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Abstract—The channel capacity of a nonlinear, dispersive fiber-
optic link is revisited. To this end, the popular Gaussian nése
(GN) model is extended with a parameter to account for the
finite memory of realistic fiber channels. This finite-memory
model is harder to analyze mathematically but, in contrast b
previous models, it is valid also for nonstationary or heavytailed
input signals. For uncoded transmission and standard moduation
formats, the new model gives the same results as the regularNG
model when the memory of the channel is about 10 symbols or
more. These results confirm previous results that the GN mode
is accurate for uncoded transmission. However, when codings
considered, the results obtained using the finite-memory ndel
are very different from those obtained by previous models, een
when the channel memory is large. In particular, the peaky
behavior of the channel capacity, which has been reported fo
numerous nonlinear channel models, appears to be an artifaof
applying models derived for independent input in a coded (e.,
dependent) scenario.

Index Terms—Channel capacity, channel model, fiber-optic
communications, Gaussian noise model, nonlinear distoxn.

I. INTRODUCTION

Paper)

For systems with large accumulated dispersion and weak
nonlinearity, the joint effect of chromatic dispersion &t
Kerr effect is similar to that of additive Gaussian noiseisTh
was pointed out already by Splett [5] and Tang [6]. The
emergence of this Gaussian noise is prevalent in links #nat h
no inline dispersion compensation, such as today's coheren
links, where the dispersion compensation takes placeretect
ically in the receiver signal processing. This Gaussiarsoi
approximation has been recently rediscovered and appied t
today’s coherent links in a series of papers by Poggietiral.
(see [7], [8] and references therein) and other groups 19]-
The resulting so-called Gaussian noise modeGNrmodefFor
short, is valid for multi-channel (wavelength- and polatian-
division multiplexed) signals. It has also been shown tokwor
for single-channel and single-polarization transmissfoine
dispersive decorrelation is large enough [9], [12].

The GN model belongs to a more general family of additive
Gaussian noise channels, which we study in this paper. Im suc
channels, for a given transmitted complex symbgl, the
(complex) single-channel output at each discrete-time Z

The introduction of coherent optical receivers has brougist modeled as

significant advantages in fiber optical communications,, e.g

enabling efficient polarization demultiplexing, higheder
modulation formats, increased sensitivity, and eledtniai-
gation of transmission impairments [1], [2]. Even if thedar
transmission impairments (such as chromatic and pol&izat

Yy = X + Zy, 1)

where{Z;} is a circularly symmetric, complex, white, Gaus-
sian random sequence, independeniXqf
A crucial assumption in the derivation of the GN model,

mode dispersion) can be dealt with electronically, the Kegis well as most other fiber-optical channel models, is that of

nonlinearity in the fiber remains a significant obstacle c€inindependent, identically distributed (i.i.d.) inputsetiiansmit-

the nonlinearity causes signal distortions at high sigwgli ted symbols are independent of each other, are drawn from the
powers, arbitrarily high signal-to-noise ratios are iressible, same constellation, and have the same average transmit.powe
which limits transmission over long distances and highspec Under these assumptions, the model has been experimentally

efficiencies. This is sometimes referred to as the “nonlinegerified to be very accurate [13], [14] for the most common

Shannon limit” [3], [4].
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modulation formats, such as quadrature amplitude moadulati
(QAM) or phase-shift keying.

In this paper, the assumption of i.i.d. inputs is relaxed.
This is done by introducing a modified GN model, which we
call the finite-memory GN modelThis new model includes
the memory of the channel as a parameter and differs from
previous channel models in that it is valid also when the
channel input statistics are time-varying, or when “heavy-
tailed” constellations are used.

The performance predicted by the regular GN model (both
in terms of uncoded error probability and channel capadsty)
compared with the ones predicted by the finite-memory GN
model. Theuncodedperformance is characterized in terms of
symbol error rate (SER) and bit error rate (BER), assuming
I.i.d. data. Exact analytical expressions are obtained éeary
QAM (16-QAM), which show that the GN model is accurate
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for uncoded transmission and standard modulation formaggcess channel and characterized its capacity region. énya v
confirming previous results. detailed tutorial paper, Essiambeeal. [22] applied a channel
The main contributions of the paper are in terms ahodel based on extensive lookup tables and obtained cgpacit
codedperformance. Shannon, the father of information theogwer bounds for a variety of scenarios. Secondai al.
proved that for a given channel, it is possible to achieve 23] modeled the nonlinear interference (NLI) in waveldngt
arbitrarily small error probability, if the transmissioate in division multiplexing (WDM) systems as a slowly varying
bits per symbol is small enough. A rate for which virtuallyntersymbol interference channel, based on the continruous
error-free transmission is possible is called achievable time analysis in [24], and obtained lower bounds using the
rate and the supremum over all achievable rates for a givémeory of mismatched decoding. Dat al. used a blockwise
channel, represented as a statistical relation betweenpitd constant phase noise to represent the NLI [25], [26] and re-
X and outputY, is defined as thehannel capacity{15], cently generalized the model into an intersymbol interiese
[16, p. 195]. A capacity-approaching transmission schensbannel [27].
operates in general by grouping the data to be transmitted in Detailed literature reviews are provided in [28] for thelgar
blocks, encoding each block into a sequence of coded symboésults, and in [22] for more recent results. Other capacity
modulating and transmitting this sequence over the channedtimates, or lower bounds thereon, were reported for wario
and decoding the block in the receiver. This coding processnlinear transmission scenarios in, e.g., [4], [29]-[38pst
introduces, by definition, dependencies among the tratesinitof these estimates or bounds decrease to zero as the power
symbols, which is the reason why channel models derived fiocreases, in contrast to the results presented in this.work
i.i.d. inputs may be questionable for the purpose of capacit This paper is organized as follows. In Sec. II, the GN model
analysis. is reviewed and the finite-memory GN model is introduced.
More fundamentally, the regular GN model is not wellin Sec. Ill, the uncoded error performance of the new finite-
suited to capacity analysis, because in this model eactubutmemory model is studied. The channel capacity results, whic
sample depends on the statistics of the previously tratesinitare the main results in this paper, are presented in Sec.dV an
input symbols (through their average power) rather than @onclusions are drawn in Sec. V. The mathematical proofs are
their actual value. This yields artifacts in capacity as@y relegated to appendices.
One such artifact is the peaky behavior of the capacity of Notation: Throughout this paper, vectors are denoted by
the GN model as a function of the transmit power. Indeetpldface letterse and sets are denoted by calligraphic letters
through a capacity lower bound it is shown in this paper thaf. Random variables are denoted by uppercase leeasid
this peaky behavior does not occur for the finite-memory Gtlieir (deterministic) outcomes by the same letter in lower-
model, even when the memory is taken to be arbitrary largeasex. Probability density functions (PDFs) and conditional
The analysis of channel capacity for fiber-optical transmi®DFs are denoted by () and fy|x (y|x), respectively, and
sion dates back to 1993 [5], when Spleitt al. quantified probability mass functions (PMF) are denoted B (z).
the impact of nonlinear four-wave mixing on the channdixpectations are denoted (-] and random sequences by
capacity. By applying Shannon’s formula for the additivéX;}.
white Gaussian noise (AWGN) channel capacity to a channel

with power-dependent noise, Spledt al. found that there ||. CHANNEL MODELING: FINITE AND INFINITE MEMORY
exists an “optimal*finite signal-to-noise ratio that maximizes

capacity. Beyond this value, capacity starts decreastngas the nonlinear interference in optical dual-polarizatioDMW

howevgr not _motlva.ted in [5] why the noise was assUMegstems, highlighting the role of the channel memory, and
Gaussian. Using a different model for four-wave mixingr8ta e e afier in Sec. I1-B-II-D describe in detail the channel

