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Abstract

One of the most prominent questions in modern cosmology is the origin of the acceler-
ated expansion of the universe. A solution might lie in modifying gravity in the infrared
by adding a small mass to its mediating particle. In recent years, dRGT massive gravity
and its dynamical extension Hassan-Rosen bimetric massive gravity have been shown to
be classically consistent theories. This prompts for a phenomenological investigation of
their predictions in cases already examined in general relativity, such as in spherically-
symmetric geometries and on cosmological scales.

The thesis, conducted within the Cosmology, Particle Astrophysics and String Theory
group at Stockholm University, elaborates on aspects related to the evolution of large-scale
structures through analysis of the bimetric equations of motion for linear perturbations.
We review the foundations of relativistic perturbation theory in general relativity. A
particular emphasis is placed on superhorizon signatures with the integrated Sachs-Wolfe
effect as a candidate mechanism. Moreover, we present the theoretical framework of
bimetric massive gravity with applications to cosmology, both on the background level and
concerning linear perturbations. The single-coupled theory with FLRW ansätze for the
background metrics is investigated in the self-accelerating minimal bimetric β1− and the
infinite-branch β1β4−models, where the latter has attracted significant interest recently,
with a normalization density condition provided by the Planck 2013 survey. We solve
the system of equations of motion for the linear scalar perturbation fields in the Fg =
Ff = 0−gauge following the notation of Solomon et al. and find an additional alternative
by examining the Noether identities for the second-order perturbed action based on the
method demonstrated by Lagos et al. To conclude, we plot the evolution of the linearized
bimetric gravitational potentials from the early universe till today and discuss the relation
to the predictions of ΛCDM.
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Chapter 1 Introduction

1.1 Motivation

Numerous questions remain unanswered in modern theoretical physics, the experimentally
observed accelerated expansion of the universe one of them, [1] [2], usually attributed to an
elusive dark energy. This prompts a theoretical description, and motivates a study of modified
gravity theories. The accelerating universe could be described by a non-zero cosmological
constant in Einstein’s equations, but this constant is far below the value one would expect from
studying the energy density arising from the non-zero vacuum expectation value predicted
by quantum field theory. This acute situation is known as the cosmological constant problem.
A natural attempt to resolve this issue could be through the introduction of a massive spin
2-mode for gravity. Such theories have attracted renewed interest in recent years with the
proof of the classical consistency of massive gravity and its generalized extension bimetric
gravity, [3] [4] [5], which are theories with two metrics. The Cosmology, Particle astrophysics
and String theory (CoPS) group at Stockholm University, part of the Oskar Klein Center for
Cosmoparticle Physics, has been leading in this paradigm shift. In order to test the validity
of this theory one has compared zero:th order solutions with cosmological observations, [6].
Moreover, a study of first-order linear perturbations for general homogeneous and isotropic
backgrounds have been conducted, [7], with an analysis of explicit solutions for de Sitter and
quasi-de Sitter approximations. As linear perturbations represent the advent of structure
formation, their investigation is crucial to phenomenologically test the predictions of bimetric
gravity in the light of observational data. Optimally, one could obtain a class of theories
providing viable cosmological scenarios, which would be subjected to further examinations.

At Stockholm University, I have been supervised by Dr. Edvard Mörtsell and Jonas
Enander. Examiner at the Department of Fundamental Physics at Chalmers University of
Technology is Prof. Dr. Gabriele Ferretti.

1.2 Aim

In this project, the goal is to find one or several numerical solution(s) to the equations of
motion for linear perturbations in bimetric gravity, see [7], using gauge invariant variables.
Previously, solutions have been found for de-Sitter and quasi-de Sitter backgrounds ana-
lytically, and now the quest is to comprehend the general case. Moreover, the theoretical
foundations of the theory are studied with help from recent reviews, [8] [9], together with the
excellent PhD thesis [10]. Additionally, insights from recent progress in the field, [11], are
analyzed and incorporated in the final result.
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1.3 Objectives
Serving as a guide throughout the project, the work is trying to find answers to the following
questions of scientific interest:

(i) Which approximations could successfully be made?

(ii) Which initial conditions are appropriate to allow for a general solution that is physically
viable?

(iii) How can we test the mathematical properties of the solutions (stability)?

(iv) Which symmetries do the solutions exhibit?

(v) In which gauge is the physical interpretation most evident?

(vi) How do the solutions relate to experimental data from telescopes?

1.4 Scope and notation
Bimetric gravity is a nascent field and hence there remains a lot to explore. This project
is limited to the study of first-order linear perturbations for independent wave modes with
no anisotropic stress factors. Such a restriction simplifies the equations of motion, reducing
the description of the problem in terms of partial differential equations to differential alge-
braic equations and yield a class of solutions which presumably is close to observational data,
which is true for general relativity. Primarily, superhorizon length scales are investigated as
subhorizon solutions were previously examined in [11]. Currently, the subject of suspected
instabilities in the perturbation equations, highlighted for instance in [12], remains an unre-
solved, moot point and hence our excursion into this territory will be circumscribed. We will
not discuss bimetric black hole solutions but urge the interested reader to ponder results from
for instance [13] and [14]. Effects in the context of gravitational lensing are highlighted in [15].
Concerning different frameworks, we will present the work using the covariant formulation
of the theory. An alternative, the vielbein formalism, has facilitated the venture into more
general multimetric theories [16] [17]. Still, its equivalence with the covariant formulation
involves interpretative subtleties [16] [18]. Together with the amount of research conducted
using the prior framework, this serves as an impetus to work covariantly but we encourage
the interested reader to study [9] for a comprehensive review. Moreover, the purpose of this
thesis is restricted to investigate properties of bimetric gravity and we will not perform a
benchmark against other modified theories of gravity. An overview of bimetric gravity in
this context can be found in [19]. Regarding notation, we use the mostly plus −, +, . . . , +
metric convention with c = 1. Repeated indices are summed over unless otherwise explicitly
specified.

1.5 Method
The work is principally conducted through simulations in Mathematica complemented by
calculations by pen and paper. Numerical methods and physical aspects of bimetric theory
and its connection to general relativity are investigated through literature studies preceding
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the coding and have continue throughout the project. Several discussions with supervisors
and group members as well as active participation in relevant seminars and meetings help
in clarifying some of the more challenging theoretical and computational aspects. Non-plot
figures are drawn in Adobe Illustrator CC unless an external source is credited.
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Chapter 2 Large-scale structure formation

The universe consists of more than empty space, including nebulae, interstellar dust and a tiny
blue-green world. To allow for these things formally, we examine small deviations from the
unperturbed homogeneous and isotropic background solution and see how these develop over
time, resulting in structure formation. Observationally when we refer to large-scale structures,
we are chiefly interested in counting the number of galaxies in the sky and analyzing how they
are clustered together at different times (see an artistic sketch in figure 2.1). An individual
galaxy evolves in a nonlinear fashion and the same is true for a group of galaxies, but on larger
scales one could predict a linear evolution given the equations of motion for the perturbations
in a chosen model.

Physically, we seek to determine the density contrast δ(t) = δρ(t)/ρ̄(t), where ρ̄(t) denotes
the unperturbed density and δρ(t) its variation, between galaxy clusters and void. In Ein-
stein’s theory of general relativity (GR), [20], we model these inhomogeneities by perturbing
the stress-energy-tensor which corresponds to perturbing the metric on the other side of the
equal sign. If we only consider perturbations at the linear order, which predominately govern
the formation of large-scale structures and which we model as small perturbations of the
background values, it is possible to relate the perturbed quantities through

L (ḡab) δgab = δTab , (2.1)

where the perturbations are denoted by δ and L is a second-order differential operator depend-
ing on the unperturbed background metric ḡab. If one has a maximal symmetric background,
which is the case in homogeneous+isotropic cosmology, one may decompose the space and
time dependencies separately for the perturbations. In our analysis we use this to perform
a Fourier transform with respect to the spatial x. We are then able to write down this
equation (2.1) for each mode which is labelled by a wavenumber k. At the linear level there
will be no mixing between different modes in the equations of motion. Assuming that this
k is spatially isotropic, our system of equations for the different perturbations is reduced
from a system of partial differential equations to one of ordinary differential equations or
one of differential-algebraic equations, i.e. a system where some variables appear in algebraic
constraints.

The origin of these inhomogeneities remains speculative at present, although quantum
fluctuations of an primordial inflation field following the Big Bang is a popular theory which
agrees with our current observations. Still, it is possible to make predictions without knowing
the explicit details of the progenitors to the observable inhomogeneities as we have a good
understanding on how to model the evolution using the framework of general relativity. De-
spite this promise some uncertainties remain as we are not fully aware of the nature of dark
matter and dark energy. If our goal is to probe the viability of modified theories of gravity,
we must redo and adapt the steps which we will lay out in this first chapter on large-scale
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Figure 2.1: Illustration of the development of large-scale structures in an expanding universe here
depicted as a balloon, characterized by the density contrast δ(t), from primordial inhomogeneities
represented by the small dots at the bottom of the balloon. Note that many more galaxies than those
drawn here are required to form large-scale structures.

structure formation in GR.
We will begin by introducing concepts such as redshift and the Hubble length to be able

to define what we mean with large structures in more detail. Later, we proceed to a review of
cosmological solutions and then into the mathematical modeling of structure. A corresponding
treatment within the framework of bimetric theory will be presented in chapter 4.

2.1 Preliminaries

To refresh the readers’ memories and facilitate further discussions on the topic, we will present
a brief overview of Friedmann’s equations for a homogeneous and isotropic universe. This is
the foundation for the ΛCDM model, the standard model of cosmology which is our best fit to
the observed experimental data. ΛCDM mean “cold dark matter with a nonzero cosmological
constant Λ”, whose background solution is governed by the Friedmann equations where we
have added a cosmological constant term plus have split the matter density component into
ordinary and dark matter.

Firstly, we will discuss homogeneity and isotropy before we move on to the derivation.
Expressed in topological terms the following definition applies: A spacetime (manifold M
with metric g) is spatially homogeneous if there exists a group of isometries whose orbits are
three-dimensional spacelike surfaces. The orbit of a point p ∈ M are all points obtained by
acting on p with the isometry group. A surface is classified as spacelike if all tangent vectors
are spacelike and the spacetime metric will induce a homogeneous metric (pullback) on each
of these surfaces. This means that through each point in a spatially homogeneous spacetime
there exists a three-dimensional surface with a homogeneous metric. Proceeding to isotropy,
i.e. that the universe looks the same in all directions, it is important to emphasize that only a
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certain class of observers can see it in that way. Suppose an observer at p has a 4-velocity with
a non-zero component along the surface of spatial homogeneity through p then this selects a
favored spatial direction, incompatible with isotropy. Hence, only observes whose 4-velocities
are normal to the surfaces of spatial homogeneity can perceive the isotropy. Such observers
are denoted comoving.

