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Computational homogenization of crack-induced
diffusivity in concrete

Filip Nilenius1,2, Fredrik Larsson2, Karin Lundgren1, and
Kenneth Runesson2

1 Department of Civil and Environmental Engineering
2 Department of Applied Mechanics,

Chalmers University of Technology, Göteborg, Sweden

Abstract

Cracks have large impact on the diffusivity of concrete since they provide low-
resistance pathways for moisture and chloride ions to migrate through the material.
In this work, crack-induced diffusivity in concrete is modelled and computationally
homogenized on the mesoscale. Computations are carried out on three-dimensional
Statistical Volume Elements (SVEs) comprising the mesoscale constituents in terms
of cement paste, aggregates and the Interfacial Transition Zone (ITZ). The SVEs are
subjected to uni-axial tension loading and cracks are simulated by use of an isotropic
damage model. Increased diffusivity is then assigned to the damaged finite elements
in the SVE.

In a damaged finite element, the crack plane is assumed to be perpendicular to
the largest eigenstrain, and diffusivity is increased only in the in-plane direction of
the crack by anisotropic constitutive modelling. Since the developed global crack
in the SVE will be non-planar because of the presence of aggregates, the crack-
induced homogenized diffusivity of the SVE becomes by this procedure intrinsically
anisotropic.

Numerical results show that the macroscale diffusivity of concrete can be cor-
related to the applied mechanical straining of the SVE and that the macroscale
diffusivity increases mainly in the transversal direction relative to the axis of imposed
mechanical straining.
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Acronyms

3D: three-dimensional
CH: computational homogenization
FE: finite element
ITZ: Interfacial Transition Zone
SVE: Statistical Volume Element

Nomenclature

Subscripts

a aggregate
cp cement paste
cr crack
d damage
el elastic
itz Interfacial Transition Zone
l loading
p planar direction
tang tangent
I largest eigenvalue
t transversal direction
ul unloading
D part of boundary with Dirichlet

boundary conditions
N part of boundary with Neumann

boundary conditions
p prescribed

Greek letters

Γ� boundary of SVE domain
κ largest equivalent strain
ω damage parameter
Ω� SVE domain
ε strain tensor

σ stress tensor

Roman lower case letters

x̄ centroid of SVE
titz thickness of ITZ
u displacement
t time
h element size
na volume fraction of aggregates
w width

Misc.

[•] matrix representation in Voigt no-
tation

� SVE

Superscripts

M macroscale
s subscale

Roman capital letters

D̄ macroscale diffusivity tensor
D• diffusivity coefficient
D• diffusivity tensor
J flux vector
E stiffness tensor
Etang algorithmic tangent stiffness ten-

sor
Ed,l damaged stiffness tensor during

loading
Ed,ul damaged stiffness tensor during

unloading
n normal vector
E Young’s modulus
G shear modulus
L� side length of SVE
V volume
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1 Introduction

The diffusivity of concrete is of importance for the service life of most concrete struc-
tures, since the diffusivity enables chloride ions to penetrate through the material and
initiate reinforcement corrosion. The magnitude of the diffusivity is governed by many
factors both in terms of shrinkage, micro-cracking, age and degradation, as well as the
mechanical loading history of the material. This complexity makes material modelling
challenging if many of these factors are to be considered concurrently.

Cracks1 in the cement paste will substantially increase the chloride ingress rate and
subsequently lead to premature reinforcement corrosion. Therefore, the diffusivity of
concrete attributed to cracking has been under extensive study and modelling for a long
time by several authors: Gérard et al. [4] developed an early technique to experimentally
correlate crack width with permeability, whereas Gérard and Marchand [3] proposed a
simple model to predict the effect of cracking on diffusivity by the use of two parameters:
crack density and mean crack aperture. Jang et al. [8] carried out experiments which
suggested a linear relationship between crack width and diffusivity, and Liu et al. [11]
modelled increased diffusivity due to cracking using 3D diffusive lattice networks for
problems of both tensile loading and frost. In the work of Grassl [5], the author proposes
a model which coupled flow in cracked concrete by means of a damage-plasticity model
in conjunction with lattice elements.

