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Abstract

Fibre reinforced composite materials are used extensively in today’s industry. On one
hand, the low–weight feature of this kind of material gives important advantages such
as better fuel efficiency and lower amount of CO2 emissions. On the other hand, high
strength and corrosion resistance has made them suitable for different applications.
Composite materials are also assumed to grow significantly in automotive industry in
near future. In these perspectives, especial attention has risen up towards development of
advanced manufacturing technologies where higher production rate, lower cost and lower
environmental issues are desired. To achieve this goal, numerical simulations and CAE
tools are employed to predict the behavior of manufacturing methods with respect to the
process optimization and the product properties.

The focus of this research thesis is toward development of a framework for holistic
modeling of fiber reinforced composites manufacturing. The manufacturing process can
be considered as a fluid filled porous material, which can be described, on macro scale
as well as micro scale, by the Theory of Porous Media (TPM). The TPM has been
further enhanced by introducing the concept of phase compressibility of the biphasic
mixture of solid and fluid, in order to describe the physical sub–processes happening in
different scale. The model of the considered problem is then put forward to be solved by
Finite Element Method (FEM). In the discretization of the numerical domain a quadratic
six–node triangular element is used and a staggered solution procedure is chosen to solve
the highly coupled problem in a finite strain regime. The most important challenges, that
the numerical solution procedure is able to capture, are (1) modeling the compressible
volumetrically–deformable fiber preform and the shape of membrane due to the different
considered loading situations (2) the dual scale resin flow motion through the fibrous
preform and the compaction of individual plies (3) deformation dependent permeability
models (4) the free surface problem when the flow is moving with respect to a flow front
velocity into the vacuum zone of the porous material.

The framework that is developed here is capable of simulating different manufacturing
processes based on the chosen initial conditions, boundary conditions and material
parameters. Liquid Composite Molding (LCM), Liquid Resin Infusion (LRI), Resin
Transfer Molding (RTM), Out of Autoclave (OoA), press forming prepregs, Engineering
Vacuum Channels (EvaC) and similar manufacturing methods are some examples of the
processes that have been simulated.

Keywords: Poromechanics; Finite element Analysis (FEA); Polymer Composites; Com-
posites Manufacturing
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Part I

Extended Summary

1 Introduction

1.1 Background

Polymer Composite materials have been in use in industry for more than 70 years.
Their advantages compare to other materials such as high–performance and lightweight
applications have attracted many industries such as aerospace, automotive, infrastructure,
sports and marine to explore and increase their usage. There are numerous ways to
manufacture fiber reinforced polymer composites ranging from hand lay–up in small
series to fully automatic pressing of components to the automotive industry. As it is
mentioned by Trochu et. al. [1], five major ways to manufacture structural fiber reinforced
composites are presently in use: hand lay–up, autoclave, pultrusion, filament winding
and Liquid Composite Molding (LCM). Parnas [2] has compared these processes with
respect to manufacturing cost, performance and geometric complexity which are the
key parameters to make the right choice between these processes. Over the past few
decades researchers and engineers have employed mathematical and numerical tools in
order to understand and predict manufacturing of composites. Their aim was to improve
the process, increase the product quality and predict the mechanical properties. By
increasing the computing power, on one hand, advanced computational methods have
been developed to achieve this goal where they have been much more effective and efficient
in compare to numerical hand calculation before. On the other hand, it has been raising
the issue of the difficulty of developing the models and the numerical procedures that are
capable of handling complex problems. In this thesis we are dealing with the development
of a continuum thermodynamic framework using the theory of porous media in order
to establish a simulation routine for modeling few different composite manufacturing
processes.

1.2 Composite materials

Composite materials consist of two or more different materials bonded to each other
in order to utilize the properties of each constituent for the structural improvement of
the whole assembly. Due to certain properties, composite materials have been a good
alternative for many metallic parts, especially in aerospace structures and transport sector.
These properties are: high mechanical performance, high specific strength and stiffness,
weight reduction resulting in energy saving and good resistance to corrosion. There are
three main classifications of composite materials: particle–reinforced, fiber–reinforced
and structural composites. In particle–reinforced composites, particle dimensions are
approximately the same in all directions and generally particulate phase is harder and
stiffer than the matrix. In fiber–reinforced composites, the dispersed phase has the
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geometry of a fiber, the mechanical properties mostly depend on the properties of the
fibers and applied load is transmitted to the fibers by the matrix phase through the
fiber/matrix interface. Structural composites are the combinations of composites and
homogeneous materials and the geometrical design of the structural elements affect the
mechanical properties of the structure. The most common structural composites are
laminated composites and sandwich panels [3].

Fiber Reinforced Plastics (FRP) are now the first choice for fabricating structures
where low weight in combination with high strength and stiffness are required. Such
materials are sometimes referred to as ’high–performance’ composites, and would often
be composed of carbon fibers and epoxy resin. Density, stiffness (modulus) and strength
are the properties that initially come to mind when thinking of FRP, and these would
certainly be the design drivers for materials selection for transport applications such as
aircraft, motor vehicles and trains, cf. [4]. Figure 1.1 shows classification of composites
based on reinforcing material, showing fiber reinforced composites (fibrous composites) in
detail.

 

Composite material 

Fiber-reinforced composites 
(fibrous composites) 

Particle-reinforced composites 
(particulate composites) 

Random 
orientation 

Preferred 
orientation 

Single-layer composites  
(including composites having same 

orientation & properties in each layer) 

Multilayered 
 (angle-ply composites) 

Continuous  
fiber-reinforced 

composites 

Discontinuous 
fiber-reinforced 

composites 

Unidirectional 
reinforcement 

Bidirectional 
reinforcement  

(woven reinforcement) 

Random 
orientation 

Preferred 
orientation 

Laminates Hybrids 

Figure 1.1: Classification of composite materials based on the type of reinforcing material
structure [5].