[17]_showed that capacity saturates, but does_ not decre&}ﬁ%dels considered in this paper.
at high power. In the same paper, the capacity loss due to
the quantum nature of light was quantified. In 2001, Mitra ] . ]
and Stark [18] considered the capacity in links where crogd. Nonlinear Interference in Optical Channels
phase modulation dominates, proved that the capacity isrflow A coherent optical communication link converts a discrete,
bounded by the capacity of a linear, Gaussian channel witbmplex-valued electric data sign#l; to a modulated, con-
the same input—output covariance matrix, and evaluated tlinuous optical signal, which is transmitted through arniagt
bound via Shannon’s AWGN formula. The obtained bourfiber, received coherently, and then converted back to aetisc
vanishes at high signal power. The authors claimed, withoutitput sequenc®),. The coherent link is particularly simple
providing evidence, that the true capacity would have timeesa theoretically, in that the transmitter and receiver disentap
gualitative nonmonotonic behavior. the electric data to the opticéld, which is a linear operation
Since 2001, the interest in optical channel capacity has v{im contrast with, e.g., direct-detection receivers), aad ide-
tually exploded. The zero-dispersion channel was consiemlly be performed without distortions. The channel is thel w
by Turitsynet al [19]. The joint effect of nonlinearity and dis- described by the propagation of the (continuous) opticéd fie
persion was modeled by Djordjevét al.[20] as a finite-state in the fiber link. It should be emphasized that this assumes th
machine, which allowed the capacity to be estimated usiag tboherent receiver to be ideal, with perfect synchronizagiod
Bahl-Cocke-Jelinek—Raviv (BCJR) algorithm. Taghawial. negligible phase noise. Experiments have shown [2] that com
[21] considered a fiber-optical multiuser system as a mekip mercial coherent receivers can indeed perform well enough

In this section, we will begin with a high-level descriptioh
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for the fiber propagation effects to be the main limitation€. The Regular GN Model

Two main linear propagation effects in the fiber need to be

addresseddispersionandattenuation The attenuation effects For coherent long-haul fiber-optical links without dispers

can be overcome by periodic optical amplification, at theompensation, Splegt al.[5], Poggioliniet al.[7], and Beygi
expense of additive Gaussian noise from the inline amgifieet al. [9] have all derived models where the NLI appears as
The dispersion effects are usually equalized electrolyibgla Gaussian noise, whose statistics depend on the transmitted
filter in the coherent receiver. Such a linear optical link b signal power via a cubic relationship. The models assurnte tha
well-described by an AWGN channel, the capacity of whicthe transmitted symbolX;;, in time slotk € Z are i.i.d. In

is unbounded with the signal power. this model, the additive noise in (1) is given by
However, the fiber Kerr-nonlinearity introduces signal-dis -
y g Zy = Zr\/ Pase +nP3, (2)

tortions, and greatly complicates the transmission madeli

The nonlinear signal propagation in the fiber is describgghere{Z,} are i.i.d. zero-mean unit-variance circularly sym-
by a nonlinear partial differential equation, tnlinear metric complex Gaussian random variabl&se andn are
Schidinger equation(NLSE), which includes dispersion, at-real, nonnegative constants, aftd= E[|X|?] is the average
tenuation, and nonlinearity. At high power levels, the éreransmit power. Therefore, the noiseZ;, is distributed as
effects can no longer be conveniently separated. However,z, ~ CA(0, Pase + nP?), where CA(0,02) denotes a
contemporary coherent links (distance at leas® km and cjrcularly symmetric complex Gaussian random variabléwit
SymbOl rate at least8 Gbaud), the nonlinearity is Signiﬁcantlymeano and Variance,—Q_ The parametep’ which is a property
weaker than the other two effects, and a perturbation approgf the transmitter, governs the behavior of the channel fode

can be successfully applied to the NLSE [5], [8]-[10]. Thighis can be intuitively understood as a long-term average of
leads to the GN mOdel, which will be described in Sec. ”-Qhe Signa] power. Mathematica”y,

k+N

B. Finite Memory . 2
o . . . . . P = lim Z | X%,
Even today’s highly dispersive optical links have a finite N—oo 2N +1 SN
memory. For example, a signal with dispersive length = _ ) _ _
1/(Aw?|Bs|), wherep, is the group velocity dispersion andW'th convergence almo_st surely for any giverstill assuming
Aw the optical bandwidth, broadens (temporally) a factdd-d- symboI§Xk: For this reason, we will refer to models t_hat
L/ Ly over a fiber of lengtiL. With typical dispersion lengths d€P€nd on infinitely many past and/or future symbols, ¥ia
of 5-50 km, this broadening factor can correspond to hundrelfs(3) or in some other way, asfinite-memorymodels.
to thousands of adjacent symbols, a large finite number. ~ The cubic relation in (2) between the transmit power and
The same will hold for interaction among WDM channels; ithe additive noise variandesg-+7 P is a consequence of the
one interpretsAw as the channel separatioh/ Lp will give Kerr nonlinearity, and holds for both lumped and distriloLite
an approximation on the number of symbols that two WDNmplification schemes. The constdise represents the total
channels separate due to walk-off (and hence interact with n amplified spontaneous emission (ASE) noise of the optical
linearly during transmission). The channel memory willghuamplifiers for the channel under study, while quantifies
be even larger in the WDM case, and increase with chanrie¢ NLI. Several related expressions for this coefficienteha
separation, but the nonlinear interaction will decrease @u been proposed. For example, for distributed amplificatioth a
the shortetLp. Thus, the principle of a finite channel memory’VDM signaling over the lengtid,

®3)

holds also for WDM signals. To keep notation as simple as 421 )

possible, we will consider a single, scalar, wavelengtmolea "= BB log, (2me|B2|LB?), (4)
in this paper. Extensions to dual polarizations and WDM are 5

possible, but will involve obscuring complications such as n= 167°L log, (2w2|62|LBQ) , (5)
four-dimensional constellation space [36] in the formeseca 27| 2| RZ \3

and behavioral models [37] in the latter. We can thus say thagre proposed in [5] and [40], resp., wheteis the fiber
in an optical link a certain signal may sense the interfeeennonlinear coefficient3 is the total WDM bandwidth, andk,
from N = L/Lp neighboring symbols, which is the physicals the symbol rate. Obviously, the expressions in (4) ana(®)
reason for introducing a finite-memory model. qualitatively similar. For dual polarization and singleacimel

