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Abstract—This paper considers the downlink of a heteroge-
neous network, where multiple base stations (BSs) can serve
the users by non-coherent multiflow beamforming. We assume
imperfect channel state information at both BSs and users. The
objective is to jointly optimize the precoding, load balancing, and
BS operation mode (active or sleep) for improving the energy
efficiency of the network. The considered problem is to minimize
the weighted total power consumption (both circuit power and
dynamic transmit power), while satisfying per-user quality of
service constraints and per-BS transmit power constraints. This
problem is non-convex, but we prove that for each combination
of BS modes, the considered problem has a hidden convexity
structure. Thus, the global optimal solution is obtained by
an exhaustive search over all possible BS mode combinations.
Furthermore, by iterative convex approximations of the non-
convex power consumption functions, a heuristic algorithm is
proposed to obtain a local optimal solution with low complex-
ity. Simulation results illustrate that our proposed algorithms
significantly reduce the total power consumption, compared to
the scheme where all BSs are continuously active. This implies
that putting a BS into sleep mode by proper load balancing is an
important solution for energy savings in heterogeneous networks.

I. INTRODUCTION

The concept of heterogeneous dense networks, which is
based on dense deployment of low-cost and low-power base
stations (BSs) coexisting with the macro BSs, has been con-
sidered as a key technique to improve the spectral efficiency
and energy efficiency of future wireless communication sys-
tems [1]. By creating a large number of small cells, these low-
power BSs have the potential to offload traffic from macro
BSs, reduce the average distance between users and BSs,
increase the system capacity and/or reduce the transmit power.

The total power consumption of a network can be modeled
with a circuit part that depends on the transceiver hardware and
a dynamic part which is a function of the transmitted signal
power [2]–[4]. Adding more low-power BSs can reduce the
dynamic power consumption due to the shorter propagation
distances, but require more hardware; thus, it will increase the
circuit power part. Note that the circuit power consumption
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also depends on the operational mode of each BS, i.e., whether
the BS is active or in the sleep mode. Therefore, to actually
improve the overall energy efficiency of a heterogeneous
network, the cooperation scheme, BS operational mode and
load balancing must be properly and jointly optimized.

Joint load balancing and power control was studied in [5]
and [6] for multi-cell single-antenna-BS heterogeneous net-
works, where different algorithms were proposed to maximize
the minimum rate subject to per-BS power constraints. Consid-
ering multi-cell multi-antenna-transmitter heterogeneous net-
works, joint load balancing and precoding algorithms were
designed in [7]–[9] to maximize the system utility. In [10],
downlink linear precoding problems were studied jointly with
active BS selection to either minimize the total transmit power
or maximize the sum rate performance. With the objective
of improving network energy efficiency, the power allocation,
subcarrier allocation and the number of activated transmit
antennas were jointly optimized in [11] for the downlink
of an OFDM system. However, the work in [11] did not
consider joint optimization of precoding vectors and the results
are limited to a single cell scenario. In [12], [13], under
the assumption of perfect CSI at both BSs and users, joint
precoding and BS selection were studied for multi-cell co-
herent joint transmission systems to minimize the overall BS
power consumption. In [14], using a stochastic geometry based
model, the energy efficiency of both multi-cell homogeneous
and heterogeneous networks was analyzed by considering
active and sleep modes for macro BSs with fixed power
control. Since both BSs and users are assumed to have a single
antenna in [14], precoding design was not considered, either.

In this paper, we study joint precoding and load balanc-
ing optimization for energy-efficient heterogeneous networks,
where all BSs are allowed to transmit to all users at the same
time-frequency resource. The goal is to minimize the weighted
total power consumption while satisfying per-user QoS con-
straints and per-BS transmit power constraints. We show that
for each fixed combination of BS modes, the considered opti-
mization problem has a hidden convexity structure. Thus, the
optimal solution is obtained by an exhaustive search over all
possible BS mode combinations. The obtained global optimal
solution serves as an upper bound for any other suboptimal
precoding and load balancing solutions. Moreover, we propose



an efficient iterative algorithm that resolves the non-convexity
of the original problem by iterative convex approximations
of the power consumption functions. Numerical results show
that putting a BS into sleep mode by proper load balancing
is an important solution for energy savings in heterogeneous
networks. Moreover, the BS activation probability depends on
the target QoS requirements, as well as the ratio between the
circuit power consumed in the active mode and that consumed
in the sleep mode.