1.3 Composite manufacturing

Manufacturing of composite materials is very different from metals. When producing
metal parts, the properties of the virgin material and the finished part are fundamentally
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unchanged. In case of composites, the manufacturing process plays a key role. During
composite processing, one makes not only the part of the desired shape, but also the
material itself with specific properties. In addition, the quality of the composite material
and the component fabricated depends on the manufacturing process since it is during
the manufacturing process that the matrix material and the fiber reinforcement are
combined and consolidated to form the composite. The practice of choosing an appropriate
manufacturing method is based on the actual part size and geometry, the unit count, the
selected components of the composite, i.e. the reinforcement and the matrix, and the cost.

Previously, the manufacturability of a prototype was usually based on experience
and ’trial and error’ approaches since numerical procedures had not yet been applied to
the development of control systems, which can correlate the main parameter values of
the processes with the processing behavior and the final properties of the component
[6]. Very little analysis of process physics and back–of–the–envelope calculations were
done to approach a prototype development of a composite structure [7]. This way of
manufacturing has proved to be expensive and composite industry has come under intense
pressure to become cost effective and focus on cost avoidance in prototype development.

Recently, many new manufacturing techniques were invented and introduced and some
of them were incrementally improved to increase the yield of manufactured composite
parts [7]. As it was mentioned earlier, there are five major ways to manufacture composites.
Over the years, by developing new technologies, these manufacturing techniques have also
been further developed. For example, Out of Autoclave (OoA) methods are introduced
against Autoclave methods in such a way to preserve the high quality of the products
but also reduce the manufacturing and tooling costs and time. Another example is Resin
Transfer Molding (RTM) from the LCM family where Compression RTM (CRTM) is
developed to speed up the cycle time and also overcome the negative aspects of traditional
RTM process such as high injection pressure.

Composite manufacturing processes for FRP composites are generally grouped into
two general classes: open mold and closed mold. Open mold are those processes in which
the part is not inside the mold during the complete duration of the manufacturing process
such as pultrusion or filament winding. In closed mold processes, the preform is placed in
a mold, the mold is closed, and when it is reopened the part is fabricated. The focus of
the current work is on the closed mold processes for continuous–fiber reinforced materials.

1.4 Process modeling of advanced composites

”Advanced (FRP) composites” is referred to those composites that are manufactured
by continuous fibers. Analysis have shown that continuous fibers could enhance the
mechanical properties by one to two orders of magnitude as compared to short fiber
composites [7]. There are several primary steps that are common in manufacturing of
advanced (FRP) composites in a closed mold process. First, all advanced composites
require a skeleton structure of the fibers or fiber network. Second, this fiber structure
must be impregnated by the liquid resin. Finally, the part should be supported by a rigid
tool to allow the resin to cure.

The fiber form and the matrix type play a key role in the selection of the manufacturing
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process where they influence the manufacturing process physics and modeling significantly.
Fibers could be short or long, continuous or discontinuous, aligned or interlaced, etc. The
resin could be thermoplastic or thermoset. The geometry of the part to be manufactured
also influences the decision and also if the process is carried out in an open mold or a
closed mold. These choices influence the physics of mold filling.

Assuming that the process is selected, the process modeling step is generally approached
by researchers on two scales, macro and micro scale [8]. The macro–scale is usually the
order of the smallest dimension of the composite being manufactured (millimeters). The
micro–scale scale is more on the order of a fiber or tow diameter (microns) [7]. What
which is interesting to model, from macroscopic perspective, is the overall relationship
between the process parameters (such as pressure and flow rate) and global deformation
of the composite material that is being formed. Continuum mechanics is a suitable
approximation to describe the physics in this scale. From microscopic perspective, one
may need to model this physics separately and find an approach to couple it with the
macro–scale physics since composite materials are heterogenous materials by definition
and macro–level physics cannot capture phenomena that occur on the micro–scale.

In this contribution, we aim for a generic process simulation tool where it is capable of
handling the physics in the two different scale mentioned above. For this purpose Theory
of Porous Media (TPM) combined with the concept of finite strain hyperelasticity within
a well–founded thermodynamical framework has been reiterated. Constitutive relations
with respect to sub processes are also formulated. By focusing on nonlinearities (due to
large deformation of the preform) of the strongly coupled problem, the developed biphasic
continuum mechanical model accounts for the relevant physical properties stemming
from the porous microstructure, the moving and interacting incompressible fluid, and
the directly coupled intrinsic hyperelasticity of the skeleton material itself. Finally, after
the numerical treatment of the governing equations using finite element method, a 2–d
problem was simulated to show the efficiency of the numerical implementation.

2 Continuum mechanics of two–phase porous

media

2.1 Background

The area of multi–phase materials modeling is a well–established and growing field in the
mechanical scientific community. There has been a tremendous development in recent
years including the conceptual theoretical core of multi–phase materials modeling, the
development of computational methodologies as well as experimental procedures. Exam-
ples of the theory applications are civil engineering [9], biomaterial [10] and composites
modeling [11] and [12] to name a few. The latter is the focus of the current contribution.
Consequently specific related issues concerning modeling of the matter are of interest.
Solid–fluid interaction and compressible/incompressible solids/fluids including phenomena
like consolidation, compaction, wetting etc. are examples of the modeling challenges.
Each of them are well established and formulated separately in isolation from the others.
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However, there are instances addressing them in a more coupled fashion, cf. [13] and [14],
which is the focus of this thesis for further improvement.

Since the ultimate goal of this research is to develop a simulation tool, the essence of
the computational methods is not negligible. Computational mechanics is the discipline
concerned with the use of computational methods to study phenomena governed by
the principles of mechanics. Here we use Finite Element Analysis (FEA) to simulate
the process modeling in composite manufacturing. This is where we use the theory of
porous media as the back bone of the modeling. This theory will provide a framework
for the modeling of a solid porous material with compressible and incompressible solid
and fluid phases. The constitutive relations that have been used here are restricted to
hyperelasticity and the ordinary Darcy model describing the interaction between the
constituents. The mathematical equations are then formulated which are suitable for
digital computation. This step is basically where we derive the weak form of the equations
with respect to domain and primary fields. The domain discretization along with primary
field identifications are done based on the strongly coupled problem in hand to solve the
governing equations of mass and momentum balance along with respective constitutive
equations where the Taylor–Hood element has been chosen for the simulation. To solve
the discretized equations using finite element analysis an in–house code was developed.
Computational procedures associated with the nonlinear response of the coupled two–phase
material are also emphasized in our publications. Extensive description and formulation
of the matter is exploited in the appended papers with respect to different manufacturing
method under consideration.

