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We obtain a fundamental instability of the magnetization-switching fronts in superparamagnetic and
ferromagnetic materials such as crystals of nanomagnets, ferromagnetic nanowires, and systems of
quantum dots with large spin. We develop the instability theory for both linear and nonlinear stages. By
using numerical simulations we investigate the instability properties focusing on spin avalanches in crystals
of nanomagnets. The instability distorts spontaneously the fronts and leads to a complex multidimensional
front dynamics. We show that the instability has a universal physical nature, with a deep relationship to a
wide variety of physical systems, such as the Darrieus-Landau instability of deflagration fronts in
combustion, inertial confinement fusion, and thermonuclear supernovae, and the instability of doping
fronts in organic semiconductors.
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Advanced magnetic materials with superparamagnetic
and ferromagnetic properties, such as molecular (nano)
magnets, ferromagnetic nanowires, and quantum dots with
spins larger than 1=2, are the focus of active research due
to their promising applications to spintronics and quantum
data storage [1–4]. In contrast to classical magnetic dipoles,
nanomagnets may keep their spin orientation unchanged in
altering magnetic fields [1,5,6]. Spontaneous transition of a
nanomagnet from the metastable state (against the field)
to the ground state (along the field) is hindered by the
magnetic anisotropy. In crystals of nanomagnets, the
transition may be induced by Zeeman energy release in
a spin avalanche, spreading in the form of a magnetic
deflagration front (due to thermal conduction) [7–13] or a
magnetic detonation front (due to shock waves) [13–15].
Then, in an external magnetic field, a spin-avalanche front
switches the magnetization of a crystal to the energetically
favorable state, similar to the propagation of a domain wall
in ferromagnetic nanowires [2,3].
So far, almost all experimental and theoretical studies of

spin avalanches have assumed a simplified planar 1D
geometry of the propagating fronts [7–13]. Only recently,
the possibility of 3D bending of a spin-avalanche front has
been encountered in heavy numerical simulations for the
specific propagation mechanism controlled by the dipole-
dipole interaction close to the tunneling resonance [16].
We stress that the propagation mechanism studied in [16] is
not related to the temperature gradient across the front, and
thus conceptually different from the experimentally observed
magnetic deflagration [7,8,12]. It was suggested in [16] that
the 3D bending of the magnetization-switching front is a
specific feature of the dipole-controlled propagation mecha-
nism, and thus may suffer from a narrow domain of appli-
cability.Moreover, thevery existence of the dipole-controlled

propagation mechanism studied in [16] has not yet been
confirmed experimentally. Thus, the issue of multidimen-
sional magnetic deflagration dynamics has remained open.
Here we demonstrate that the 3D bending of the

magnetization-switching fronts in superparamagnetic or
ferromagnetic materials is a universal physical phenome-
non, arising in a common situation when the front propa-
gation speed is controlled by the applied magnetic field. We
find that the instability distorts such fronts and increases
their propagation speed. We develop a theory for both the
linear and nonlinear stages of the instability, and perform
numerical simulations to investigate the instability proper-
ties, focusing on spin-avalanche fronts in crystals of
nanomagnets. We demonstrate that the instability leads
to a complex multidimensional dynamics, with the pos-
sibility of stationary cellular structures emerging at the
fronts or powerful front acceleration. Among other con-
clusions, the present theory explains 3D bending of the
dipole-controlled fronts encountered in the numerical
simulations of Ref. [16] as a particular case. The universal
approach to the problem used in our work makes it possible
to understand the deep physical relation of the present
instability to phenomena from other fields of physics such
as the Darrieus-Landau instability of deflagration fronts
in combustion, inertial confinement fusion, and thermo-
nuclear supernovae [17–20], as well as the instability of
doping fronts in organic semiconductors [21,22].
We consider a generic model of an initially planar front

in a magnetically active material. The front propagation
speed Uf depends on the external magnetic field B applied
normally to the original front; we set the z axis along the
direction of the external magnetic field. The front modifies
the magnetic properties of the material. In crystals of nano-
magnets, for the 2D geometry of Fig. 1, the magnetization
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vector of a fixed absolute value M switches from M1 ≡
ðMx1;Mz1Þ ¼ ð0;−MÞ ahead of the front (index 1 and
label 1 in Fig. 1) to M2 ≡ ðMx2;Mz2Þ ¼ ð0;MÞ behind
the front (index 2 and label 2 in Fig. 1). Deviations
of the magnetization vector from the �z axis may be
neglected [13].
The physical meaning of the instability may be under-