If we let the numberN of interfering symbols go to transmission oved/ lumped amplifier spans, the expression
infinity, an even simpler type of model is obtained. The 32
interference is now averaged over infinitely many transeditt n= %MHE tanh (%) (6)
symbols. Assuming that an i.i.d. sequence is transmittesd, t a 4152| B
time average converges to a statistical average, whicttlgreavas proposed in [12], and a qualitatively similar formula ca
simplifies the analysis. Many models suggested for dispersbe obtained from the results in [8]. Here,is the attenuation
optical channels so far belong to this category [4], [5]. [9koefficient of the fiber and the coefficiemtis between 0
[10], [12], [22], [38], [39], of which the GN model describedand 1 (see [8], [12]) depending on how well the nonlinear
in Sec. II-C is the most common. The finite-memory modelsterference decorrelates between each amplifier span. Al-
by Secondiniet al. [23] and Daret al. [26], [27] are notable though empirical formulas foe have been proposed [39],
exceptions. for simplicity we assume independent decorrelated wawesor
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inducing the nonlinear interference at each amplifier,, i.e
e = 0. In this paper, we use the single-polarization versic
of (6), in which the coefficien8 should be replaced by [9], -3

. . x 10
which yields
2v2 M @
= ——tanh | —— | . 7
1= 5t o (i) "

The benefits of the GN model is that it is very accural : ‘ .
for uncoded transmission with traditional modulation fautst 24 T e
as demonstrated in experiments and simulations [13], [1 R A / B
[42], and that it is very simple to analyze. It is, howevel 1+ S e
not intended for nonstationary input sequences, i.e.,sSERs
whose statistics vary with time, because of the i.i.d. agsunr ‘
tion on the symbolsXy. In order to capture the behavior of 600 .
a wider class of transmission schemes, the GN model can D’Sfan 400
modified to depend on a time-varying transmit power, whic Ce lkmj 200
is the topic of the next section.

inita. Fig. 1. Amplitude for a linearly propagating5.6 ps raised-cosine pulse
D. The Finite-Memory GN Model (compatible with32 GBaud) over850 km fiber with 8o = —21.7 ps?/km.

As mentioned in Sec. | and II-C, a finite-memory model iShe lossy NLSE over 10 amplifier spans was simulated, with ABise
essential in order to model the channel output correspgndvitched off for clarity, and the peak power used was 0.1 mW.
to time-varying input distributions. Therefore, we refireet
GN model in Sec. 1I-C to make it explicitly dependent on the
channel memorw, in such a way that the model “converges”, k+N 2 : : : :
’ 1 . X;|* at any discrete timé is a random variable
to the regular GN model a& — co. Many such models can ) 2iizg— [ Xil Y

be f lated. In thi im for simolicity rathearih that depends on the magnitude of thth symbol and the
aﬁcSrrz;T:;a ed. In this paper, we aim for simplicity ratheann , »; symbols around it. In the limitvV.— oo, this empirical
) : ower converges to the “statistical” powéY in (3), for any
The proposed model assumes that the input—output relatfon : . . X .
is still given by (1), but the average transmit powin (2) is I1.d. process with powef’, as mentioned in Sec. II-C. This

- . . : observation shows that the proposed finite-memory model
replaced by aempirical poweri.e., by the arithmetic average. prop y

: in (8) “converges” to the GN model in (2), provided that the
of the squared magthde of.the symeSL and of he2N chzgn)nel mem%r)N is sufficiently large ;n)d I[tjhat the process
symbols around it. Mathematically, (2) is replaced by consists of i.i.d. symbols with zero mean and variafite

. KN 3 The purpose of the finite-memory model is to be able
Zr =7k | Pase+1 <2N Z | Z|2> (8) to predict the output of t_he_ channel when the transmitted

+1 Pl symbols are not i.i.d. This is the case for example when

the transmitted symbols are a nonstationary process (&s wil
for any k € Z, whereN is the (one-sidedghannel memory pe exemplified in Sec. 1I-E) and also for coded sequences
We refer to (1) and (8) as tHenite-memory GN modeBince (which we discuss in Sec. IV). An advantage of the finite-
(second-order) group velocity dispersion causes symmetfhemory model, from a theoretic viewpoint, is that the input—
broadening with respect to the transit time of the signaérin output relation of the channel is modeled as a fixed condition
symbol interference from dispersion will act both baCkV@fdgrobability of the output given the input and its history, gt
and forwards in terms of the symbol index. This is why botfy the common notion of a channel model in communication
past and future inputs contribute to the noise power in (8). &nd information theory ever since the work of Shannon [15],
somewhat related model for the additive noise in the contqaly, p. 74]. This is in contrast to the regular GN model and
of data transmission in electronic circuits has been régengiher channel models, whose conditional distribution gean
proposed in [43], where the memory is single-sided and tg@pending on which transmitter the channel is connected to.
noise scales linearly with the signal power, not cubicaBy aspecifically, the GN model is represented by a family of such
in (8). conditional distributions, one for each value of the traitsm
Having introduced the finite-memory GN model, we NoWarameterP.

discuss some particular cases. First, the memoryless AWGNA drawback with the proposed finite-memory model is that
channel model can be obtained from both the GN and ﬁnitﬁ-iS more complex than the GN model. Also, our model is

memory GN models by setting = 0. In this case, the not accurate for small values df, since the GN assumption

i i i 2] —
noise variance idE[|Zy["] = Fase for all k. Second, let us gjia5 on the central limit theorem [7], [9], [10]. Furtheore,

consider the scenario where the transmitted symbols is mg assumed that all th&N symbols around the symbat;,
random proces§.X;}. Then the empirical powefl/(2V + affect the noise variance equally. In practice, this is mat t

1The model is not valid for exotic modulation formats such atelite C@S€. We_ n_everthgless use the proposed model in this paper
constellations [41]. because it is relatively easy to analyze (see Sec. Il and IV)
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TABLE | o1
SYSTEM PARAMETERS USED IN THE PAPER . °QO'° :o

Symbol Value Meaning 0.08 e e T
a 0.2 dB/km Fiber attenuation 0.06+
B2 —21.7 ps?/km | Group velocity dispersion =
v 1.27 (W km)~! | Fiber nonlinear coefficient - 0.04r
M 10 Number of amplifier spans 0.02
L 850 km System length '
R, 32 Gbaud Symbol rate 0

