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Capacity of a Nonlinear Optical Channel
with Finite Memory

Erik Agrell, Alex Alvarado, Giuseppe Durisi, and Magnus Karlsson

(Invited Paper)

Abstract—The channel capacity of a nonlinear, dispersive fiber-
optic link is revisited. To this end, the popular Gaussian noise
(GN) model is extended with a parameter to account for the
finite memory of realistic fiber channels. This finite-memory
model is harder to analyze mathematically but, in contrast to
previous models, it is valid also for nonstationary or heavy-tailed
input signals. For uncoded transmission and standard modulation
formats, the new model gives the same results as the regular GN
model when the memory of the channel is about 10 symbols or
more. These results confirm previous results that the GN model
is accurate for uncoded transmission. However, when codingis
considered, the results obtained using the finite-memory model
are very different from those obtained by previous models, even
when the channel memory is large. In particular, the peaky
behavior of the channel capacity, which has been reported for
numerous nonlinear channel models, appears to be an artifact of
applying models derived for independent input in a coded (i.e.,
dependent) scenario.

Index Terms—Channel capacity, channel model, fiber-optic
communications, Gaussian noise model, nonlinear distortion.

I. I NTRODUCTION

The introduction of coherent optical receivers has brought
significant advantages in fiber optical communications, e.g.,
enabling efficient polarization demultiplexing, higher-order
modulation formats, increased sensitivity, and electrical miti-
gation of transmission impairments [1], [2]. Even if the linear
transmission impairments (such as chromatic and polarization-
mode dispersion) can be dealt with electronically, the Kerr
nonlinearity in the fiber remains a significant obstacle. Since
the nonlinearity causes signal distortions at high signaling
powers, arbitrarily high signal-to-noise ratios are inaccessible,
which limits transmission over long distances and high spectral
efficiencies. This is sometimes referred to as the “nonlinear
Shannon limit” [3], [4].
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For systems with large accumulated dispersion and weak
nonlinearity, the joint effect of chromatic dispersion andthe
Kerr effect is similar to that of additive Gaussian noise. This
was pointed out already by Splett [5] and Tang [6]. The
emergence of this Gaussian noise is prevalent in links that have
no inline dispersion compensation, such as today’s coherent
links, where the dispersion compensation takes place electron-
ically in the receiver signal processing. This Gaussian noise
approximation has been recently rediscovered and applied to
today’s coherent links in a series of papers by Poggioliniet al.
(see [7], [8] and references therein) and other groups [9]–[11].
The resulting so-called Gaussian noise model, orGN modelfor
short, is valid for multi-channel (wavelength- and polarization-
division multiplexed) signals. It has also been shown to work
for single-channel and single-polarization transmissionif the
dispersive decorrelation is large enough [9], [12].

The GN model belongs to a more general family of additive
Gaussian noise channels, which we study in this paper. In such
channels, for a given transmitted complex symbolXk, the
(complex) single-channel output at each discrete-timek ∈ Z

is modeled as

Yk = Xk + Zk, (1)

where{Zk} is a circularly symmetric, complex, white, Gaus-
sian random sequence, independent ofXk.

A crucial assumption in the derivation of the GN model,
as well as most other fiber-optical channel models, is that of
independent, identically distributed (i.i.d.) inputs: the transmit-
ted symbols are independent of each other, are drawn from the
same constellation, and have the same average transmit power.
Under these assumptions, the model has been experimentally
verified to be very accurate [13], [14] for the most common
modulation formats, such as quadrature amplitude modulation
(QAM) or phase-shift keying.

In this paper, the assumption of i.i.d. inputs is relaxed.
This is done by introducing a modified GN model, which we
call the finite-memory GN model. This new model includes
the memory of the channel as a parameter and differs from
previous channel models in that it is valid also when the
channel input statistics are time-varying, or when “heavy-
tailed” constellations are used.

The performance predicted by the regular GN model (both
in terms of uncoded error probability and channel capacity)is
compared with the ones predicted by the finite-memory GN
model. Theuncodedperformance is characterized in terms of
symbol error rate (SER) and bit error rate (BER), assuming
i.i.d. data. Exact analytical expressions are obtained for16-ary
QAM (16-QAM), which show that the GN model is accurate
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for uncoded transmission and standard modulation formats,
confirming previous results.

The main contributions of the paper are in terms of
codedperformance. Shannon, the father of information theory,
proved that for a given channel, it is possible to achieve an
arbitrarily small error probability, if the transmission rate in
bits per symbol is small enough. A rate for which virtually
error-free transmission is possible is called anachievable
rate and the supremum over all achievable rates for a given
channel, represented as a statistical relation between itsinput
X and outputY , is defined as thechannel capacity[15],
[16, p. 195]. A capacity-approaching transmission scheme
operates in general by grouping the data to be transmitted into
blocks, encoding each block into a sequence of coded symbols,
modulating and transmitting this sequence over the channel,
and decoding the block in the receiver. This coding process
introduces, by definition, dependencies among the transmitted
symbols, which is the reason why channel models derived for
i.i.d. inputs may be questionable for the purpose of capacity
analysis.

More fundamentally, the regular GN model is not well-
suited to capacity analysis, because in this model each output
sample depends on the statistics of the previously transmitted
input symbols (through their average power) rather than on
their actual value. This yields artifacts in capacity analysis.
One such artifact is the peaky behavior of the capacity of
the GN model as a function of the transmit power. Indeed,
through a capacity lower bound it is shown in this paper that
this peaky behavior does not occur for the finite-memory GN
model, even when the memory is taken to be arbitrary large.

The analysis of channel capacity for fiber-optical transmis-
sion dates back to 1993 [5], when Splettet al. quantified
the impact of nonlinear four-wave mixing on the channel
capacity. By applying Shannon’s formula for the additive
white Gaussian noise (AWGN) channel capacity to a channel
with power-dependent noise, Splettet al. found that there
exists an “optimal”finite signal-to-noise ratio that maximizes
capacity. Beyond this value, capacity starts decreasing. It was
however not motivated in [5] why the noise was assumed
Gaussian. Using a different model for four-wave mixing, Stark
[17] showed that capacity saturates, but does not decrease,
at high power. In the same paper, the capacity loss due to
the quantum nature of light was quantified. In 2001, Mitra
and Stark [18] considered the capacity in links where cross-
phase modulation dominates, proved that the capacity is lower-
bounded by the capacity of a linear, Gaussian channel with
the same input–output covariance matrix, and evaluated this
bound via Shannon’s AWGN formula. The obtained bound
vanishes at high signal power. The authors claimed, without
providing evidence, that the true capacity would have the same
qualitative nonmonotonic behavior.

Since 2001, the interest in optical channel capacity has vir-
tually exploded. The zero-dispersion channel was considered
by Turitsynet al. [19]. The joint effect of nonlinearity and dis-
persion was modeled by Djordjevicet al. [20] as a finite-state
machine, which allowed the capacity to be estimated using the
Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm. Taghaviet al.
[21] considered a fiber-optical multiuser system as a multiple-

access channel and characterized its capacity region. In a very
detailed tutorial paper, Essiambreet al. [22] applied a channel
model based on extensive lookup tables and obtained capacity
lower bounds for a variety of scenarios. Secondiniet al.
[23] modeled the nonlinear interference (NLI) in wavelength-
division multiplexing (WDM) systems as a slowly varying
intersymbol interference channel, based on the continuous-
time analysis in [24], and obtained lower bounds using the
theory of mismatched decoding. Daret al. used a blockwise
constant phase noise to represent the NLI [25], [26] and re-
cently generalized the model into an intersymbol interference
channel [27].