II. SYSTEM AND SIGNAL MODEL

We consider a downlink heterogeneous network consisting
of M base stations (BSs) and K single-antenna users. These
M BSs are divided into different tiers or categories, and
differ in terms of the number of transmit antennas, the power
consumption model, the channel propagation model and CSI
quality. BS v is assumed to have Nv antennas. The channels
from BS v to user k is assumed to be flat-fading, and denoted
by hHk,v ∈ C1×Nv for v = 1, . . . ,M and k = 1, . . . ,K. In
practice, these channels are imperfectly known to the user k
and the BSs. This is modeled as hk,v = ĥk,v + ek,v with
v = 1, . . . ,M , where ĥk,v is the known channel estimate (at
both the corresponding transmitter and receiver). The error
vectors ek,v v CN (0,Ek,v) are assumed to be zero-mean
with covariance matrix Ek,v ∈ CNv×Nv . The errors can, for
example, originate from channel estimation/prediction errors.
The received signal at user k is

yk =

M∑
v=1

hHk,vxv + nk (1)

where xv ∈ CNv×1 is the transmitted signal from BS v, and
nk v CN

(
0, σ2

k

)
is the independent additive receiver noise at

user k.
We assume that the BSs are connected via backhaul links,

and all BSs are able to transmit to all users at the same time-
frequency resource. However, motivated by the fact that tight
phase synchronization between BSs is extremely difficult to
achieve in practice, only linear non-coherent joint transmission
is allowed; that is, each user can be served by a set of BSs
using superposition coding. This scheme can be referred to
as spatial multiflow transmission [15], which allows each user
to receive different data streams from multiple BSs. Define
V , {1, 2, . . . ,M} as the set of all BSs in the network, and let
Vk ⊆ V denote the set of BSs that provide data transmission
to user k. Then, the set of users assigned to BS v can be
represented by Uv = {k|v ∈ Vk}. Let sk,v v CN (0, 1) be the
coded information symbols for user k, transmitted from BS v.
With non-coherent transmission, the symbols transmitted from
different BSs to the same user is assumed to be independent.
Then, the desired signals for user k transmitted from BS v is
wk,vsk,v , where the vector wk,v is referred to as the precoding
vector for user k from BS v. The aggregated transmitted signal
from BS v is

xv =
∑
k∈Uv

wk,vsk,v. (2)

A. Power Consumption Model

From (2), the expected transmit power from BS v can be
calculated as

Ptrans,v =
∑
k∈Uv

‖wk,v‖2 E
{
|sk,v|2

}
=
∑
k∈Uv

‖wk,v‖2 (3)

where the operator E {·} stands for expectation, and ‖·‖
represents the Euclidean norm. In this paper, we adopt the
linear approximated power consumption model proposed in [2,
Eq. (4-3)] for 10MHz bandwidth, where the total consumed
power of BS v, for v ∈ V , is

Pv =

{
NvPactive,v + ∆vPtrans,v, 0 < Ptrans,v ≤ Pv,max

NvPsleep,v, Ptrans,v = 0
(4)

where Pactive,v is the hardware power consumption at BS v
at the minimum non-zero transmit power, Psleep,v denotes
the sleep mode power consumption of BS v with Psleep,v ≤
Pactive,v . Note that in the sleep mode, due to the power
consumption for DC-DC power supply, mains supply, active
cooling, maintaining backhaul connections, and enabling fast
turn on control signaling, etc, Psleep,v is typically non-zero [2].
Here, Pv,max is the peak transmit power constraint for BS v.
The scaling factor, ∆v ≥ 1, models the extra power consumed
by the power amplifiers at BSs when the transmitted power is
Ptrans,v . Some example values of Pactive,v , Psleep,v , Pv,max and
∆v for different BS types can be found in [2, Table 8].