Pase 41-107°W | Total ASE noise

n 7244 W2 NLI coefficient

0.1

and because even this simple finite-memory model captu 0.08

the quantitative effects caused by non-i.i.d. symbolschviié 0.06F

essential for the capacity analysis in Sec. IV. §
0.04}
. . 0.02f
E. Numerical Comparison
Before analyzing the finite-memory GN model, we firs 100 20 300 400 500 600 700
qguantify the chromatic dispersion of an optical fiber. Tcsthi
end, we simulated the transmission of a single symbol pul o1

over a over a single-channel, single-polarization fibek lin GN model
without dispersion compensation. Ten amplifiers spans ave g gl
total distance oB50 km are simulated using the lossy NLSE
model. We used a raised-cosine pulse with peak powenW  __ 0.06¢
and a duration ofl5.6 ps at half the maximum amplitude, =
which corresponds to half the symbol slot in3@8 Gbaud

transmission system. The result is illustrated in Fig. 1. £  0.02}

: i i T TR o 8 o R 5
this Iow_powe_r, the r_10n|mear effects are almost negllglblf O@g@g@ggﬁ . %%%fﬁ%w
For clarity of illustration, the ASE noise was neglected b 100 200 300 400 500 600 700

setting Pase = 0. The remaining system parameters are given
in Table | and will be used throughout the paper. As weg. 2. Amplitude of the transmitted QPSK symbql&,| (red squares)
can see, the pulse broadens as it propagates along the fiféy{ecehes MG (e orces) vanemited 1 &0 i e i
having a width corresponding to hundreds of data symbolgmory GN model (8) withV = 60, and (bottom) the regular GN model
after 850 km of transmission. This is in good agreement witkg).
the relation for symbol memory used in [45, p. 2037], which
gives2N = 2r|f3| LR2 = 119.

Next, to validate the behavior of the finite-memory model
with nonstationary input symbol sequences, we simulated
the transmission of independent quadrature phase-shifidce
(QPSK) data symbols with a time-varying magnitude, over the As can be seen, the agreement between the NLSE simula-
same700 km fiber link, at R, = 32 Gbaud. The transmitted tions and the finite memory model is quite reasonable, but
sequence consists 860 symbols with6 mW of signal power, the GN model cannot capture the nonstationary dynamics.
200 symbols at) mW power, 200 symbols at mW, and The results in Fig. 2 also show that the noise variance in the
so on. The statistical average power is th&rmW. The NLSE simulation is low around the symbols with low signal
chosen pulse shape is a raised-cosine return-to-zero. palsepower and high around the symbols with high signal power.
Fig. 2, we show the amplitude of the transmitted syml&ls| This behavior is captured by the finite-memory GN model
(red) and received symbold7;| (blue) with three different but not by the regular GN model, for which the variance of
models: the NLSE, the finite-memory GN model with= 60, the noise is the same for any time instant. This illustrates
and the regular GN model. In the middle and lower plothat the GN model (2) should be avoided with nonstationary
of Fig. 2, we used the NLI coefficieny = 7244 W~2, transmit signals as the ones used in Fig. 2, at least if the tim
which was calculated from (7). The single-polarization ASEonstant of the transmitted signal (as quantified by, ebhg, t
noise power was calculated as [46, Eqs. (7.4.1), (7.2.1p@riodicity or block length) is shorter than the time constaf
Pase = WM FGR;/2 = 4.1 uW, wherehv = 1.28 - 107 J  the physical channel. This is not surprising, as the modsl wa
is the photon energyy’ = 6 dB is the amplifier noise figure, derived under an i.i.d. assumption. In Sec. V, we will return
andG = aL/M = 17 dB is the amplifier gain. to this observation when analyzing coded transmission.
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I1l. UNCODED ERRORPROBABILITY

We assume that the transmitted symbjl§; } are indepen- . . , .
. . 5S4 58 S12 S16
dently drawn from a discrete constellatiSn= {s1, ..., sam }. ° ° ° °
The symbols are assumed to be selected with the sami 0010 0110 1110 1010
probability, and thus, the average transmit (statistipalver
is given by s3 $r s11 s1
) 1 ) ° ° ° °
P=E[X|] =5 > sl (9) 0011 0111 1111 1011
seS
For each time instant, we denote the sequence of thé&/ 9 s6 510 S14
symbols transmitted around;, by ® o g *
0001 0101 1101 1001
X'];nemé[Xk—N7"'7Xk—15Xk+17"'an+N]a (10)
where the notation emphasizes ti&af'*" is a random vector 51 85 89 513
descrlbmg the channel memory at time ri]r;itant . 0000 0100 1100 1000
For a given sequence @iV symbols X ;“" = "™ and a oA
given transmitted symbaok; = xj, the noise in (8) can be D —

expressed as

Fig. 3. The 16-QAM constellatiorS and its binary labeling. The binary
7 = Zk \/p(|$k|2+ ||$rl?em||2), (11) labeling of the constellation is based on the Cartesianuymiodf the BRGC
for 4-ary pulse amplitude modulation in phase (bold, red) gomadrature
where (blue). The Voronoi regions of the symbols and the MED of thaestellation
5 are also shown. The Voronoi regidss is highlighted in gray.
a4 . (12)
2N +1

and ||z|| denotes the Euclidean norm af The channel law
for the finite-memory model is then

p(a) & Pase+1 (

closest, in Euclidean distance, to the channel outputThus

fYk|Xk,Xgem(y|$k7 ") X = argmin |V, — s|?
ry 1 exp( ly — x/? ) s€ . "

= 2 - 2 : =s;, Y€V,
mo(lo P+ [22=m2) N pllanl+ o)  HYeeh 13)
(13) whereV; denotes the decision region, \@ronoi region,of s;.

Remark 1:As we will see later, for increasing memoR,
the MED detector in (15) in fact converges to the detector in
We consider the equally spaced 16-QAM constellatiofi4). Intuitively, this holds because the relative errortlire
shown in Fig. 3. In this case§ = {a + by/—1 : a,b € approximation|z®™|2 + |s|? ~ ||z1*™|? vanishes whenV
{£A, £3A}}, the minimum Euclidean distance (MED) of thes large.

constellation is2A, and the statistical average power (9) is R K 2:1n thi ¢ he MED d .
P = 10A2. The binary labeling is the binary reflected Gray emark 2:In this paper, we focus on the etector in

code (BRGC) [47], where the first two bits determine th@lS) because of its simplicity and widespread practicagasa

; The ML symbol-by-symbol detector in (14) is considered as
in-phase (real) component of the symbols and the last tw!)1
P (real) P y theoretical benchmark, but it is still suboptimal. We da no

bits determine the quadrature (imaginary) components @f tf} e ) _ )
symbols. This is shown with colors in Fig. 3. In this paper consider the optimal detector for channels wit

The maximum-likelihood (ML) symbol-by-symbol detec.MEMOIY, the ML sequence deteptor, which can be implemented
tion rule for a given sequence®™ chooses the symbelc S using the Viterbi algorithm but is very complex for channels

that maximizesfy, |x, xmen(y|s, z'*") in (13). The decision with long memory [48].

