower branch will yield a
tighter bound on the objective, it is better to save the
NLP generation till the feasible child node is processed by
the master problem.

If solutions are available in both child nodes, an NLP
containing the continuous dynamics is created. The NLP
also contains the discrete decisions already fixed by the
parents of the current node.

As mentioned, our integrated algorithm uses several op-
timization models to solve the problem: (i) the master
problem, CPM (ii) two feasibility sub-problems, CPF1 and
CPF2; (iii) the continuous dynamics sub-problem, NLPS,
which includes the continuous dynamics and precedence
constraints. The three latter are generated on the fly each
time a full or partial solution is found by CPM. The
following provides a description of the models.

Master problem This is the top level of the model which
contains all of the discrete dynamics. At the individual
hybrid system level the discrete dynamics are the fixed
precedence constraints and yet to be determined alterna-
tives in transitions. At the synchronized system level, it
is the mutual exclusion constraints implied by the shared
variables.

That is, the discrete search space consists of deciding
the executing modes if there are alternatives present,
and the global order of transitions affecting any shared
variables. The transition timings and duration of modes
is also included as decision variables, but the branching is
exclusively applied to the discrete decisions.

Additionally, CPM includes a special cost constraint which
relates the active modes and global transition order to
the cost to be minimized. After propagation of all other
constraints is halted, the propagation routine for the cost
constraint is triggered. The propagation routine will first
generate: CPF1 and F2, and second NLPS. CPF1 and CPF2

will indicate if there exists a feasible solution with regards
to the discrete dynamics, NLPS will provide: (i) a lower
bound on the branch if it is an internal node; (ii) a solution
(an upper bound) to the full problem.

Feasability problem The two feasibility problems are CPs
with no objective other than finding a feasible solution. In
each node of CPM, two feasibility problems are generated.
The discrete decision space of CPF1 and CPF2 are the sub-
trees of the child nodes of the current node in CPM. The
transition timings and mode durations are also included
as decision variables.

If a feasible solution is found in both problems, both
branches of the current node in CPM contain at least one
solution, and NLPS may be executed. If only one of the

WODES 2014
Cachan, France. May 14-16, 2014

488

A

Fig. 1. The whole tree represents the discrete decision
space of CPM. If the current node explored in CPM is
indicated by the black dot, then the following models
are generated: CPF1 and CPF2, containing the dashed
and dotted portions of the tree; NLPS, containing only
the dynamics fixed in the dashed portion

Algorithm 1 Integrated Algorithm

1: UB ←∞
2: NodeSet ← Root node
3: while 0 < |NodeSet| do . While any nodes left
4: n ← NodeSet . Get and remove the next node
5: n ← Propagate(n) . Use CP for inference
6: if n is feasible then
7: CPF1, CPF2 ← GenerateFeasabilityProblem(n)
8: Solve(CPF1, CPF2)
9: if CPF1 AND CPF2 are feasible then

10: NLPS ← GenerateNLP(n)
11: cost ← Solve(NLPS)
12: if cost < UB then
13: if n is inner node then
14: NodeSet ← Branch(n)
15: end if
16: if n is terminal node then
17: UB = cost . New best found
18: end if
19: end if
20: end if
21: if CPF1 XOR CPF2 are feasible then
22: NodeSet ← Branch(n)
23: end if
24: end if
25: end while

feasibility sub-problems are feasible, the generation of the
NLP is skipped, as postponing the NLP to the one feasible
child node may only reduce the number of NLPs solved. If
both are infeasible, the branch is cut.

Nonlinear Programming sub-problem Once the current
CPM has been verified to contain a feasible solution, the
NLPS is generated. The NLPS contains only the discrete
dynamics already fixed by CPM. That is, no discrete
decisions are considered in the NLP. Because the mode
sequence has been fully or partially determined by CPM,
the NLP approximating the continuous dynamics can be
regarded as the optimization of controls and switching
times for a set of loosely synchronized multiphase systems.

For each mode, the corresponding state approximation,
integral cost approximation, invariant conditions and end-
point cost are added. For each transition, the correspond-
ing reset and boundary conditions are added. It is assumed
that these can be posed as equalities and inequalities.
Finally, timing constraints are added. For each system,

equality constraints on the initial and final times of se-
quenced modes are added. As for the synchronization by
shared variables, inequalities are added between systems,
corresponding to the partial or full global mode sequence
in the current node of CPM.

Figure 1 contains an illustration of the discrete decision
space of the three models. CPM contains the entire tree.
Let the current node in CPM be indicated by the black dot,
then CPF1 and CPF2 contain the dashed and dotted parts
of the discrete search space, and NLPS only the dashed
(already fixed) part.

