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Abstract

Let X1, X2, . . . be independent identically distributed nonnegative random variables.
Wald’s identity states that the random sum ST := X1 + · · · + XT has expectation
ET ·EX1 provided T is a stopping time. We prove here that for any 1 < α ≤ 2, if T is
an arbitrary nonnegative random variable, then ST has finite expectation provided that
X1 has finite α-moment and T has finite 1/(α− 1)-moment. We also prove a variant in
which T is assumed to have a finite exponential moment. These moment conditions
are sharp in the sense that for any i.i.d. sequence Xi violating them, there is a T
satisfying the given condition for which ST (and, in fact, XT ) has infinite expectation.

An interpretation is given in terms of a prophet being more rewarded than a
gambler when a certain impatience restriction is imposed.
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1 Introduction

Let X1, X2, . . . be independent identically distributed (i.i.d.) nonnegative random
variables, and let T be a nonnegative integer-valued random variable. Write Sn =∑n

i=1Xi and X = X1. Wald’s identity [14] states that if T is a stopping time (which is to
say that for each n, the event {T = n} lies in the σ-field generated by X1, . . . , Xn), then

EST = ET · EX. (1.1)

In particular, if X and T have finite mean then so does ST .
It is natural to ask whether similar conclusions can be obtained if we drop the

requirement that T be a stopping time. It is too much to hope that the equality (1.1) still
holds. (For example, suppose that Xi takes values 0, 1 with equal probabilities, and let T
be 1 if X2 = 0 and otherwise 2. Then EST = 1 6= 3

2 ·
1
2 = ET ·EX.) However, one may still

ask when ST has finite mean. It turns out that finite means of X and T no longer suffice,
but stronger moment conditions do. Our main result gives sharp moment conditions for
this conclusion to hold. In addition, when the moment conditions fail, with a suitably
chosen T we can arrange that even the final summand XT has infinite mean. Here is the
precise statement. (If T = 0 we take by convention XT = 0).
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Wald for non-stopping times

Theorem 1.1. Let X1, X2, . . . be i.i.d. nonnegative random variables, and write Sn :=∑n
i=1Xi and X = X1. For each α ∈ (1, 2], the following are equivalent.

(i) EXα <∞.

(ii) For every nonnegative integer-valued random variable T satisfying ET 1/(α−1) <∞,
we have EST <∞.

(iii) For every nonnegative integer-valued random variable T satisfying ET 1/(α−1) <∞,
we have EXT <∞.

The special case α = 2 of Theorem 1.1 is particularly natural: then the condition on
X in (i) is that it have finite variance, and the condition on T in (ii) and (iii) is that it
have finite mean. At the other extreme, as α ↓ 1, (ii) and (iii) require successively higher
moments of T to be finite. One may ask what happens when T satisfies an even stronger
condition such as a finite exponential moment – what condition must we impose on X, if
we are to conclude EST < ∞? The following provides an answer, in which, moreover,
the independence assumption may be relaxed.

Theorem 1.2. Let X1, X2, . . . be i.i.d. nonnegative random variables, and write Sn :=∑n
i=1Xi and X = X1. The following are equivalent.

(i) E[X(logX)+] <∞.

(ii) For every nonnegative integer-valued random variable T satisfying EecT <∞ for
some c > 0, we have EST <∞.

(iii) For every nonnegative integer-valued random variable T satisfying EecT <∞ for
some c > 0, we have EXT <∞.

Moreover, if X1, X2, . . . are assumed identically distributed but not necessarily indepen-
dent, then (i) and (ii) are equivalent.

On the other hand, in the following variant of Theorem 1.1, dropping independence
results in a different moment condition for T .

Proposition 1.3. Let X be a nonnegative random variable. For each α ∈ (1, 2], the
following are equivalent.

(i) EXα <∞.

(ii) For every nonnegative integer valued random variable T satisfying ETα/(α−1) <∞,
and for any X1, X2, . . . identically distributed with X (but not necessarily indepen-
dent), we have EST <∞.

In order to prove the implications (iii)⇒ (i) of Theorems 1.1 and 1.2, we will assume
that (i) fails, and construct a suitable T for which EXT =∞ (and thus also EST =∞).
This T will be the last time the random sequence is in a certain (time-dependent)
deterministic set, i.e.