Detailed literature reviews are provided in [28] for the early
results, and in [22] for more recent results. Other capacity
estimates, or lower bounds thereon, were reported for various
nonlinear transmission scenarios in, e.g., [4], [29]–[35]. Most
of these estimates or bounds decrease to zero as the power
increases, in contrast to the results presented in this work.

This paper is organized as follows. In Sec. II, the GN model
is reviewed and the finite-memory GN model is introduced.
In Sec. III, the uncoded error performance of the new finite-
memory model is studied. The channel capacity results, which
are the main results in this paper, are presented in Sec. IV and
conclusions are drawn in Sec. V. The mathematical proofs are
relegated to appendices.

Notation: Throughout this paper, vectors are denoted by
boldface lettersx and sets are denoted by calligraphic letters
X . Random variables are denoted by uppercase lettersX and
their (deterministic) outcomes by the same letter in lower-
casex. Probability density functions (PDFs) and conditional
PDFs are denoted byfY (y) andfY |X(y|x), respectively, and
probability mass functions (PMF) are denoted byPX(x).
Expectations are denoted byE[·] and random sequences by
{Xk}.

II. CHANNEL MODELING: FINITE AND INFINITE MEMORY

In this section, we will begin with a high-level descriptionof
the nonlinear interference in optical dual-polarization WDM
systems, highlighting the role of the channel memory, and
thereafter in Sec. II-B–II-D describe in detail the channel
models considered in this paper.

A. Nonlinear Interference in Optical Channels

A coherent optical communication link converts a discrete,
complex-valued electric data signalXk to a modulated, con-
tinuous optical signal, which is transmitted through an optical
fiber, received coherently, and then converted back to a discrete
output sequenceYk. The coherent link is particularly simple
theoretically, in that the transmitter and receiver directly map
the electric data to the opticalfield, which is a linear operation
(in contrast with, e.g., direct-detection receivers), andcan ide-
ally be performed without distortions. The channel is then well
described by the propagation of the (continuous) optical field
in the fiber link. It should be emphasized that this assumes the
coherent receiver to be ideal, with perfect synchronization and
negligible phase noise. Experiments have shown [2] that com-
mercial coherent receivers can indeed perform well enough
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for the fiber propagation effects to be the main limitations.
Two main linear propagation effects in the fiber need to be
addressed:dispersionandattenuation. The attenuation effects
can be overcome by periodic optical amplification, at the
expense of additive Gaussian noise from the inline amplifiers.
The dispersion effects are usually equalized electronically by a
filter in the coherent receiver. Such a linear optical link can be
well-described by an AWGN channel, the capacity of which
is unbounded with the signal power.

However, the fiber Kerr-nonlinearity introduces signal dis-
tortions, and greatly complicates the transmission modeling.
The nonlinear signal propagation in the fiber is described
by a nonlinear partial differential equation, thenonlinear
Schr̈odinger equation(NLSE), which includes dispersion, at-
tenuation, and nonlinearity. At high power levels, the three
effects can no longer be conveniently separated. However, in
contemporary coherent links (distance at least500 km and
symbol rate at least28 Gbaud), the nonlinearity is significantly
weaker than the other two effects, and a perturbation approach
can be successfully applied to the NLSE [5], [8]–[10]. This
leads to the GN model, which will be described in Sec. II-C.

B. Finite Memory

Even today’s highly dispersive optical links have a finite
memory. For example, a signal with dispersive lengthLD =
1/(∆ω2|β2|), whereβ2 is the group velocity dispersion and
∆ω the optical bandwidth, broadens (temporally) a factor
L/LD over a fiber of lengthL. With typical dispersion lengths
of 5–50 km, this broadening factor can correspond to hundreds
to thousands of adjacent symbols, a large butfinite number.
The same will hold for interaction among WDM channels; if
one interprets∆ω as the channel separation,L/LD will give
an approximation on the number of symbols that two WDM
channels separate due to walk-off (and hence interact with non-
linearly during transmission). The channel memory will thus
be even larger in the WDM case, and increase with channel
separation, but the nonlinear interaction will decrease due to
the shorterLD. Thus, the principle of a finite channel memory
holds also for WDM signals. To keep notation as simple as
possible, we will consider a single, scalar, wavelength channel
in this paper. Extensions to dual polarizations and WDM are
possible, but will involve obscuring complications such as
four-dimensional constellation space [36] in the former case
and behavioral models [37] in the latter. We can thus say that
in an optical link a certain signal may sense the interference
from N ≈ L/LD neighboring symbols, which is the physical
reason for introducing a finite-memory model.

If we let the numberN of interfering symbols go to
infinity, an even simpler type of model is obtained. The
interference is now averaged over infinitely many transmitted
symbols. Assuming that an i.i.d. sequence is transmitted, this
time average converges to a statistical average, which greatly
simplifies the analysis. Many models suggested for dispersive
optical channels so far belong to this category [4], [5], [9],
[10], [12], [22], [38], [39], of which the GN model described
in Sec. II-C is the most common. The finite-memory models
by Secondiniet al. [23] and Daret al. [26], [27] are notable
exceptions.

C. The Regular GN Model

For coherent long-haul fiber-optical links without dispersion
compensation, Splettet al. [5], Poggioliniet al. [7], and Beygi
et al. [9] have all derived models where the NLI appears as
Gaussian noise, whose statistics depend on the transmitted
signal power via a cubic relationship. The models assume that
the transmitted symbolsXk in time slot k ∈ Z are i.i.d. In
this model, the additive noise in (1) is given by

Zk = Z̃k

√

PASE + ηP 3, (2)

where{Z̃k} are i.i.d. zero-mean unit-variance circularly sym-
metric complex Gaussian random variables,PASE and η are
real, nonnegative constants, andP = E[|X |2] is the average
transmit power.Therefore, the noiseZk is distributed as
Zk ∼ CN (0, PASE + ηP 3), where CN (0, σ2) denotes a
circularly symmetric complex Gaussian random variable with
mean0 and varianceσ2. The parameterP , which is a property
of the transmitter, governs the behavior of the channel model.
This can be intuitively understood as a long-term average of
the signal power. Mathematically,

P = lim
N→∞

1

2N + 1

k+N
∑

i=k−N

|Xi|2, (3)

with convergence almost surely for any givenk, still assuming
i.i.d. symbolsXk. For this reason, we will refer to models that
depend on infinitely many past and/or future symbols, viaP
in (3) or in some other way, asinfinite-memorymodels.