B. Aggregated Received SINR

When each user performs successive interference cancella-
tion on its own information symbols, and treats both channel
errors and co-user interference as Gaussian noise [16], the
total achievable spectral efficiency of user k is given as
Rk = log2 (1 + γk) bit/s/Hz, where the aggregated SINR at
user k is

γk =

∑
v∈Vk

∣∣∣ĥHk,vwk,v

∣∣∣2
Ik + Ek + σ2

k

(5)

where

Ik ,
∑
v∈V

∑
l∈Uv
l 6=k

wH
l,v

(
ĥk,vĥ

H
k,v + Ek,v

)
wl,v (6)

denotes the co-user interference, and

Ek ,
∑
v∈Vk

wH
k,vEk,vwk,v (7)

is the interference caused by the imperfect knowledge of the
channels to user k.

C. Problem Formulation

The focus of this paper is on the joint design of load
balancing (Uv) and precoding vectors (wk,v) for v = 1, . . . ,M
and k = 1, . . . ,K to minimize the weighted total power
consumption of the system, while satisfying a set of SINR
constraints (or, equivalently, spectral efficiency constraints) for
each user and a set of transmit power constraints for each



BS. These constraints are referred to as the QoS constraints.
With (3), (4) and (5) in hand, the optimization problem can
be formulated as

minimize
{wk,v,Uv}

M∑
v=1

avPv

subject to γk ≥ Γk,∀k
Ptrans,v ≤ Pv,max,∀v

(8)

where Γk > 0 is the target SINR value for user k. The
weights av > 0 are used to balance the power consumptions
of different BSs. For the rest of the paper, we assume that
the problem (8) has at least one feasible solution, which is
reasonable in dense networks with an over-provisioning of
access points. In practice, if no feasible solution exists, the
SINR constraints have to be relaxed either by decreasing the
target SINRs or by removing users [17].

III. OPTIMAL PRECODING AND LOAD BALANCING

From (8), we see that the load balancing and precoding
design are inherently coupled with each other. In fact, by
setting wk,v = 0 for v /∈ Vk (or, equivalently, by setting
wk,v = 0 for k /∈ Uv), the original problem (8) is equivalent
to

minimize
{wk,v}

M∑
v=1

avPv

subject to γk ≥ Γk,∀k
K∑
k=1

‖wk,v‖2 ≤ Pv,max,∀v

(9)

where Pv can be rewritten as

Pv=

{
NvPactive,v + ∆v

∑K
k=1 ‖wk,v‖2 , 0 < Ptrans,v ≤ Pv,max

NvPsleep,v, Ptrans,v = 0
(10)

and γk is reformulated as

γk =

∑M
v=1

∣∣∣ĥHk,vwk,v

∣∣∣2
Ik + Ek + σ2

k

(11)

with Ik rewritten as

Ik ,
M∑
v=1

K∑
l=1
l 6=k

wH
l,v

(
ĥk,vĥ

H
k,v + Ek,v

)
wl,v (12)

and Ek replaced by

Ek ,
M∑
v=1

wH
k,vEk,vwk,v. (13)

Hence, by solving the global precoding optimization problem
(9), we can immediately obtain the optimal load balancing
solution; that is, the set of users assigned to BS v is Uv =
{k|wk,v 6= 0, k ∈ {1, . . . ,K}}, and the set of BSs that provide
data transmission to user k is Vk = {v|wk,v 6= 0, v ∈ V}.

The optimization problem (9) is not convex. In particular,
the power consumption function in (10), which is in the

form of a fixed transaction cost function, leads to a hard
combinatorial problem [18]. Moreover, the SINR constraints
of (9) do not have a standard convex form. In the following, we
first show that, for each combination of BS modes, problem (9)
can be reformulated into a convex problem. Then, the global
optimum can be found by an exhaustive combinatorial search
over these 2M convex problems with different mode selections.

Define wk ,
[
wT
k,1,w

T
k,2, . . . ,w

T
k,M

]T
∈ C(

∑M
v=1Nv)×1

as the aggregated precoding vector for user k from all BSs.
To allow only non-coherent joint transmission from multiple
BSs, the covariance matrix of the estimated channels from all
BSs to user k is defined as [17]

R̂k ,


R̂k,1 0 . . . 0

0 R̂k,2 0
...

... 0
. . . 0

0
... 0 R̂k,M


where R̂k,v , ĥk,vĥ

H
k,v ∈ CNv×Nv for v = 1, . . . ,M .