As a starting point we start with the Einstein-Hilbert action with a matter coupling and
a cosmological constant term Λ in dimension d = 4,

SEH+m =
∫

d4x
√
−g

[
1

M2
PL

(R− 2Λ) + Lm

]
, (2.2)

where MPL is the Planck mass, M2
PL = 1/(8πG) in units c = ~ = 1, whose variation yields

Einstein’s field equations

Rµν −
1
2gµνR+ Λgµν = 1

M2
PL

Tµν , (2.3)

with Tµν as the stress-energy tensor obtained from varying the matter Lagrangian piece. In
spherical polar coordinates, the Friedmann-Lemaître-Robertson-Walker (FLRW) line element
becomes

ds2 = −dt2 + a(t)2
[

dr2

1− kr2 + r2 dΩ
]
, (2.4)

where dΩ is the differential solid angle, a(t) the cosmological scale factor and k1 associated
to the geometry of spacetime, corresponding to

k =


+1, spherical,

0, flat, Euclidean,
−1, hyperbolical.

(2.5)

Unless explicitly written out, we will generally assume k = 0.
Imagine an observer who is positioned at the center of an FLRW coordinate system at

r = 0 and who receives radiated light at a time t = t0 emitted from a source some radial
distance r = rs at time t = ts. The two events are connected by a null geodesic and, taking
the distance to be purely radial, the light ray obeys

ds2 = 0→ dt = ±a(t) dr
(1− kr2)1/2 . (2.6)

It is possible to establish a relation between rs and ts through integration∫ t0

ts

dt
a(t) =

∫ rs

0

dr
(1− kr2)1/2 . (2.7)

If we examine the differential of this equation, keeping in mind that radial coordinate of
comoving sources r1 is time-independent, one obtains that the interval between emitted sub-
sequent light signals δts is related to the interval of arrival of the same signals δt0 through

1Since there are few available fitting letters, we will also denote different wave modes by k, but it will be
evident from the context which definition applies.
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δts
a (ts)

= δt0
a (t0) . (2.8)

For subsequent wave crests, one deduces from this relation that the observed frequency ν0 =
1/δt0 is connected to the emitted frequency νs = 1/δts through the ratio ν0/ν1 = a (ts) /a (t0).
For increasing a(t), this corresponds to a redshift, i.e. a decrease in frequency with a corre-
sponding increase in wavelength by a factor commonly denoted:

1 + z = a (t0)
a (ts)

. (2.9)

If we choose to set a(t0) = 1 today, the scale factor a is given in terms of the redshift as

a = 1
1 + z

. (2.10)

Astronomers have a preference for expressing results using redshift and we will try to follow
this convention for our plots in this report. For sources in proximity to the observer, one can
expand a(t) in a power series

a(t) ≈ a (t0) [1 + (t− t0)H0 + . . .] , (2.11)

where H0 is known as the Hubble constant,

H0 = ȧ (t0)
a (t0) , (2.12)

which measures the expansion rate of the universe today. We will use this factor to normalize
our equations in the chapters that follow and this has also been the case historically, and
hence H0 is measured somewhat obtrusively in units H0 = 100h km s−1Mpc−1 where the
dimensional scaling factor h incorporated the uncertainties in the measurement. Currently,
the best estimation of is h ≈ 0.678±0.077 [21]. A parsec (abbreviated pc), is a unit of distance
derived from the theoretical annual parallax of one arc-second (measured as the inverse of the
parallax). A parallax is the apparent measured distance in the position of a celestial object
as seen by one observer on the Earth and another hypothetical one on the Sun. Roughly, a
parsec is 3.26 lightyears. Concerning large-scale structures, they are of the order of hundreds
of megaparsecs. At an arbitrary time, the expansion rate is denoted H(t) = ȧ(t)/a(t). We
will now use this to introduce a central concept in this work, the horizon. Before we proceed
we have to provide a brief interlude to introduce a more fitting temporal parametrization
conformal time. Consider a photon which travel radially outward from the source in FLRW
geometry with k = 02,

uµuµ = 0→ −(ut)2 + a(t)2(ui)2 = 0, (2.13)

with 4-velocity uµ. For a purely radial motion

dr
dt = ur

ut
= ±1

a
, (2.14)

2This line of reasoning can easily be translated into geometries where k 6= 0 by changing the parametrization
of the spatial part of the metric. However, we will not present any case in this report where k is different from
zero, which allows us to make this shortcut through the derivation, avoiding extra notation.
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Choosing the direction outward from the source, −, one arrives at

ri =
∫ t0

ti

dt
a
, (2.15)

since r0 = 0. This propels us to define conformal time as

η(t) def=
∫ dt

a
, i.e. dη = adt, (2.16)

so that ri = η0 − ηi. Now, imagine if we were to move the point ti back in time to the Big
Bang, equation (2.16) will represent the maximum distance wherein signals traveling at the
speed of light may reach an observer at a later time t0. This is known as the comoving particle
horizon. Moreover, we can rewrite this integral∫ t

ti

dt
a

=
∫ a

ai

da
ȧa

=
∫ a

ai

(aH)−1 d ln a, (2.17)

where the term (aH)−1 is the comoving Hubble radius. In normal, standard cosmology, one
obtains that the integral is proportional to the comoving Hubble radius, and both are con-
fusingly called “the horizon”. Still, when we move beyond standard cosmology into the the-
oretical regime of inflation, this relation will not longer hold, instead ri � (aH)−1, implying
that particles which were initially causally connected to one another become separated. For
the perturbations which we will examine, this means that wave modes which were connected,
below the horizon, (aH)−1, can be pushed outside the horizon since (aH)−1 changes with
time. We will learn more about this in section 2.2.

From the background cosmology in ΛCDM we will now calculate the Friedmann equations
by inserting the metric ansatz (2.4) into (2.3) with no assumption on k, calculating the
Christoffel symbols through

Γµρσ = 1
2g

µν (∂ρgσν + ∂σgρν − ∂νgρσ) , (2.18)

which produce the components of the Ricci tensor

Rµν = ∂ρΓρµν − ∂νΓρµρ + ΓρσρΓσµν − ΓρσνΓσµρ. (2.19)

Firstly, we determine which components of the Ricci tensor that could be set to zero based on
the homogeneity and isotropy of the metric. For a comoving observer, the Ricci tensor has in
total 10 components, of which three are time-space (zero due to the isotropy), 1 time-time and
6 space-space. The space-space components are further restricted to the diagonal by isotropy;
they must be the same for the x-, y- and z-directions and could only depend on time due to
homogeneity. We denote this time-dependent function L. Hence we are only interested in the
Rtt and Rii components, which are given for a co-moving observer in FLRW as

Rtt = −3 ä
a
,

Rii = aä+ 2ȧ2 + 2K.
(2.20)

This implies that Rii can be expressed in terms of L through

L = Rii
a2 . (2.21)

8



The scalar curvature is given by taking the trace of Rµν , which yields R = −Rtt+ 3L. Hence,
the Einstein tensor is given by

Gµν
def= Rµν −

1
2Rgµν = 1

2


Rtt + 3L

Rtt − L
Rtt − L

Rtt − L

 . (2.22)

On the matter side of the equal sign in (2.3) we introduce a stress-energy tensor in the perfect
fluid-form, namely

Tµν = (ρ̄+ p̄)uµuν + p̄gµν , (2.23)

where ρ̄ is the (unperturbed) energy density of the fluid and p̄ the (unperturbed) spatial
pressure. Here, we do neither have anisotropic stress nor momentum flows and hence Tµν
only has none-trivial elements on the diagonal. For the 4-velocity of the fluid, uµ, we have in
cosmic time that gµνuµuν = −1. The cosmological constant term can be incorporated as a
density ρΛ

def= Λ/M2
PL appearing on the diagonal ρΛgµν . Einstein’s equations then give

1
M2

PL
ρ̄ = 1

2 (Rtt + 3L) ,

1
M2

PL
p̄ = 1

2 (Rtt − L) .
(2.24)

Dividing the first of these with a third, we obtain

1
3

1
M2

PL
ρ̄ =

(
ȧ

a

)2
+ k

a2 = H2 + k

a2 , (2.25)

and if we take −1/6 times the ρ̄ equation together with −1/3 times of the p̄ equation, we
arrive at

− 1
3

1
2M2

PL
(ρ̄+ 3p̄) = ä

a
. (2.26)

These two are called the Friedmann equations. Moving on, the continuity equation is given
by the second Bianchi identity applied on the Einstein tensor. For the stress-energy tensor,
this implies

∇µTµν = ∂µT
µν + ΓµµρT ρν + ΓνµρTµρ = 0, (2.27)

which after a few calculations3 results in the continuity equation

˙̄ρ+ 3H(ρ̄+ p̄) = 0. (2.28)

For fluids without pressure, such as pressure-less dust, this is reduced to

˙̄ρ = −3Hρ̄. (2.29)

In cosmology, one usually assumes that the ratio between ρ̄ and p̄ is constant, yielding the
equation of state

3In this work, these have been carried out through the construction of a dedicated Mathematica script.
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ω = p

ρ̄
. (2.30)

If we place this in the continuity equation (2.30), one obtains

˙̄ρ = −3H(1 + ω)ρ̄ = −3(1 + ω)ρ̄ ȧ
a
, (2.31)

whose solution for the energy density is

ρ̄ = ρ̄0a
−3(1+ω), (2.32)

where ρ̄0 is the energy density at t = 0 (today). There are a few interesting cases concerning
this equation:

(i) Dark matter or baryons: A fitting model is that of non-relativistic matter, i.e. when
|p̄| � ρ̄. Here, one is allowed to use Newtonian physics to describe small perturbations
from the background solution, given small velocities and subhorizon scales. The red-
shifts are proportional to a−3, as ρ̄ ≈ ρ0a

−3.

(ii) Radiation: For photons, or neutrinos as well in the early universe, the energy density
is ρ̄ = 3p̄, which gives ω = 1/3 and then resulting redshift goes as a−4.