However, crack-induced diffusivity in concrete within a computational homogeniza-
tion context has, to the authors’ knowledge, not yet been reported in the literature.
Computational homogenization as a technique to determine homogenized material
properties has great potential within this field, since it provides a rigorous theoretical
framework which can be utilized numerically to correlate subscale crack patterns to
macroscale diffusivity while accounting for the heterogeneous mesoscale structure of
the material. Using computational homogenization to derive macroscale diffusivity of
concrete influenced by material cracking on the mesoscale is the objective of this work.

In this paper, we model concrete on the mesoscale as a heterogeneous three phase and
three-dimensional (3D) material, contained within a Statistical Volume Element (SVE).
By imposing uni-axial tension loading in a preprocessing step, cracks are computed
using an isotropic damage model and the cracks are assigned anisotropic diffusivity
properties based on the orientation of the cracks, cf. Algorithm 1 below.

1we macro-cracks, as opposed to micro-cracks.
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Algorithm 1 Computational algorithm to obtain macroscale diffusivity.

1: Generate the SVE based on given sieve curve and volume fraction of aggregates, cf.
Algorithm 2.

2: Subject SVE to uni-axial deformation and compute crack widths in damaged finite
elements in each deformation step.

3: Assign constitutive model of diffusivity for cracked elements according to Eq. (12).
4: for selected load steps do

5: Solve the stationary boundary value problem of mass transport based on macro-
scale Dirichlet boundary conditions.

6: Homogenize mass flow obtained from the previous step to yield homogenized
macroscale diffusivity.

7: end for

2 Mesoscale model

We will employ a heterogeneous three-dimensional (3D) mesoscale model of concrete
developed in a previous work by the authors, see Nilenius et al. [14] for a detailed de-
scription. The model constitutes concrete as a three-phase composite material consisting
of cement paste, aggregates and the Interfacial Transition Zone (ITZ), cf. Figure 1. The
aggregates are modelled as spheres and can be of arbitrary size and quantity, while the
ITZ is an interface material between the cement paste and aggregates characterized by
high diffusivity and low stiffness. The mesoscale model is contained within a Statistical
Volume Element (SVE) which is generated according to Algorithm 2.

Algorithm 2 Algorithm to generate SVE

1: while the volume fraction of aggregates inside the SVE is smaller than desired do

2: Generate aggregate from given sieve curve.
3: Place the new aggregate at a random point in the SVE.
4: if new particle overlaps already existing particle then

5: Remove the new aggregate.
6: else

7: Add volume of the new aggregate to the accumulated aggregate volume.
8: end if

9: end while

2.1 Finite element discretization

The finite element (FE) discretization is carried out by subdividing the SVE into a
structured grid of equally sized voxels which make up 8-node solid finite elements,
cf. Figure 1. This discretization approach for 3D domains has also been employed by
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Garboczi [2] and Hain and Wriggers [6, 7] for heterogeneous modelling of cement paste
and concrete, respectively.

L�

Figure 1: Example of an FE-discretized SVE. The brown-red elements contain ITZ and are
described in detail in Section 2.3. The blue-gray elements and yellow-brown elements contain
cement paste and aggregates, respectively.

2.2 Constitutive relations for the mesoscale materials

For material diffusivity, we will use a constitutive relation for the mesoscale constituents
on the form

J = −D ·∇φ, (1)

where J is the mass flux [g/(cm2 s)], D is the second order diffusivity tensor [cm2/s],
∇ is the spatial gradient operator [1/cm] and φ is mass concentration [g/cm3]. The
diffusivity tensors are given for each material2 as

Dcp = DcpI, Da = DaI, (2)

where I is the unit tensor and D• are diffusion coefficients. The expressions for the
diffusivity tensors for the ITZ and cracked cement paste are given in Section 2.3 and
Section 2.4, respectively. Constitutive relations pertaining to the mechanical problem
are discussed in Section 3.1.

2.3 ITZ implementation

The effects of ITZ on the material properties of concrete are implemented for both
diffusion and mechanical considerations. When the SVE is discretizised into a structured
grid, a number of finite elements will contain all three mesoscale constituents of cement
paste, aggregates and ITZ, cf. Figure 2. The material properties of these elements are
explained in the following two subsections.