2.2 The concept of two phase mixture

A system containing a solid–fluid mixture is considered here as a homogenized two phase
material. In the problem concerning composite materials we assume a fiber bed as a
porous material. The pores are embedded into the solid fiber network and they are either
partially filled by liquid resin or contains unfilled void spaces. As a result we have a
porous solid which can be completely unsaturated, partially saturated or fully saturated.

It is necessary to adopt a macroscopic view for the description of local quantities such
as the stress, the deformation gradient etc. To this end we introduce the Representative
Volume Element (RVE) with volume V , with the involved solid–fluid constituents on
a sub–scale and the corresponding homogenization on the macro–scale, cf. Figure 2.1.
The constituents involved in the process can be assumed to be either compressible or
incompressible:

� Compressible solid particles, p, with the volume fraction φp = V p/V , representing
the fibers.

� Incompressible liquid constituent, l, with the volume fraction φl = V l/V , represent-
ing the resin.

� Voids, v, with volume fraction φv = V v/V , embedded in the fiber plies.
� Compressible gas constituent, g, with volume fraction φg = V g/V , occupying the

voids.
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Figure 2.1: The link between micro– and macro–constituents in terms of a representative
mixture having volume V .

To ensure that each RVE is occupied by fluid and solid phases we have the saturation
constraint as

ns + nf = 1 with ns = φp + φv and nf = φl + φg, (2.1)

where ns and nf are the macroscopic volume fractions for the solid and fluid phase,
respectively. In turn, the solid phase is considered subdivided into particle and void
constituents. Likewise, fluid phase is also subdivided into liquid and gas constituents.
Identification of the micro–constituents depends on the assumption of having a binary or
ternary mixture. In Paper A a ternary mixture is considered where we have incompressible
particle and liquid constituents where the voids are occupied by the highly compressible
gas. In Paper B and Paper C a binary mixture consists of compressible particles and
incompressible liquid occupying the voids is under study. Finally, in Paper D, the mixture
is considered to be of compressible particles, incompressible liquid and highly compressible
gas constituents.

This representative volume must include enough material for it to be representative
of the studied macroscopic behavior, but at the same time, it must be small enough to
represent the local dependence of the averaged quantities. Clearly, this view confirms
the existence of a ”scale” of the elementary volume, which should be sufficiently small as
compared to the scale of the intended application.

We may thus formulate the volume V of the RVE in terms of the volume fractions as

V = V s + V f =

∫

Bs

dv +

∫

Bf

dv =

∫

B
nsdv +

∫

B
nfdv =

∫

B
(ns + nf )dv =

∫

B
dv. (2.2)

The application of the principle of mass equivalence, between the micro– and the
macroscopic mass, to the RVE with volume V we have

M =

∫

Bs

ρsmicdv +

∫

Bf

ρfmicdv =

∫

B
nsρsmicdv +

∫

B
nfρfmicdv =

∫

B
(nsρsmic + nfρfmic)dv =

∫

B
(nsρs + nfρf )dv

P.S.S
= (nsρs + nfρf )V,

(2.3)

where the macroscopic intrinsic densities are associated with each constituent, as denoted
ρs and ρf , are introduced. According to the Principle of Scale Separation (P.S.S.), i.e.
that the involved macroscopic quantities can be considered constant across the RVE, we
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could state the relationship between the microscopic and the macroscopic fields as in the
last equality in (2.3). Now we can obtain the averages

nsρs =
1

V

∫

Bs

ρsmicdv ⇒ ρs =
1

V s

∫

Bs

ρsmicdv,

nfρf =
1

V

∫

Bf

ρfmicdv ⇒ ρf =
1

V f

∫

Bf

ρfmicdv.

(2.4)

It may be noted that the intrinsic densities relate to the issue of compressibility (or
incompressibility) of the phases. For example, in the case of an incompressible porous
mixture, the intrinsic densities are stationary with respect to their reference configurations,
i.e. ρs = ρs0, ρf = ρf0 .

2.3 Conservation of mass

The basic idea behind the formulation of mass conservation is that the mass of the
constituents is conserved during deformation, i.e.

mα
0 [Xα] = mα[ϕ[Xα]]⇔ ρα0 dV = ραJdV, (2.5)

where it was used that mα = ραdv, ϕ[Xα] are deformation maps and J = det[F ] is the
Jacobian of the deformation gradient for α phases representing solid, s, and fluid, f ,
phases respectively. Considering the situation of the two phase mixture we can formulate
the mass conservation of the two–phase material, cf. (2.3), as

Ṁs + Ṁf + J∇ · (nfρfv), (2.6)

where the solid and fluid contents may be expanded in terms of the volume fractions as

Ms = Jnsρs ⇒ Ṁs = Jρs
(
ṅs + ns∇ · v + ns

ρ̇s

ρs

)
,

Mf = Jnfρf ⇒ Ṁf = Jρf
(
ṅf + nf∇ · v + nf

ρ̇f

ρf

)
.

(2.7)

In the context of this thesis, to be able to model the involved physics during the process
modeling of composite materials, we have introduced the logarithmic compressibility
strains εsv for the solid phase densification and εfv for the fluid phase densification expressed
in terms of the intrinsic densities ρs and ρf as

εsv = − log[
ρs

ρs0
]⇒ ε̇sv = − ρ̇

s

ρs
⇒ ρ̇s

ρs
= −ε̇sv,

εfv = − log[
ρf

ρf0
]⇒ ε̇fv = − ρ̇

f

ρf
⇒ ρ̇f

ρf
= −ε̇fv .