stood from Fig. 1. The front bending modifies the magnetic
field, with the absolute field value increasing close to the
front humps in agreement with Maxwell’s equations. This
increase of the magnetic field is similar to the increase of
the electric field by the convex parts of a conductor (e.g., at
a distorted doping front [21,22]), or to modifications of the
gas velocity at the humps of a wrinkled flame front [17];
here the magnetic, electric, and velocity fields play con-
ceptually the same role. In turn, the increase of the
magnetic field close to the front humps produces a local
increase of the front speed, thus leading to further unstable
growth of the hump. We demonstrate this effect below by
solving the stability problem for the originally planar
magnetic deflagration front Zf ¼ Uft with the initial
magnetic field normal to the front, B0 ¼ âzB0. The front
position is defined as z ¼ Zfðx; tÞ.
We consider infinitesimal front perturbations as a super-

position of Fourier modes, Zfðx; tÞ ¼ Uftþ ~Zfðx; tÞ,
where ~Zfðx; tÞ ¼

P
k
~Zk expðik · xþ σtÞ with the pertur-

bation wave number k ¼ 2π=λ, the wavelength λ, and the
factor σ. The purpose of the linear stability problem is to
find the dispersion relation σðkÞ; the front is unstable with
respect to the bending if ReðσÞ > 0 for at least some values
of k. As we show below, the factor σ is real and positive in
this problem, and may be called “the instability growth
rate.” We consider the stability of an infinitely thin front,
kLf ≪ 1, where Lf is the front thickness controlled by
transport processes, e.g., by thermal diffusion κ in the case
of magnetic deflagration, Lf ≡ κ=Uf. Perturbations of the
front induce perturbations of the magnetic field both ahead
and behind the front, B ¼ B0 þ

P
~BkðzÞ expðik · xþ σtÞ,

which satisfy Maxwell’s equations for a nonconducting

medium, ∇ ·B ¼ 0, ∇ ×H ¼ 0, B=μ0 ¼ HþM, where
μ0 is the vacuum permeability. Taking into account the
vanishing of the perturbations far away from the perturbed
front, at z → �∞, we solve Maxwell’s equations as
~B1;2ðzÞ ∝ expð∓kzÞ. We match the solutions using the
boundary conditions ân · ½B� ¼ 0, ân × ½H� ¼ 0, where the
normal vector to the perturbed front is ân ¼ âz −∇⊥Zf,
within the linear problem,∇⊥ corresponds to the transverse
variables x, and ½F�≡ F2 − F1 designates the difference of
any value F across the front. After resolving the boundary
conditions and Maxwell’s equations, we find the relations
between the field perturbations at the front, at z ¼ 0,
and the front perturbations for any Fourier mode, ~Bz1 ¼
~Bz2 ¼ μ0Mk ~Zf, which reflects the increase of the magnetic
field close to the perturbation humps, in agreement with
Fig. 1. Within the linear stability problem, the perturbations
of the front velocity are calculated as ∂t

~Zf ¼ U0
f
~Bz, with

U0
f ≡ dUf=dB, and we find the dispersion relation, see

Supplemental Material [23]

σ ¼ kU0
fμ0M: ð1Þ

Thus, a thin magnetization-switching front is uncondition-
ally unstable against multidimensional perturbations bend-
ing the front. The structure of the dispersion relation, σ ∝ k,
is mathematically similar to the Darrieus-Landau instability
of a flame front encountered in combustion, astrophysics,
and laser fusion [17–20], and to the instability of doping
fronts in organic semiconductors [21,22]. The similarity of
these dispersion relations implies complex multidimen-
sional dynamics of magnetic fronts, analogous to flames,
with the possibility of cellular and fractal structures
emerging at the fronts [17,18]. Still, as we show below,
the magnetic instability demonstrates also some unique
features, such as powerful front acceleration, which does
not happen for the traditional Darrieus-Landau instability.
The characteristic strength of the new instability σ=Ufk

is determined by the magnetizationM and the sensitivity of
the front speed to the magnetic field perturbations U0