The cubic relation in (2) between the transmit power and
the additive noise variancePASE+ηP 3 is a consequence of the
Kerr nonlinearity, and holds for both lumped and distributed
amplification schemes. The constantPASE represents the total
amplified spontaneous emission (ASE) noise of the optical
amplifiers for the channel under study, whileη quantifies
the NLI. Several related expressions for this coefficient have
been proposed. For example, for distributed amplification and
WDM signaling over the lengthL,

η =
4γ2L

π|β2|B2
loge

(

2πe|β2|LB2
)

, (4)

η =
16γ2L

27π|β2|R2
s

loge

(

2

3
π2|β2|LB2

)

, (5)

were proposed in [5] and [40], resp., whereγ is the fiber
nonlinear coefficient,B is the total WDM bandwidth, andRs

is the symbol rate. Obviously, the expressions in (4) and (5)are
qualitatively similar. For dual polarization and single channel
transmission overM lumped amplifier spans, the expression

η =
3γ2

α2
M1+ǫ tanh

(

α

4|β2|R2
s

)

(6)

was proposed in [12], and a qualitatively similar formula can
be obtained from the results in [8]. Here,α is the attenuation
coefficient of the fiber and the coefficientǫ is between 0
and 1 (see [8], [12]) depending on how well the nonlinear
interference decorrelates between each amplifier span. Al-
though empirical formulas forǫ have been proposed [39],
for simplicity we assume independent decorrelated waveforms
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inducing the nonlinear interference at each amplifier, i.e.,
ǫ = 0. In this paper, we use the single-polarization version
of (6), in which the coefficient3 should be replaced by2 [9],
which yields

η =
2γ2M

α2
tanh

(

α

4|β2|R2
s

)

. (7)

The benefits of the GN model is that it is very accurate
for uncoded transmission with traditional modulation formats,1

as demonstrated in experiments and simulations [13], [14],
[42], and that it is very simple to analyze. It is, however,
not intended for nonstationary input sequences, i.e., sequences
whose statistics vary with time, because of the i.i.d. assump-
tion on the symbolsXk. In order to capture the behavior of
a wider class of transmission schemes, the GN model can be
modified to depend on a time-varying transmit power, which
is the topic of the next section.

D. The Finite-Memory GN Model

As mentioned in Sec. I and II-C, a finite-memory model is
essential in order to model the channel output corresponding
to time-varying input distributions. Therefore, we refine the
GN model in Sec. II-C to make it explicitly dependent on the
channel memoryN , in such a way that the model “converges”
to the regular GN model asN → ∞. Many such models can
be formulated. In this paper, we aim for simplicity rather than
accuracy.

The proposed model assumes that the input–output relation
is still given by (1), but the average transmit powerP in (2) is
replaced by anempirical power, i.e., by the arithmetic average
of the squared magnitude of the symbolXk and of the2N
symbols around it. Mathematically, (2) is replaced by

Zk = Z̃k

√

√

√

√

√PASE + η

(

1

2N + 1

k+N
∑

i=k−N

|Xi|2
)3

(8)

for any k ∈ Z, whereN is the (one-sided)channel memory.
We refer to (1) and (8) as thefinite-memory GN model. Since
(second-order) group velocity dispersion causes symmetric
broadening with respect to the transit time of the signal, inter-
symbol interference from dispersion will act both backwards
and forwards in terms of the symbol index. This is why both
past and future inputs contribute to the noise power in (8). A
somewhat related model for the additive noise in the context
of data transmission in electronic circuits has been recently
proposed in [43], where the memory is single-sided and the
noise scales linearly with the signal power, not cubically as
in (8).

Having introduced the finite-memory GN model, we now
discuss some particular cases. First, the memoryless AWGN
channel model can be obtained from both the GN and finite-
memory GN models by settingη = 0. In this case, the
noise variance isE[|Zk|2] = PASE for all k. Second, let us
consider the scenario where the transmitted symbols is the
random process{Xi}. Then the empirical power(1/(2N +

1The model is not valid for exotic modulation formats such as satellite
constellations [41].
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Fig. 1. Amplitude for a linearly propagating15.6 ps raised-cosine pulse
(compatible with32 GBaud) over850 km fiber with β2 = −21.7 ps2/km.
The lossy NLSE over 10 amplifier spans was simulated, with ASEnoise
switched off for clarity, and the peak power used was 0.1 mW.

1))
∑k+N

i=k−N |Xi|2 at any discrete timek is a random variable
that depends on the magnitude of thekth symbol and the
2N symbols around it. In the limitN → ∞, this empirical
power converges to the “statistical” powerP in (3), for any
i.i.d. process with powerP , as mentioned in Sec. II-C. This
observation shows that the proposed finite-memory model
in (8) “converges” to the GN model in (2), provided that the
channel memoryN is sufficiently large and that the process
consists of i.i.d. symbols with zero mean and varianceP .

The purpose of the finite-memory model is to be able
to predict the output of the channel when the transmitted
symbols are not i.i.d. This is the case for example when
the transmitted symbols are a nonstationary process (as will
be exemplified in Sec. II-E) and also for coded sequences
(which we discuss in Sec. IV). An advantage of the finite-
memory model, from a theoretic viewpoint, is that the input–
output relation of the channel is modeled as a fixed conditional
probability of the output given the input and its history, which
is the common notion of a channel model in communication
and information theory ever since the work of Shannon [15],
[44, p. 74]. This is in contrast to the regular GN model and
other channel models, whose conditional distribution change
depending on which transmitter the channel is connected to.
Specifically, the GN model is represented by a family of such
conditional distributions, one for each value of the transmitter
parameterP .

A drawback with the proposed finite-memory model is that
it is more complex than the GN model. Also, our model is
not accurate for small values ofN , since the GN assumption
relies on the central limit theorem [7], [9], [10]. Furthermore,
we assumed that all the2N symbols around the symbolXk

affect the noise variance equally. In practice, this is not the
case. We nevertheless use the proposed model in this paper
because it is relatively easy to analyze (see Sec. III and IV)
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TABLE I
SYSTEM PARAMETERS USED IN THE PAPER.

Symbol Value Meaning
α 0.2 dB/km Fiber attenuation
β2 −21.7 ps2/km Group velocity dispersion
γ 1.27 (W km)−1 Fiber nonlinear coefficient
M 10 Number of amplifier spans
L 850 km System length
Rs 32 Gbaud Symbol rate
PASE 4.1 · 10−6 W Total ASE noise
η 7244 W−2 NLI coefficient

and because even this simple finite-memory model captures
the quantitative effects caused by non-i.i.d. symbols, which is
essential for the capacity analysis in Sec. IV.

E. Numerical Comparison

Before analyzing the finite-memory GN model, we first
quantify the chromatic dispersion of an optical fiber. To this
end, we simulated the transmission of a single symbol pulse
over a over a single-channel, single-polarization fiber link
without dispersion compensation. Ten amplifiers spans overa
total distance of850 km are simulated using the lossy NLSE
model. We used a raised-cosine pulse with peak power0.1 mW
and a duration of15.6 ps at half the maximum amplitude,
which corresponds to half the symbol slot in a32 Gbaud
transmission system. The result is illustrated in Fig. 1. At
this low power, the nonlinear effects are almost negligible.
For clarity of illustration, the ASE noise was neglected by
settingPASE = 0. The remaining system parameters are given
in Table I and will be used throughout the paper. As we
can see, the pulse broadens as it propagates along the fiber,
having a width corresponding to hundreds of data symbols
after 850 km of transmission. This is in good agreement with
the relation for symbol memory used in [45, p. 2037], which
gives2N ≈ 2π|β2|LR2

s = 119.
Next, to validate the behavior of the finite-memory model

with nonstationary input symbol sequences, we simulated
the transmission of independent quadrature phase-shift keying
(QPSK) data symbols with a time-varying magnitude, over the
same700 km fiber link, atRs = 32 Gbaud. The transmitted
sequence consists of200 symbols with6 mW of signal power,
200 symbols at0 mW power, 200 symbols at6 mW, and
so on. The statistical average power is then3 mW. The
chosen pulse shape is a raised-cosine return-to-zero pulse. In
Fig. 2, we show the amplitude of the transmitted symbols|Xk|
(red) and received symbols|Yk| (blue) with three different
models: the NLSE, the finite-memory GN model withN = 60,
and the regular GN model. In the middle and lower plots
of Fig. 2, we used the NLI coefficientη = 7244 W−2,
which was calculated from (7). The single-polarization ASE
noise power was calculated as [46, Eqs. (7.4.1), (7.2.15)]
PASE = hνMFGRs/2 = 4.1 µW, wherehν = 1.28 · 10−19 J
is the photon energy,F = 6 dB is the amplifier noise figure,
andG = αL/M = 17 dB is the amplifier gain.
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Fig. 2. Amplitude of the transmitted QPSK symbols|Xk| (red squares)
and received symbols|Yk| (blue circles) transmitted in a850 km fiber link.
The received symbols are obtained using (top) the NLSE, (middle) the finite-
memory GN model (8) withN = 60, and (bottom) the regular GN model
(2).