T := max{n : Xn ∈ Bn}

for a suitable sequence of sets Bn. It is interesting to note that, in contrast, no T of the
form min{n : Xn ∈ Bn} could work for this purpose, since such a T is a stopping time, so
Wald’s identity applies. In the context of Theorem 1.2, for instance, T will take the form

T := max{n : Xn ≥ en}.

The results here bear an interesting relation to so-called prophet inequalities; see
[7] for a survey. A central prophet inequality (see [11]) states that if X1, X2, . . . are
independent (not necessarily identically distributed) nonnegative random variables then

sup
U∈U

EXU ≤ 2 sup
S∈S

EXS , (1.2)
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where U denotes the set of all positive integer-valued random variables and S denotes
the set of all stopping times. The left side is of course equal to E supiXi. The factor 2 is
sharp. The interpretation is that a prophet and a gambler are presented sequentially
with the values X1, X2, . . ., and each can stop at any time k and then receive payment
Xk. The prophet sees the entire sequence in advance and so can obtain the left side
of (1.2) in expectation, while the gambler can only achieve the supremum on the right.
Thus (1.2) states that the prophet’s advantage is at most a factor of 2.

The inequality (1.2) is uninteresting when (Xi) is an infinite i.i.d. sequence, but for
example applying it to Xi1[i ≤ n] (where n is fixed and (Xi) are i.i.d.) gives

sup
U∈U :
U≤n

EXU ≤ 2 sup
S∈S:
S≤n

EXS , (1.3)

(and the factor of 2 is again sharp). How does this result change if we replace the
condition that U and S are bounded by n with a moment restriction? It turns out that the
prophet’s advantage can become infinite, in the following sense. Let X1, X2, . . . be any
i.i.d. nonnegative random variables with mean 1 and infinite variance. By Theorem 1.1,
there exists an integer-valued random variable T so that µ := ET < ∞ but EXT = ∞.
Then we have

sup
U∈U :
EU≤µ

EXU =∞; sup
S∈S:
ES≤µ

EXS ≤ µ.

Here the first claim follows by taking U = T and the second claim follows from Wald’s
identity.

Interpreting impatience as meaning that the time at which we stop has mean at most
µ, we see that impatience hurts the gambler much more than the prophet.

Our proof of the implication (i) ⇒ (ii) in Theorem 1.1 will rely on a concentration
inequality which is due to Hsu and Robbins [8] for the important special case α = 2, and
a generalization due to Katz [10] for α < 2. For expository purposes, we include a proof
of the Hsu-Robbins inequality, which is different from the original proof. Thus, we give
a complete proof from first principles of Theorem 1.1 in the case α = 2. Erdős [3, 4]
proved a converse of the Hsu-Robbins result; we will also obtain this converse in the
case of nonnegative random variables as a corollary of our results.

Throughout the article we will write X = X1 and Sn :=
∑n
i=1Xi. If T = 0 then we

take XT = 0 and ST = 0.

2 The case of exponential tails

In this section we give the proof of Theorem 1.2, which is relatively straightforward.
We start with a simple lemma relating XT and ST for T of the form that we will use for
our counterexamples. The same lemma will be used in the proof of Theorem 1.1.

Lemma 2.1. Let X1, X2, . . . be i.i.d. nonnegative random variables. Let T be defined by

T := max{k : Xk ∈ Bk}

for some sequence of sets Bk for which the above set is a.s. finite, and where we take
T = 0 and XT = 0 when the set is empty. Then

EST = E[(T − 1)+] · EX + EXT .
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Proof. Observe that 1[T = k] and Sk−1 are independent for every k ≥ 1. Therefore,

EST = E

∞∑
k=1

Sk1[T = k]

= E

∞∑
k=1

(Sk−1 +Xk)1[T = k]

=

∞∑
k=1

ESk−1 · P(T = k) + E

∞∑
k=1

Xk1[T = k]

= E[(T − 1)+] · EX + EXT .

Proof of Theorem 1.2. We first prove that (i) and (ii) are equivalent, assuming only that
the Xi are identically distributed (not necessarily independent).

Assume that (i) holds, i.e. E[X(logX)+] < ∞, and that T is a nonnegative integer-
valued random variable satisfying EecT < ∞. Observe that Xk ≤ eck +Xk1[Xk > eck],
so

ST ≤
T∑
k=1

eck +

T∑
k=1

Xk1[Xk ≥ eck].