2a = aggregate, cp = cement paste.
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A variety of strategies to account for the effects of the ITZ have been devised in
the literature: Wang and Ueda [18] used lattice elements to model the effects of ITZ,
whereas Kim and Al-rub [9] chose to fully resolve the ITZ in the FE-mesh. In this work,
the effects of the ITZ will be included using analytical rules of mixtures of Voigt and
Reuss type. In this way, the material properties of the elements containing all three
mesoscale constituents will be averaged to yield effective properties and no additional
elements are needed for this choice of ITZ implementation.

Several authors have shown the ITZ to have a significant influence on the material
properties of concrete, cf. Nilsen and Monteiro [15] and Simeonov and Ahmad [17].
Consequently, to account for the ITZ is important regardless of the modelling approach
preferred.

r
Vcp

Va

Aitz

h

titz

n

Figure 2: Voxel (left) including the ITZ interface located on the surface of a spherical aggregate
(right). The interface voxels contain all three mesoscale constituents and analytical rules of
mixture are employed to model overall element properties. The element properties will depend on
the normal of the ITZ surface, n.

2.3.1 Diffusivity

The diffusivity tensor of the interface elements is computed via direct averaging using a
Voigt assumption on the form

Ditz =
VaDa + VcpDcp

h3
I +

AitzDitztitz

h3
(I − n⊗ n) , (3)

where D• are diffusivity coefficients, V• are volumes [cm3] of aggregate and cement
paste, n and Aitz is the normal and area [cm2], respectively, of the ITZ as shown in
Figure 2. Generally, we have that Da � Dcp � Ditz. The unknown parameters in Eq. (3)
include the thickness, titz, and the diffusivity of the ITZ, Ditz. Computationally, the
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product of these two, Ditz × titz in units of cm3/s, becomes the model parameter and
the auxiliary notation

D̂itz
def
= Ditz × titz, (4)

D̂cp
def
= Dcp × 1 cm, (5)

will be used for the numerical examples in Section 5.

2.3.2 Elasticity

The elastic properties of the ITZ are modelled to be transversally isotropic, where
the surface of the ITZ constitutes the plane of isotropy. A local coordinate system
is introduced in the interface elements, cf. Figure 3, where the transversal direction,
denoted t, is parallel to the normal of the ITZ surface and the plane of isotropy, denoted
p, is spanned by the two axes x′ and y′ that constitute the ITZ surface.

Vcp

Va

Aitz

h

titz

z′

x′
y′

x′
y′′

x
y

z

Figure 3: Global coordinate system (left) and local coordinate system in an element located in the
ITZ plane. The plane of isotropy is spanned by the two axes x′ and y′, whereas the transversal
direction is z′.

In the local coordinate system, the strain-stress relation in Voigt notation is given on
matrix form as

[ε′] = [S′][σ′], (6)

where superscript prime denotes the local coordinate system and [•] denotes matrix
representation in Voigt notation. Eq. (6) takes the explicit form
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣

εx′x′
εy′y′
εz′z′
εy′z′
εz′x′
εx′y′

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
[ε′ ]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
Ep

− νp

Ep
−νtp

Et
0 0 0

− νp

Ep

1
Ep

−νtp

Et
0 0 0

−νpt

Ep
−νpt

Ep

1
Et

0 0 0

0 0 0
1

Gpt
0 0

0 0 0 0
1

Gpt
0

0 0 0 0 0
2(1+ νp)

Ep

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
[S′ ]

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σx′x′
σy′y′
σz′z′
σy′z′
σz′x′
σx′y′

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
[σ′ ]

(7)

where E•, G• and ν are Young’s modulus, shear modulus and Poisson’s ratio, respec-
tively. Mapping of the compliance matrix [S′] from the local to the global coordinate
system is conducted via the transformation matrix [Aε] according to the expression

[S] = [Aε]
T[S′][Aε], (8)

where [Aε] = [Aε](n) is the transformation matrix which is dependent on the surface
normal of the ITZ, n.