(iii) Cosmological constant: From the relation ρΛgµν , reminding us of the minus sign in the
time-component, we see that ω = −1 and hence we have a constant energy density.

To conclude, it is advantageous to introduce a critical density, i.e. at which density the
universe becomes flat (k = 0). According to the first Friedmann equation, (2.25), this occurs
at

ρ̄crit = 3H2M2
PL. (2.33)

Proceeding, one can now define a convenient density parameter for each constituent χ in the
universe,

Ωχ
def= ρχ

ρ̄crit
. (2.34)

For the geometry, one can define a coefficient as

Ωk
def= − k

a2H2 . (2.35)

Caution must be taken since this coefficient has nothing to do with density and is only
introduced to simplify the expressions. Equation (2.25) tells us that the different components
in the universe today satisfy

ΩΛ + Ωm + Ωγ + Ωk =
(
H

H0

)2
∣∣∣∣∣
a=1

= 1, (2.36)

with γ denoting radiation. The best present measurements from the 2013 Planck survey for
ΩΛ and Ωm, decomposed into baryonic matter and a dark matter components, are illustrated
in figure 2.2. As for the residual two, Ωγ ∼ 10−5 and Ωk < 10−3. Hence, they are not
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Figure 2.2: Percentages of the constituents of the universe today as measured with and published by
Planck in 2013 [21].

important in the contemporary universe, but the radiation component played an important
part earlier on, as one can surmise from ρ̄γ ∝ a−4. At an arbitrary previous time, we include
redshift factors in (2.36) and rewrite them as fractions of the critical density as

ρ̄(a) = ρΛ + ρ̄ma
−3 + ρ̄γa

−4 = ρ̄crit
(
ΩΛ + Ωma

−3 + Ωγa
−4
)
, (2.37)

which leads to

H2 = H2
0

(
ΩΛ + Ωma

−3 + Ωγa
−4 + Ωka

−2
)
. (2.38)

Here, it is common to define an energy function

E(a)2 def= ΩΛ + Ωma
−3 + Ωγa

−4 + Ωka
−2, (2.39)

which contains the evolving part of the expansion factor. In redshift language, this means
that the following relation

H = H0E(z), (2.40)
emerges. We will use that E(z = 0) = E(a = 1) = 1 in our normalization schemes during the
analysis of bimetric gravity in section 4.2. To continue, we will start investigating how one
treats small perturbations of this ideal background solution in general relativity.

2.2 Cosmic perturbations
To examine small deviations from the background solution, we restrict ourselves to linear, first-
order perturbations as we mentioned in the introduction. We assume that they are small and
hence we are able to neglect terms of higher order. This section is inspired by the treatments
in [22], [23], [24], [25], [26], [27] and [28]. After having decomposed the perturbation fields,
δφ, in terms of their Fourier components, i.e.

δφ(t, r) =
∫ d3k

(2π)3 e
−ik·rδφk(t), (2.41)
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one can examine the individual modes with wavenumber k using approximations on different
scales4 and different times as

(i) Subhorizon, k � aH: These are modes with wavelengths within the comoving Hubble
radius. As they are remote from scales where curvature becomes important, we can
use Newtonian perturbation theory to examine them and the ordinary equations of non-
relativistic fluid dynamics. All cosmological relevant perturbations, those that we may
observe, originate from this regime. However, whereas k remains unaltered through the
eras, the comoving Hubble radius changes. Specifically, for theories of inflation, the
Hubble radius shrinks during the rapid expansion, which pushes the subhorizon modes
into the superhorizon region.

(ii) Superhorizon, k � aH: We are dealing with perturbations whose wavelengths start
to approach the curvature scale of the universe set by H. Hence, we cannot neglect
relativistic effects and have to use relativistic perturbation theory5.

(iii) Intermediate region, k ∼ aH: For perturbations with wavelengths close to the horizon,
we must consider all terms and not make any approximations.

Effectively, all regimes can be described by relativistic perturbation theory where the subhori-
zon regime is accessed by taking the limit aH → 0 and the superhorizon through k → 0. As
we remarked upon briefly, the comoving Hubble radius is something which changes overtime.
In an inflationary model, where the expansion is governed by a primordial scalar field ϕ(t),
the fluctuations δϕk = δϕk(t, x) can be described through a nonzero quantum-mechanical
variance, 〈

|δϕk|2
〉 def=

〈
0
∣∣∣|δϕk|2

∣∣∣ 0〉 , (2.42)

around a zero-average, arising from the uncertainty principle. In practice, the examination of
the field at this level is often pseudo-classical, i.e. the field is quantized but the gravitational
background remains classical. Of particular interest is the variance at the horizon crossing as
the universe expands. At this point, the quantum fluctuations are driven into the classical
regime, and the quantum expectation values are matched to the ensemble average of a classical
stochastic field. Here, it is convenient to switch parametrization of the perturbations from
fluctuations of the inflaton field to fluctuations in the comoving curvature, Rk. This is the
perturbation of the intrinsic 3-curvature on hypersurfaces of constant time Σ(t) = t, evaluated
in the comoving gauge, see equation (2.96). It turns out that ˙δRk, obeying the relation in
(2.98), is conserved in the superhorizon domain in general relativity for perturbations with
negligible non-adiabatic pressure, which means that we can relate the theoretical conditions
at the horizon exit which is characterized by high energies to those after horizon re-entry at
low energies. Perturbations whose equation of state can be written as p = p(ρ) are called
adiabatic perturbations. Such perturbations’ state at some point in the perturbed spacetime
(t, x) is the same as in the background unperturbed universe at a slightly different time

4The method to treat the perturbations also depends on which kind of matter one analyzes; the Newtonian
approximation is valid for matter characterized by nonrelativistic pressures and velocities whereas relativistic
effects must be taken into account to describe photons and neutrinos.

5More accurately, we are doing cosmic relativistic perturbation theory, since we are describing small devia-
tions from the underlying isotropic and homogeneous background solution, and using its properties.

12



superhorizon regime

subhorizon regime

reheating
horizon exit: k = aH horizon re-entry: k = aH

comoving scales

time

comoving horizon: 1/(aH)

1/k

Figure 2.3: Cosmologically relevant perturbations were generated inside the horizon, below the line
(aH)−1. They are modeled as quantum fluctuations of some scalar inflationary field just before the
horizon exit. As the universe expanded they were forced into the superhorizon regime above the line,
where the conservation of the comoving curvature perturbation Ṙ ≈ 0 froze them in, and at some late
time epoch they will once again be subhorizon and start to evolve.
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t+ δt(x). This implies that parts in the perturbed universe are before/behind the evolution
of the background universe. From the equation of state,

p(ρ) = p̄(ρ̄) + dp
dρ(ρ̄)δρ⇒ δp = dp

dρ(ρ̄)δρ⇒ ˙̄p = dp
dρ

˙̄ρ, (2.43)

from which we infer the relation
˙̄p
˙̄ρ

= δp

δρ
= c2

s, (2.44)

where cs is the sound-speed defined through

c2
s

def=
(
∂p

∂ρ

)
S

, (2.45)

with the entropy S kept fixed (no entropy is produced during the expansion). Since single-
field inflation yields adiabatic perturbations, we will focus on these in the subsequent analysis.
Moreover, since our equation of state p = ωρ, it means that c2

s = ω = const. for adiabatic
perturbations. Thus c2

s = ω = 0 designates the matter era and c2
s = ω = 1

3 the radiation era.
Between the re-entry and today, it is possible to compute the evolution of the perturbations.
Hence, one may for some quantities bridge the gap between today and the primordial universe.

2.2.1 Subhorizon perturbations
In this report, we are chiefly interested in superhorizon perturbations, and we will not digress
much into the domain of Newtonian perturbation theory. The main idea is to treat matter
as a fluid and use the ordinary fluid mechanics equations

∂ρ̄

∂t
+∇ · (ρ̄u) = 0,

∂ū

∂t
+ (ū · ∇) ū + 1

ρ̄
∇p̄+∇Φ̄ = 0,

∆Φ̄− 4πGρ̄ = 0,

(2.46)

where ū is the 3-velocity of the fluid and (∂t + ū · ∇)ū is the convective time derivative,
which is an adapted derivative that follows a fluid element as it moves. Then, we add linear
perturbations to these variables, ρ̄ → ρ̄ + δρ, p̄ → p̄ + δp, Φ̄ → Φ̄ + δΦ, ū → ū + δu and
replace the quantities in the system to obtain the corresponding equations involving only
the perturbations. In an expanding background universe, there is a small subtlety involved
when translating between the position in terms of physical coordinates r and in comoving
coordinates x. They are related to one another through

r = a(t)
a0

x⇒ u = v +Hr, (2.47)

where the last relation relates the velocities in the two systems, with the proper velocity
in comoving coordinates as v = aẋ. If we normalize our equations we can replace a0 = 1.
Moreover, we would like to locate an expression for the gradient in comoving coordinates
which acknowledges the spatial expansion. At a given time t, the two gradients are related as

∇r = a−1∇x, (2.48)
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which is easily deduced from (2.47). Henceforth, we will abbreviate ∇x as ∇ def= ∇x. Now, if
we plug in perturbations expressed in these coordinates into the system and perform a Fourier
transform according to (2.41), a short calculation yields

δ̇k − ia−1k · vk = 0, (2.49)

v̇k +Hvk − ia−1k

[
δp

ρ̄
+ δΦk

]
= 0, (2.50)

−k2δΦk = 4πGa2ρ̄δk, (2.51)

where we have used the contrast density δk instead of δρk and the continuity equation ˙̄ρ =
−3Hρ̄ from the zero:th order components. One may combine these by plugging in ∂t · (2.49)
and its non-differentiated version into (2.50) with (2.51) to produce Jeans’ stability equation,

δ̈k + 2Hδ̇k +
[(

k

a

)2 δp

ρ̄
− 4πGρ̄

]
δk = 0. (2.52)

For adiabatic perturbations, one may use (2.44) to recast this expression as

δ̈k + 2Hδ̇k +
[(

k

a

)2
c2
s − 4πGρ̄

]
δk = 0. (2.53)

The wavenumber for which the total bracket equals zero is known as the Jeans’ wavenumber
kJ which has a corresponding Jeans’ wavelength λJ ,

kJ
def= a

cs

√
4πGρ̄, λJ

def= 2π
kJ
. (2.54)

For k � kJ , we can approximate Jeans’ equation by omitting the Poisson term, which yields
oscillating solutions which are dampened by 2Hδ̇k. Hence, there will be no growing solution
and no structure formation sub-Jeans. Above this limit, however, for scales significantly larger
than the Jeans’ length, where we have the relations kJ � k � H, we can instead neglect
the sound-speed term. As a consequence, the solution will involve fluctuations subjected to
a power-law growth, which incite structure formation.