The first sum equals
ec(ecT − 1)

ec − 1

which has finite expectation. The expectation of the second sum is at most

∞∑
k=1

E
(
X1[X ≥ eck]

)
= E

∞∑
k=1

X1[X ≥ eck] = E
(
X
⌊ (logX)+

c

⌋)
<∞.

Hence EST <∞ as required, giving (ii).
Now assume that (i) fails, i.e. E[X(logX)+] =∞, but (ii) holds (still without assuming

independence of the Xi). Taking T ≡ 1 in (ii) shows that EX <∞. Now let

T := max{k ≥ 1 : Xk ≥ ek}, (2.1)

where T is taken to be 0 if the set above is empty and∞ if it is unbounded. Then

P(T ≥ k) ≤
∞∑
i=k

P(Xi ≥ ei) ≤
∞∑
i=k

EX

ei

by Markov’s inequality. The last sum is (EX)e1−k/(e − 1), and hence Eeck < ∞ for
suitable c > 0 (and in particular T is a.s. finite). On the other hand,

EST = E

∞∑
k=1

Xk1[k ≤ T ] ≥ E
∞∑
k=1

X1[X ≥ ek] = E
(
Xb(logX)+c

)
,

which is infinite, contradicting (ii).
Now assume that the Xi are i.i.d. We have already established that (i) and (ii) are

equivalent, and (ii) immediately implies (iii) since ST ≥ XT . It therefore suffices to
show that (iii) implies (i). Suppose (i) fails and (iii) holds. Taking T ≡ 1 in (iii) shows
that EX < ∞. Now take the same T as in (2.1). As argued above, EST = ∞ and
EecT <∞ for some c > 0 (so ET <∞). Hence (iii) gives EXT <∞. But this contradicts
Lemma 2.1.

Remark Conditions (i) and (iii) cannot be equivalent if the i.i.d. condition is dropped
since if X1 = X2 = X3 = . . ., then XT = X1 for every T and so (iii) just corresponds to X
having a first moment.
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3 The case α = 2 and the Hsu-Robbins Theorem

In this section we prove Theorem 1.1 in the important special case α = 2 (so 1/(α−
1) = 1). We will use the following result of Hsu and Robbins [8]. See [5, §6.11.1] for
an alternative proof of this result, arguably simpler than the original proof in [8], and
making use of a result of [6]. For expository purposes we give yet another proof, which
is self-contained, and based on an argument from [2].

Theorem 3.1 (Hsu and Robbins). Let X1, X2, . . . be i.i.d. random variables with finite
mean µ and finite variance. Then for all ε > 0,

∞∑
n=1

P
(
|Sn − nµ| ≥ nε

)
<∞.

Proof. We may assume without loss of generality that µ = 0 and EX2 = 1. Let X∗n :=

max{X1, . . . , Xn} and S∗n := max{S1, . . . , Sn}. Observe that for any h > 0, the stopping
time τh := min {k : Sk ≥ h} satisfies

P(Sn > 3h, X∗n ≤ h) ≤ P(τh < n, Sτh ≤ 2h) P(Sn > 3h | τh < n, Sτh ≤ 2h)

≤ P(τh ≤ n)2
(3.1)

where the last step used the strong Markov property at time τh. Now Kolmogorov’s
maximum inequality (see e.g. [9, Lemma 4.15]) implies that

P(τh ≤ n) = P(S∗n ≥ h) ≤
ES2

n

h2
=

n

h2
.

Applying this with h = εn/3 we infer from (3.1) that

P
(
Sn > nε, X∗n ≤

εn

3

)
≤ 81

ε4n2
.

Moreover, we have

P
(
X∗n >

εn

3

)
≤ nP

(
X1 >

εn

3

)
.

Combining the last two inequalities give

P(Sn > nε) ≤ 81

ε4n2
+ nP

(
X1 >

εn

3

)
.

The first term on the right is summable in n, and the second term is summable by
the assumption of finite variance. Applying the same argument to −Sn completes the
proof.

We will also a need a simple fact of real analysis, a converse to Hölder’s inequality,
which we state in a probabilistic form. See, e.g., Lemma 6.7 in [12] for a related
statement. The proof method is known as the “gliding hump”; see [13] and the references
therein.