As can be seen, the agreement between the NLSE simula-
tions and the finite memory model is quite reasonable, but
the GN model cannot capture the nonstationary dynamics.
The results in Fig. 2 also show that the noise variance in the
NLSE simulation is low around the symbols with low signal
power and high around the symbols with high signal power.
This behavior is captured by the finite-memory GN model
but not by the regular GN model, for which the variance of
the noise is the same for any time instant. This illustrates
that the GN model (2) should be avoided with nonstationary
transmit signals as the ones used in Fig. 2, at least if the time
constant of the transmitted signal (as quantified by, e.g., the
periodicity or block length) is shorter than the time constant of
the physical channel. This is not surprising, as the model was
derived under an i.i.d. assumption. In Sec. V, we will return
to this observation when analyzing coded transmission.
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III. U NCODED ERROR PROBABILITY

We assume that the transmitted symbols{Xk} are indepen-
dently drawn from a discrete constellationS = {s1, . . . , s2m}.
The symbols are assumed to be selected with the same
probability, and thus, the average transmit (statistical)power
is given by

P = E[|X |2] = 1

2m

∑

s∈S

|s|2. (9)

For each time instantk, we denote the sequence of the2N
symbols transmitted aroundXk by

Xmem
k , [Xk−N , . . . , Xk−1, Xk+1, . . . , Xk+N ], (10)

where the notation emphasizes thatXmem
k is a random vector

describing the channel memory at time instantk.
For a given sequence of2N symbolsXmem

k = xmem
k and a

given transmitted symbolXk = xk, the noise in (8) can be
expressed as

Zk = Z̃k

√

ρ(|xk|2+ ‖xmem
k ‖2), (11)

where

ρ(a) , PASE + η

(

a

2N + 1

)3

. (12)

and ‖x‖ denotes the Euclidean norm ofx. The channel law
for the finite-memory model is then

fYk|Xk,X
mem
k

(y|xk,x
mem
k )

,
1

πρ(|xk|2+ ‖xmem
k ‖2)

exp

(

− |y − xk|2
ρ(|xk|2+ ‖xmem

k ‖2)

)

.

(13)

A. Error Probability Analysis

We consider the equally spaced 16-QAM constellation
shown in Fig. 3. In this case,S = {a + b

√
−1 : a, b ∈

{±∆,±3∆}}, the minimum Euclidean distance (MED) of the
constellation is2∆, and the statistical average power (9) is
P = 10∆2. The binary labeling is the binary reflected Gray
code (BRGC) [47], where the first two bits determine the
in-phase (real) component of the symbols and the last two
bits determine the quadrature (imaginary) components of the
symbols. This is shown with colors in Fig. 3.

The maximum-likelihood (ML) symbol-by-symbol detec-
tion rule for a given sequencexmem

k chooses the symbols ∈ S
that maximizesfYk|Xk,X

mem
k

(y|s,xmem
k ) in (13). The decision

made by this detector can be expressed as

X̂ML
k , argmin

s∈S

{

log ρ(|s|2+ ‖xmem
k ‖2)

+
|y − s|2

ρ(|s|2+ ‖xmem
k ‖2)

}

, (14)

which shows that, due to the dependency of
log ρ(|si|2+ ‖xmem

k ‖2) on s, this detector is not an MED
detector. For simplicity, however, we disregard this term and
study the MED detector, which chooses the symbols being
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Fig. 3. The 16-QAM constellationS and its binary labeling. The binary
labeling of the constellation is based on the Cartesian product of the BRGC
for 4-ary pulse amplitude modulation in phase (bold, red) and quadrature
(blue). The Voronoi regions of the symbols and the MED of the constellation
are also shown. The Voronoi regionV6 is highlighted in gray.

closest, in Euclidean distance, to the channel outputYk. Thus

X̂k = argmin
s∈S

|Yk − s|2

= si, if Yk ∈ Vi, (15)

whereVi denotes the decision region, orVoronoi region,of si.

Remark 1:As we will see later, for increasing memoryN ,
the MED detector in (15) in fact converges to the detector in
(14). Intuitively, this holds because the relative error inthe
approximation‖xmem

k ‖2 + |s|2 ≈ ‖xmem
k ‖2 vanishes whenN

is large.

Remark 2: In this paper, we focus on the MED detector in
(15) because of its simplicity and widespread practical usage.
The ML symbol-by-symbol detector in (14) is considered as
a theoretical benchmark, but it is still suboptimal. We do not
in this paper consider the optimal detector for channels with
memory, the ML sequence detector, which can be implemented
using the Viterbi algorithm but is very complex for channels
with long memory [48].

The following two theorems give closed-form expressions
for the BER and SER for the constellation in Fig. 3 when used
over the finite-memory GN model.

Theorem 1:Gray-coded 16-QAM transmission over the
finite-memory GN model with memoryN yields after MED
detection the BER

BER =
1

24N+3

4N
∑

l=0

(

4N

l

)

(2λl,1,1 + 3λl,1,5 + λl,1,9

+ λl,3,1 + 2λl,3,5 + λl,3,9 − λl,5,5 − λl,5,9), (16)
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where

λl,r,t , Q

(
√

r2P/5

ρ((2N + 4l + t)P/5)

)

(17)

and Q(x) = (1/
√
2π)

∫∞

x exp(−t2/2)dt is the Gaussian Q
function.

Proof: See Appendix A.
Theorem 2:16-QAM transmission over the finite-memory

GN model with memoryN yields after MED detection the
SER

SER =
1

24N+2

4N
∑

l=0

(

4N

l

)

(4λl,1,1 − 4λ2
l,1,1

+ 6λl,1,5 − 4λ2
l,1,5 + 2λl,1,9 − λ2

l,1,9), (18)

with λl,r,t defined in (17).
Proof: See Appendix B.

The BER and SER in the limitN → ∞ can be inferred
from Theorems 1 and 2 as shown in the next corollary.

Corollary 1: The BER and SER for the finite-memory GN
model in the limitN → ∞ are

BER =
3

4
Q

(
√

P/5

PASE + ηP 3

)

+
1

2
Q

(
√

9P/5

PASE + ηP 3

)

− 1

4
Q

(
√

5P

PASE + ηP 3

)

, (19)

SER = 3Q

(
√

P/5

PASE + ηP 3

)

− 9

4
Q2

(
√

P/5

PASE + ηP 3

)

.