Similarly, we define the covariance matrix of the channel
errors for user k as Ek , diag (Ek,1,Ek,2, . . . ,Ek,M ). Then,
the received SINR, γk in (11), can be rewritten as

γk =
wH
k R̂kwk∑K

l=1
l 6=k

wH
l

(
R̂k + Ek

)
wl + wH

k Ekwk + σ2
k

.

Using the semi-definite relaxation trick from [19], the SINR
constraints can be rewritten in convex forms as a set of second
order cone constraints. To do so, we define Wk , wkw

H
k �

0, and
Qv , diag (Q1,v,Q2,v, . . . ,QM,v) (14)

where

Qi,v =

{
INv

, if i = v

0Nv×Nv
, otherwise.

(15)

By gathering the power weights in a diagonal matrix form as
A , diag (a1∆1IN1

, a2∆2IN2
, . . . , aM∆MINM

) and noting
that wH

k Qwk = Tr (QWk) for any matrix Q, problem (9)
can be reformulated as

minimize
{Wk�0}

K∑
k=1

Tr (AWk) + J (z)

subject to Tr
(
R̂kWk

)
− Γk

K∑
l=1
l 6=k

Tr
(

(R̂k + Ek)Wl

)
− ΓkTr (EkWk) ≥ Γkσ

2
k,∀k

K∑
k=1

Tr (QvWk) ≤ zvPv,max,∀v

zv ∈ {0, 1},∀v

(16)

where

J (z) =
∑
v

avNv (Pactive,vzv + Psleep,v (1− zv)) (17)



and with the additional constraints rank (Wk) = 1,∀k. Here,
zv is the BS mode indicator for v ∈ V: zv = 1 if BS v is
active, and zv = 0 if BS v is in the sleep mode. Wk � 0
represents that the matrix Wk is positive semidefinite, and
Tr(·) refers to the matrix trace.

Based on [20, Theorem 1], it can be shown that (16)
always has a rank one solution, if the problem is feasible.
Therefore, the rank-one constraints can be dropped without
loss of optimality. For any combination of BS modes, the
problem (16) is a convex semi-definite program. Thus, by
using standard convex optimization software, such as CVX
or YALMIP, we can efficiently obtain the optimal solution for
each fixed z. By searching over all 2M mode combinations, the
global optimum is found by choosing the one with the lowest
weighted total power consumption. This global optimum can
serve as an upper bound for any other suboptimal heuristic
load-balancing and precoding algorithm.

IV. ITERATIVE HEURISTIC ALGORITHM DESIGN

In this section, we tackle the non-convex problem (16) by
iterative convex approximations of the power consumption
functions. In particular, each iteration solves a problem with
a modified objective function, which is convex. This convex
objective function is updated in each iteration such that most of
the BSs with small transmit powers in the solution are driven
to the sleep mode. The proposed algorithm will find a local
optimum to the original problem in (16).

Note that 0 ≤ Ptrans,v ≤ Pv,max for each BS v, v ∈ V . Thus,
the total consumed power of BS v, Pv in (4), can be relaxed
with its convex envelope, P c.e.

v over the interval [0, Pv,max],
where

P c.e.
v (Pt,v) , NvPsleep,v + ∆′vPtrans,v (18)

with

∆′v ,
Nv (Pactive,v − Psleep,v)

Pv,max
+ ∆v (19)

which is the largest convex function smaller or equal to Pv over
the interval. Replacing Pv with P c.e.

v , problem (9) is relaxed
to a convex optimization problem

minimize
{Wk�0}

K∑
k=1

Tr (A′Wk) +

M∑
v=1

avNvPsleep,v

subject to Tr
(
R̂kWk

)
− Γk

K∑
l=1
l 6=k

Tr
(

(R̂k + Ek)Wl

)
− ΓkTr (EkWk) ≥ Γkσ

2
k,∀k

K∑
k=1

Tr (QvWk) ≤ Pv,max,∀v

(20)
where A′ is a modified block diagonal matrix of A, with ∆v

replaced by ∆′v for each block v. Note that based on [20,
Theorem 1], the rank one constraints are dropped without
loss of optimality. Compared to the original problem (9), the
relaxed problem (20) has the same feasible set, but a modified

objective function. The optimal value of (20) is a lower bound
on the optimal value of the original problem (9).