Note that for the NLPS there is no reason to include any
information on the yet to be fixed discrete constraints
further down in the tree. This is because the relaxation
on disjunctive constraints is so weak it will not impact the
solution.

5. COMPUTATIONAL EXAMPLES

For our implementation, we used CP Optimizer (CPO)
in IBM Ilog CPLEX Optimization Studio (v12.51) as
CP solver, and Ipopt (3.11) as NLP solver. In addition
to applying no-overlap constraints to model the shared
variables, reified constraints relating boolean variables to
precedences were also added for each mutual exclusion.
That is, if the boolean is true then the related constraint
must hold, and conversely if the boolean is false then the
constraint does not hold. This was the simplest way to
make CPO branch on the discrete decisions.

Recall the goal of the algorithm is to reduce the number
of solved NLPs. As such simple continuous dynamics have
been chosen, each mode consists of one or more double
integrators

[
ẋ1
ẋ2

]
=

[
0 1
0 0

] [
x1
x2

]
+

[
0
1

]
u. (15)

The integrated cost (5) in each HASV is simply

∫ tf

0

uTu dt. (16)

No endpoint cost (6) is considered in the examples.

Each hybrid system consists of a sequence of modes.
Each transition has an equality condition guard on the
position, x1. Also, each transition may update one or more
variables, i.e. a mode may book one or more zones. If a
shared variable is incremented at the start of a mode and
decremented at its end, we call this a booking of the shared
variable.

Note that as there are no bounds on acceleration or ve-
locity in our examples, the minimum time is simply 0+.
As such, the solutions removed by the CP-algorithms are
based on conflicts unrelated to the execution time. If there
are bounds on states and accelerations, the computed min-
imum (and maximum) execution time for each mode may
be given to the CP algorithm for increased performance.

WODES 2014
Cachan, France. May 14-16, 2014

489

Table 1. Shared variables and boundary conditions

Hybrid Shared variables booked in mode Initial and boundary conditions on position state(s)
Example System 1 2 3 4 5 6 0 1 2 3 4 5 6

1a

#1 - 0 1 2 6 - -4.0 -3.5 -2.5 -1.5 -0.5 0.5 1.5
#2 0 0 1 2 6 - -3.0 -2.5 -1.5 -0.5 0.5 1.5 2.5
#3 - 3 4 5 6 - 4.0 3.5 2.5 1.5 0.5 -0.5 -1.5
#4 3 3 4 5 6 - 3.0 2.5 1.5 0.5 -0.5 -1.5 -2.5

2

#1 - 4 0/4 2/0 - [4, 0] [3, 0] [1, 0] [-1, 0] [-3, 0] [-4, 0]
#2 - 1 0/1 3/0 - [2, 2] [1, 2] [0, 1] [-0, -1] [0, -3] [0, -4]
#3 - 1 0/1 2/0 - [-2, 2] [-1, 2] [0, 1] [-1, 0] [-3, 0] [-4, 0]
#4 - 2 0/2 3/0 - [-2, -2] [-2, -1] [-1, 0] [0, -1] [0, -3] [0, -4]

5.1 Example 1

In Example 1a, 4 HASV, each with a serial sequence of 6
modes and a single double integrator in each mode. The
problem can be regarded as HASVs 1/2 traveling along y-
axis and HASVs 3/4 along the x-axis, all systems passing
through the origin, booking a number of shared variables
on the way. The final time was fixed to 15 time units.

Table 1 shows the initial conditions, transition conditions
and which shared variables are booked during which mode.
We also present the slightly modified Example 1b, where
the booking of variables 0 and 3 are relaxed for systems 2
and 4 in the initial mode increasing the number of feasible
solutions by a factor 4.

For Example 1a, the number of NLPs required for the
integrated method was 12, and for MINLP 73 NLPs
were required. The time to run the CP routines was
roughly 1 [s]. In Example 1b which contains a four times
as many feasible solutions as Example 1a, the integrated
method requires 49 NLPs to be solved while the MINLP
needed 212. The required time for CP was about 3 [s] of
the MINLP solution time.

Examples 1a and 1b took 12 [s] and 46 [s] to solve using
MINLP. Less than 10% of the MINLP solution time used
for CP reduces the number of NLPs needed to be solved
by more than a factor 4.

5.2 Example 2

In Example 2, 4 HASVs, each with a serial sequence of
5 modes and two double integrators as dynamics. The
HASVs share a total of 5 common zones. The position state
in the double integrators represents each HASVs position
in x/y-space. In contrast to the previous problem, more
than one shared variable may be booked in each mode in
order to avoid collisions. The final time was fixed to 15
time units.