(20)

Proof: See Appendix C.
The other extreme case to consider is the memoryless

AWGN channel. The BER and SER expressions in this case
are given in the following corollary.

Corollary 2: The BER and SER for the memoryless
AWGN channel are given by

BER =
3

4
Q

(

√

P

5PASE

)

+
1

2
Q

(

√

9P

5PASE

)

− 1

4
Q

(

√

5P

PASE

)

, (21)

SER = 3Q

(

√

P

5PASE

)

− 9

4
Q2

(

√

P

5PASE

)

. (22)

Proof: Setη = 0 in (19) and (20).
The results in Corollaries 1 and 2 correspond to well-known

expressions for the BER and SER for the AWGN channel. In
particular, (21) can be found in [49, eq. (10)], [50, eq. (10.36a)]
and (22) in [50, eq. (10.32)]. Also, the results in Corollary2
together with (2) show that the BER and SER for the finite-
memory GN model whenN → ∞ converge to the BER and
SER for the regular GN model.

B. Numerical Results

We consider the same scenario as in Sec. II-E, with pa-
rameters according to Table I. The BER and SER for the
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Fig. 4. Analytical BER (top) and SER (bottom) of 16-QAM transmission
with the finite-memory GN model, for different values ofN (solid lines).
Markers show simulation results with the ML detector in (14)(squares) and
the MED detector in (15) (circles). The results for the memoryless AWGN
channel and the regular GN model are included for comparison.

16-QAM constellation in Fig. 3 given by Theorems 1 and
2 are shown in Fig. 4 for different values ofN . Fig. 4 also
shows the results for the asymptotic caseN → ∞ and for
the memoryless AWGN channel given by Corollaries 1 and
Corollary 2, respectively. Furthermore, results obtainedvia
computer simulations of (1)–(2) are included using the ML
detector in (14), marked with squares, and the MED detector
in (15), marked with circles. As expected, the MED detector
yields a perfect match with the analytical expressions, whereas
the ML detector deviates for small channel memories (N ≤ 2).

The results in Fig. 4 show that in the low-input-power
regime, the memory in the channel plays no role for the
BER and SER, and all the curves follow closely the BER
and the SER of a memoryless AWGN channel. However,
as P increases, the nonlinearity kicks in, causing the BER
and SER to have a minimum whose value depends onN ,
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Encoder DecoderPhysical
Channel

x Yj ̂

Fig. 5. Encoder and decoder pair. The encoder maps a messagej to a
codewordx = [x1, . . . , xn]. The decoder uses the noisy observationY =
[Y1, . . . , Yn] to provide an estimatê of the messagej .

and then to increase asP increases. Physically, this can
be explained as follows: In the low-power regime, the BER
is limited by the ASE noise, which is independent of the
memory depth. In the high-power regime, the Kerr-induced
noise dominates, resulting in increasing BER with power.
Similar behavior has been reported in most experiments and
simulations on nonlinearly-limited links, e.g., [9], [14], [51],
[52], [46, Ch. 9]. The reason why the performance improves
slightly with the memory depthN is the nonlinear scaling
of the Kerr-induced noise. ForN = 1, sequences of two or
more high-amplitude symbols will receive high noise power
and dominate the average BER. For higherN , longer (and less
probable) sequences of high-amplitude symbols are required
to receive the same, high, noise power. Thus on average the
performance improves withN , up to a limit given by the GN
model.

The results in Fig. 4 also show how the finite-memory model
in the high signal power regime approaches the GN model, as
predicted analytically in Sec. III-A. ForN = 50, the two
models yield very similar BER and SER curves.

IV. CHANNEL CAPACITY

In this section, some fundamentals of information theory
are first reviewed. Then a lower bound on the capacity of the
finite-memory GN model is derived and evaluated numerically.

A. Preliminaries

Fig. 5 shows a generic coded communication system where
a messagej is mapped to a codewordx = [x1, . . . , xn].
This codeword is then used to modulate a continuous-time
waveform, which is then transmitted through the physical
channel. At the receiver’s side, the continuous-time waveform
is processed (filtered, equalized, synchronized, matched fil-
tered, sampled, etc.) resulting in a discrete-time observation
Y = [Y1, . . . , Yn], which is a noisy version of the transmitted
codewordx. The decoder usesY to estimate the transmitted
messagej.

When designing a coded communication system, the first
step is to choose the set of codewords that will be transmitted
through the channel. This set, called thecodebook, is stored
in both the encoder and decoder. Once the codebook has
been chosen, the mapping rule between messages and code-
words should be chosen, which fully determines the encoding
procedure. At the receiver side, the decoder block will use
the mapping rule used at the transmitter (as well as the
channel characteristics) to give an estimatê of the messagej.
The triplet codebook, encoder, and decoder forms a so-called

coding scheme. Practical coding schemes are designed so as
to minimize the probability that̂ differs from j, while at the
same time keeping the complexity of both encoder and decoder
low.

Channel capacity is the largest transmission rate at which re-
liable communications can occur. More formally, let(n,M, ǫ)
be a coding scheme consisting of:

• An encoder that maps a messagej ∈ {1, . . . ,M} into
a block of n transmitted symbolsx = [x1, . . . , xn]
satisfying a per-codeword power constraint

1

n

n
∑

l=1

|xl|2 = P. (23)

• A decoder that maps the corresponding block of re-
ceived symbolsY = [Y1, . . . , Yn] into a messagê ∈
{1, . . . ,M} so that the average error probability, i.e., the
probability that̂ differs from j, does not exceedǫ.

Observe thatP here is defined differently from the previous
sections. It still represents the average transmit power, but
while this quantity is Sec. II–III was interpreted in a statistical
sense as the mean of an i.i.d. random variable, it is in this
section the exact power ofeverycodeword.

The maximum coding rateR∗(n, ǫ) (measured in
bit/symbol) for a given block lengthn and error probabilityǫ is
defined as the largest ratio(log2 M)/n for which an(n,M, ǫ)
coding scheme exists. The channel capacityC is the largest
coding rate for which a coding scheme with vanishing error
probability exists, in the limit of large block length,

C , lim
ǫ→0

lim
n→∞

R∗(n, ǫ). (24)

B. Memoryless Channels

By Shannon’schannel coding theorem,the channel capacity
(in bit/symbol) of a discrete-time memoryless channel with
codewords subject to the power constraint (23) can be calcu-
lated as [15], [16, Ch. 7]

C = sup I(X ;Y ), (25)

whereI(X ;Y ) is themutual information(MI)

I(X ;Y ) =

∫∫

fX,Y (x, y) log2
fX,Y (x, y)

fX(x)fY (y)
dxdy (26)

and the maximization in (25) is over all probability distribu-
tions fX that satisfyE[|X |2] = P , for a given channelfY |X .

Roughly speaking, a transmission scheme that operates at
an arbitrary rate strictly less thanC can be designed by
creating a codebook ofM = 2nR codewords of lengthn,
whose elements are i.i.d. random samples from the distribution
fX that maximizes the mutual information in (25). During
transmission, the encoder maps each messagej into a unique
codewordx, and the decoder identifies the codeword that is
most similar, in some sense, to the received vectorY . An ar-
bitrarily small error probabilityǫ can be achieved by choosing
n large enough. Thisrandom codingparadigm was proposed
already by Shannon [15]. In practice, however, randomly
constructed codebooks are usually avoided for complexity
reasons.