Granted, these last few equations are only valid for scalar velocities. Following Helmholtz’
theorem, we can as usual decompose v into a transverse, curl-less component and a longitu-
dinal, divergence-less component. In the full system, the longitudinal component only appear
in the time-derivative term of (2.50). Its solution is obviously proportional to a−1, i.e. these
perturbations decay and are not considered pertinent in the structure formation context. This
ends our overview of Newtonian perturbation theory.

2.2.2 General relativistic treatment
In the fully general case, suitable for the superhorizon and intermediate region and for rela-
tivistic matter, we start by adding a small perturbation to the background metric,

ḡµν → gµν = ḡµν + δgµν , (2.55)

where ḡµν is the unperturbed isotropic and homogeneous background FLRW metric. Owing
to these spatial symmetries of the background metric, it is possible to decompose the per-
turbations into fields of scalars, vectors or tensors type based on how they transform, SVT

15



decomposition. These components will not mix at the linear level, facilitating the examination.
The most general ansatz of the perturbed line element can be written as [22],

ds2
ḡ+δg = −N(t)2 (1 + E) dt2 + 2N(t)a(t)Fi dtdxi + a(t)2 [δij + δgij ] dxi dxj , (2.56)

with N(t) = 1, a(t) for cosmic and conformal time respectively and where the perturba-
tion fields depend on both space and time. As previously, we split the 3-vector F into a
divergenceless and a curl-free part,

Fi = ∂iF +Gi, ∂
iGi = 0, (2.57)

whose first (curl-free) constituent is the scalar part. Equivalently, any rank-2 tensor δgij can
be decomposed6 as

δgij = Aδij + ∂i∂jB + 2∂(iCj) +Dij , (2.58)

where the round parentheses announce a symmetrization over the indices i, j. Here, the fields
Ci and Dij contain the vector and tensor parts respectively. Both of these are divergenceless,
Dij = Dji and the tensor perturbation is traceless Dii = 0. This implies that Gi, Ci and
Dij carry two degrees of freedom each. In total, the ten degrees of freedom of the metric
perturbation δgµν are decomposed as

δgµν = {E, Fi, δgij} = {E, (F, Gi) , (A, B, Ci, Dij)} , (2.59)

where the degrees of freedom are distributed as 1, (1, 2), (1, 1, 2, 2). One can decompose the
perturbed stress-energy tensor, T̄µν → Tµν = T̄µν+δTµν , in a similar approach. The perturbed
stress-energy tensor part is given adding small perturbations to (2.23) and keeping terms of
linear order as

δTµν = (δρ+ δP )ūµūν + (ρ̄+ P̄ )(δuµūν + ūµδuν)− δPδµν − Σµ
ν , (2.60)

whose last term incorporates anisotropic inertia, denoted Σ, which measures the deviation
from the perfect fluid form. It is possible to define it such that uµΣµν = 0, which implies
that such terms only appear in the spatial part of the stress-energy tensor, where the may be
decomposed into scalar ΣS, vectorial ΣV and tensorial components ΣT. Moreover, one could
redefine the pressure by including the trace Σi

i, meaning that one can demand that Σi
i = 0.

The normalization condition on the 4-velocity yields at linear order that

δgµν ū
µūν + 2ūµδuµ = 0, (2.61)

which leads to the conclusion that
δu0 ∝ E, (2.62)

whilst the spatial part δu is an independent, dynamical variable. As in (2.57), δu can be
split into a scalar and a vectorial part,

δui = ∂iδu+ δuV
i , ∂

iδuV
i = 0, (2.63)

6We mainly adhere to the convention established in [22]. Some authors, [23], define the fields with an extra
factor of two in front for later convenience in equations (2.80) and (2.81). In addition, others [24], may write
the scalar component B in such a manner that the trace Tr δgij features a term 2B.

16



where ui will receive contributions from (2.57) as we lower the indices in (2.63) with the
perturbed metric tensor. The scalar perturbed stress-energy components for a perfect fluid
are acquired by inserting this into (2.23) and are

T 0
0 = −ρ̄(1 + δ),

T i0 = − (ρ̄+ p̄)ui,
T 0
i = (ρ̄+ p̄) (ui + ∂iF ) ,

T ij = (p̄+ δp) δij + Σi
j ,

(2.64)

where ui are the components of u = dx/dt and Σi
j is anisotropic stress, Σi

i = 0. If we
specify that we are dealing with pressure-less dust, p̄ = δp = Σi

j = 0. To obtain the tensor
and vectorial parts, we simply change the velocities and the F -terms as well as the terms in
Σi
j .
Before we proceed and insert our perturbed metric into Einstein’s equations to acquire

the equations of motion for the linear perturbations fields in (2.59), we must deal with the
subtle transformation properties of these variables. Suppose that we simply shifted our spatial
coordinates slightly, xi → xi + ξµ(t, x) with a small transformation ξ and calculated the line
element in (2.56). If the shift is small, it is possible to treat it as a perturbation. Expressed
in terms of dxi the perturbation becomes dxi = dx̃i − ∂tξi dt − ∂jξj dxi. At linear order,
this introduces uninvited extra components in the spatial parts. Yet, these do not represent
the physical degrees of freedom of the theory, as they disappear when we perform an inverse
transform. Such artificial fields are known as gauge modes. They arise since our ansätze of
perturbation fields do not abide by the underlying fundamental symmetry of general relativity,
namely general covariance also known as diffeomorphism invariance. To remind the reader;
this means that the form of the physical laws of the theory is the same in all coordinate
systems. Choosing a specific coordinate system, a special foliation of spacetime, can be
thought of as picking a gauge, echoing the terminology of electromagnetism and Yang-Mills
theories. The theory comes with a redundant description and we need to associate a metric
transformation to δgµν , a gauge transformation, which allows it to change in the same manner
as the unperturbed metric ḡµν subjected to the same transformation.

These gauge transformations can be expressed passively (coordinate system approach)
or actively (pure diffeomorphism mapping approach) for the perturbations following [23].
For the passive case one considers a background manifold M (spacetime) where one has a
chosen coordinate system xρ and arbitrary functions Q (xρ) with a fixed dependence on the
coordinates. On this manifold it is possible to introduce a supplemental coordinate system x̃ρ

with associated functions Q̃ (x̃ρ), which also have a fixed coordinate dependence. Should we
introduce a small perturbation δQ of the function Q in the coordinate system xρ at a point
p ∈M, it can be expressed as

δQ(p) = Q (xρ)− Q̄ (xρ) , (2.65)

where the bar denotes the unperturbed function. In the second coordinate system, the per-
turbation could be written as

δ̃Q(p) = Q̃ (xρ)− ¯̃Q (xρ) . (2.66)

A gauge transformation in this framework corresponds to switching from
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δQ(p)→ δ̃Q(p), while xρ → x̃ρ onM. (2.67)

Viewed actively, one can instead envisage two manifolds; one physical manifold M and one
background spacetime N with associated coordinates xρb rigidly fixed where “b” means back-
ground. One then introduces a diffeomorphism D : N → M, which induces a coordinate
system onM through D : xρb → xρ. For a chosen diffeomorphism, one can express a pertur-
bation δQ of a function Q onM as

δQ(p) = Q(p)− Q̄
(
D−1(p)

)
, for p ∈M. (2.68)

Here Q̄ is a fixed function defined on the background spacetime. In this formalism a gauge
transformation corresponds to

δQ(p)→ δ̃Q(p), generated by a change of D → D̃, (2.69)

between the manifolds N and M. With such a change in correspondence, an associated
change of the induced coordinates onM, xρ → x̃ρ follows. The two different fashions can be
interpreted as

(i) Passive formalism: One connects the gauge transformations with the choice of coordi-
nate systems onM, wherein the perturbations are expressed.

(ii) Active formalism: The amplitude of the perturbations depends on the correspondence
between N andM.

In both cases, an infinitesimal coordinate transformation with a 4-vector ξ,

xρ → x̃ρ = xρ + ξρ(x), (2.70)

brings about a change in δQ:

∆Q = δ̃Q− δQ = LξQ, (2.71)

where Lξ denotes the Lie derivative7 of Q along ξ. If we set the function Q to be the metric
gµν , the transformation of the perturbation becomes

δgµν → δ̃gµν = δgµν + Lξ ḡµν , (2.72)

with

Lξ ḡµν = −ξρ∂ρḡµν − ∂µξρḡρν − ∂νξρḡµρ. (2.73)

This is not hard to prove if we use the invariance of the line element in the two coordinates
systems and write out

ds2 = g̃µν(x̃) dx̃µ dx̃ν = gρσ (x) dxρ dxσ, (2.74)

and then defines the 1-forms dxρ = ∂xρ/∂x̃µ dx̃µ and dxσ in a similar fashion. Such a
correspondence means that the other metric can be written as

7The interested reader can refer to chapter 2 of [29] for an excellent formal introduction to the Lie derivative
as well as the context in the differential geometric foundations of general relativity.
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g̃µν(x̃) = ∂xρ

∂x̃µ
∂xσ

∂x̃ν
gρσ (x) . (2.75)

From this we infer that the coordinate change xρ → x̃ρ yields a metric transformation
gµν (x) → g̃µν(x̃) with g̃µν(x̃) according to (2.75). On the other hand, viewed actively, by
setting the diffeomorphism as D = φ, the same transformation can be equally interpreted,

gµν(x)→ ∂φα

∂xµ
∂φβ

∂xν
gαβ(φ(x)). (2.76)

In this report, we will frequently discuss topics from a diffeomorphism perspective and this
transformation rule in (2.76) will be our reference.