A. Error Probability Analysis

made by this detector can be expressed as The following two theorems give closed-form expressions
for the BER and SER for the constellation in Fig. 3 when used
XML 2 argmin{log p(|s|>+ [|em|2) over the finite-memory GN model.
seS
© ) Theorem 1:Gray-coded 16-QAM transmission over the
ly — s (14) finite-memory GN model with memoryV yields after MED
p(|s|” + [|em)2) | detection the BER

which shows that, due to the dependency of 1

4
log p(|si|*+ ||™|2) on s, this detector is not an MED BER = 94N +3 Z( l )(2)‘“71 +3M1s+ Ao
detector. For simplicity, however, we disregard this tenma a 1=0
study the MED detector, which chooses the symbdieing a1+ 2N+ Mizo — Aiss — Aiso),  (16)
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where 10
2P/5
Ay 2 " 17 2|
bt Q(\/p((2N+4z +t)P/5)> N 1
and Q(z) = (1/v2m) [.° exp(—t?/2)dt is the Gaussian Q  1573[
function.
Proof: See Appendix A. O =

Theorem 2:16-QAM transmission over the finite- memoryhJ 10

GN model with memoryN yields after MED detection the
=5
SER 10 N=1
N=2
4N
1 4N 9 _ N = 5
SER = SINTZ Z ( l )(4&1,1 — 4Ny, 151 \3\ ——N=10
1=0 q —— N=50
+ 6)\[7175 — 4)\%71’5 + 2)\17179 — >‘l2,1,9)7 (18) 10—7 . . L . : GN model
with A, .., defined in (17). I " °o 2z 4 0
Proof: See Appendix B. O P [dBm]
The BER and SER in the limifV — oo can be inferred
from Theorems 1 and 2 as shown in the next corollary. 10}

Corollary 1: The BER and SER for the finite-memory GN
model in the limitN — oo are 1021

s (| P/ 1 (| 9ps
BER = = S R I A 3
" 4Q< PASE+7]P3>+2Q< PASE+7]P3> 10 ¢
~
1 / S 10t
_Z 19
4Q< PASE+77P3> (19)
92
4

G
. N=0
P/5 P/5 107} N N
SER = 3Q 7/3 —-2Q? % . ] N=5
Pase +nP Pase +nP -6 \ —— N=10
10 F \ —— N=20
(20) ——— N =150
. - R GN model
Proof: See Appendix C. O 10 - . .. . .
The other extreme case to consider is the memoryle 8 -6 -4 K 0 2 4 6
P [dBm]

AWGN channel. The BER and SER expressions in this ca

are given in the following corollary.
Corollary 2: The BER and SER for the memorwesézlg 4. Analytical BER (top) and SER (bottom) of 16-QAM tramssion

with the finite-memory GN model, for different values &f (solid lines).
AWGN channel are given by Markers show simulation results with the ML detector in ({#juares) and
the MED detector in (15) (circles). The results for the meytess AWGN
channel and the regular GN model are included for comparison

3
BER = ZQ(

P
SER = 3Q< 5PASE>

i
5 Pase

1 5P

4 @ ( Pase

1
2

)

9
4

|
|

Proof: Setn = 0 in (19) and (20).

9P
5Pase

P

)

(21)

5Pas

) . (22
E

O

16-QAM constellation in Fig. 3 given by Theorems 1 and
2 are shown in Fig. 4 for different values &f. Fig. 4 also
shows the results for the asymptotic caSe— oo and for
the memoryless AWGN channel given by Corollaries 1 and
Corollary 2, respectively. Furthermore, results obtairvizal

The results in Corollaries 1 and 2 correspond to well-knowgpmputer simulations of (1)=(2) are included using the ML
expressions for the BER and SER for the AWGN channel. Betector in (14), marked with squares, and the MED detector

particular, (21) can be found in [49, eq. (10)], [50, eq. 8Ba)]

in (15), marked with circles. As expected, the MED detector

and (22) in [50, eq. (10.32)]. Also, the results in Coroll@ry Yields a perfect mat_ch with the analytical expressions,redie
together with (2) show that the BER and SER for the finitéhe ML detector deviates for small channel memori¥s< 2).
memory GN model wheV — oo converge to the BER and  The results in Fig. 4 show that in the low-input-power
SER for the regular GN model.

B. Numerical Results

regime, the memory in the channel plays no role for the
BER and SER, and all the curves follow closely the BER
and the SER of a memoryless AWGN channel. However,

We consider the same scenario as in Sec. IlI-E, with pas P increases, the nonlinearity kicks in, causing the BER
rameters according to Table I. The BER and SER for tlend SER to have a minimum whose value depends\Vgn
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coding schemePractical coding schemes are designed so as
N j to minimize the probability thaj differs from j, while at the
€coder " same time keeping the complexity of both encoder and decoder
low.
Channel capacity is the largest transmission rate at wieich r
liable communications can occur. More formally, {et M, ¢)

Physical

—»{ Encoder
Channel

Fig. 5. Encoder and decoder pair. The encoder maps a megstmea

codewordz = [z1,...,zn]. The decoder uses the noisy observatiin— . .. .
[Y1,...,Y,] to provide an estimatg of the messagg . be a coding scheme consisting of:
« An encoder that maps a message {1,...,M} into
a block of n transmitted symbolse = [z1,...,z,]

and then to increase aB increases. Physically, this can satisfying a per-codeword power constraint

be explained as follows: In the low-power regime, the BER 1 & )
is limited by the ASE noise, which is independent of the gZW =F (23)
memory depth. In the high-power regime, the Kerr-induced =1
noise dominates, resulting in increasing BER with power. « A decoder that maps the corresponding block of re-
Similar behavior has been reported in most experiments and ceived symbolsY” = [Y7,...,Y,] into a messagg <
simulations on nonlinearly-limited links, e.g., [9], [14b1], {1,..., M} so that the average error probability, i.e., the
[52], [46, Ch. 9]. The reason why the performance improves probability that) differs from j, does not exceed
slightly with the memory depthV is the nonlinear scaling Observe thatP here is defined differently from the previous
of the Kerr-induced noise. FaV = 1, sequences of two or sections. It still represents the average transmit powetr, b
more high-amplitude symbols will receive high noise poweghile this quantity is Sec. ll-11l was interpreted in a sttitial
and dominate the average BER. For highgrlonger (and less sense as the mean of an i.i.d. random variable, it is in this
probable) sequences of high-amplitude symbols are redjuiggection the exact power @verycodeword.
to receive the same, high, noise power. Thus on average thdhe maximum coding rate R*(n,e) (measured in
performance improves witfV, up to a limit given by the GN bit/symbol) for a given block length and error probability is
model. defined as the largest ratitog, M) /n for which an(n, M, ¢)

The results in Fig. 4 also show how the finite-memory modebding scheme exists. The channel capac€itys the largest
in the high signal power regime approaches the GN model, @sding rate for which a coding scheme with vanishing error
predicted analytically in Sec. Ill-A. FoiN = 50, the two probability exists, in the limit of large block length,
models yield very similar BER and SER curves. N

C £ lim lim R*(n,e). (24)

e—~0n—o0

IV. CHANNEL CAPACITY

In this section, some fundamentals of information theor?/' Memoryless Channels

are first reviewed. Then a lower bound on the capacity of theBY Shannon'shannel coding theorerthe channel capacity

finite-memory GN model is derived and evaluated numericallfn bit/symbol) of a discrete-time memoryless channel with
codewords subject to the power constraint (23) can be calcu-

lated as [15], [16, Ch. 7]

Fig. 5 shows a generic coded communication system where ¢ =supl(X;Y), (25)
a message is mapped to a codewor@d = [x1,...,x,]. whereI(X;Y) is themutual information(MI)
This codeword is then used to modulate a continuous-time
waveform, which is then transmitted through the physical 1(X;Y) :/ fx.y(z,y)log, Mdmy (26)
channel. At the receiver’s side, the continuous-time wanraf Fx (@) fy (y)
is processed (filtered, equalized, synchronized, matched &énd the maximization in (25) is over all probability distrib
tered, sampled, etc.) resulting in a discrete-time observa tions fx that satisfyE[| X |*] = P, for a given channefy x.