(2.8)

Now, the mass balance relation in equation (2.6), using the solid and fluid contents in
equation (2.7) and introducing the Darcy velocity as vd = nfvr, become

∇ · v − nsε̇sv − nf ε̇fv = − 1

ρf
∇ · (ρfvd), (2.9)
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where saturation constraint in equation (2.1) and its rate have been used.
In Paper A, the conservation of mass presented there was formulated in such a way to

present only the compressibility of the fluid phase, ρf = ρf [ϕ[X], t], while solid phase was
considered incompressible. The fluid density considered compressible due to gas density,
ρg = ρg[p], in view of the definition of the degree of saturation, ρf = ξρl + (1 − ξ)ρg,
where the total mass balance relation became

∇ · v − nf ε̇fv = − 1

ρf
∇ ·

(
ρf

ξ
vd
)
, with ε̇fv = − ρ̇

f

ρf
, (2.10)

where a governing equation for saturation degree evolution was also established in order
to monitor the moving free surface at the flow front during resin infusion where the
formulation was traversing into incompressibility with increasing partial saturation as

nf ξ̇ +
J̇

J
ξ + ∇ · vd = 0, (2.11)

where it may be noted that there are two sources governing ξ̇, namely, volumetric solid
deformation and the liquid divergence term ∇ · vd.

In Paper B and Paper C, where we tackled the press forming manufacturing processes,
the solid phase compressibility was the key feature of the formulation and the aim was
to present the total compaction of the solid phase with the reversible compaction strain
and irreversible wetting compaction as εsv = εe + εp. In that sense the mass balance in
equation (2.9) was modified to have

∇ · v − nsε̇sv = −∇ · vd, with ε̇sv = − ρ̇
s

ρs
. (2.12)

Finally, in Paper D, we made the choice for the use of compressibility for the both
phases and we used equation (2.9) in full format. Here we aimed to model sub–processes
in micro and macro scale at the same time. At macro scale the fluid compressibility,
in the same way as in Paper A, will be deriving the governing equation for saturation
degree evaluation. There is a difference here, however. The solid phase compressibility
representing micro infiltration and compaction will also affect this governing equation
where we have

nf ξ̇ +

(
J̇

J
− (1− nf )ε̇sv

)
ξ + ∇ · vd = 0. (2.13)

2.4 Balance of momentum

The linear momentum balance of the solid and fluid, occupying the region B and Bf0
respectively, as in Figure 2.2, is obtained in the spatial format for the mixture as

σs ·∇ + ρ̂sg + hs = 0,

σf ·∇ + ρ̂fg + hf = 0,
(2.14)
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where σs and σf are the Cauchy stresses for each phase from the resulting traction vector
t = (σs +σf ) ·n acting along the external boundary ∂B, n is the outward normal vector,
g is the gravity and hα are the local interaction forces for each phase. The total Cauchy
stress σ = σs + σf is also related to the effective (constitutive) stress σ and the fluid
pressure p via the Terzaghi effective stress principle, i.e. σ = σ − p1.

3.3. BALANCE OF MOMENTUM 23

Ã^ s Ã^ f g

t

x

B[t]

X Xs

B0

B0 B

[X, t]

n

N

vs

vf

B
f
0

Xf

f[Xf, t]

Figure 3.2: Solid in equilibrium with respect to reference and deformed configurations.

In view of the fact that the momentum of our solid component, in the present
context of a two phase material, consists of contributions from the individual phases let
us consider the detailed formulation of the momentum change “ DP

Dt
“. To this end, we note

in view of the mass balance relation (3.23) for the individual phases that the total change
of momentum can be written as

(3.36)
DP
Dt

:=
DsPs

Dt
+
DfPf

Dt

where

(3.37)
DsPs

Dt
=
Ds

Dt

∫

B0

MsvdV ,
DfPf

Dt
=
Df

Dt

∫

Bf
0

Jf ρ̂fvfdV

Note the solid phase in the mass balance relation (3.23) and its implication in the
solid momentum conservation, i.e.

(3.38)
DsPs

Dt
=

∫

B0

(
Msv̇ + Ṁsv

)
dV =

∫

B0

(Msv̇ + Jgsv) dV

Figure 2.2: Solid and fluid in equilibrium with respect to reference and deformed configu-
rations.

In addition to linear momentum balance, angular momentum balance should be
considered as well. However, in the concept of composite manufacturing, we have assumed
quasi static behavior for the mixture. In that sense we can neglect the angular momentum
balance.

2.5 Balance of energy

To establish a continuum thermodynamical framework for the binary mixture in the
concept of composite manufacturing the first law od thermodynamic needs to be fulfilled.
If we establish the principle of energy conservation written as the balance relation applied
to the mixture of solid and fluid phases, we will have

DE
Dt

+
DK
Dt

= W +Q, (2.15)

where E = Es+Ef is the total internal energy and K = Ks+Kf is the total kinetic energy
of the mixture solid and the total material velocity with respect to the mixture material is
defined as D•/Dt = Ds•/Dt+Df•/Dt. Moreover, W is the mechanical work rate of the solid
and Q is the heat supply to the solid. We are assuming an isothermal and quasi–static
situation which will result in DK/Dt = Q = 0. The contribution of the internal energy

9



3.4. CONSERVATION OF ENERGY 27
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Figure 3.3: Quantities involved in the formulation of the principle of energy conservation.

where es is the internal energy density (per unit mass) pertinent to the solid phase and
ef is the internal energy density pertinent to the fluid phase. Moreover, we introduced
ks = 1

2
v ·v and kf = 1

2
vf ·vf . The material time derivatives of the involved contributions

thus becomes

DsEs
Dt

=
Ds

Dt

∫

B0

MsesdV =

∫

B0

(Msės + Jgses) dV

DfEf
Dt

=
Df

Dt

∫

Bf
0

Jf ρ̂fefdV
PF
=

∫

B

(
ρ̂f
Dfef

Dt
+ gfef

)
dv

PB
=

∫

B0

(
MfD

fef

Dt
+ Jgfef

)
dV

(3.53)

DsKs

Dt
=
Ds

Dt

∫

B0

MsksdV =

∫

B0

(Msv · v̇ + Jgsks) dV

DfKf

Dt
=
Df

Dt

∫

Bf
0

Jf ρ̂fkfdV
PF,PB
=

∫

B0

(
Mfvf · D

fvf

Dt
+ Jgfef

)
dV

(3.54)

where the mass balance relations in (3.23) were used.