Solving Example 2 took 191 [s] and required 228 NLPs for
the MINLP algorithm. The integrated algorithm took only
49 NLPs, with 7 [s] needed for the CP routines.

6. CONCLUSIONS

This paper presents an algorithm for the optimization
of modular hybrid automata with shared variables. The
algorithm combines the strength of OR with that of CP.
In two computational examples, the algorithm reduces the
number of NLPs needed to be solved in a classic mixed
integer nonlinear programming approach by more than

four times. The required computational time for the added
CP routines are less than 10% of the execution time of the
MINLP method.

Possible next steps, investigate loops, uncontrollable events,
more complex examples reducing energy for multi-robot
cells as a challenging example. Also, the modeling of the
discrete dynamics should be extended in direction towards
the model in Lennartson et al. (2014) which also uses
shared variables.

REFERENCES

Aggoun, A. and Beldiceanu, N. (1993). Extending chip in
order to solve complex scheduling and placement prob-
lems. Mathematical and Computer Modelling, 17(7), 57
– 73.

Alur, R., Courcoubetis, C., Henzinger, T., and Ho, P.H.
(1992). Hybrid automata: An algorithmic approach to
the specification and verification of hybrid systems. 209–
229. Springer-Verlag.

Apt, K. (2003). Principles of constraint programming.
Cambridge University Press.

Benson, D. (2005). A Gauss pseudospectral transcription
for optimal control. Ph.D. thesis, Massachusetts Insti-
tute of Technology.

Cassandras, C. and Lafortune, S. (2006). Introduction
to Discrete Event Systems. Springer-Verlag New York,
Inc., Secaucus, NJ, USA.

Davis, P. (1975). Interpolation and approximation. Dover
publications.

Garg, D. (2011). Advances in global pseudospectral meth-
ods for optimal control. Ph.D. thesis, University of
Florida.

Hedlund, S. and Rantzer, A. (1999). Optimal control
of hybrid systems. In Decision and Control, 1999.
Proceedings of the 38th IEEE Conference on, volume 4,
3972–3977. IEEE.

Hooker, J.N. and Osorio, M.A. (1999). Mixed logical-linear
programming. Discrete Applied Mathematics, 96, 395–
442.

Karaman, S., Sanfelice, R.G., and Frazzoli, E. (2008).
Optimal control of mixed logical dynamical systems
with linear temporal logic specifications. In Decision
and Control, 2008. CDC 2008. 47th IEEE Conference
on, 2117–2122. IEEE.

Kobetski, A. and Fabian, M. (2009). Time-optimal co-
ordination of flexible manufacturing systems using de-
terministic finite automata and mixed integer linear
programming. Discrete Event Dynamic Systems, 19(3),
287–315.

Lennartson, B., Basile, F., Miremadi, S., Fei, Z., Hosseini,
M.N., Fabian, M., and Åkesson, K. (2014). Supervisory

WODES 2014
Cachan, France. May 14-16, 2014

490

Control for State-Vector Transition Models - A Unified
Approach. IEEE Transaction on Automation Science
and Engineering, 11(1).

Oldenburg, J. and Marquardt, W. (2008). Disjunctive
modeling for optimal control of hybrid systems. Com-
puters and Chemical Engineering, 32(10), 2346 – 2364.

Sussmann, H.J. (1999). A maximum principle for hybrid
optimal control problems. In Decision and Control,
1999. Proceedings of the 38th IEEE Conference on,
volume 1, 425–430. Ieee.

Thorstensson, C., Kanthabhabhajeya, S., Lennartson, B.,
and Falkman, P. (2011). Optimization of discrete event
systems using extended finite automata and mixed-
integer nonlinear programming. In Proceedings of the
18th IFAC World Congress, 2011, volume 18.

Viĺım, P. (2004). O (nlog n) filtering algorithms for unary
resource constraint. In Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial
Optimization Problems, 335–347. Springer.

Wigström, O. and Lennartson, B. (2013). Integrated or/cp
optimization for discrete event systems with nonlinear
cost. In Decision and Control, 2013 IEEE Conference
on, to be published.

Wigström, O. and Lennartson, B. (2014). Towards in-
tegrated or/cp energy optimization for robot cells. In
Robotics and Automation, 2014 IEEE International
Conference on, Submitted for possible publication.

Wigström, O., Lennartson, B., Vergnano, A., and Brei-
tholtz, C. (2013). High level scheduling of energy op-
timal trajectories. IEEE Transactions on Automation
Science and Engineering.

Wigström, O. and Lennartson, B. (2012). Scheduling
model for systems with complex alternative behaviour.
In Automation Science and Engineering (CASE), 2012
IEEE International Conference on, 587–593. IEEE.

WODES 2014
Cachan, France. May 14-16, 2014

491