A. Preliminaries

Y = [V3,...,Y,], which is a noisy version of the transmitted Roughly speaking, a transmission scheme that operates at
codewordz. The decoder use¥ to estimate the transmittedan arbitrary rate strictly less tha@ can be designed by
messageg. creating a codebook of/ = 2% codewords of length,

When designing a coded communication system, the filghose elements are i.i.d. random samples from the disiitbut
step is to choose the set of codewords that will be transthittgyx that maximizes the mutual information in (25). During
through the channel. This set, called ttedebookis stored transmission, the encoder maps each mesgag® a unique
in both the encoder and decoder. Once the codebook ltaslewordz, and the decoder identifies the codeword that is
been chosen, the mapping rule between messages and couest similar, in some sense, to the received vekioAn ar-
words should be chosen, which fully determines the encodibgrarily small error probabilitye can be achieved by choosing
procedure. At the receiver side, the decoder block will uselarge enough. Thisandom codingparadigm was proposed
the mapping rule used at the transmitter (as well as thAkready by Shannon [15]. In practice, however, randomly
channel characteristics) to give an estimatd the messagg¢. constructed codebooks are usually avoided for complexity
The triplet codebook, encoder, and decoder forms a soecalleasons.
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Since the additive noise in (2) is statistically indepertagn
X}, the channel is memoryless, and thus, the channel capacity -

of the GN model (2) can be calculated exactly as [5], [35] i
|

|
Pase + 77P3) @n “‘
using Shannon’s well-known capacity expression [15, S&f. 2|
[16, Ch. 9]. The capacity in (27) can be achieved by choosiﬁg
the elements of all codewords to be drawn independently |
from a Gaussian distributioBN (0, P). \ .
Considered as a function of the transmitted signal pafter ‘
the capacity in (27) has the peculiar behavior of reaching |/
a peak and eventually decreasing to zero at high enough
power, since the denominator of (27) increases faster then F:ig. 6. Six samples of the random input proc§sé, } used to generate the
numerator. This phenomenon, sometimes called the “namin@wer bound in Theorem 3. The channel memory is here= 1, meaning that
Shannon limit” in the optical communications Community?Nle = 3 input symbolsX, influence eqch putput symbol. The distributions
. P are illustrated as scatter plots Dd00 realizations for each sample.
conveys the message that reliable communication over non-
linear optical channels becomes impossible at high powers.

In the following sections, we shall question this pessiimist o )
conclusion. illustrated in Fig. 6, the memory in (8) depends only on a

single variable-amplitude symbol. This enables us to @eriv
an analytical expression for the resulting capacity lowerrid

C = log, (1 +

C. Channels with Memory

in (29).
The capacity of channels with memory is, under certain 'f'he)orem 3:For everyr,

. . . o > 0 and every probability distri-
assumptions on information stability [53, Sec. I],

bution fr over RT such that
1
C = lim sup —I(X7;Y?), (28) 2Nr? + E[R?]
noee on ON + 1 ’

where X; = (X Xip1,..., Xp), [(X3;Y7) is defined \yhere p ~ fp, the channel capacity of (8) is lower-bounded
as a multidimensional integral analogous to (26), and thg

=P (30)

maximization is over all joint distributions of;,..., X,
satisfying E[|X7}||?] = nP. In this context, it is worth ~~ _Ellog, fu(U)]
emphasizing that the maximization in (28) includes segesnc - 2N +1
X1,...,X, that are not i.i.d. Hence, in order to calculate the /OO 2 2
s T A e . — r)log,(ep(2Nri +77))dr. (31
channel capacity of a transmission link, it is essential tha 0 Jr(r)log(ep( ! ) (31)

employed channel model allows non-i.i.d. inputs. A .
. . .. Her =[U_ _ is a random v r wh
An exact expression for the channel capacity of the finite-- U =[U_n,U-n+1,..,Un]is arandom vector whose

memory GN model (8) is not available. Shannon’s formulécl),rObabIIIty density functiony is

which leads to (27), does not apply here, because the se- exp (_ szNquNrfﬁz)
quences{X;} and {Z;}, where Z, was defined in (8), 0 p(2NTI+1?)

are dependent. A capacity estimation via (28) is numeyicall fu(u) /0 fr(r) (p(2N72 + rz))QN-H
infeasible, since it involves integration and maximizataver P !

high-dimensional spaces. We therefore turn our attention t I (%)
bounds on the capacity for the finite-memory model. Every p(2NTi +72)
joint distribution of X1, ..., X}, satisfyingE[|| X" ||?] = nP N 2 Jur
Jgives us a lower boulnd on cgpacit;yTﬁus[H i) I % = 2 S ), (32)
- Thus, AL O\ veNg )
) .
> lim —I(X"Y"), (29) £
nmeo n where the functiorp(-) is defined in (12), andy(u) is the
for any random procesgX} such that the limit exists. modified Bessel function of the first kind.
Proof: See Appendix D. O
D. Lower Bound The bound will be numerically computed in the next section.

In this section, a lower bound on (28) is derived by )
applying (29) to the following random input process. In gverE- Numerical Results
block of 2N + 1 consecutive symbols, we let the firs¢ Theorem 3 yields a lower bound on capacity for every con-
symbols and the lasv symbols have a constant amplitudestantr; and every probability distributiotfz satisfying (30).
whereas the amplitude of the symbol in the middle of the blodkstead of optimizing the bound over all distributiorfs,
follows an arbitrary distribution. The phase of each synibol which is of limited interest, since the theorem itself paes
the block is assumed uniform. With this random input processnly a lower bound on capacity, we study a heuristically
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[ == = AWGN ’

GN model
6l Lower bounds|
5 -
4 -

N =2,5,10,20,50

C' [bit/symbol]

-20 -15 -10 -5 0 5
P [dBm]
Fig. 8. Lower bounds from Theorem 3 on the capacity of thedimemory
model for different values ofV. The exact capacities of the AWGN channel
and the GN model in (27) are included for comparison. Obsénet the
capacity of the finite-memory model does not converge to #pacity of the

GN model as the memori increases. Dashed lines indicate improved lower
bounds via the law of monotonic channel capacity.