Let us next reformulate the material time derivatives relative to the solid reference

Figure 2.3: Quantities involved in the formulation of the principle of energy conservation.

from individual phases is then follow as

DE
Dt

=

∫

B
(ρ̂sės + ρ̂f ėf + ρ̂f (∇ef ) · vr)dv =

∫

B
( ˙̂e+ ρ̂f (∇ef ) · vr)dv, (2.16)

where the rate of the fluid content relation presented in equation (2.7) is used and the
relative velocity, vr = v − vf , is introduced. We also introduced the (solid) material
change of internal energy of the mixture as ˙̂e = ρ̂sės + ρ̂f ėf .

In view of Figure 2.3 we formulate the mechanical work rate produced by the gravity
forced in B and the forces acting on the external boundary Γ as

W =

∫

B
(ρ̂sg · v + ρ̂fg · vf )dv +

∫

B
(v · (σs · n) + vf · (σf · n))dΓ =

= {...} =

∫

B
(σs : l+ σf : lf − hf · vr)dv,

(2.17)

where the Divergence theorem and the momentum balance relations in equation (2.14)
along with some additional derivations has been used. Thus, the localized format of the
energy equation will read as

˙̂e = σs : l+ σf : lf − hf · vr − ρ̂f (∇ef ) · vr. (2.18)

At the end we need to represent the fluid phase term σf : lf in equation (2.18) to the
motion of the solid phase. So we can rewrite this term as

σf : lf = σf : (l+ lr) = {...} = σf : l+ ∇ · (vr · σf )− vr ·∇ · σf =

= σf : l+ ∇ · (vr · σf ) + vr ·
(
hf + ρ̂fg

)
,

(2.19)
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where we used equilibrium for the fluid phase presented in equation (2.14b). Hence, the
relation (2.18) is re–established as

˙̂e = (σs + σf ) : l+ ∇ · (vr · σf ) + ρ̂fvr · (g −∇ef ). (2.20)

Assuming a non–viscous fluid, the fluid stress may be represented as σf = −nfp1. In
view of this assumption we can formulate the term ∇ · (vr · σf ) of equation (2.20) as

∇ · (vr · σf ) = −∇
(
ρ̂f

p

ρf
vr
)

= − p

ρf
∇ · (ρfvd)− ρfvd∇ ·

(
p

ρf

)
, (2.21)

where introducing the Darcian velocity vd = nfvr is considered. Now, combination of
the term −(p∇ · (ρfvd))/ρf with the balance of mass of the mixture material in equation
(2.9) we obtain

− p

ρf
∇ · (ρfvd) = p∇ · v − nspε̇sv − nfpε̇fv , (2.22)

where replacing (2.22) in equation (2.21) and consequently in equation (2.20) leads to

˙̂e = σ : l− nspε̇sv − nfpε̇fv + ρfvd ·
(
g −∇ef −∇ ·

(
p

ρf

))
(2.23)

where the effective stress σ = σ + p1, of Terzaghi is defined and used during the
manipulations.

2.6 Entropy inequality

For establishing constitutive relations in the thermodynamical framework we are consid-
ering the second law of thermodynamics formulated in terms of the total entropy S for
the mixture written as

S =

∫

B
(ρ̂sss + ρ̂fsf )dv, (2.24)

where ss and sf are the local entropies per unit mass of the solid and fluid phases,
respectively. We assumed that the temperature is constant, i.e. it is stationary, and it is
common for both phases, i.e. we have that θ = θs = θf .

The second law of thermodynamics (simply the entropy inequality) can be stated as

DS
Dt
−Qθ ≥ 0, (2.25)

where DS/Dt is the total time derivative of our two–phase porous material. Moreover, Qθ,
the net heat thermal supply per temperature unit, is considered zero for the isothermal
case that we are dealing with.

The total material derivative of the total entropy is obtained, with consideration of
the balance of mass stated in equation (2.7), as

DS
Dt

=

∫

B

(
ρ̂s
Dsss

Dt
+ ρ̂f

Dfsf

Dt

)
dv = {...} =

=

∫

B
(ρ̂sṡs + ρ̂f ṡf + ρ̂f (∇sf ) · vr)dv =

∫

B
( ˙̂s+ ρ̂f (∇sf ) · vr)dv,

(2.26)
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where ˙̂s = ρ̂sṡs + ρ̂f ṡf is the saturated entropy change. In the localized format, the
entropy inequality can be written, in view of equation (2.25) as

Dmech = ˙̂s+ ρ̂f (∇sf ) · vr ≥ 0, (2.27)

where we require that the mechanical portion of the inequality to be satisfied independently.
We can develop Dmech further using the Legendre transformation. Legendre Transfor-

mation is introduced to relate generically the internal energy e, the free energy ψ and the
entropy s to each other via

e[A, θ] = ψ[A, θ] + sθ, (2.28)

where ψ is the Helmholtz free energy representing the stored reversible energy as a function
of the internal variables A.