The in-plane Young’s modulus, Ep, is computed using Voigt’s rule of mixture

Ep =
1
h3

(VaEa + VcpEcp + AitztitzEitz). (9)

and Young’s modulus in the transversal direction, Et, is computed by the use of Reuss’
rule of mixture

h3

Et
=

Va
Ea

+
Vcp
Ecp

+
Aitztitz

Eitz
, (10)

where h is the element size, cf. Figure 2, and Eitz is the Young’s modulus of ITZ which
is assumed to be a scaled value of Ecp on the form

Eitz = αEcp, where α ∈ (0, 1). (11)

By Eq. (10), Et will approximately equal Eitz for a sufficiently large Aitz. The
motivation for this formulation is that the ITZ constitutes a weak zone in concrete
through which cracks tend to propagate. The stiffness in the transversal direction should,
therefore, be governed by the stiffness of the ITZ to capture this effect. Furthermore, the

D-8



elastic strain will tend to concentrate in the ITZ, initiating the development of cracks.
However, since the third term on the right hand side of Eq. (9) will be much smaller in
magnitude than the other two, the stiffness will in the plane of isotropy be governed by
the stiffness of cement paste and aggregate. Effectively, the ITZ will only influence, i.e.
reduce, the element stiffness in the transverse direction.

Experimental data for Eitz are scarce in the literature. For the numerical examples
in Section 5 based on experimental data from Barbosa and Carneiro [1], we will use
α = 0.45 in Eq. (11).

Remark. The ITZ implementation adopted here pertains to the case of concrete subjected to
tension loading. In the case of imposed compression, a different ITZ model would have to be
considered.

2.4 Crack-induced diffusivity

The increased diffusivity attributed to cracking is modelled in the same fashion as the
diffusivity of ITZ described in Section 2.3.1. The crack plane in a damaged element is
assumed to be perpendicular to the eigenvector, nI, associated with the largest principal
strain, cf. Figure 4. The element diffusivity is then expressed as

Dcr = Dcp +
AcrDcrwcr

h3
(I − nI ⊗ nI) , (12)

where wcr is the crack width, Acr the crack area and Dcr the diffusivity of the crack, cf.
Figure 4. The crack width wcr can be computed as

wcr = hnI · [ε− E−1 : σ︸ ︷︷ ︸
εel=(1−ω)ε

] · nI = hωεI. (13)

where the damage parameter ω is defined in the following section.

nI
Acr

wcr

hx
y

z

Figure 4: Damaged element with a crack plane perpendicular to nI with an associated crack area
Acr. The crack plane is assumed to be perpendicular to the largest principal strain direction, nI.
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3 Stress analysis

3.1 Damage model

The modelling of damage is not the main objective of this paper; it will merely serve as
a preprocessor tool to determine possible crack patterns in the cement paste in which
diffusivity will be increased. Furthermore, for the numerical example, we will only
consider the case of uni-axial tension. Hence, we will only model damage due to tension
and not compression.

The damage model will be used as a smeared crack model. An isotropic damage
model for the cement paste and interface voxels/elements3 will be employed on the
form

σ = (1−ω)E : ε, (14)

where ω = ω(κ) is a scalar damage parameter, cf. Figure 5, given by the relation
(Mazars [12])

ω(κ) =

⎧⎨
⎩
0 if κ ≤ εcr,

1− (1− A)
εcr
κ
− A exp[−B(κ − εcr)] if κ ≥ εcr.

(15)

In Eq. (15), A and B are model parameters, εcr the strain at which cracking is initiated
and κ, in turn, a measurement of the largest equivalent strain, ε̃, ever reached in the
loading history of the material, expressed as

κ(t) = max
τ≤t

ε̃(τ), (16)

where t denotes time. The equivalent strain is expressed in energy norm as

ε̃ =

√
〈ε〉 : E : 〈ε〉

E
, 〈ε〉 def=

3

∑
I=1
〈εI〉nI ⊗ nI, (17)

and 〈•〉 denotes Macaulay brackets, i.e. 〈x〉 = max (0, x) for scalars.

3since aggregate elements are modelled without damage, they remain elastic.
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0 εcr

0

0.5

1

κ

ω

Figure 5: Eq. (15) graphed for A = 0.81, B = 10,450, and εcr = 1× 10−4 (parameter values
suggested by Saouridis [16]). The damage parameter ω increases rapidly in value once κ > εcr
and then asymptotically approaches full damage at ω = 1.