Expanding the lefthand side of (2.75) including terms linear in the infinitesimal coordinate
transformation, yields

g̃µν(x̃) = ḡµν(x̃) + δg̃µν = ḡµν(x+ ξ) + δg̃µν = ḡµν(x) + ξρ∂ρḡµν(x) + δg̃µν . (2.77)

Now, to rewrite the righthand side of (2.75), we seek an expression for the matrix ∂xρ/∂x̃µ.
Its inverse is easier to locate and follows from ∂x̃ρ/∂xµ = δ ρ

µ + ∂µξ
ρ. Using the fact that

we are dealing with a small perturbation added to the identity matrix which is its own
inverse and neglecting ξ terms of higher order, we deduce that the inverse matrix must be
∂xρ/∂x̃µ = δ ρ

µ − ∂µξρ. Hence the righthand side becomes

(δ ρ
µ − ∂µξρ) (δ σ

ν − ∂νξσ) (ḡρσ(x) + δgρσ) = ḡµν(x) + δgµν − ∂µξρḡρν − ∂νξσ ḡµσ, (2.78)

keeping only terms linear in δgµν(x) and ξ. Combining this with the previous information
from (2.77) give (2.73) [25] [30]. From this conclusion we surmise that Lξ ḡµν will provide the
sought transformation rules for ∆δgµν

def= Lξ ḡµν . Splitting the spatial part of the shift into
a scalar and a vector part, ξi = ∂iξS + ξV , ∂iξ

V = 0, and analyzing (2.73) with our set of
variables in (2.59), we find the following transformations for the scalar perturbations fields,

∆E = 2
N
∂t

(
ξ0
N

)
, ∆A = 2H

N2 ξ0, ∆B = − 2
a2 ξ

S , ∆F = − 1
Na

(
ξ0 + ξ̇S − 2HξS

)
, (2.79)

where we have lowered the indices with the unperturbed metric, ξ0 = ḡ00ξ
0 etc. The tensor

perturbations have the same symmetry as the background metric by default and will hence not
be affected. The vector perturbations transform as ∆Gi = −1/Na

(
ξ̇V + 2HξV

)
and ∆Ci =

−1/a2ξV . To proceed and obtain a physical solution, we can either introduce combinations
of these variables that are invariant under these transformations, gauge-invariant variables,
or pick a specific gauge where no information is lost and the redundancy removed. By visual
inspection of the form of the scalar transformation rules in (2.79) and by choosing to work in
conformal time, we find two gauge-invariant combinations

Φ def= −A−H(2F − Ḃ), (2.80)

Ψ def= E +H(2F − Ḃ) + ∂t(2F − Ḃ), (2.81)
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which we can use to determine the system uniquely for the scalar perturbations. These are
known as the Bardeen variables. For the stress-energy tensor, the same procedure applies,
∆δTµν = LξT̄

µ
ν .

If we calculate8 the equations of motion for the linear scalar perturbations in (2.59) fol-
lowing (2.1) for Einstein’s field equations with the line element in (2.56) with help from the
connection in (2.18) and the Ricci tensor, followed by a Fourier transform we arrive at

• δg
(s)
0−0:

3H
N2

(
HE − Ȧ

)
− k2

[
A

a2 + H

N

(
2F
a
− Ḃ

N

)]
= 1
M2
g

δT 0
0 , (2.82)

• δg
(s)
0−i:

− ik 1
N2

(
HE − Ȧ

)
= 1
M2
g

δT 0
i , (2.83)

• δg
(s)
i−i (spatial trace components, no sum implied):

1
N2

[(
2Ḣ + 3H2 − 2Ṅ

N
H

)
E +HĖ − Ä− 3HȦ+ Ṅ

N
Ȧ

]
+

− k2
[
A+ E

a2 + H

N

(
4F
a
− 3Ḃ

N

)
+ 2Ḟ
aN
− 1
N2

(
B̈ − Ṅ

N
Ḃ

)]
= 1
M2
g

δT ii ,

(2.84)

• δg
(s)
i−j (off-diagonal components):

k2

2

[
A+ E

a2 + H

N

(
4F
a
− 3Ḃ

N

)
+ 2Ḟ
aN
− 1
N2

(
B̈ − Ṅ

N
Ḃ

)]
= 1
M2
g

δT ij . (2.85)

For pressure-less dust, neither anisotropic nor isotropic pressure are present and the terms
δT ij = δT ii = 0 vanish. This allows us to evaluate the second line of equation (2.84) to zero
using equation (2.85). Here, we have assumed that the magnitude k is isotropic. To continue,
we can either rewrite the system in terms of gauge-invariant variables or picking a suitable
gauge. We will work this out in the most common Newton’s gauge. In this setup, where one
takes advantage of the gauge freedom to set ξS and ξ0 such that B = 0 and F = 0 respectively,
all off-diagonal components in the perturbed metric tensor vanish and the Bardeen variables
reduce to an agreeable form; Φ = −A and Ψ = E. To be more in line with current conventions
we will shift these variables Φ→ 2Φ, Ψ→ 2Ψ in the line element (2.56) which for these fields
in Newton’s gauge in conformal time is written

ds2
ḡ+δg = a(t)2

[
− (1 + 2Ψ) dt2 + (1− 2Φ) δij dxi dxj

]
. (2.86)

In terms of physics, interpretations of results tend to be facilitated in this gauge. The choice
F = 0 guarantees that hypersurfaces of constant time are orthogonal to the worldlines of
observers at rest and from B = 0 we deduce that induced geometry on these hypersurfaces is
isotropic. Returning to the equations of motion for the perturbations with (2.86) in mind, we
immediately discern that (2.85) tells us that Φ = Ψ for no anisotropic stress, and the system
in conformal time with the stress-energy components as in (2.64) is reduced to

8This was performed using a Mathematica script.
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• δg
(s)
0−0:

3H
a2

(
HΦ + Φ̇

)
− k2 Φ

a2 = − δρ̄

2M2
g

, (2.87)

• δg
(s)
0−i:

− ik 1
a2

(
HΦ + Φ̇

)
= − ρ̄ui

2M2
g

, (2.88)

• δg
(s)
i−i (spatial trace): (

2Ḣ +H2
)

Φ + Φ̈ + 3HΦ̇ = 0, (2.89)

where we discover that the evolution of all matter perturbations is governed by the last
equation (2.89). When we encounter the same problem in bimetric theory, this is the equation
of interest which we want to find, together with (2.91). By combining (2.88) and (2.87), we
obtain the corresponding Poisson equation,

k2Φ = a2ρ̄

2M2
g

(
δ + 3H iui

k

)
. (2.90)

which one can compare with equation (2.51) in Newtonian perturbation theory, which was
calculated in the comoving gauge where the velocity disappears. The corresponding equation
for second-order differential equation for δ can be calculated with help from the Bianchi
constraints, (2.27), described in the context of bimetric gravity in section 4.1 and explicitly
presented in equations (4.43)-(4.44).

For adiabatic perturbations, where the sound speed is related to the perturbed pressure
and density as in (2.44), the combination of (2.87) and (2.89), including its pressure term
from (2.64), yields a close-form expression for the gravitational potential as

Φ̈ + 3(1 + ω)HΦ̇− ωk2Φ = 0, (2.91)

where the residual Φ-terms have been eliminated through the Friedmann equation (2.26).
The superhorizon and the subhorizon approximations are easy to distinguish by taking either
k → 0 or H → 0 in (2.91). In the superhorizon limit, Φ̈ + 3(1 + ω)HΦ̇ = 0, and hence
one plausible solution is Φ = const. Solutions during the matter era or radiation era can be
accessed by setting ω = 0 and ω = 1/3 respectively.

In order to calculate the comoving curvature perturbation, we require the induced metric
on surfaces of constant time, which is the spatial part of equation (2.56). Since the quantity
is a perturbation of scalar variable, the vector and tensor components drop out. With our
perturbation fields in (2.59), this is

γij
def= a2 [(1 +A)δij + ∂i∂jB] . (2.92)

The intrinsic curvature, which is a concept that we will return to in section 3.3, on these
surfaces is given by the three-dimensional Ricci scalar9. In component form, it is calculated
through

R(3) = γij∂k Γ(3) k
ij − γij∂j Γ(3) k

ik + γij Γ(3) k
ij Γ(3) l

kl − γij Γ(3) l
ik Γ(3) k

jl, (2.93)
9Its relation to the four-dimensional Ricci scalar is detailed in equation (3.24).
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with Γ(3) as the connection corresponding to the induced metric, given like in (2.18)

Γ(3) i
jk = 1

2γ
il (∂jγkl + ∂kγjl − ∂lγjk) , (2.94)

where γil is the inverse of (2.92). Fortunately for us, the spatial derivatives of the perturbation
variables in (2.94) are all of linear order which implies that we can write γil = a−2δil and omit
the perturbative parts. The scale factors cancel one another and one obtains an expression
purely in terms of the perturbation variables. Concerning (2.93), only the components

R(3) ≈ γij∂k Γ(3) k
ij − γij∂j Γ(3) k

ik, (2.95)

survive, which after some lines of calculations produce

a2 R(3) = −2∇2
[
A− 1

2∇
2B

]
, (2.96)

where the content in the brackets is the comoving curvature perturbation. As the name hints
at, it has here been calculated in the comoving gauge whose coordinates follow the the flow of
the matter fluid. Hence, in order to obtain a gauge-invariant expression, we need to supply
extra terms to (2.96), which yields the gauge-invariant comoving curvature perturbation R.
In Newton’s gauge, [25], one can use (2.88) to write R as

R = −Φ− 4M2
PLH(Φ̇ +HΦ)
a2(ρ̄+ p̄) , (2.97)

and show that it scales as
d lnR
d ln a ∼

(
k

H

)2
, (2.98)

for adiabatic perturbations, meaning that Ṙ ≈ 0 for superhorizon regimes. In the same limit
[26], (2.97) takes the following form

R = − 5 + 3ω
3(1 + ω)Φ, (2.99)

using equation (2.82). As we discovered when we scrutinized equation (2.91), Φ = const. for
superhorizon scales meaning that one can relate its magnitude during the radiation epoch,
ΦRD, to the matter era ΦMD through, ω = 0 for matter and ω = 1/3 for radiation in (2.99).
This yields ΦMD = 9/10ΦRD, which we will use in section 2.3.1.

2.3 Cosmological observables

In order to examine large-scale structures (LSS), we must first have a good grasp on how the
background universe evolves during the eras. A nice introduction to these topics is presented
in [22]. There are three primarily probes, which complement one another, for us to determine
properties of the background, namely

(i) SN Ia data: Allows us to estimate the expansion history, i.e. H(z), through measuring
distances to supernovae explosions at different epochs.
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(ii) Baryonic acoustic oscillations (BAO) + cosmic microwave background (CMB): Relics
from the early universe which indicate angular scales and hence provide a statistical
standard ruler.