Now using the relation (2.28) we can rewrite equation (2.27) as

Dmech = ˙̂e− ˙̂
ψ + ρ̂f (∇(ef − ψf )− sf ∇θ︸︷︷︸

=0

) · vr ≥ 0, (2.29)

where it was used that θ∇sf = ∇(θsf )− sf∇θ. Now combination with energy equation
in (2.23) yields

Dmech = σ : l− nspε̇sv − ρ̂sψ̇s − nfpε̇fv − ρ̂f ψ̇f + ρfvd ·
(
g −∇ψf −∇ ·

(
p

ρf

))
≥ 0,

(2.30)
whereby the final result in fact may be interpreted in terms of a number of independent
phenomenological mechanisms of the mixture material as

Dmech = Ds +Dnvf +Di ≥ 0, where

Ds = σ : l− nspε̇sv − ρ̂sψ̇s ≥ 0,

Dnvf = −nfpε̇fv − ρ̂f ψ̇f = 0,

Di = ρfvd ·
(
g −∇ψf −∇ ·

(
p

ρf

))
= −hfe · vd ≥ 0,

(2.31)

where Ds ≥ 0 is the dissipation produced by the (homogenized) solid phase material
considered as an independent process of the mixture. The term Dnvf represents dissipation
in the non–viscous stress response of the fluid. It is assumed that this dissipation can
be neglected, i.e. Dnvf := 0. The term Di ≥ 0 represents dissipation induced by drag–
interaction between the phases. However, in formulation of hfe , for later use where we are
developing the constitutive equation for solid and fluid interaction, it is of interest to use
the constitutive relation resulted from Dnvf for pressure as p = −ρf ∂ψf/∂εfv and simplify
the term hfe . In this view we have

−∇
(
p

ρf

)
−∇ψf = − 1

ρf
∇ +

(
p

1

(ρf )2
− ∂ψf

∂εfv

∂εfv
∂ρf

)
∇ρf = − 1

ρf
∇p. (2.32)

leading to hfe = g −∇p.
The dissipative mechanisms developed in this section are the fundamental thinking

behind the development of the next section where we formulate the constitutive relations
with respect to the concept of the two phase material of the structure under study.
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2.7 Constitutive relations

In this section the constitutive equations in respect to the formulated mass and momentum
balance in the content of the two phase mixture will be formulated. We have assumed
hyper elasticity of the effective stress response and also that the material will behave like
a Neo–Hooke material.

Effective fiber bed response

The stress state in the current computational domain, τ = Jσ, is expressed based on
the Neo–Hooke model and is split to isochoric and volumetric response for an isotropic
hyperelastic model as

τ = τ iso + τ vol ⇒
{
τ iso = GJ−2/3(b− I1

3 1)
τ vol = KJ(J − 1)1

, (2.33)

where I1 = 1 : b, b = F · F t, F = ∂x/∂X is the deformation gradient and J = det(F ).
The parameters involved in this expression are G and K are the shear and bulk modulus
of the macroscopic fibre bed response. This is the assumption that has been made in
Paper A for the fiber bed effective response.

However, in Paper B, Paper C and Paper D, we modified the response model by
introducing the packing law to the volumetric deformation of the fiber bed. In that sense
the volumetric stress response, τ vol, will be formulated differently using that the argument
of packing is the fiber volume fraction φp = φp0/J where φp0 is the initial volume fraction
of particles,

τ = τ iso + τ vol ⇒
{
τ iso = GJ−2/3(b− I1

3 1)

τ vol = −ksEJ
(

(
φp
0

J )β − (φp0)β
) . (2.34)

Solid compaction and micro–infiltration

The solid phase was considered to be incompressible during the modeling in contribution
of Paper A, i.e. ρs = ρs0. However, in Paper B, Paper C and Paper D, the compressibility
of the solid phase was a key feature of the formulations. In that sense the semi–empirical
elastic fiber packing law proposed by Toll [15] was directly generalized to the compressive
response of the non–saturated region of a fiber bed consisting of voids and dry particles
as p+ p0 = kEφα, where p0 is the configurational fluid pressure, cf. to Figure 2.4. Based
on the assumptions we made, cf. Rouhi et al. [12], pressure p and the rate formulated
compliance form of p, meaning the compaction strain εsv, are formulated as

p = p0 (aα − 1) with a =
ϕ

ϕ0
=

eε
p − φ0

eε
s
v (1− φ0)− φ0(1− eεp)

, (2.35)

eε
s
v = − eε

p − φ0

α(p+ p0)(1− φ0)

(
p+ p0

p0

)−1/α

ṗ− eεp

((
p+p0
p0

)−1/α

− φ0

)

1− φ0

p

µ
, (2.36)
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Figure 2.4: Hyperelastic packing of fiber content φ in dry region induced by fluid pressure
of representative fiber ply in the fiber bed at a fixed value of the micro infiltration ξ.

where φ0 is the initial dry fiber volume content. We can also identify the relation for the
irreversible wetting compaction rate as ε̇p = −p/µ. The parameter µ then represents the
viscous resistance for penetration of liquid into the bulk fibers, which is defined as

µ =
ν(1− φ0)ζ2

Kmes
, with Kmes =

16r2

9π
√

2

[√
π

2φ
√

3
− 1

]5/2

, (2.37)

where ν is the fluid viscosity and ζ is the wetting length. The mesoscopic permeability
Kmes for fiber plies, which is the permeability through the fiber bed, is calculated based
on the Gebart equation, cf. [16], for hexagonal fiber packing where r is the fiber radius.
In this study the fiber content is considered to be constant where we have used φ = φ0 in
equation (2.37).

Darcian solid–fluid interactions

Another contribution to the constitutive behavior of the process represents dissipation
induced by drag interaction between the phases. To accommodate this dissipation, the
effective drag force hfe = ∇p (or hydraulic gradient with negative sign and neglecting
gravity g) is chosen to ensure positive dissipation via Darcy’s law

vd = −1

ν
(Kmac) · hfe = −1

ν

(
(Kmes(1− φl) +KChφ

l)(1−M) +KmesM
)
· ∇p, (2.38)

where Kmac is the anisotropic permeability tensor, Kmes is the permeability through the
fiber, KCh is the permeability through the channel, cf. Figure 2.5, φl is liquid volume
fraction and M = t⊗ t is the structure tensor related to the director field t. For details
regarding macroscopic permeability model refer to the Rouhi et al. [12]. This is the
general anisotropic deformation–dependent case of the permeability model. It is possible
to simplify the model for, for example, deformation–dependent Kozen–Carman model
where the effect of the solid deformation in the micro scale is not considered.