we can take to be the shape parametend the ratior? /w.
The lower bound on the capacity of the finite-memory
— bound o from Th 5 Cnction. model given by Theorem 3 is shown in Fig. 7 as a function of
1g. /. ower bounds on capacity from eorem 3 as a function,dor 2 H _ H
various parameter$ and r?/w. Dots indicate the highest MI for each. _P’ v, andrl/w, f_or the speC|aI case/ = 1. The eXPeCtatlon
The memory isN = 1. in (31) was estimated by Monte Carlo integration. It can
be seen that at low to medium power, the optimum shape
parameterv is high, which means that the distribution is
) o o similar to a Gaussian. As the transmit powemcreases above
chosen family of distributions and optimize its parameteggproximately 0 dBm, the optimum shape parametagets
along with the constant amplitude. closer and closer t@. This means that the tail gets heavier,
An attractive distribution in this context is to let the \&sle-  so that at high power, it consumes almost all power, while the
amplitude symbols follow a complex, circularly symmetrigprobability of transmitting a high amplitud® is still small.

bivariate t-distribution[54, p. 86], [55, p. 1], In this sense, a t-distribution with a shape parameter pésr
1 o2 —(14v/2) similar to a satellite constellation [41].
fx(x)=— (1 + —) , (33) Selecting the optimum parametersand r7/w for every
2mw vw power P, the capacity bound is plotted in Fig. 8 as a function
where X (with magnitude R = |X|) denotes one such of transmit powerP, for selected values of the channel mem-
variable-amplitude symboly is a shape parameter, and ory N. The figure also shows the AWGN channel capacity
scales the variance, which equals [55, p. H[]X|?] = and the exact capacity of the GN model given by (27). In the

E[R?] = 2vw/(v — 2) if v > 2 and is otherwise undefined.low-power (linear) regime, the capacity bound is close ® th
The shape of this distribution is similar to a Gaussian, bat t AWGN capacity if N = 0, because the t-distribution is, at high
heaviness of the tail can be controlled via the shape pasmefalues of v, approximately equal to the capacity-achieving
v: the closemw is to 2, the heavier tail. This is, as we shall seésaussian distribution. AsV increases, the capacity bound
later, what makes it an interesting choice for nonlineaioapt tends, still in the linear regime, to the mutual informatioin
channels. constant-amplitude transmission [56], [57].
Again, we consider the same scenario as in Sec. II-E, withInterestingly, we can see that @é increases, the curves

the system parameters given in Table 1. The distribution @pPproach an asymptotic bound (the curves for= 10, 20,

R = |X]| is given by fr(r) = 2nrfx(r), with fx given by and50 almost overlap). It follows that reliable communication

(33). The power constraint (30), which reduces to in the high signal power regime is indeed possible for every
9 finite V. Qualitatively similar results can be obtained using
=N T 1 <2Nrf + wa) : satellite constellations. These results should be conipaité
v —

the regular GN model, whose capacity (27) decreases to zero
leaves two degrees of freedom to optimize for eagtwhich at high average transmit power [35]. It may seem contradicto
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that the GN model, which can be characterized as a limitiragnalysis. It is still possible (and often easy) to calculdie
case of the finite-memory model (cf. (8) and (2)—(3)), ndwert capacity of such channel models, but this capacity should no
less exhibits a fundamentally different channel capadihis be interpreted as the capacity of some underlying physical
can be intuitively understood as follows. For every block gshenomenon with a finite memory. As a rule of thumb, if the
2N + 1 symbols, we transmi2 N constant-amplitude symbolsmodel depends on the average transmit power, we recommend
with low power and only one symbol with variable (potentiall to avoid it in capacity analysis.

very large) power. Although the amplitude of this variable- A challenging area for future work would be to derive
power symbol is chosen so that the average power constrai¥re realistic finite-memory models than (8), i.e., diseret
is satisfied according to (30) (which requires averagin@®&r time channel models that give the channel output as a functio
many blocks of lengtt2 V' + 1), the convergence to averagey a finite number of input symbols, ideally including not
power illustrated in (3) does not occwithin a block, even gy a time-varying sequence of symbols but also symbols in
when N is taken very large. other wavelengths, polarizations, modes, and/or corest@n
While the results in this section apply exclusively to thgnalyze these models from an information-theoretic perspe
finite-memory model given by (1) and (8), qualitatively siani tjye. This may lead to innovative new transmission techegqu
results can be expected for any other finite-memory modgjhich may potentially increase the capacity significanthgro
This is a result of thdaw of monotonic channel capacity,known results in the nonlinear regime. The so-called neslin
which, cast in the framework of this paper, states that théhannon limit, which has only been derived for infinite-

channel capacity never decreases with power for any finitgemory channel models, does not prevent the existence of
memory channel [58]. This law does not give a capacity lowg[,ch techniques.

boundper se,but it provides an instrument by which a lower
bound at a certain poweP can be propagated to any power
greater thanP. Hence, observing that the lower bounds in
Fig. 8 all exhibit a low peak before they converge to their
asymptotic values at higl?, we conclude that marginally
tighter lower bounds can be obtained by flattening out the
part of the curves to the right of these peaks (dashed lines).

APPENDIXA
PROOF OFTHEOREM 1

We first compute the PMFP| xmem>. As | X" is a
V. DIscusSsION ANDCONCLUSIONS sum of 2N i.i.d. random variables, its PMF is th&V-fold
esreh‘-convolution of the PMF of one such random variable.
is convolution can be readily computed using probability
nerating functions [59, Sec. 5.1]. Let

We extended the popular GN model for nonlinear fib
channels with a parameter to account for the channel memo-l;
The extended channel model, which is given by (8), is able

model the tl_me—varylng output of an opt|cal_f|ber whqse input 13|xk.\2(2) _ E(ZQAQ 19,1087 | ZlSAZ)

is a nonstationary process. If the input varies on a timeescal 4

comparable to or longer than the memory of the channel, then _ 1( Ay 29A2)2 (34)
this model gives more realistic results than the regular GN 4

model, as we showed in Fig. 2. denote the probability generating function ok,|2. The

The validity of the GN model remains undisputed in thgrobability generating function df X 7"°"|? is
case of i.i.d. input symbols, such as in an uncoded scenario

~ ~ 2N

with a fixed, not too heavy-tailed modulation forfand a Py xmem2(2) = (Pix, 2(2)) (35)
fixed transmit power. These are the conditions under which 1, A2 gA2\4N

: . . = —(z +z ) (36)
the GN model was derived and validated. The uncoded bit 42N
and symbol error rates computed in Sec. Ill confirm that the AN AN )
finite-memory model behaves similarly to the GN model as = Z 24—N< ; >Z(4N+SZ)A : (37)
the channel memoryV increases. 1=0

The scene changes completely if we instead study capaciffe see from (37) that the PMF ¢itX "2 is
as in Fig. 8. In this case, the finite-memory GN model

does not, even at highv, behave as the regular GN model. Pr{|| X2 = §,} = 1 (4N>7 1=0,1,...,4N,
This is because the channel capacity by definition involves 20V 1

a maximization over all possible transmission schemes, in- (38)
cluding nonstationary input, heavy-tailed modulatiomfats, where

etc. In the high-power (nonlinear) regime, it turns out to be A )

beneficial to transmit using a heavy-tailed input sequence, O = (4N + 81)A" (39)
whose output the GN model cannot reliably predict. Hence,
the GN model and other infinite-memory models (in the sense
defined in Sec. II-C) should be used with caution in capacig’{)