Given a bright interstellar object such as a supernova, we can measure the distance dL to it
if we know its luminosity L (i.e. the total energy it emits) and notes the apparent luminosity
l which we measure in our observatories on Earth and in its orbit,

l = L

4πd2
L

, (2.100)

which is simply the fraction of the energy radiated through a sphere of radius dL surrounding
the object. By Liouville’s theorem in statistical physics, the occupational number of photons
or massive particles traveling through vacuum remains the same, provided no interaction
occurs, i.e.

dn
dt = ∂n

∂t
+ ∂n

∂x

∂x

∂t
+ ∂n

∂p

∂p

∂t
= 0, (2.101)

for particles following characterized by n(x, p, t) traveling along a trajectory [x(t), p(t)] in
phase space. This means that the amount of photons or other particles which reaches us
traveling through interstellar space is the same as the amount that was emitted towards us in
the specific sold angle given no interaction with the foreground. Since the universe is mostly
empty, this implies that l is roughly unaffected and if one has knowledge of the foreground
one can compensate for the loss in apparent luminosity.

However, for distance z > 0.1, effects associated with the expansion of the universe cannot
be neglected, forcing us to modify (2.100), taking account the energy shift owing to redshift,
time delay between the arrival of individual photons and the changing radius of the sphere
surrounding the interstellar object given by the metric. In all, these considerations yield,

dL → dL(z) = a (t0) r1(1 + z), (2.102)

where a is the scale factor and r1 the coordinate distance to Earth viewed from the interstellar
object. This suffices to estimate the expansion rate, since the distance in a flat universe is
calculated as

dL(z) = (1 + z)
∫ z

0

dz′

H(z′) , (2.103)

where extra terms have to be added to incorporate curvature. In modified gravity, this
function might be altered, which means that these observations can constraint such theories.
Naturally, one can only hope to reach an estimation since no measurement is perfect and
we cannot travel to the object and measure L. Still, there are certain types of supernovae
in the sky, the SN Ia, that serve as approximate cosmic candles, meaning that they emit
approximately the same amount of energy. Theoretically, one presumes that these cosmic
explosions are the products of the interplay in a binary star system where a white dwarf
accretes the gas of its fellow star, until its mass approaches the Chandrasekhar limit, i.e.
the maximum mass supported by the pressure from electronic degeneracy. At this point it
becomes unstable triggering the explosion. Owing to the similarity of the mass between the
objects, close to the Chandrasekhar limit, the luminosity of the different supernovae will be
similar to one another and hence they can serve as distance indicators [22].

As mentioned, the other two complementary indicators are remnants of the early uni-
verse. A flow-chart of different epochs is presented in figure 2.4 with the presumed inflation
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Inflation RecombinationReheating

Decoupling TodayCosmic evolut.

Figure 2.4: Overview of different time epochs in the evolution history of the universe. Reheating
marks the end of the inflationary expansion and the recombination and decoupling events of photons
and baryonic matter occurred ∼ 380 000 years after the Big Bang. The cosmic evolution phase is
further characterized by an event known as re-ionization, roughly 200 million to 1 billion years after
the Big Bang. This marked the advent of re-emerged ionized hydrogen, emitting photons, created
in gravitational potential wells by dark matter structures. In the time frame between decoupling,
perceived by the emission of the cosmic microwave background from the last-scattering surface, and
re-ionization, there was only neutral hydrogen in the universe, which did not emit any light. This
interlude is known as the dark ages.

related events in orange circles and the latter more established events in blue circles. The
two phenomena originate from the recombination/decoupling epochs. With recombination we
imply the time where the universe had cooled down sufficiently so that electrons and protons
could form neutral hydrogen from the primordial plasma. A short time thereafter, photons
decoupled from matter and this is referred to as decoupling. This event has been preserved as
a snapshot in time, ∼ 380 000 years after the Big Bang corresponding to a redshift z ∼ 1100,
through the cosmic background radiation (CMB), which is the light from the last-scattering
surface between matter and photons. Baryon acoustic oscillations (BAO), on the other hand,
are the result of the interplay between pressure/gravitational forces in the transition from the
primordial plasma [31]. Overdensities in this plasma gravitationally attracted more mat-
ter/radiation which in turn yielded an outward pressure force. As dark matter only interacts
gravitationally, it remained in the potential well whereas the photons/baryonic matter were
shifted away, producing a spherical sound wave in their wake outwards from the overdense
region. After the decoupling of photons and baryons, the former constituent dissipates, which
diminishes the pressure and leaves a shell of baryonic matter at a fixed distance, the sound
horizon [32], from the center of the overdense region. Since the only remaining force is purely
gravitational, matter will accrete at the center of the overdensity but also at the radius of
the baryonic shell. As the universe expands and matures, galaxies will statistically gather
at these points and by establishing the initial scale from the CMB, we can determine the
expansion history. The present sound horizon has been measured to be ∼ 150 Mpc [32].

Concerning the large-scale structures themselves, their evolution is determined by the
gravitational potential(s), Φ, which gives the density evolution δ. δ is measured by correlating

24



Figure 2.5: Primordial temperature fluctuations of the order 10−5 in the cosmic microwave back-
ground as measured by the Planck experiment in 2013 [35]. Courtesy of Planck/ESA.

the amount of galaxies in survey catalogues. From the observational perspective, this vital
counting of galaxies is achieved for instance by the Sloan Digital Sky Survey (SDSS). In
addition, this allows us to use the BAO mechanism as a statistical ruler. Still, only visible
luminous matter is measured, but on large scales it is possible to relate this proportionally
to the dark matter density, δDM = const · δord.matter. In the next section 2.3.1, we will detail
another probe to investigate the evolution of the gravitational potentials in the LSS context.

One of the major difficulties in this endeavor is that many analyses of measured data and
simulations incorporate predictions by general relativity and are hence not model-independent.
It is hard to construct any observables at all without some prior assumptions and one seeks
to narrow them down, which has for instance been carried out in [33]. A possible way forward
is to use several observables, SN Ia + BAO/CMB + data from galaxy survey catalogues, to
obtain a more model independent estimation of for instance the densities of the constituents
of the universe [11]. In this report, we make a simplification by simply relying on data from
Planck in section 4.2, meaning that there may be an inherent bias in the results. However, the
results are qualitatively the same as in previous more extensive studies, [12], and parameters
differ with a few decimal points. Future analyses should benefit from a larger selection of
experimental data, where important contributions will probably come from upcoming exper-
iments such as ESA’s high definition large-scale structure survey Euclid mission [34].

2.3.1 Integrated Sachs-Wolfe effect

A specific probe to investigate the gravitational impact of large-scale structures is the inte-
grated Sachs-Wolfe effect (ISW) [36] [37]. This phenomenon corresponds to a shift in the
energy of CMB photons passing through the intergalactic medium, while encountering time-
evolving potentials originating from large-scale structures. Firstly, we parametrize this prob-
lem in terms of the relative temperature fluctuations of the CMB, which define a brightness
function on Earth, Θ, as

Θ(x, n, η) def= δTCMB
TCMB

(x, −n, η), (2.104)

where n is the upward pointing normal vector on Earth’s surface, η conformal time and x
the physical position of the anisotropy in the sky. As we measure Θ over the whole sky, it is
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convenient to expand the function in spherical harmonics Y m
l (n)

Θ(x, n, η) =
∞∑
l=1

l∑
m=−l

alm(x, η)Y m
l (n), (2.105)

Since Θ is real, the coefficients must satisfy a∗lm = al−m. The average of these coefficients is
zero, but they have a nonzero variance Cl, which is given by

〈a∗lmal′m′〉 = δll′δmm′Cl, (2.106)

owing to the rotational invariance of the average of the product of two different δT s. Regret-
tably, it is not possible to measure the full Cl since we cannot average over position. What
we actually observe is a variance averaged over m,

Cobs
l = 1

2l + 1

l∑
m=−l

almal−m = 1
4π

∫
d2n d2n′Pl

(
n · n′

)
Θ(n)Θ(n′), (2.107)

where the Pl are Legendre polynomials. The fractional difference between Cl and Cobs
l is

known as the cosmic variance and the mean square of this difference is quantified〈(
Cl − Cobs

l

Cl

)2〉
= 1− 2 + 1

(2l + 1)2C2
l

∑
m

∑
m′

〈almal−malm′al−m′〉 = 2
2l + 1 , (2.108)

where the last equality is valid provided Θ follows a Gaussian distribution and where we
have used relation (2.106) together with the observation that the coefficients are real. This
equation provide us with a limit to which accuracy we can measure Cl. For small l, roughly
l 6 5, corresponding to the largest scales, the cosmic variance is large and hence we cannot
determine Cl with precision. Next, we seek to find a direct expression for Cl directly in terms
of Θ. We start by Fourier transforming Θ and express the brightness function evaluated at
today, η = 0, in terms of multipole moment functions Θl [28],

Θ(n) =
∑
l

il(2l + 1)
∫

d3kΘl(k)Pl
(

k · n
k

)
. (2.109)

Then, we would like to decompose Θl(k) into a form where the contribution from the primor-
dial inhomogeneities and the contribution from the structure evolution of the universe are
visible i.e.,

Θl(k) = Θl(k)Φ(i)(k), (2.110)
where Φ(i)(k) is the primordial term and Θl(k) the evolution part, independent of direction
due to isotropy and solely dependent on the magnitude k. This means that the variance can
be recast into

〈
Θl(k)Θl(k′)

〉
=
〈
Θl(k)Θ∗l (k′)

〉 〈
Φ(i)(k)Φ∗(i)(k

′)
〉
. (2.111)

Then, one proceeds by inverting equation (2.105) in Fourier space and inserting the result
in (2.106), which together with the expansions above and the properties of the spherical
harmonics allows us to write

Cl = 4π
∫ dk

k
PΦ(k)Θ2

l (k), (2.112)
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with PΦ(k) independent of l and related to the variance of Φ(i)(k) through〈
Φ(i)(k)Φ∗(i)(k

′)
〉

= 1
4πk3PΦ(k)δ(k − k′). (2.113)

To summarize, we have related the field that transcribes the evolution of the universe, which
is influenced by structure growth potentials, to the observable Cl. Now, our goal is to describe
the prediction for Θl(k) in general relativity and in modified theories of gravity and quantify
the difference. To achieve this, we need knowledge of Cl at the last-scattering surface and
today. In general relativity, T 4 ∝ ργ [25], which implies that, at the recombination era when
the universe was dominated by radiation, the relative temperature perturbation Θ was related
to the density perturbation through