Lemma 3.2. Let p, q > 1 satisfy 1/p+ 1/q = 1. Assume that a nonnegative random vari-
ableX satisfies EXg(X) <∞ for every nonnegative function g that satisfies Egq(X) <∞.
Then EXp <∞.

Proof. Assume EXp =∞. Letting ψk := P(bXc = k), we have
∑∞
k=1 ψkk

p = EbXcp =∞,
so we can choose integers 0 = a0 < a1 < a2, . . . such that for each ` ≥ 1,

S` :=
∑

k∈[a`−1,a`)

ψkk
p ≥ 1.
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Denote the interval [a`−1, a`) by I` and let g be defined on [0,∞) by

g(x) :=
bxcp−1

`S`
for x ∈ I`.

Since (p− 1)q = p, we obtain

Egq(X) =

∞∑
`=1

∑
k∈I`

ψk
kp

`qSq`
=

∞∑
`=1

1

`qSq−1`

<∞.

On the other hand

EXg(X) ≥
∞∑
`=1

∑
k∈I`

ψk
kp

`S`
=

∞∑
`=1

1

`
=∞.

We can now proceed with the main proof.

Proof of Theorem 1.1, case α = 2. We will first show that (i) and (ii) are equivalent. As-
sume (i) holds, i.e. EX2 <∞, and let T satisfy ET <∞. We may assume without loss of
generality that EX = 1. By the nonnegativity of the Xi, we have

P(ST ≥ 2n) ≤ P(T ≥ n) + P(Sn ≥ 2n). (3.2)

Since ET <∞, the first term on the right is summable in n. Since EX2 <∞ and EX = 1,
Theorem 3.1 with ε = 1 implies that the second term is also summable. We conclude that
EST <∞.

Now assume (ii). To show that X has finite second moment, using Lemma 3.2 with
p = q = 2, we need only show that for any nonnegative function g satisfying Eg2(X) <∞,
we have EXg(X) <∞. Given such a g, consider the integer valued random variable

Tg := max{k ≥ 1 : g(Xk) ≥ k}, (3.3)

where Tg is taken to be 0 if the set is empty or∞ is it is unbounded. We have

ETg =

∞∑
k=1

P(Tg ≥ k) ≤
∞∑
k=1

∞∑
`=k

P(g(X`) ≥ `) =
∞∑
`=1

` P(g(X) ≥ `).

SinceEg2(X) <∞, the last expression is finite, and henceETg <∞. Thus, by assumption
(ii), we have ESTg <∞. However

ESTg = E

∞∑
k=1

Xk1[k ≤ Tg] ≥ E
∞∑
k=1

Xk1[g(Xk) ≥ k]

= E

∞∑
k=1

X1[g(X) ≥ k] ≥ EXbg(X)c,
(3.4)

so that EXbg(X)c <∞, which easily yields EXg(X) <∞ as required.
Clearly (ii) implies (iii). Finally, we proceed as in the proof of Theorem 1.2 to

show (iii) implies (i). Suppose (i) fails and (iii) holds. Taking T ≡ 1 in (iii) shows that
EX <∞. Since EX2 =∞, Lemma 3.2 implies the existence of a g with Eg2(X) <∞ but
EXg(X) =∞. Let Tg be defined as in (3.3) above, for this g. The argument above shows
that ESTg =∞ while ETg <∞, and so the assumption (iii) gives EXTg <∞. However
this contradicts Lemma 2.1.

We also obtain the following converse of the Hsu-Robbins Theorem due to Erdős.
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Corollary 3.3. Let X1, X2, . . . be i.i.d. nonnegative random variables with finite mean µ.
Write Sn =

∑n
i=1Xi and X = X1. If, for all ε > 0,

∞∑
n=1

P(|Sn − nµ| ≥ nε) <∞,

then X has a finite variance.

Proof. Without loss of generality, we can assume that µ = 1. By Theorem 1.1 with α = 2,
it suffices to show that EST <∞ for all T with finite mean. However, this is immediate
from (3.2) – the first term on the right is summable since T has finite mean, and the
second term is summable by the assumption of the corollary with ε = 1.

4 The case of α < 2

The proof of Theorem 1.1 in the general case follows very closely the proof for α = 2.
We need the following replacement of Theorem 3.1 due to Katz [10], whose proof we
do not give here. A converse of the results in [10] appears in [1]. We will also use the
general case of Lemma 3.2.