3.2 Boundary conditions on SVE

We will impose boundary conditions on the SVE on the form

u = ū + ε̄ · [x− x̄] ∀x ∈ Γ�,z ⊂ Γ�, (18)

where x̄ denotes the center coordinate of the SVE, ū the macroscale displacement and ε̄
the macroscale strain tensor expressed on the form

[ε̄] =

⎡
⎣−ν̄ 0 0

0 −ν̄ 0
0 0 1

⎤
⎦ ε̄zz, (19)

where ε̄zz is the prescribed normal strain evolution in the z-direction. Here, Γ�,z denotes
that part of the boundary where normal is in either positive or negative z-direction. The
remaining part of the boundary is said to be traction free. The structure of ε̄ in Eq. (19)
represents an approximation of uni-axial tension in the z direction. By this choice of
boundary conditions, it will be possible to computationally correlate macroscale strain
increments to macroscale diffusivity.

The part of the boundary conditions describing the Poisson effect in the lateral
directions, −ν̄ε̄zz, is only accurate for an SVE of homogeneous material. For an SVE
of heterogeneous materials—as considered in this work—the Poisson effect is only
approximate because the SVE boundaries will not contract uniformly.

4 Macroscale diffusivity

We wish to establish a macroscopic constitutive relation on the form

J̄ = −D̄ · ∇̄φ̄, (20)
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where •̄ denotes a macroscopic quantity, J̄ the macroscale flux, D̄ the macroscale
diffusivity tensor and ∇̄φ̄ the macroscale gradient of some macroscale potential φ̄. In
particular, the dependence of the macroscopic diffusivity tensor on macroscale strain
increments will be determined.

The homogenization procedure stems from the fully resolved, stationary, boundary
value problem of determining the potential φ(x) from the balance equation

∇ · J = 0 ∀x ∈ Ω, (21)

for which all material heterogeneities are embedded in Ω ⊂ R3. Here, ∇ is the nabla
operator and J(x) the flux of some generic physical quantity. We consider the linear
constitutive relation

J = −D ·∇φ, (22)

where D varies in space as discussed in Section 2. By e.g. adopting variationally
consistent homogenization, as proposed by Larsson et al. [10], the macroscale flux can
be established as

J̄ = 〈J〉�, (23)

where 〈•〉� denotes the volume average

〈•〉� def
=

1
|Ω�|

∫
Ω�
• dΩ�, (24)

The considerd SVE Ω� is centered at the macroscale position x̄ ∈ Ω; hence, 〈x− x̄〉� = 0.
Assuming separation of scales, we consider a unique SVE at each macroscale coordi-

nate x. It is then possible to introduce the split of a scalar field φ within Ω� into the
macroscale and fluctuation parts4 as follows:

φ(x; x̄) = φM(x; x̄) + φs(x). (25)

Adopting first order homogenization, the macroscale part is assumed to vary linearly

φM(x; x̄) = φ̄(x̄) + ḡ(x̄) · [x− x̄] ∀x ∈ Ω�, (26)

with ḡ def
= ∇̄φ̄. Hence, we obtain ∇φM(x̄; x̄) = ḡ(x̄) constant within Ω�.

Adopting Dirichlet boundary conditions, the local fluctuations φs ∈ φs = {φ
sufficiently regular, φ = 0 on Γ�} can be solved from

1
|Ω�|

∫
Ω�

∇δφs · D · (ḡ +∇φs)dΩ = 0 ∀δφs ∈ φs. (27)

As a result, the homogenized flux can be computed as the implicit relation

J̄ = J̄{ḡ} = −〈D · (ḡ +∇φs)〉�. (28)

4Superscripts M and s denote macroscale and subscale, respectively.
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In order to establish the macroscale tensor D̄ expressed in Eq. (20), the linearity of
Eqs. (27) and (28) can be utilized. Following Nilenius et al. [14], we can express the
subscale fluctuation as

dφs =
3

∑
i=1

φ̂s
(i)

ḡ ei · dḡ, (29)

where ei are the orthonormal basis vectors. The unit fields φ̂s
(i)

ḡ ∈ φs can be solved from

1
|Ω�|

∫
Ω�

∇δφs · D ·∇φ̂s
(i)

ḡ dΩ = − 1
|Ω�|

∫
Ω�

∇δφs · D · ei dΩ ∀δφs ∈ φs, (30)

for i = 1, 2, 3. Based on the unit fields, the effective diffusivity becomes

D̄ = 〈D〉� +
3

∑
i=1

〈
D ·∇φ̂

s(i)
ḡ

〉
�
⊗ ei. (31)

Remark. We remark that for the particular linear case pertinent to Eq. (22), J̄ will be unaffected
by φ̄. For further details we refer to Nilenius et al. [14] where the general non-linear case is
considered.