f=Uf.
In particular, in the case of Permalloy nanowires, the
so-called “viscous” (i.e. controlled by dissipations) regime
of domain-wall propagation corresponds to a front speed
proportional to the applied field, Uf ∝ H, with the pro-
portionality factor about 1.1 m2=sA (see Ref. [2]). Taking
μ0M ¼ 1 T for a Permalloy and typical domain wall speed
ofUf ∼ 500 m=s, we obtain an extremely strong instability
with σ=Ufk ∼ 103. In that case even minor front bending
modifies the magnetic field strongly, with a considerable
increase of the propagation speed of the domain wall.
In contrast to ferromagnetic materials, the magnetization

of crystals of nanomagnets is rather moderate, correspond-
ing to μ0M ≈ 0.05 T [24]. We take the dependence of the
magnetic deflagration speed Uf on the applied magnetic
field from the experimental work in Ref. [8], shown by
markers on Fig. 2 and fitted by the red curve. The curve

FIG. 1 (color online). The magnetic field (shown by colors and
field lines) at a 2D curved stationary front propagating at constant
speed as obtained using numerical simulations of Eqs. (4) and (5)
for μ0M ¼ 0.05 T, B0 ¼ 0.1 T, and λ=Lf ¼ 20.
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reflects a monotonic increase of the magnetic deflagration
speed with the field but for local peaks of Uf due to
quantum resonances at B ≈ 0.92 T and 1.3 T. There are
more resonances in the dependence, which have not been
measured in Ref. [8], but may be found, e.g., in Ref. [12].
The monotonic part of the dependence may be described
by a simple formula originating from combustion theory
[9,10,13], as Uf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ=τRZe

p
exp ð−Ea=2TfÞ, where τR is

the characteristic time of spin flipping and Ze ∼ Ea=4Tf

is the Zeldovich number. The activation energy Ea
(in temperature units) and temperature Tf behind the front
are determined by the applied magnetic field; see [9,10,13]
for details. In the present work we describe the resonances
in Uf by taking τR as a function of the magnetic field
with the local resonance peaks approximated by the
Gaussian function: τR¼ τ0=f1þΣaiexp½−biðB=Bi−1Þ2�g,
where Bi is the respective resonance field, and the
parameters ai, bi control the height and width of the
resonance. A similar Lorentzian shape of the resonance
peaks has been suggested in the analytical model [25]. We
take the resonance width and height as free parameters of
the problem and calculate the relative instability strength
σ=Ufk in crystals of nanomagnets as presented in Fig. 2.
In the chosen magnetic field domain, we observe three
regions of considerable instability strength σ=Ufk ∼ 1: at
low magnetic fields B < 0.4 T when the front velocity is
small, and close to the resonances, when the front velocity
is sensitive to the field perturbations.
As the amplitude of front perturbations grows, nonlinear

effects become important with a possible saturation of the
instability growth to a stationary (i.e. time-independent)
cellular structure. We here solve the nonlinear problem of a
stationary cellular front propagating with constant speed by
using the classical Layzer model, which has been employed
successfully within the theory of the Rayleigh-Taylor

instability [18]. To be particular, in the nonlinear problem
we consider an axisymmetric pattern of the curved front,
which reproduces the most important quantitative proper-
ties of the respective 3D geometry, and still retains quasi-
2D simplifications from the analytical and numerical points
of view. For comparison, it has been demonstrated that
velocity increase of a curved Darrieus-Landau unstable
flame is practically independent of a particular 3D or
axisymmetric front shape [26]. Within the Layzer model,
the magnetic field is approximated by the leading Fourier
modes ahead of and behind the front, which are matched at
the tip of the curved stationary front, see Supplemental
Material [23]. Specifically, we consider the axisymmetric
cell geometry shown in Fig. 3 and take the magnetic field in
the form B0 þ ~B1;2, with ~B ¼ −∇ϕ, the scalar potential
ϕ ¼ Φ1;2 exp ð∓kzÞJ0ðkrÞ and the zero-order Bessel func-
tion J0. The amplitudes Φ1;2 are determined by the
boundary conditions at the bent front. The front shape at
the tip is parabolic, ZðrÞ ¼ −αr2, where the coefficient α
has to be found from the problem solution. By substituting
the obtained magnetic field into the boundary conditions,
we find an increase of the field at the front tip,
~Bzð0Þ≡ ~B0 ¼ 8Mμ0α=k, so that the front tip propagates
at an increased speed UfðB0 þ ~B0Þ. Since all points of a
stationary front propagate at the same speed, we arrive at
the equation