The proposed iterative heuristic algorithm is as follows:

1) i := 0; Initialize W(0)
k for k = 1, . . . ,K by solving (20).

2) i := i + 1; Obtain the transmit power of each
BS v as P

(i−1)
trans,v =

∑K
k=1 Tr

(
QvW

(i−1)
k

)
. Define

P̂
(i)
v (Ptrans,v) , NvPsleep,v + ∆

(i)
v Ptrans,v , where

∆(i)
v ,

Nv (Pactive,v − Psleep,v)

P
(i−1)
trans,v + δ

+ ∆v. (21)

Solve the modified optimization problem

minimize
{Wk�0}

K∑
k=1

Tr
(
A(i)Wk

)
+

M∑
v=1

avNvPsleep,v

subject to Tr
(
R̂kWk

)
− Γk

K∑
l=1
l 6=k

Tr
(

(R̂k + Ek)Wl

)
− ΓkTr (EkWk) ≥ Γkσ

2
k,∀k

K∑
k=1

Tr (QvWk) ≤ Pv,max,∀v

(22)
where A(i) is the modified block diagonal matrix of A,
with ∆v replaced by ∆

(i)
v for each block v.

3) Let W(i)
k be the solution to this problem.

4) If P (i−1)
trans,v and P

(i)
trans,v are approximately equal for each

v, return W∗
k := W

(i)
k . Otherwise, go back to step 2).

Note that δ in (21) is a non-negative small value, which can
be interpreted as a soft threshold for deciding when a BS is
set to the sleep mode. Define P ∗trans,v ,

∑K
k=1 Tr (QvW

∗
k).

Thus, for P ∗trans,v � δ, we have P̂v

(
P ∗t,v

)
, NvPsleep,v +(

Nv(Pactive,v−Psleep,v)
P∗

trans,v+δ
+ ∆v

)
P ∗trans,v ≈ NvPactive,v+∆vP

∗
trans,v =

Pv

(
P ∗trans,v

)
, and BS v is in the active mode; while for

P ∗trans,v = 0, P̂v

(
P ∗trans,v

)
, NvPsleep,v and BS v is in the sleep

mode. For each iteration as shown in step 2), when P
(i−1)
trans,v

is small, the modified ∆
(i)
v in (21) becomes large, i.e., the

derivative of the power consumption function P̂
(i)
v (Ptrans,v)

increases. Therefore, the modified optimization problem (22)
will push the smalls P

(i−1)
trans,v to zero; that is, the BSs with

small transmit powers in the solution to the previous problem
are driven to the sleep mode. This leads to sparse solutions of
W∗

k. Note that the modified objective function of problem (22)
is on the form of the objective function in [18, Eq. (21)],
which always converges to a local optimal point. A proof
of convergence for this type of heuristic algorithms is given
in [18, Appendix B].

V. NUMERICAL RESULTS

In this section, numerical results are presented to illustrate
our analytical results and the proposed algorithms. The propa-
gation environment is a simplified version of the dense urban
information society model used in the METIS project [21],
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Fig. 1. The MBS (cross) and SBSs (circles) deployment considered in
Section V.

Table I
POWER MODEL PARAMETERS FOR DIFFERENT BS TYPES.

BS type Nv Pv,max [W] Psleep,v [W] Pactive,v [W] ∆v

MBS 4 39.8 75.0 130.0 4.7
SBS 2 6.3 39.0 56.0 2.6

as illustrated in Fig. 1. The model consists of four square-
shaped buildings of dimensions 120m×120m, each with 6
floors. A macro BS (MBS) is complemented with 4 small
cell BSs (SBSs). The MBS has 4 transmit antennas, and the
SBSs have 2 transmit antennas each. Five users are randomly
and uniformly dropped in the network, whereof 4 users are
indoors and 1 user is outdoors in every user drop. The system
bandwidth is 10MHz. Here, we adopt the indoor and outdoor
propagation models, PS#1 - PS#4, identified in METIS. More
details regarding network deployment and propagation modes
can be found in [21, Table 3.7 and Section 8.1]. We assume
independent Rayleigh small-scale fading. The MMSE channel
estimation errors are calculated based on [22] with the total
pilot power p = Pv,max/2. Table I shows the power model
parameters and is based on [2, Table 6 and Table 8].