JOURNAL OF LIGHTWAVE TECHNOLOGY, TO APPEAR, 2014 9

Since the additive noise in (2) is statistically independent of
Xk, the channel is memoryless, and thus, the channel capacity
of the GN model (2) can be calculated exactly as [5], [35]

C = log2

(

1 +
P

PASE + ηP 3

)

(27)

using Shannon’s well-known capacity expression [15, Sec. 24],
[16, Ch. 9]. The capacity in (27) can be achieved by choosing
the elements of all codewordsx to be drawn independently
from a Gaussian distributionCN (0, P ).

Considered as a function of the transmitted signal powerP ,
the capacity in (27) has the peculiar behavior of reaching
a peak and eventually decreasing to zero at high enough
power, since the denominator of (27) increases faster than the
numerator. This phenomenon, sometimes called the “nonlinear
Shannon limit” in the optical communications community,
conveys the message that reliable communication over non-
linear optical channels becomes impossible at high powers.
In the following sections, we shall question this pessimistic
conclusion.

C. Channels with Memory

The capacity of channels with memory is, under certain
assumptions on information stability [53, Sec. I],

C = lim
n→∞

sup
1

n
I(Xn

1 ;Y
n
1 ), (28)

where X
j
i = (Xi, Xi+1, . . . , Xj), I(Xj

i ;Y
j
i ) is defined

as a multidimensional integral analogous to (26), and the
maximization is over all joint distributions ofX1, . . . , Xn

satisfying E
[

‖Xn
1 ‖2
]

= nP . In this context, it is worth
emphasizing that the maximization in (28) includes sequences
X1, . . . , Xn that are not i.i.d. Hence, in order to calculate the
channel capacity of a transmission link, it is essential that the
employed channel model allows non-i.i.d. inputs.

An exact expression for the channel capacity of the finite-
memory GN model (8) is not available. Shannon’s formula,
which leads to (27), does not apply here, because the se-
quences{Xk} and {Zk}, where Zk was defined in (8),
are dependent. A capacity estimation via (28) is numerically
infeasible, since it involves integration and maximization over
high-dimensional spaces. We therefore turn our attention to
bounds on the capacity for the finite-memory model. Every
joint distribution ofX1, . . . , Xk satisfyingE

[

‖Xn
1‖2
]

= nP
gives us a lower bound on capacity. Thus,

C ≥ lim
n→∞

1

n
I(Xn

1 ;Y
n
1 ), (29)

for any random process{Xk} such that the limit exists.

D. Lower Bound

In this section, a lower bound on (28) is derived by
applying (29) to the following random input process. In every
block of 2N + 1 consecutive symbols, we let the firstN
symbols and the lastN symbols have a constant amplitude,
whereas the amplitude of the symbol in the middle of the block
follows an arbitrary distribution. The phase of each symbolin
the block is assumed uniform. With this random input process,

Re{X
k}

Im
{Xk}

k

Fig. 6. Six samples of the random input process{Xk} used to generate the
lower bound in Theorem 3. The channel memory is hereN = 1, meaning that
2N+1 = 3 input symbolsXk influence each output symbol. The distributions
are illustrated as scatter plots of1000 realizations for each sample.

illustrated in Fig. 6, the memory in (8) depends only on a
single variable-amplitude symbol. This enables us to derive
an analytical expression for the resulting capacity lower bound
in (29).

Theorem 3:For everyr1 ≥ 0 and every probability distri-
bution fR overR+ such that

2Nr21 + E[R2]

2N + 1
= P, (30)

whereR ∼ fR, the channel capacity of (8) is lower-bounded
as

C ≥ −E[log2 fU (U)]

2N + 1

−
∫ ∞

0

fR(r) log2(eρ(2Nr21 + r2)) dr. (31)

Here,U , [U−N , U−N+1, . . . , UN ] is a random vector whose
probability density functionfU is

fU (u) =

∫ ∞

0

fR(r)

exp

(

−
∑

N

k=−N
uk+2Nr21+r2

ρ(2Nr2
1
+r2)

)

(

ρ(2Nr21 + r2)
)2N+1

· I0
(

2r
√
u0

ρ(2Nr21 + r2)

)

·
N
∏

k=−N
k 6=0

I0

(

2r1
√
uk

ρ(2Nr21 + r2)

)

dr, (32)

where the functionρ(·) is defined in (12), andI0(u) is the
modified Bessel function of the first kind.

Proof: See Appendix D.
The bound will be numerically computed in the next section.

E. Numerical Results

Theorem 3 yields a lower bound on capacity for every con-
stantr1 and every probability distributionfR satisfying (30).
Instead of optimizing the bound over all distributionsfR,
which is of limited interest, since the theorem itself provides
only a lower bound on capacity, we study a heuristically
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Fig. 7. Lower bounds on capacity from Theorem 3 as a function of ν, for
various parametersP and r2

1
/w. Dots indicate the highest MI for eachP .

The memory isN = 1.

chosen family of distributions and optimize its parameters
along with the constant amplituder1.

An attractive distribution in this context is to let the variable-
amplitude symbols follow a complex, circularly symmetric
bivariate t-distribution[54, p. 86], [55, p. 1],

fX(x) =
1

2πw

(

1 +
|x|2
νw

)−(1+ν/2)

, (33)

where X (with magnitudeR = |X |) denotes one such
variable-amplitude symbol,ν is a shape parameter, andw
scales the variance, which equals [55, p. 11]E[|X |2] =
E[R2] = 2νw/(ν − 2) if ν > 2 and is otherwise undefined.
The shape of this distribution is similar to a Gaussian, but the
heaviness of the tail can be controlled via the shape parameter
ν: the closerν is to 2, the heavier tail. This is, as we shall see
later, what makes it an interesting choice for nonlinear optical
channels.

Again, we consider the same scenario as in Sec. II-E, with
the system parameters given in Table I. The distribution of
R = |X | is given byfR(r) = 2πrfX(r), with fX given by
(33). The power constraint (30), which reduces to

P =
1

2N + 1

(

2Nr21 +
2νw

ν − 2

)

,

leaves two degrees of freedom to optimize for eachP , which
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Fig. 8. Lower bounds from Theorem 3 on the capacity of the finite-memory
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and the GN model in (27) are included for comparison. Observethat the
capacity of the finite-memory model does not converge to the capacity of the
GN model as the memoryN increases. Dashed lines indicate improved lower
bounds via the law of monotonic channel capacity.

we can take to be the shape parameterν and the ratior21/w.
The lower bound on the capacity of the finite-memory

model given by Theorem 3 is shown in Fig. 7 as a function of
P , ν, andr21/w, for the special caseN = 1. The expectation
in (31) was estimated by Monte Carlo integration. It can
be seen that at low to medium power, the optimum shape
parameterν is high, which means that the distribution is
similar to a Gaussian. As the transmit powerP increases above
approximately 0 dBm, the optimum shape parameterν gets
closer and closer to2. This means that the tail gets heavier,
so that at high power, it consumes almost all power, while the
probability of transmitting a high amplitudeR is still small.
In this sense, a t-distribution with a shape parameter near2 is
similar to a satellite constellation [41].