5 Numerical example

The following numerical example serves to benchmark the proposed model. An SVE
of with L� = 2 cm is considered with a volume fraction of aggregates of about 42%,
cf. Figure 6. We wish to determine the macroscale diffusivity tensor as a function of
imposed macroscale strain in z-direction, i.e. we wish to determine the mapping

ε̄zz �→ D̄(ε̄zz). (32)

We consider the linear problem J = −D ·∇φ, where the local diffusivities are given in
Eqs. (2), (3) and (12). As a result, the macroscale diffusivity tensor presented in Eq. (31)
can be computed independently of φ̄ and ḡ.
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y
x

z

Figure 6: SVE used for the numerical exampel. The SVE has 343,000 elements and 1,073,733
DOF for the mechanical problem and 357,911 DOF for the diffusion problem.

5.1 Crack simulation

Model parameters pertaining to the mechanical problem are given in Table 1 below.

Table 1: Input parameters

Parameter Description Value

Ecp Young’s modulus of cement paste 35GPa
Ea Young’s modulus of aggregates 70GPa
Eitz Young’s modulus of ITZ 15.75GPa
ν Poisson’s ratio 0.2
εcr crack strain for both cement paste and ITZ 1× 10−4
A model parameter in Eq. (15) 0.81
B model parameter in Eq. (15) 10,450
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The stress-strain relation for the SVE is shown in Figure 7, whereas Figure 8 shows
the strain and crack evolution for the SVE. In the elastic regime—as seen in Figure 8a—
the strain is concentrated in the ITZ attributed to the transversal isotropy modelling as
described in Section 2.3.2. As the applied macroscale strain increases, the cracking strain,
εcr, is eventually reached in the ITZ and cracking is then initiated. The crack propagation
then follows the weak zone provided by the ITZ and is bridged over between aggregates
through the cement paste which can be clearly seen in Figure 9.

0 0.5 1 1.5

·10−4

0

0.2

0.4

0.6

0.8

ε̄zz [−]

〈σ
zz
〉 �

[M
Pa

]

Figure 7: Homogenized stress versus applied macroscale strain in z-direction. The homogenized
stress is computed by taking the volume average of σzz in the SVE.

The macroscale stiffness of the SVE can be determined from Figure 7. Because of the
ITZ, the slope in the elastic regime equals 30.7GPa which is lower than both Ecp and
Ea, cf. Table 1. Even though the aggregates are stiffer than the cement paste, the weak
interface between the cement paste and aggregates decreases the macroscale stiffness
and the net effect of aggregates is a reduction in stiffness of the SVE. This observation is
in agreement with Mehta and Monteiro [13]. They claim that the ITZ is the reason why
concrete is weaker than both cement paste and aggregates.
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(a) ε̄zz = 5× 10−8.

y
x

z

(b) ε̄zz = 2.3877× 10−5.

y
x

z

(c) ε̄zz = 2.7580× 10−5.

y
x

z

(d) ε̄zz = 1.1021× 10−4.

Figure 8: Mesoscale strain evolution at different macroscale strain increments. Bar legends
show maximal eigenstrain. Figure 8a is in the elastic regime while cracking has begun to develop
in Figures 8b to 8d.
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Figure 9: Cut out in the SVE showing how the crack path follows the ITZ. This is the same
figure as Figure 8d but differently visualized.

5.2 Macroscale diffusivity

Once the mechanical problem has been solved, the macroscale diffusivity tensor can
be computed from Eq. (31). Model parameters pertaining to the diffusion problem are
given in Table 2. Two cases were studied: with and without diffusivity in the ITZ.