Θlss = 1
4δγ . (2.114)

where Θlss is the perturbation at the last scattering surface. Today, the picture is slightly dif-
ferent, and to derive the evolution of the perturbations influenced by gravitational potentials
we start from the geodesic equation

d2xµ

dλ2 + Γµαβ
dxα

dλ
dxβ

dλ = 0, (2.115)

which expressed for a photon’s 4-momentum Pµ
def= dxµ/dλ is

dPµ

dλ + ΓµαβP
αP β = 0. (2.116)

Since the photons are massless, P 2 = gµνP
µP ν = 0, and in the Newtonian gauge with a line

element (2.86) this means,

− a2(1 + 2Ψ)(P 0)2 + a2p2 = 0⇒ P 0 = p(1−Ψ), (2.117)

if one neglects terms above linear order and where a2p2 = gijP
iP j . Next, we seek an ex-

pression for the spatial components P i which can be written as P i = αni, where n is a unit
vector in the direction of the 3-momentum and α a constant. To find α we write

a2p2 = a2(1− 2Φ)α2 ⇒ α = p(1 + Φ). (2.118)

For the zero:th component in equation (2.116), this implies

d
dt (p(1−Ψ)) = −Γ0

αβP
αP β · 1 + Ψ

p
, (2.119)

where we have used dt/ dλ = P 0. Expanding this and multiplying each side with (1 + Ψ)/p
while keeping only linear terms yield

1
p

dp
dt = ∂Ψ

∂t
− Γ0

αβP
αP β · 1 + 2Ψ

p2 , (2.120)

with non-zero perturbed Christoffel symbols where the · signifies a partial time derivative,

Γ0
00 = H + Ψ̇, Γ0

0i = ∂iΨ, Γ0
ii = H − Φ̇− 2H(Ψ + Φ). (2.121)
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After a brief, straightforward calculation, one deduces that (2.120) is reduced to

1
p

dp
dt = −2H + ∂Φ

∂t
− ni ∂Ψ

∂xi
, (2.122)

at linear order. For a homogenous, isotropic universe
1
p

dp
dt = −2H, (2.123)

in conformal time. Since we can recast

ni
∂Ψ
∂xi

= dΨ
dt −

∂Ψ
∂t
, (2.124)

in terms of the total derivative given by d/ dt, the perturbative part of (2.122) is

− dΨ
dt + Ψ̇ + Φ̇. (2.125)

With this to aid us, we are able to surmise an expression for the temperature perturbation
today at t0, namely

Θ0(n) = (Θlss + Ψ + n · vb) |t? +
∫ t0

t?
dt
(
Ψ̇ + Φ̇

)
, (2.126)

where the first parenthesis originates from the last scattering at t? with t written in conformal
time and where n·vb is the Doppler shift for the photons with respect to an observer comoving
with the baryons at the last scattering surface. Note that this expression has to be modified
with an extra term to fit observations here on Earth due to the Doppler shift from the Earth’s
motion around the Sun. Here we have limited ourselves to an approximation of instantaneous
recombination. In reality, recombination occurred over a time scale ∆z ∼ 10. The total
derivative, dΨ/ dt, has been integrated from recombination till today, but the present term
is only gauge-dependent, associated with how we view the background cosmology, and hence
not an observable. Photons from the last scattering surface are redshifted due to the climb
out of the potential well present at the time and this effect is incorporated in the Ψ-term,
which together with Θ forms the Sachs-Wolfe term.

The last integral is the contribution from the integrated Sachs-Wolfe effect (ISW), ΘISW.
Owing to its relation to gravitational potentials, the effect is predominantly observed on large
scales [37]. For cosmological models with Ωm = 1, the gravitational potentials are constant
through the process of linear structure formation. However, in a universe with dark energy,
the potentials are supposed to decay due to the accelerated expansion. As a consequence,
CMB photons which travel through overdense regions, such as superclusters of galaxies, will
be subjected to a positive ISW effect and those traversing voids will experience a negative
ISW effect. It has been proposed as an indicator for modified gravity [38]. In a model
with pressureless dust in general relativity, there will be no anisotropic stress present and
Φ = Ψ, which means that we can simplify the integral in (2.126). When we explore bimetric
gravity we will have two propagating modes which yield two potentials which might yield
extra anisotropic stress, implying Φ 6= Ψ for pressureless dust, and hence we can theoretically
predict the deviation from general relativity and then compare this with experimental data.
In general relativity in Fourier space, with no anisotropic stress, ΘISW can be expressed as

ΘISW(n) = 2
∫ t0

t?
dt
∫

d3k Φ̇(t, k)eik·n(t0−t). (2.127)
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Figure 2.6: Illustration of some of the first spherical Bessel functions for small l.

For the large, superhorizon scales which we consider, it is possible to decompose Φ(t, k) =
b(t) · ΦMD(k), where b(t) is a decreasing function and ΦMD(k) the value of Φ during the
matter-dominated era, ΦMD, when it was constant. From the expression of the comoving
curvature perturbation at superhorizon scales, (2.99), we can relate the value of Φ during the
radiation dominated era Φ(i) = ΦRD as ΦMD = 9/10 · ΦRD and consequentially

ΘISW(n) = 9
5

∫ t0

t?
dt db(t)

dt

∫
d3k Φ̇RD(k)eik·n(t0−t), (2.128)

where one can use a Legendre expansion of the exponential [22],

eik·n(t0−t) =
∑
l

(2l + 1)ilPl
(

k · n
k

)
jl(k(t− t0)), (2.129)

with the functions jl as spherical Bessel functions, related to the ordinary Bessel functions Jl
through jl(z)

def= (π/2z)1/2Jl+1/2(z), to produce

ΘISW(n) = 9
5

∫ t0

t?
dt db(t)

dt

∫
d3k Φ̇RD(k)

∑
l

(2l + 1)ilPl
(

k · n
k

)
jl(k(t− t0)). (2.130)

Making a comparison with the expansion of Θ in terms multipole moment functions in (2.109),
this allows us to conclude that the multipole moment functions of ΘISW are given by

ΘISW, l(k) = 9
5

∫ t0

t?
dt db(t)

dt jl(k(t− t0)), (2.131)

which enables us to calculate the observable Cl in (2.112) for the ISW effect,

CISW, l = 4π ·
(9

5

)2 ∫ dk
k
PΦ(k)

∫ t0

t?

∫ t0

t?
dtdt′ db(t)dt jl(k(t− t0)) db(t′)

dt′ jl(k(t′ − t0)). (2.132)

By plotting some of the first few spherical Bessel functions in figure 2.6, we see that these
terms in the integrals will be most significant for small l, i.e. at large scales, and hence
the observable effect CISW, l will be most evident at large scales. However, as we discovered
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in (2.108), we cannot go to arbitrarily small l. The ISW effect approximately starts to
manifest itself for l 6 10 [22], leaving us with a narrow window 5 < l 6 10 for experimental
investigation. Still, we are primarily interested in it as a superficial probe for modified gravity
and hence we are searching for abnormal signatures, deviating a lot from the predictions made
by general relativity.
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Chapter 3 Bimetric theory

3.1 Foundations
In this chapter we provide a brief review of the theoretical foundations and motivation for
bimetric gravity. Primarily, it is based upon [10] and the recent reviews [8] [9].

Among the four forces, gravity is the one which is least well measured, with an uncertainty
in the value of G of order 10−4 [39] and its presumable quantization is still a remote dream. In
a modern description, general relativity can be viewed as an effective field theory of gravity,
i.e. an approximation of the underlying unknown physical theory, valid up to the energy
scales comparable with the Planck mass.

If we consider spacetime symmetries we identify particles as representations of the under-
lying group characterized by their spin and mass values. Over the years a number of particles
have been found and consistent theories have been developed for several, theorized additional
ones1.

Spin Particle
0 Higgs boson (dilaton, inflaton, etc.)
1
2 fermions
1 gauge bosons
3
2 Rarita-Schwinger fields
2 graviton

As for spin-2 fields, general relativity, consistent in the classical regime, proposes a mass-
less graviton. Still, as far as we know today, there is no explicit theoretical restriction that by
default rules out other possibilities. Granted, such theories must of course be mathematically
consistent and physically sound according to our current observational capabilities. Concern-
ing physical consistency one would like to avoid terms which could introduce negative kinetic
energy, as such terms violate unitarity in a quantum description. At the classical level these
bring instabilities. Such terms are known as ghosts. These are distinguished by being kinetic
terms with a wrong sign in front of them in the Lagrangian of the theory. More precisely, they
appear as terms with the opposite sign in front of them coupled to terms with the correct
sign in front of them. On the other hand, one might also encounter mass terms with the
wrong sign and these are known as tachyonic terms. We shall primary focus on how to build
a ghost-free modified gravity theory in this work.

According to experimental surveys, the expansion of the universe has now entered an
accelerated phase [1] [2]. The origin of this acceleration is usually attributed to an elusive dark

1The Rarita-Schwinger fields are theoretical fields which arise in supersymmetric applications and are
governed by the Rarita-Schwinger equation, which is similar to the Dirac equation for spin 1/2 particles. For
more information please refer to [40].
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energy. Mathematically, this can be accommodated within Einstein’s equations of general
relativity as a non-zero cosmological constant Λ. Yet, the observationally deduced value which
would fit the current expansion history of the order 10−47 (GeV)4, strongly disagrees with the
number derived from calculations of the expectation value of the vacuum in quantum field
theory, which could be up to 60-120 orders of magnitude larger. This apparent discrepancy
is known as the cosmological constant problem, which is one of the lingering major, headache-
causing issues in modern theoretical physics. A nice review on the subject can be found in [41].
Since the density which propels the accelerated expansion is relatively small, i.e. representing
infrared energy levels, a good starting point would be to try to modify Einstein’s theory in
the infrared, which could be achieved by adding a small mass.

Before we proceed, it is a good idea to define what we mean by linear and nonlinear.
Given a certain background, curved or flat, a linear interaction only include first order terms
in perturbation theory whereas a nonlinear one also covers higher order corrections.