Uf½B0 þ ~B0J0ðkrÞ expðkzÞ� ¼ âz · ânUfðB0 þ ~B0Þ; ð2Þ
where ân is a normal vector to the front surface at ZðrÞ.
Expanding Eq. (2) at the front tip in kz ≪ 1, kr ≪ 1,
we obtain

~B0 ¼
8μ20M

2U0
f

Uf − 4μ0MU0
f
; ð3Þ

where Uf and U0
f are taken at B0 þ ~B0. The solution to

Eq. (3) determines the increase of the magnetic field at the

FIG. 2 (color online). The magnetic deflagration speed Uf
and the scaled instability growth rate, σ=Ufk, vs magnetic field,
with k ¼ 2π=λ, for magnetization μ0M ¼ 0.05 T. The markers
present the experimental data for Uf obtained in [8]. The
parameters of the resonance peaks at B1;2 ¼ 0.92; 1.32 ðTÞ are
a1;2 ¼ 1.89; 2.61 and b1;2 ¼ 840; 870.

FIG. 3 (color online). A stationary curved magnetic deflagra-
tion front in the axisymmetric geometry obtained numerically
using Eqs. (4) and (5) for the external magnetic field B0 ¼ 0.1 T,
magnetization μ0M ¼ 0.05 T, and the scaled channel radius
R=Lf ¼ 21. (a) Fraction of molecules in the metastable state,
n. (b) Magnetic field magnitude.
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front tip, ~B0, and hence the stationary front propagation
speed. An important feature of Eq. (3) is the lack of a
stationary solution for a sufficiently strong dependence of
the front speed on the magnetic field, 4μ0MU0

f=Uf > 1. In
that case, a powerful front acceleration with increasing
curvature is expected with no saturation, until additional
physical effects come into play and limit the front speed.
We have also validated the nonlinear theory by direct

numerical simulations of the magnetic deflagration fronts
for 2D and axisymmetric geometries using the basic
equations of energy transfer and kinetics of spin flipping,

∂E
∂t ¼ ∇ · ðκ∇EÞ −Q

∂n
∂t ; ð4Þ

∂n
∂t ¼ −

1

τR
exp

�
−
Ea

T

��
n −

1

expðQ=TÞ þ 1

�
; ð5Þ

where E is thermal (phonon) energy, n is the fraction of
nanomagnets in the metastable state, and Q is the Zeeman
energy release determined by the magnetic field at the
front; see Refs. [9,10,13] for details. Here E, Ea, and Q are
taken in temperature units. Equations (4) and (5) have been
complemented by Maxwell’s magnetostatic equations.
The initial temperature was taken to be uniform and low,
T0 ¼ 0.1 K, but for the small region close to the bottom of
the computational domain, where it was raised to Tf ¼
30 K required to induce the spin-flipping process. Slight
bending of the hot region initiated the instability develop-
ment. Boundaries of the computational domain are ther-
mally insulating with ân ·∇T ¼ 0; we also take ân · B ¼ 0
at the side boundaries and uniform B0 at the top or bottom
of the domain.
Figures 1 and 3 show the characteristic shape of the

curved stationary fronts obtained numerically as a result of
the instability development for the 2D and axisymmetric
geometries, respectively. Similar to stationary corrugated
flames and doping fronts, the cellular multidimensional
structure of the spin-avalanche fronts may be described
as smooth humps facing the initial cold material and
sharp cusps pointing at the transformed matter behind
the front. The numerical modeling demonstrates also a
strong increase of the magnetic field at the smooth tip, and a
decrease of the field at the cusps, in agreement with the
presented theory. In the numerical solution, we have also
reproduced the regime of powerful acceleration for the
cases of strong dependence of the front speed on the
magnetic field close to the quantum resonances. In par-
ticular, for the first quantum resonance field B1 ¼ 0.92 T in
Fig. 2, with the width of the peak set by the parameter
b1 ¼ 840 similar to the experimental data [8], the regime
of powerful acceleration takes place for an applied field
B0 > 0.84 T. In this regime, the Huygens nonlinear stabi-
lization of the front bending, which is common for flames
[18], cannot stop the development of the instability, and the