Table 2: Input parameters

Parameter Description Value

Dcp diffusion coefficient of cement paste 1 cm/s2

Da diffusion coefficient of aggregates 0 cm/s2

D̂itz diffusion coefficient of ITZ 0.15× D̂cp
Dcr diffusion coefficient of crack 50,000× Dcp

Remark. Assuming the thickness of the ITZ to be 50 μm would correspond of a diffusivity in
the ITZ equal to: Ditz × 50 μm = 0.15× D̂cp = 0.15× Dcp × 1 cm⇒ Ditz = 30× Dcp.
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5.2.1 Without diffusivity in the ITZ

Figure 10 shows the component of the macroscale diffusivity tensor, D̄, as a function
of applied macroscale strain for the SVE with diffusivity only in cement paste, i.e. the
diffusivity in the ITZ was set equal to zero. While in the elastic regime, the diffusivity
remains constant but once cracking is initiated at about ε̂zz = 3× 10−5, the diffusivity
increases rapidly in value.
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Figure 10: Components of the macroscale diffusivity tensor, D̄, as a function of macroscale
strain. Numerical values are normalized with respect to Dcp. The diffusivity in the ITZ is zero
in this example.

The anisotropy of the diffusivity tensor can be observed in Figure 10 since the
diagonal components of D̄ do not increase in value by the same magnitude. Furthermore,
the influence of material heterogeneities on the macroscale diffusivity is also apparent.
If the SVE were homogeneous, a crack would develop in one plane perpendicular to the
z-direction. For this SVE, however, the crack follows the surfaces of the aggregates and
the global crack surface is rotated with respect to the z-direction as seen in Figure 8a.
This explains why (D̄)xx and (D̄)yy differ in value in Figure 10a. For a homogeneous
SVE, these two components would increase identically in value and (D̄)zz would remain
invariant to the applied strain.

Remark. For multiple SVE realizations, the mean difference between (D̄)xx and (D̄)yy is
expected to tend to zero.

5.2.2 Influence on diffusivity of ITZ

The macroscale diffusivity tensor was also determined when a diffusivity in the ITZ was
added, the results of which are shown in Figure 11. As seen in Figure 11b, by adding
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diffusivity to the ITZ, the components of the homogenized macroscale diffusivity tensor
D̄ are not increased by a constant as the crack develops. Instead, as the applied strain
increases the ITZ yields a non-linear increase in diffusivity compared.
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(a) Diagonal components of D̄ for D̂itz = 0.15× D̂cp.
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Figure 11: Components of the macroscale diffusivity tensor, D̄, as a function of macroscale
strain. Numerical values are normalized with respect to Dcp.

6 Conclusion and outlook

A model has been proposed to simulate crack-induced macroscale diffusivity of concrete
by means of computational homogenization. The model is based on a three-dimensional
(3D) Statistical Volume Element (SVE) of mesoscale concrete, in which the mesoscale
constituents include the cement paste, aggregates and the Interfacial Transition Zone
(ITZ).

The model provides a means to computationally correlate cracks to macroscale
diffusivity in a novel fashion. The effects of the ITZ are also considered for both the
mechanical problem of cracking as well as enhanced diffusivity.

The numerical results show that the macroscale diffusivity rapidly increases from
its virgin value when cracking has been initiated. By the choice of constitutive model
on the mesoscale level, the anisotropy of the macroscale diffusivity tensor of cracked
concrete is captured. The crack propagation, in turn, could also be attributed to the
material heterogenities of the SVE in a realistic way. The results further show that the
ITZ yields a non-linear increase in macroscale diffusivity when cracks are present in
the SVE even though the diffusion coefficients of the ITZ and cracks were chosen to be
constant.
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Additionally, the proposed model is scalable in the sense that an SVE of arbitrary
size—holding any realistic aggregate content—can be simulated as long as sufficient
hardware resources required to solve the system of equations can be provided.

The model still needs further numerical investigation, in addition to calibration with
experimental data. For instance, only a single SVE has been studied in this paper and
the statistical scatter of the results has, therefore, not been quantified.

A natural extension of the model would be to consider the case where the macroscale
diffusivity remains increased when the SVE is fully unstrained. Currently, cracks will
fully close if the SVE is unstrained and the macroscale diffusivity will, consequently, in
that case decrease to its virgin value.
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