Selecting the optimum parametersν and r21/w for every
powerP , the capacity bound is plotted in Fig. 8 as a function
of transmit powerP , for selected values of the channel mem-
ory N . The figure also shows the AWGN channel capacity
and the exact capacity of the GN model given by (27). In the
low-power (linear) regime, the capacity bound is close to the
AWGN capacity ifN = 0, because the t-distribution is, at high
values of ν, approximately equal to the capacity-achieving
Gaussian distribution. AsN increases, the capacity bound
tends, still in the linear regime, to the mutual informationof
constant-amplitude transmission [56], [57].

Interestingly, we can see that asN increases, the curves
approach an asymptotic bound (the curves forN = 10, 20,
and50 almost overlap). It follows that reliable communication
in the high signal power regime is indeed possible for every
finite N . Qualitatively similar results can be obtained using
satellite constellations. These results should be compared with
the regular GN model, whose capacity (27) decreases to zero
at high average transmit power [35]. It may seem contradictory
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that the GN model, which can be characterized as a limiting
case of the finite-memory model (cf. (8) and (2)–(3)), neverthe-
less exhibits a fundamentally different channel capacity.This
can be intuitively understood as follows. For every block of
2N+1 symbols, we transmit2N constant-amplitude symbols
with low power and only one symbol with variable (potentially
very large) power. Although the amplitude of this variable-
power symbol is chosen so that the average power constraint
is satisfied according to (30) (which requires averaging across
many blocks of length2N + 1), the convergence to average
power illustrated in (3) does not occurwithin a block, even
whenN is taken very large.

While the results in this section apply exclusively to the
finite-memory model given by (1) and (8), qualitatively similar
results can be expected for any other finite-memory model.
This is a result of thelaw of monotonic channel capacity,
which, cast in the framework of this paper, states that the
channel capacity never decreases with power for any finite-
memory channel [58]. This law does not give a capacity lower
boundper se,but it provides an instrument by which a lower
bound at a certain powerP can be propagated to any power
greater thanP . Hence, observing that the lower bounds in
Fig. 8 all exhibit a low peak before they converge to their
asymptotic values at highP , we conclude that marginally
tighter lower bounds can be obtained by flattening out the
part of the curves to the right of these peaks (dashed lines).

V. D ISCUSSION ANDCONCLUSIONS

We extended the popular GN model for nonlinear fiber
channels with a parameter to account for the channel memory.
The extended channel model, which is given by (8), is able to
model the time-varying output of an optical fiber whose input
is a nonstationary process. If the input varies on a time scale
comparable to or longer than the memory of the channel, then
this model gives more realistic results than the regular GN
model, as we showed in Fig. 2.

The validity of the GN model remains undisputed in the
case of i.i.d. input symbols, such as in an uncoded scenario
with a fixed, not too heavy-tailed modulation format2 and a
fixed transmit power. These are the conditions under which
the GN model was derived and validated. The uncoded bit
and symbol error rates computed in Sec. III confirm that the
finite-memory model behaves similarly to the GN model as
the channel memoryN increases.

The scene changes completely if we instead study capacity,
as in Fig. 8. In this case, the finite-memory GN model
does not, even at highN , behave as the regular GN model.
This is because the channel capacity by definition involves
a maximization over all possible transmission schemes, in-
cluding nonstationary input, heavy-tailed modulation formats,
etc. In the high-power (nonlinear) regime, it turns out to be
beneficial to transmit using a heavy-tailed input sequence,
whose output the GN model cannot reliably predict. Hence,
the GN model and other infinite-memory models (in the sense
defined in Sec. II-C) should be used with caution in capacity

2Examples of “heavy-tailed” modulation formats are t-distributions
(Sec. IV-E) and satellite constellations [41].

analysis. It is still possible (and often easy) to calculatethe
capacity of such channel models, but this capacity should not
be interpreted as the capacity of some underlying physical
phenomenon with a finite memory. As a rule of thumb, if the
model depends on the average transmit power, we recommend
to avoid it in capacity analysis.

A challenging area for future work would be to derive
more realistic finite-memory models than (8), i.e., discrete-
time channel models that give the channel output as a function
of a finite number of input symbols, ideally including not
only a time-varying sequence of symbols but also symbols in
other wavelengths, polarizations, modes, and/or cores, and to
analyze these models from an information-theoretic perspec-
tive. This may lead to innovative new transmission techniques,
which may potentially increase the capacity significantly over
known results in the nonlinear regime. The so-called nonlinear
Shannon limit, which has only been derived for infinite-
memory channel models, does not prevent the existence of
such techniques.

APPENDIX A
PROOF OFTHEOREM 1

We first compute the PMFP‖Xmem
k

‖2 . As ‖Xmem
k ‖2 is a

sum of 2N i.i.d. random variables, its PMF is the2N -fold
self-convolution of the PMF of one such random variable.
This convolution can be readily computed using probability
generating functions [59, Sec. 5.1]. Let

P̂|Xk|2(z) =
1

4
(z2∆

2

+ 2z10∆
2

+ z18∆
2

)

=
1

4

(

z∆
2

+ z9∆
2)2

(34)

denote the probability generating function of|Xk|2. The
probability generating function of‖Xmem

k ‖2 is

P̂‖Xmem
k

‖2(z) =
(

P̂|Xk|2(z)
)2N

(35)

=
1

42N
(

z∆
2

+ z9∆
2)4N

(36)

=
4N
∑

l=0

1

24N

(

4N

l

)

z(4N+8l)∆2

. (37)

We see from (37) that the PMF of‖Xmem
k ‖2 is

Pr{‖Xmem
k ‖2 = δl} =

1

24N

(

4N

l

)

, l = 0, 1, . . . , 4N,

(38)

where

δl , (4N + 8l)∆2. (39)

Let BERl,q,i denote the conditional error probability of bit
q, given ‖Xmem

k ‖2 = δl and Xk = si. The overall BER is
obtained by averagingBERq,l,i over all q = 1, . . . , 4, l =
1, . . . , 4N , andi = 1, . . . , 16. However, due to the symmetric
constellation and labeling in Fig. 3, it is sufficient to average
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over q = 1, 2, i ∈ {1, 2, 5, 6}, and all l, i.e.,

BER =

4N
∑

l=0

Pr{‖Xmem
k ‖2 = δl} ·

1

8

2
∑

q=1

∑

i∈{1,2,5,6}

BERl,q,i.

(40)

By (13), the received symbolYk given ‖Xmem
k ‖2 = δl and

Xk = si is a complex, circularly symmetric Gaussian variable
with meansi and varianceρ(δl+ |si|2)/2 per real dimension.
Therefore,BERq,l,i can be expressed in terms of the Gaussian
Q-function

λl,r,t , Q

(
√

2r2∆2

ρ(δl + 2t∆2)

)

. (41)

These expressions are obtained by inspecting Fig. 3 as

BERl,1,1 = λl,3,9, BERl,2,1 = λl,1,9 − λl,5,9,

BERl,1,2 = λl,3,5, BERl,2,2 = λl,1,5 − λl,5,5,

BERl,1,5 = λl,1,5, BERl,2,5 = λl,1,5 + λl,3,5,

BERl,1,6 = λl,1,1, BERl,2,6 = λl,1,1 + λl,3,1. (42)

Finally, (17) is obtained by substituting (39) and∆2 = P/10
into (41), and (16) is obtained by substituting (38) and (42)
into (40).