Compressible liquid–gas response

In order to assess the pressure dependence in the fluid density ρf = ξfρl + (1− ξf )ρg, it
is assumed that the same pressure prevails in the liquid and gas constituents and that
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2

t

Figure 2.5: Flow channel with orientation t and fiber bed stacks

the highly compressible gas constituent is pressure dependent in the sprit of the ideal gas
law, i.e. ρg = kgp, where typically the gas–compliance kg is determined by kg = mg/Rθ,
where mg is the molecular mass of the gas, R is the universal gas constant and θ is the
absolute temperature. It should be noted that the rate behaviour of the fluid density may
be characterized in terms of the compression modulus of the liquid–gas mixture defined
as

ρ̇f =
1

Kf
ṗ+ (ρl − ρg)ξ̇f with Kf =

1

(1− ξf )kg
. (2.39)

Indeed, the value of Kf increases for increased saturation and decreased gas–compliance
kg. For continued saturation towards ξf = 1, we obtain that Kf →∞ and ξf → 0 leading
to fluid incompressibility, i.e. ρf → ρl.

2.8 Numerical implementations

In order to numerically solve the established framework, the finite element representation
of the involved primary fields and governing equations of momentum and mass balances are
considered. To be able to formulate the respective weak form of the governing equations
we identify the primary variables for the coupled set of equations in (2.9) and (2.14) where
a finite element subdivision of the region D into elements De, e=1,..., NEL is made. It is
assumed that each element has the interpolation

ϕ =

NODEu∑

I=1

N I [X]ϕI = N̂
e

uϕ̂e ⇒ w = δϕ =

NODE∑

I=1

N I [X]wI = N̂
e

uŵe, (2.40)

where N̂
e

u contains the element shape functions and ϕ̂e is the vector element nodal
placements. We then obtain the spatial velocity gradient as

l =

NODE∑

I=1

vI ⊗ gI , ∇ · v =

NODE∑

I=1

vI · gI with gI = GI · F−1 and GI =
∂N I

∂X
, (2.41)

where N I [X] are the element interpolation functions and ϕI are the corresponding element
nodal placements.
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Likewise, the fluid pressure field is approximated, i.e. it is assumed that each element
has the interpolation

p =

NODEp∑

I=1

N I [X]pI = N̂
e

pp̂e ⇒ η =

NODEp∑

I=1

N I [X]ηI = N̂
e

pη̂e, (2.42)

where e.g. p̂e is the vector nodal pressures. We thus obtain the pressure gradient as
∇p = Bpp̂e, where Bp is the consequent pressure gradient interpolation matrix. The rate
of pressure is relative to the solid reference configuration and is defined by

q = ṗ =

NODEp∑

I=1

N I [X]qI = N̂
e

pq̂e, (2.43)

whereby the integrated nodal displacements û and nodal pressures p̂ may be assessed as

û = nû+ ∆tv̂ , p̂ = np̂+ ∆tq̂. (2.44)

Then the weak form read as
∫

B0

J
(
σ − pf1

)
: l[w]dV =

∫

Γ0

w · t̄1dΓ0 +

∫

B0

ρ̂w · gdV ∀w ∈ P, (2.45)

∫

B0

ηJ̇dV −
∫

B0

ηns0e
εsv ε̇svdV −

∫

B0

ηJnf ε̇fdV−
∫

B0

J
1

ξ
(∇η) · vddV = −

∫

Γ0

ηQdΓ0 ∀η ∈ S,
(2.46)

where it was used that J̇ = ∇ · v. Here in turn P is the function space containing the
virtual displacement field w[x], and S is the function space containing the virtual fluid
pressure field η[x]. We also introduced prescribed nominal traction t1 and flow Q on the
outer surface Γ0.

The next step is to establish the set of discretized finite element equations pertinent
to the present choice of interpolation of displacements and fluid pressure. In view of the
weak form of momentum and mass balances (2.45)–(2.46) we obtain

[
δût, δp̂t

]NEL

A
e=1

[
be − f ext

e

ce

]
= 0, (2.47)

where explicit expressions for the unbalances be − f ext
e and ce are obtained as

be − f ext
e =

∫

D0e

(Be
u) t

(
τ̂ − Jp1̂

)
dV +

∫

Γe

p̄
(
N̂

e

u

)
tn[s]ds,

ce =

∫

D0e

[(
N̂

e

p

)t
(J −n J) + J

(
N̂

e

p

)t ∆tnf

ρf

(
(1− ξ)kgq −

(
ρl − ρg

)
ξ̇
)]
dV−

∫

D0e

J

[(
N̂

e

p

)t (
ns0e

εsv∆εsv

)
− ∆t

ξ

(
Be
p

)
tvd
]
dV +

∫

Γe

(
N̂

e

p

)
t∆tQdΓ,

(2.48)
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where p̄ denotes the prescribed pressure on the external boundary.

3 Summary of Appended Papers

Paper A The aim of this formulation was to model the resin wet out through the
highly deformable fiber preform when the resin flow is coupled to the preform deformation.
The challenges that are considered to be modelled are (1) the highly deformable preform
and its shape due to the interaction between the external pressure loading and the intrinsic
fluid pressure and (2) the flow front tracking of the resin infiltration into the fiber preform.
To be able to handle these challenges a compressible two–phase porous media formulation
is put forward involving an additional liquid mass balance relationship as compared to
the standard compressible porous media formulation. In other word, a saturation degree
concept based on the additional liquid mass balance relationship has been added to the
two–phase porous media theory were compressible continuum formulation is traversing
into incompressibility with increasing partial saturation degree. In this contribution, we
have developed the existing two phase porous media theory further, in such a way to
simulate the popular infusion processes. Examples of vacuum infusion and resin transfer
molding were simulated and sensitivity analysis with respect to time step and mesh size
are also studied.