Let BER; ,,; denote the conditional error probability of bit
given || X7°M|? = 6, and X;, = s;. The overall BER is
tained by averagin®ER,;; over allg = 1,...,4, 1 =
2Examples of “heavy-tailed” modulation formats are t-digitions L... 74N'_ andi =1,.. ) 16_' queve_r, due to_ t_he symmetric
(Sec. IV-E) and satellite constellations [41]. constellation and labeling in Fig. 3, it is sufficient to aage
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overq=1,2,i € {1,2,5,6}, and all, i.e., with parameterg4N,1/2), i.e., Syn is the sum of4N i.i.d.
5 random variables that take valuéand1 with the same prob-
Z Z BER, ;. ability. We use the notatiof 4 to emphasize the dependency
=1 ic{12.5.6) o on N. To prove (20), we need to calculalfieny oo us, k-
(40) First, we write Az, 1,+ using (17) and (12) as

4N
BER = ) " Pr{|| X}°"* =
=0

ool»—A

By (13), the received symbdf; given || X7°M|? = §, and

. . i . ) P/5
X, = s; is a complex, circularly symmetric Gaussian variable Ap,, .1+ = @ / (47)
with means; and variancey(§; + |s;|?)/2 per real dimension. Pase+1n (W)
Therefore BER,,;; can be expressed in terms of the Gaussian
Q-function By the strong law of large numbers [59, Sec. 7.4.(3)], the
ratio Lyn /(2N + 1) converges almost surely foas N — cc.
2r2 A2 Hence,
ALrt £Q T T oA | (41)
p(0r + 2tA2)
lim A = 713/5 48
These expressions are obtained by inspecting Fig. 3 as A ALy =@ Pase + nP3 (48)
BER;1,1 = N30, BERi21=XA1,9— A5, for any constant. Finally,
BERy1,2 = M35, BERy22=A15 — Ai5.5, lim g = lim E [A§4N71,t]
BER;1,5 = Ai,1,5,  BERy25 = Ai15 + A3 s, N—oo N—oo
: K
BER;16 =M.11, BERi26=XN11+N 31 (42) =k |:J\/1E>noo )‘L4N,1,t} (49)
Finally, (17) is obtained by substituting (39) and = P/10 P/5 K
into (41), and (16) is obtained by substituting (38) and (42) =1\ 5— 53 ; (50)
: Pase +nP
into (40).
where the exchange of limit and expectation in (49) is pos-
APPENDIXB sible because\},  , ; is bounded [59, Sec. 5.6.(12).(b)] and
PROOF OFTHEOREM 2 (50) follows from '(48). The proof of (20) is completed by
In analogy with (40), the SER is substituting (50) into (45) and simplifying.
AN The proof of the BER expression in (19) follows analogous
1 . .
SER — ZPr{||chnem”2 — 5} 7 Z SER,;, (43) steps and is omitted for space reasons.
=0 i€{1,2,5,6}

APPENDIXD

whereSER; ; is the conditional symbol error probability given PROOF OFTHEOREM 3

| X7eM|? = &, and X}, = s;. Note that there is no dependency _ _
on the bitg, as the SER does not depend on the labeling. TheConsider a sequence of independent symbals =

conditional SER can again be identified from Fig. 3 as _Rkejq)k’ k € Z, where for eachk, the magnituder), is
independent of the phasé,, which is uniform in [0, 27).

1—SER;;1 = (1—A1p0)%, The magnitudeR,, is distributed according tgr if £ = 0

1—-SER;2 = (1—X15)(1—2)\.15), mod (2N + 1) and is otherwise equal to the constant

1~ SERys = (1 — A1) (1 — 2M15) Furthermore,fz andr; are chosen so that (30) _holdsz Whlch
B 9 44 guarantees that the average power constraint is satisfied. W

1 =SER;6 = (1 =2N1.1)" (44) " Will next show that the right-hand side of (31) is the mutual

substituting the result together with (38) into (43), anch-si distribution. Hence, it is a lower bound on capacity.
plifying. We define blocks of lengtl?N + 1 of transmitted and

received symbols as

APPENDIXC y, & yl@N+D+N

PROOF OFCOROLLARY 1 t I(2N+1)—-N

. X éXl@N_HHN

The SER in (18) can be expressed as l I(2N+1)—N

3 1 1 for [ € Z. Let us focus for a moment on the received block
SER = w11 —u12 + sus1 — Us2 + sug1 — ~Ug2, (45)

2 ' 2 7" 4 Y. Let Y, be thekth element £ = —N,..., N) of Y.
where It follows from (8) that the additive noise contribution G,
AN depends on the input vecthXk*NH which may span more
g g 2 e Z (4N) K (46) than one input block. By construction, however, all elersent
’ 24N bt of XX with the exception ofX, have constant magnitude

ual tor;. Hence,
We can interpret the sum in (46) in probabilistic terms as q =

ugx = E[\E ], whereL,y is a binomial random variable [ XEENI2 = | Xo|? + 2N72. (51)
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This implies that {2|X1? /p(2N72 + 1)}, where|X,| = r, if k # 0 and
beN |X%| = r otherwise. Furthermore, these random variables are
Vi | X EHNAYER TN conditionally independent givepX,|. Using the change o
Fyxcren (ynleZy) ditionally independent Using the ch f
2 variable theorem for transformation of random variables, w
B 1 lyr — @i
= - (52)
p(

finally obtain after algebraic manipulations

2 3 exp —2 )
Tp(2NT3 + [20 %) 2N72 1 o)

EszN up+2N72 412
We see from (52) that each output samplein Y, actually €xp < - p(2NT2+12) )
depends on the input symbols only through and X,. We fu)x,(ulr) = RS
then conclude tha¥( depends on the whole input sequence (p(2NT§ +12))
only through X,. But this, together with the assumption of . 2ry/ug
independent input symbols, implies that the output blocks 0 p(2N72 + 12)
{Y';} are independent. Hence, from (29), ﬂ o1 [Tk
Io (722> - (6D
> I(X,,;Y 53 e p(2NTi +72)
=~ 9N +1 ( IZX) l) ( ) kk;é()N
for an arbitraryl € Z, say,l = 0. . . The probability distributionf;, which is given in (32), is
Next, we calculatd (X o; Y'o). The mutual information can obtained from (61) by taking the expectation with respect
be decomposed into differential entropies as tofr, the probability distribution of X,|. Finally, we obtain
. _ the capacity lower bound (31) by substituting (32) into (55)
I(X0;Yo) =h(Yo) — h(YolX 54
(Xo;¥o) (Yo) (Yol Xo), (54) and (58) into (56), by computing the difference between the
where two resulting differential entropies according to (54)day
dividing by 2N + 1.
h(Yo) = —Ellog, fy, (Vo) (55) i
h(Yo|X o) = —E[log, fyo|x, (Y 0| X0)]. (56)
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