APPENDIX B
PROOF OFTHEOREM 2

In analogy with (40), the SER is

SER =

4N
∑

l=0

Pr{‖Xmem
k ‖2 = δl} ·

1

4

∑

i∈{1,2,5,6}

SERl,i, (43)

whereSERl,i is the conditional symbol error probability given
‖Xmem

k ‖2 = δl andXk = si. Note that there is no dependency
on the bitq, as the SER does not depend on the labeling. The
conditional SER can again be identified from Fig. 3 as

1− SERl,1 = (1− λl,1,9)
2,

1− SERl,2 = (1− λl,1,5)(1− 2λl,1,5),

1− SERl,5 = (1− λl,1,5)(1− 2λl,1,5),

1− SERl,6 = (1− 2λl,1,1)
2. (44)

The proof of (18) is completed by solving (44) forSERl,i,
substituting the result together with (38) into (43), and sim-
plifying.

APPENDIX C
PROOF OFCOROLLARY 1

The SER in (18) can be expressed as

SER = u1,1 − u1,2 +
3

2
u5,1 − u5,2 +

1

2
u9,1 −

1

4
u9,2, (45)

where

ut,K ,
1

24N

4N
∑

l=0

(

4N

l

)

λK
l,1,t. (46)

We can interpret the sum in (46) in probabilistic terms as
ut,K = E[λK

L4N ,1,t], whereL4N is a binomial random variable

with parameters(4N, 1/2), i.e., S4N is the sum of4N i.i.d.
random variables that take values0 and1 with the same prob-
ability. We use the notationL4N to emphasize the dependency
on N . To prove (20), we need to calculatelimN→∞ ut,K .

First, we writeλL4N ,1,t using (17) and (12) as

λL4N ,1,t = Q







√

√

√

√

P/5

PASE + η
(

(2N+4L4N+t)P/5
2N+1

)3






. (47)

By the strong law of large numbers [59, Sec. 7.4.(3)], the
ratioL4N/(2N+1) converges almost surely to1 asN → ∞.
Hence,

lim
N→∞

λL4N ,1,t = Q

(
√

P/5

PASE + ηP 3

)

(48)

for any constantt. Finally,

lim
N→∞

ut,K = lim
N→∞

E
[

λK
L4N ,1,t

]

= E

[

lim
N→∞

λK
L4N ,1,t

]

(49)

=

[

Q

(
√

P/5

PASE + ηP 3

)]K

, (50)

where the exchange of limit and expectation in (49) is pos-
sible becauseλK

L4N ,1,5 is bounded [59, Sec. 5.6.(12).(b)] and
(50) follows from (48). The proof of (20) is completed by
substituting (50) into (45) and simplifying.

The proof of the BER expression in (19) follows analogous
steps and is omitted for space reasons.

APPENDIX D
PROOF OFTHEOREM 3

Consider a sequence of independent symbolsXk =
Rke

Φk , k ∈ Z, where for eachk, the magnitudeRk is
independent of the phaseΦk, which is uniform in [0, 2π).
The magnitudeRk is distributed according tofR if k = 0
mod (2N + 1) and is otherwise equal to the constantr1.
Furthermore,fR andr1 are chosen so that (30) holds, which
guarantees that the average power constraint is satisfied. We
will next show that the right-hand side of (31) is the mutual
information (in bits per channel use) obtainable with this input
distribution. Hence, it is a lower bound on capacity.

We define blocks of length2N + 1 of transmitted and
received symbols as

Y l , Y
l(2N+1)+N
l(2N+1)−N ,

X l , X
l(2N+1)+N
l(2N+1)−N

for l ∈ Z. Let us focus for a moment on the received block
Y 0. Let Yk be thekth element (k = −N, . . . , N ) of Y 0.
It follows from (8) that the additive noise contribution toYk

depends on the input vector‖Xk+N
k−N‖, which may span more

than one input block. By construction, however, all elements
of Xk+N

k−N with the exception ofX0 have constant magnitude
equal tor1. Hence,

‖Xk+N
k−N‖2 = |X0|2 + 2Nr21. (51)
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This implies that

fYk|X
k+N

k−N

(yk|xk+N
k−N )

=
1

πρ(2Nr21 + |x0|2)
exp

(

− |yk − xk|2

ρ(2Nr21 + |x0|2)

)

. (52)

We see from (52) that each output sampleYk in Y 0 actually
depends on the input symbols only throughXk andX0. We
then conclude thatY 0 depends on the whole input sequence
only throughX0. But this, together with the assumption of
independent input symbols, implies that the output blocks
{Y l} are independent. Hence, from (29),

C ≥ 1

2N + 1
I(X l, ;Y l) (53)

for an arbitraryl ∈ Z, say,l = 0.
Next, we calculateI(X0;Y 0). The mutual information can

be decomposed into differential entropies as

I(X0;Y 0) = h(Y 0)− h(Y 0|X0), (54)

where

h(Y 0) = −E[log2 fY 0
(Y 0)], (55)

h(Y 0|X0) = −E[log2 fY 0|X0
(Y 0|X0)]. (56)

We start by evaluating (56). Because of (52), the conditional
distribution of Y 0 given X0 is the multivariate Gaussian
density

fY 0|X0
(y0|x0)

=
1

(

πρ(2Nr21 + |x0|2)
)2N+1

exp

(

− ‖y0 − x0‖2
ρ(2Nr21 + |x0|2)

)

.

(57)

Using [16, Theorem 8.4.1], we conclude that

h(Y 0|X0) = (2N + 1)E[log2 πρ(2Nr21 + |X0|2)], (58)

where the expectation is with respect to the random variable
|X0|, which is distributed according tofR.

To evaluate (55), we start by noting that all elements ofY 0

have uniform phase because the transmitted symbols and the
additive noise samples have uniform phase by assumption. We
use this property to simplify (55). Specifically, letUk = |Yk|2
and

U , [U−N , U−N+1, . . . , UN ]. (59)

By [60, eq. (320)]

h(Y 0) = (2N + 1) log2 π + h(U). (60)

To evaluateh(U) = −E[log2(fU (U))], we first derive the
conditional distributionfU ||X0| of U given |X0|. Note that
Uk has the same distribution as

∣

∣

∣

∣

|Xk|+
√

ρ(2Nr21 + |X0|2)Z̃k

∣

∣

∣

∣

2

(see (1) and (8)). Hence, given|X0| = r, the random variables
{2Uk/ρ(2Nr21 + r2)} follow a noncentral chi-square distribu-
tion with two degrees of freedom and noncentrality parameters

{2 |Xk|2 /ρ(2Nr21 + r2)}, where |Xk| = r1 if k 6= 0 and
|Xk| = r otherwise. Furthermore, these random variables are
conditionally independent given|X0|. Using the change of
variable theorem for transformation of random variables, we
finally obtain after algebraic manipulations

fU ||X0|(u|r) =
exp

(

−
∑

N

k=−N
uk+2Nr21+r2

ρ(2Nr2
1
+r2)

)

(

ρ(2Nr21 + r2)
)2N+1

· I0
(

2r
√
u0

ρ(2Nr21 + r2)

)

·
N
∏

k=−N
k 6=0

I0

(

2r1
√
uk

ρ(2Nr21 + r2)

)

. (61)

The probability distributionfU , which is given in (32), is
obtained from (61) by taking the expectation with respect
tofR, the probability distribution of|X0|. Finally, we obtain
the capacity lower bound (31) by substituting (32) into (55)
and (58) into (56), by computing the difference between the
two resulting differential entropies according to (54), and by
dividing by 2N + 1.
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