magnetic deflagration accelerates until the tip speed
reaches the limiting speed characteristic for the quantum
resonance peak. Here we stress that acceleration of this
type is a unique feature of the magnetization fronts; the
Darrieus-Landau instability in combustion, laser plasma,
or astrophysics does not exhibit any effect of this kind.
Figure 4 shows the acceleration of the spin avalanche close
to the magnetic resonance with the resonance heights set
by the parameter a1 ¼ 1.89; 5; 10; 30; the value a1 ¼ 1.89
stems from the experimental data [8]. At the same time, the
theoretical model [24] of the quantum resonances suggests
an ultimately large resonance height, well above the sound
speed in the crystals, 2000 m=s. Then the instability may
initiate a deflagration-to-detonation transition of magnetic
avalanches, from the strongly subsonic speed of about
1 m=s to the supersonic speed as observed in the nano-
magnet experiments [14], and similar to the respective
combustion process [27,28].
Thus, the experimental signature of the obtained insta-

bility is the curved front shape and increased velocity
of the magnetization front propagation. One may also
expect that the present instability gives rise to an asym-
metric shape of the resonance peaks; still, there is currently
insufficient experimental data to test this expectation.
Besides, the instability obtained in the present work may
be responsible for the magnetic deflagration-to-detonation
transition observed experimentally in Ref. [14]; the
process of magnetic detonation triggering requires more
studies.
To summarize, we have obtained a universal multidi-

mensional instability of magnetization-switching fronts,
which may develop spontaneously in superparamagnetic
and ferromagnetic media such as crystals of nanomagnets,
ferromagnetic nanowires and systems of quantum dots. The
instability leads to a curved front structure with a possible
strong increase of the propagation speed, and hence allows
control of the front dynamics. Because of the universal

FIG. 4 (color online). Scaled velocity of the front tip, Utip,
versus scaled time for B0 ¼ 0.86 T close to the first resonance
for b1 ¼ 840 and a1 ¼ 30 (a); a1 ¼ 10 (b); a1 ¼ 5 (c);
a ¼ 1.89 (d).
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instability properties, we expect our results to be applicable
to a wide variety of problems.

The authors are grateful to the Swedish Research
Council (VR) for financial support.

[1] L. Bogani and W. Wernsdorfer, Nat. Mater. 7, 179
(2008).

[2] Y. Nakatani, A. Thiaville, and J. Miltat, Nat. Mater. 2, 521
(2003).

[3] G. S. D. Beach, C. Nistor, C. Knutson, M. Tsoi, and J. L.
Erskine, Nat. Mater. 4, 741 (2005).

[4] M. Misiorny, M. Hell, and M. R. Wegewijs, Nat. Phys. 9,
801 (2013).

[5] J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, Phys
Rev. Lett. 76, 3830 (1996).

[6] L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli,
and B. Barbara, Nature (London) 383, 145 (1996).

[7] Y. Suzuki, M. P. Sarachik, E. M. Chudnovsky, S. McHugh,
R. Gonzalez-Rubio, N. Avraham, Y. Myasoedov, E. Zeldov,
H. Shtrikman, N. E. Chakov, and G. Christou, Phys. Rev.
Lett. 95, 147201 (2005).

[8] A. Hernández-Mínguez, J. M. Hernandez, F. Macià, A.
García-Santiago, J. Tejada, and P. V. Santos, Phys. Rev.
Lett. 95, 217205 (2005).

[9] D. A. Garanin and E. M. Chudnovsky, Phys. Rev. B 76,
054410 (2007).

[10] M. Modestov, V. Bychkov, and M. Marklund, Phys. Rev. B
83, 214417 (2011).

[11] S. McHugh, B. Wen, X. Ma, M. P. Sarachik, Y. Myasoedov,
E. Zeldov, R. Bagai, and G. Christou, Phys. Rev. B 79,
174413 (2009).

[12] P. Subedi, S. Vélez, F. Macià, S. Li, M. P. Sarachik,
J. Tejada, S. Mukherjee, G. Christou, and A. D. Kent, Phys.
Rev. Lett. 110, 207203 (2013).

[13] C. M. Dion, O. Jukimenko, M. Modestov, M. Marklund,
and V. Bychkov, Phys. Rev. B 87, 014409 (2013).

[14] W. Decelle, J. Vanacken, V. V. Moshchalkov, J. Tejada, J. M.
Hernández, and F. Macià, Phys. Rev. Lett. 102, 027203
(2009).

[15] M. Modestov, V. Bychkov, and M. Marklund, Phys. Rev.
Lett. 107, 207208 (2011).