Paper B In this contribution the aim was to handle the challenges that might
arise during RTM, Vacuum Assisted Resin Infusion (VARI) and Vacuum Bag Only (VBO)
prepregs, such as the preform deformation, resin wet out in a partially filled fiber network,
micro–infiltration through the fiber plies and intrinsic compressibility in the solid phase.
In addition, development of an anisotropic deformation dependent permeability model
pertinent to the dual scale resin flow was established. Towards the development of this
framework for process modeling of composite manufacturing, we established a finite
element based formulation in order to simulate coupled dual scale flow through the fibrous
preforms using the two–phase porous media theory. In order to numerically test the
framework we consider a compressive relaxation test applied to a fluid filled fiber network,
which is related to press forming of VBO prepregs. Number of simulation was carried out
regarding two different boundary conditions, partially drained and globally undrained,
and then results were compared with respect to reaction forces and microscopic saturation.
The effect of compaction on the anisotropic permeability model was also studied.

Paper C In this contribution we had the possibility of having an experimental
verification of the modeled generic algorithm in Paper B. Initially the aim was to assess
the sub–models that were developed within the presented two–phase continuum mechani-
cal FE framework in Paper B for press forming manufacturing processes. Unfortunately,
experimental methods capable of parameter characterization for some of the competing
processes are not existing and needs to be developed. Nevertheless, the models were placed
in context with an experimental method, employed to study the preform deformations
considered separated from other sub–processes. This experiment consisted of deforming
the specimen at increasing levels of displacement, and at each increment, the displacement
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is held constant until the measured load relaxes to a stable value. Finally, to relate the
FE–framework to the material response calibrations and model validations were carried
out against the relaxation experiment.

Paper D In the present paper we present a novel finite element method capa-
ble of handling most of the physics arising in the resin wet–out step for any composite
system and processing case. The ultimate goal of this contribution is to establish an
unified generic and general simulation tool for structural (long fiber) composite processing
where, to this date, there is no single FE based tool available commercially for this
purpose. To achieve this goal a compressible two–phase continuum formulation where a
key feature is to model the involved physics via innovative use of the compressibility of
the phases has been put forward. The idea of this simulation tool is to give the user the
option to choose the boundary conditions, initial conditions and material data depending
on the process (s)he has in mind to simulate, whereas the core in the method is to solve
the time–dependent dual–scale compressible resin infiltration problem through the fiber
preform assumed as a compressible volumetrically–deformable porous material. Different
deformation dependent permeability models are also in place to choose from, depending
on the type of the process and also the type of the preform (isotropic or anisotropic). At
the end, the routine was tested for infusion family and compression molding processes
and the respective results were compared to those obtained in Paper A and Paper B.

4 Conclusion

The focus of this PhD thesis was on the development of a holistic modeling of composite
manufacturing. Manufacturing techniques that are considered in this study were wide
range of advanced manufacturing methods. For example, Liquid Resin Infusion (LRI)
family is one, where in Paper A and Paper D we have shown different simulation examples
for resin infusion and Resin Transfer Molding (RTM) based on different formulations.
The other one is Out of Autoclave (OoA) family. We can see examples of press forming
and Vacuum Bag Only (VBO) prepregs in Paper B and Paper D.

The model proposed in this thesis for our objective was based on the development of
the theory of two–phase porous media where introducing the phase compressibility has
enhanced the ability of the model to capture different physical sub–processes in different
scale. In that sense, we have developed a special binary porous media formulation in
order to model a dual–scale coupled flow–deformation process with constitutive relations
concerning different mechanisms governing all the processes involving (1) constitutive
effective stress response of the fiber bed, (2) Darcy law governing the macroscopic
interaction between the two phases, (3) isotropic/anisotropic deformation–dependent
permeability, (4) compressible liquid–gas response, and (5) solid compaction and micro–
infiltration of resin into fiber plies. In addition, if necessary, the model accounts for the
non–saturated behaviour typical for the transition region at the flow front between full
and non–saturation.

Phase compressibility was introduced, first, in Paper A where the pore fluid was
considered to consist of incompressible liquid and highly compressible gas phase. The
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formulation of the compressible liquid–gas response led us to the evolution of the saturation
degree where we could establish a continuum–based model to identify the flow front of
the moving resin into the porous media. Later in Paper B, we introduced the solid
compressibility to be able to address the elastic packing response of the fiber plies. Finally,
in Paper D in the formulation of mass balance we considered both phases, solid and fluid,
compressible. The ultimate goal was to establish a framework where the competing and
interrelated sub–processes, mentioned above, in different temporal and spatial scale, could
be captured in a single FE formulation routine.

The complexity in the handling of this model stems from highly non–linear problem
solved by finite element. This is due to non–linear kinematics, related to material behavior
of the different phases and time scales, which at the same time are interacting during the
process. There is also a dependency of the routine on material parameters. In Paper C we
have tried to experimentally asses some of the sub–processes occurring during the OoA
processes and characterize some of the uncertain data to fit them to the model. However,
lack of consistent experimental methods for characterization of the material has limited
the study and is a subject for further research in this field.

5 Future work

Process modeling of composite manufacturing is subjected to change every day by inventing
new manufacturing techniques, new materials, new facilities, etc. So there will always be
research issues to be considered with respect to physical phenomena which are involved
with the processes. In respect to the developments in this contribution, there are number
of concerns that are interesting and can be subjected for further improvement in the
future.

� The dependency of the current method on time stepping through numerical im-
plementation is one major issue to be considered. Development of a routine to
calculate the time step in such a way to be applicable for both time and spatial
scale without crashing the simulation is desired.

� Development of modules for considering curing and residual stresses will complete
the holistic approach modeling algorithm.

� The formulation of the governing equation, i.e. the extra mass balance for the
liquid phase, when we are dealing with the flow front tracking problem needs to be
reconsidered. The flow front distribution as a smeared flow front is not representing
the real physical concept.

� Experimental study of the sub processes are of interest. However, experimental
methods capable of parameter characterization for some of the competing processes
are not existing and needs to be developed, which is, as a matter of fact, an ongoing
effort within our group.

� So far, the simulation routine is a single finite element formulation using a quadratic
six node triangular element. Further development of the implementation where
other types of higher order elements can be used is a must.

� The simulation is capable of handling two dimensional simulations. implementation
of 3D elements to the formulation will widen the range of the application.
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