Three different schemes, namely “Optimal”, “Heuristic” and
“All Active”, are compared. The “Optimal” scheme obtains
the global optimal solution by an exhaustive search over all
25 possible BS mode combinations. The “Heuristic” scheme
follows the algorithm proposed in Section IV, and the value
of the soft threshold δ is set to 10−4. The “All Active”
scheme is used as our performance baseline, which solves the
optimization problem (16) by assuming that all BSs are active,
i.e., the BS mode indicator zv = 1 for all BSs v ∈ V . For each
scheme, the performance is average over 1000 independent
user drops that provide feasible solutions for our optimization
problem (16). For each user drop, the algorithms are evaluated
over 50 independent channel realizations. The weights av are
set to 1 for all BSs.

Define the dynamic part of the total power consumption
as the total RF power (i.e.,

∑M
v=1 av∆vPtrans,v), and the

remaining part of the total power consumption as the circuit
power (i.e.,

∑
v avNv (Pactive,vzv + Psleep,v (1− zv))). Figs. 2

and 3 demonstrate the total RF power and the total power
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Fig. 2. Total RF power (the dynamic part
∑M

v=1 av∆vPtrans,v) vs. target
spectral efficiency per user (Rk).

consumption as a function of target spectral efficiency per user,
respectively. As expected, the total power consumption and the
RF power increase as the target spectral efficiency increases.
Fig. 2 shows that the RF power for the “All Active” scheme is
less than that of the “Heuristic” and “Optimal” schemes. This
is expected since all BSs are active in the “All Active” scheme,
whileas for the “Heuristic” and “Optimal” schemes, some BSs
are put into the sleep mode. With more BSs being active, the
“All Active” scheme provides better energy-focusing and less
propagation losses between the users and the transmitters, and
will therefore reduce the total RF power. However, as can be
seen from Fig. 3, compared to the “All Active” scheme, the
“Heuristic” and “Optimal” schemes can substantially reduce
the total power consumption, especially when the target QoS
is small. This is because the circuit power consumption under
the sleep mode is much lower compared to the one under the
active mode, i.e., Psleep,v � Pactive,v . For the “All Active”
scheme, the increase in the circuit part from the extra power
consumed by activating BSs clearly outweighs the decrease in
the dynamic part. This implies that putting a BS into sleep
mode by proper load balancing is an important solution for
energy savings in heterogeneous networks.

Fig. 4 demonstrates the BS activation probability versus
the target spectral efficiency per user. Here, the activation
probability of the SBS is averaged over the probabilities of
the four SBSs depicted in Fig. 1. We see that for the “All
Active” scheme, the activation probabilities of the MBS and
SBS is always one, since all BSs are always active in this
scheme. Moreover, as anticipated, for both the “Heuristic”
and “Optimal” schemes, the BS activation probabilities of
the MBS and SBS increase as the target spectral efficiency
per user increases. This is because in order to satisfy the
raised QoS expectations of all users, the probability that a BS
becomes active should increase so as to provide better energy-
focusing and less propagation losses. Over the considered
range of target spectral efficiency per user, the “Optimal”
scheme has lower activation probability for the MBS and
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v=1 avPv) vs. target spectral efficiency
per user (Rk).
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Fig. 4. BS activation probability vs. target spectral efficiency per user (Rk).

higher activation probability for the SBS as compared to the
“Heuristic” scheme. Note that the circuit power consumed
under the active mode Pactive,v for the MBS is much higher
than that of the SBSs. Thus, as shown in Fig. 3, the “Optimal”
scheme results in better energy saving as compared to the
“Heuristic” scheme.

VI. CONCLUSIONS

This paper analyzed the energy efficiency in the downlink
of heterogeneous networks, where each user can be served
by non-coherent joint transmission from multiple transmitters.
More specifically, assuming imperfect CSI at both BSs and
users, the optimal precoding vectors, load balancing, and BS
operational modes were obtained to minimize the weighted
total power consumption. Moreover, an iterative heuristic
algorithm was proposed to find a local optimum with relatively
low complexity. Numerical results showed that the total power
consumption can be greatly reduced by putting a BS into sleep
mode by using proper load balancing.
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