[16] D. A. Garanin, Phys. Rev. B 88, 064413 (2013).
[17] C. K. Law, Combustion Physics (Cambridge University

Press, Cambridge, England, 2006).
[18] V. Bychkov and M. Liberman, Phys. Rep. 325, 115 (2000).
[19] M. Modestov, V. Bychkov, D. Valiev, and M. Marklund,

Phys. Rev. E 80, 046403 (2009).
[20] J. B. Bell, M. S. Day, C. A. Rendleman, S. E. Woosley, and

M. Zingale, Astrophys. J. 606, 1029 (2004).
[21] V. Bychkov, P. Matyba, V. Akkerman, M. Modestov,

D. Valiev, G. Brodin, C. K. Law, M. Marklund, and L.
Edman, Phys. Rev. Lett. 107, 016103 (2011).

[22] V. Bychkov, O. Jukimenko, M. Modestov, and M.
Marklund, Phys. Rev. B 85, 245212 (2012).

[23] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.113.217206 for details
of the linear and nonlinear stability analysis.

[24] D. A. Garanin and S. Shoyeb, Phys. Rev. B 85, 094403
(2012).

[25] M. N. Leuenberger and D. Loss, Phys. Rev. B 61, 1286.
[26] V. Bychkov and M. Liberman, Phys. Fluids 14, 2024

(2002).
[27] V. Bychkov, A. Petchenko, V. Akkerman, and L.-E.

Eriksson, Phys. Rev. E 72, 046307 (2005).
[28] V. Bychkov, D. Valiev, and L.-E. Eriksson, Phys. Rev. Lett.

101, 164501 (2008).

PRL 113, 217206 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

21 NOVEMBER 2014

217206-5

http://dx.doi.org/10.1038/nmat2133
http://dx.doi.org/10.1038/nmat2133
http://dx.doi.org/10.1038/nmat931
http://dx.doi.org/10.1038/nmat931
http://dx.doi.org/10.1038/nmat1477
http://dx.doi.org/10.1038/nphys2766
http://dx.doi.org/10.1038/nphys2766
http://dx.doi.org/10.1103/PhysRevLett.76.3830
http://dx.doi.org/10.1103/PhysRevLett.76.3830
http://dx.doi.org/10.1038/383145a0
http://dx.doi.org/10.1103/PhysRevLett.95.147201
http://dx.doi.org/10.1103/PhysRevLett.95.147201
http://dx.doi.org/10.1103/PhysRevLett.95.217205
http://dx.doi.org/10.1103/PhysRevLett.95.217205
http://dx.doi.org/10.1103/PhysRevB.76.054410
http://dx.doi.org/10.1103/PhysRevB.76.054410
http://dx.doi.org/10.1103/PhysRevB.83.214417
http://dx.doi.org/10.1103/PhysRevB.83.214417
http://dx.doi.org/10.1103/PhysRevB.79.174413
http://dx.doi.org/10.1103/PhysRevB.79.174413
http://dx.doi.org/10.1103/PhysRevLett.110.207203
http://dx.doi.org/10.1103/PhysRevLett.110.207203
http://dx.doi.org/10.1103/PhysRevB.87.014409
http://dx.doi.org/10.1103/PhysRevLett.102.027203
http://dx.doi.org/10.1103/PhysRevLett.102.027203
http://dx.doi.org/10.1103/PhysRevLett.107.207208
http://dx.doi.org/10.1103/PhysRevLett.107.207208
http://dx.doi.org/10.1103/PhysRevB.88.064413
http://dx.doi.org/10.1016/S0370-1573(99)00081-2
http://dx.doi.org/10.1103/PhysRevE.80.046403
http://dx.doi.org/10.1086/383023
http://dx.doi.org/10.1103/PhysRevLett.107.016103
http://dx.doi.org/10.1103/PhysRevB.85.245212
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.217206
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.217206
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.217206
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.217206
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.217206
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.217206
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.217206
http://dx.doi.org/10.1103/PhysRevB.85.094403
http://dx.doi.org/10.1103/PhysRevB.85.094403
http://dx.doi.org/10.1103/PhysRevB.61.1286
http://dx.doi.org/10.1063/1.1471913
http://dx.doi.org/10.1063/1.1471913
http://dx.doi.org/10.1103/PhysRevE.72.046307
http://dx.doi.org/10.1103/PhysRevLett.101.164501
http://dx.doi.org/10.1103/PhysRevLett.101.164501