Theorem 4.1 (Katz). Let X1, X2, . . . be i.i.d. random variables satisfying E|X1|t < ∞
with t ≥ 1. If r > t, then, for all ε > 0,

∞∑
n=1

nr−2P
(
|Sn| ≥ nr/tε

)
<∞.

Proof of Theorem 1.1, case α < 2. We first prove that (i) implies (ii). Assume that EXα <

∞, and T is an integer valued random variable with ET 1/(α−1) <∞. Observe that

P(ST ≥ n) ≤ P
(
T ≥ dnα−1e

)
+ P

(
Sdnα−1e ≥ n

)
. (4.1)

Since P(T ≥ dnα−1e) ≤ P(T 1/(α−1) ≥ n), the first term on the right is summable. For the
second, we have

∞∑
n=1

P
(
Sdnα−1e ≥ n

)
≤
∞∑
k=1

∑
n≥1:

dnα−1e=k

P(Sk ≥ n)

≤
∞∑
k=1

∑
n≥1:

dnα−1e=k

P
(
Sk ≥ (k − 1)

1
α−1
)

since dnα−1e = k implies that n ≥ (k − 1)1/(α−1). It is easy to check that there exists Cα
such that for all k ≥ 1,

#{n : dnα−1e = k} ≤ Cαk
2−α
α−1 .

Hence the last double sum is at most

Cα

∞∑
k=1

k
2−α
α−1P

(
Sk ≥ (k − 1)

1
α−1
)
.

Now using Theorem 4.1 with t = α and r = α/(α − 1) and ε = 1
2 (and noting that

k1/(α−1)/2 ≤ (k− 1)1/(α−1) for large enough k), we conclude that the above expression is
finite. Hence EST <∞, as required.

Next we show that (ii) implies (i). To show that X has a finite α-moment, us-
ing Lemma 3.2, it suffices to show that for any nonnegative function g satisfying
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Egα/(α−1)(X) < ∞, we have EXg(X) < ∞. Given such a g, consider as before the
integer valued random variable

Tg := max{k ≥ 1 : g(Xk) ≥ k},

where Tg is taken to be 0 if the set in empty or∞ if it is unbounded. Observe that

∞∑
k=1

k
2−α
α−1P(Tg ≥ k) ≤

∞∑
k=1

k
2−α
α−1

∞∑
`=k

P(g(X`) ≥ `)

≤
∞∑
`=1

`
1

α−1P(g(X) ≥ `).

If Egα/(α−1)(X) <∞ then the last sum is finite and hence ET 1/(α−1)
g <∞. By assumption

(ii) we have ESTg < ∞. However, as argued in (3.4), ESTg ≥ EXbg(X)c. Therefore
EXbg(X)c <∞, so EXg(X) <∞ as required.

Clearly (ii) implies (iii). Finally, suppose (i) fails and (iii) holds. Taking T ≡ 1 in
(iii) shows that EX < ∞. Since EXα = ∞, Lemma 3.2 implies the existence of a g

with Egα/(α−1)(X) <∞ but EXg(X) =∞. Then, as before, Tg as defined above gives a
contradiction to Lemma 2.1.

5 The dependent case

Proof of Proposition 1.3. Assume (i) holds. If ETα/(α−1) < ∞ and X1, X2, . . . are as in
(ii), then we can write

ST ≤
T∑
k=1

k
1

α−1 +

T∑
k=1

Xk1
[
Xk ≥ k

1
α−1
]
.

The first sum is at most Tα/(α−1) which has finite expectation. The expectation of the
second sum is at most

E

∞∑
k=1

X1[X ≥ k
1

α−1 ] ≤ E(XXα−1) = EXα <∞.

Hence EST <∞, as claimed in (ii).
Now assume (ii) holds. To show that X has finite α-moment, using Lemma 3.2, it

is enough to show that for any nonnegative g satisfying Egα/(α−1)(X) < ∞, we have
EXg(X) <∞. It is easily seen that it suffices to only consider g that are integer valued.
Given such a g, let T be g(X) and let all the Xi be equal to X. Then ETα/(α−1) <∞. By
(ii), EST <∞. However, by construction ST = Xg(X), concluding the proof.
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