In the Standard Model of particle physics, massless fermion fields acquire mass through
Yukawa couplings with the Higgs field. Through spontaneous symmetry breaking the fields
acquire masses proportional to the vacuum expectation value of the Higgs field. When renor-
malizing the theory, these masses are protected by the chiral symmetry of the unbroken
theory with massless fermions. Briefly, the symmetry prohibits certain problematic interac-
tion terms, which would cause large corrections. This ensures that the loop corrections are of
the same order as the fermion masses. These masses are considered to be technically natural
owing to their stability under quantum corrections following t’ Hooft naturalness argument
[42] [43]. In general, the procedure can be extended to any theory with a symmetry, be it
local or global, which (re-)appears as the masses involved go to zero. Hence, from a quantum
field theory point of view, a theory of gravity with a massive field with a small mass where
diffeomorphism invariance appear as the mass go to zero would be technically natural, [44]
[45]. The cosmological constant, on the other hand, is not accompanied by a symmetry in
the zero-limit which would prevent quantum corrections running amok. This means that a
graviton with a small mass can be viewed as preferable compared to a cosmological constant
of similar size.

To address the discrepancy between the observationally small Λ and its large quantum
counterpart, one could imagine that the vacuum expectation value could be screened by a
mass term involving a small graviton mass in Einstein’s equations. If so, the vacuum energy’s
implication on cosmological expansion could be tiny in size. The force mediated by a massive
graviton would have a Yukawa profile, i.e.

F ∼ 1
r
e−mr (3.1)

where m is the mass of the graviton and r the distance. This term emerges from the ordinary
case with a massless graviton at length scales r ∼ m−1. In Einstein’s equations one mani-
festation of this idea is to promote Newton’s constant G to a differential operator G

(
L22

)
,

which leads to the following relation

G−1
(
L22

)
Gµν = 8πTµν . (3.2)

Being a function of the covariant d’Alembertian, Newton’s constant acts as a high-pass filter
where the scale of the filter is determined by L. A large excitation on the matter side with a
long wavelength � L, i.e. the cosmological constant, is then degravitated by passing through
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the filter, [46]. It can be argued that this not realizable with an ordinary massless graviton
(the propagating degrees of freedom does not add up) but with a massive spin-2 particle with
mass m ∼ L−1 or a resonance of an infinite set of such particles with masses m ∼ L−1 [47].

Therefore by setting m approximately equal to the Hubble constant one might explain the
smallness of the observed value. Unfortunately, so far attempts to find a working straightfor-
ward screening mechanism have been futile.

The tread which we will follow throughout this chapter is counting the number of degrees
of freedom which the propagating fields carry. If they do not add up to the expected value
for a (massive/massless) particle of a given spin, they indicate the presence of ghosts which
carry the redundant degrees of freedom. Hence, it is essential to find theoretical constraints
which eliminate these problematic degrees of freedom. In the spin-2 case, we will see how it
is performed in general relativity and in the consistency argument for bimetric theory.

3.2 Origins
A theory with massive spin-2 particles was already proposed by Fierz and Pauli as early as
1939 [48], following the same spirit as the Proca Lagrangian, the massive version of Maxwell’s
electromagnetism. They managed to write down a unique ghost-free mass term for a linearized
fluctuation of a spin-2 field. In d dimensions in flat space, the Fierz-Pauli action for a single
free spin-2 field with mass m takes the following form

S =
∫

ddx
[
−1

2∂ρ (hµν∂ρhµν − h∂ρh) + ∂µ (hνρ∂νhµρ − hµν∂νh)− m2

2
(
hµνh

µν − h2
)]
,

(3.3)
where the field is propagated by a symmetric tensor hµν [8]. Here, the trace of hµν is denoted
as h. The kinetic term is simply a linearized version of the Einstein-Hilbert term, and contains
all contractions of two powers of hµν with two derivatives. The coefficients of the involved
parts are fixed so that the action with m = 0 is invariant under

hµν → hµν + ∂(µξν), (3.4)

for a spacetime dependent parameter ξ(x). This transformation is a linearized version of
general relativity’s diffeomorphism invariance. To create a mass term one requires an object
with no free indices and with only one tensor hµν available, there are two options hµνhµν and
h2. Hence, the prototype mass term in the Lagrangian emerges as

Lmass ∝ −m2
(
hµνh

µν − αh2
)
, (3.5)

where α is a dimensionless parameter to be determined [9]. In order to find α = −1 as one
observes in (3.3), it is convenient to introduce a concept known as Stückelberg fields. These
are ubiquitous tools in analyzing propagating degrees of freedom in massive gravity. Their
purpose is to restore the underlying symmetry of a theory, in this particular case linearized
diffeomorphism invariance, at the expense of introducing supplemental fields. Let these fields
be called υµ and let them transform as

υµ → υµ −
1
2ξµ, (3.6)
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simultaneously as hµν transforms as in (3.4). Then, the mass term

−m2
((
hµν + 2∂(µυν)

)2
− α

(
h2 + 2∂ρυρ

)2
)
, (3.7)

is left invariant and hence the action is invariant under linear diffeomorphisms. In this new
mass term one obtains a purely kinetic term for the Stückelberg fields, namely

LS, kin
m ∝ m2

(
(∂µυν)2 − α (∂ρυρ)2

)
. (3.8)

Now, in order to investigate which choice(s) of α result in a ghost-free theory we split the fields
υµ into a transversal and a longitudinal part, where the transversal part obeys ∂µυ⊥µ = 0,

υµ = υ⊥µ + ∂µυ
L. (3.9)

After performing the split, we examine the kinetic term for the purely longitudinal component,

(1− α) ∂µ∂νυL∂µ∂νυL = (1− α)
(
2υL

)2
, (3.10)

where 2 is the d’Alembertian operator, ηµν∂µ∂ν , in flat Minkowski space. If α = 1, no
higher order derivatives in space or time appear of the longitudinal component. This is
promising, since higher order derivatives would indicate the presence of a ghost as inferred
from Ostrogradsky’s theorem [49]. In fact, two degrees of freedom are contained in the
longitudinal part and each comes with a kinetic term with the opposite sign with respect to
the other one. The problem can be illustrated by rewriting the d’Alembertian as a sum of
two propagators

1
22 = lim

m→0

1
2m2

( 1
1−m2 −

1
1 +m2

)
, (3.11)

where the last term clearly looks odd and will couple in the wrong way to external sources.
As the mass can be put arbitrarily small, this means that the issue will be present for all
α 6= 1, which motivates its value. Hence, the α = 1 brings about the unique consistent mass
term and we reach the sought form in (3.3) by choosing the unitary gauge for the Stückelberg
fields, i.e. the specific gauge where these take on zero values. Later, we will see how this
mass term can be generalized to the nonlinear regime of contemporary massive gravity and
bimetric gravity.

Arriving at this conclusion, we would like to count the degrees of freedom of the theory,
which will become important when we examine the consistency of massive and bimetric gravity
since they must reproduce this result. Here, we will work in four dimensions but the result
can be extended to higher dimensions in a straightforward manner. For the linear, free Fierz-
Pauli action this counting can be done in several ways. Firstly, one can perform a Legendre
transformation and do a Hamiltonian analysis or take certain linear combinations of the terms
and derivatives of them to make the different modes visible [8]. Another approach, [9], is to
work with Stückelberg fields, where one performs an alternative split of the fields to the one
in (3.9) with,

υ⊥µ = 1
m
Aµ, ∂µυ

L = 1
m2∂µπ, (3.12)
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where the mass factors have been included for convenience and where Aµ will prove to rep-
resent the helicity-1 mode and π the helicity-0 mode respectively later on. If we rewrite the
Fierz-Pauli action in terms of hµν and the two Stückelberg fields Aµ and π, replacing hµν and
h in the same manner as in (3.7), it takes the following form [9],

L = −1
4h

µνEρσµνhρσ −
1
2h

µν (∂µ∂νπ − Tr(∂µ∂νπ)ηµν)− 1
8FµνF

µν−
1
8m

2
(
hµνh

µν − h2
)
− 1

2m (hµν − hηµν) ∂(µAν),
(3.13)

where Fµν = ∂µAν − ∂νAµ and where E is a kinetic operator2 which when acted on hµν gives
the kinetic term in (3.3) where an additional hµν has been used to contract its two free indices
and the term has been divided by two. At this point we observe that we have obtained one
purely kinetic term for hµν and one for Aµ, but the one for π is still contracted with hµν . To
remedy this, one can diagonalize the mixing through the shift hµν → h̃µν +πηµν , which leads
to the following kinetic terms

Lkin = −1
4 h̃

µνEρσµν h̃ρσ −
3
4 (∂π)2 − 1

8FµνF
µν . (3.14)

Here, we can recognize the kinetic terms for a helicity-2 mode h̃µν which carries two degrees
of freedom as in general relativity, a helicity-1 mode Aµ which propagates two degrees of
freedom and finally a helicity-0 mode which brings an additional one. This means that Fierz-
Pauli massive gravity carries five degrees of freedom in four dimensions. An alternative route
is to note the propagating degrees of freedom through analysis of the representations of the
Poincaré group for massive particles in a specific dimension. A nice introduction to the
Poincaré group can be found in [50].

A few decades later, in the 1970s, van Dam and Veltman, [51], and Zacharov, [52], inde-
pendently discovered that the Fierz-Pauli action with interactions coupled to sources did not
reduce to the massless theory in the zero-mass limit, due to the helicity-0 mode which we
identified previously which is not present in the massless theory. This is known as the vDVZ
discontinuity. The helicity-1 mode does not pose such difficulties as it does not couple to
external sources and hence it does not matter that it is nonexistent for the massless theory.
A loop-hole to reconcile these results was found a few years afterwards in 1972 though the
so-called Vainshtein mechanism, [53]. A nice introduction to the topic is provided in [54].
For a theory of massive gravity, at low energies, nonlinear effects start to dominate when
the mass is small as the theory become strongly coupled. More explicitly, the linear approx-
imation ceased to be valid inside a certain radius of massive sources, called the Vainshtein
radius. The vDVZ discontinuity is derived using a linear approximation of the theory and
special non-linear interactions could thus suppress the additional degrees of freedom, i.e. the
helicity-0 mode, which are propagated by massive gravity in the zero-mass limit. To find the
detailed form of such interactions, a nonlinear completion of Fierz-Pauli massive gravity had
to be established. However, this endeavor must be pursued with great care, since theoretical
inconsistencies are generally introduced. In the same year as the Vaihnstein mechanism was
formulated, Bouleware and Deser nailed down such a pathology, notoriously known as the
Bouleware-Deser ghost, [55] [56] which proved to be excruciatingly hard to avoid and thus
extinguished the interest in these theories until the beginning of the 21st century. Basically,

2It is known as the Lichnerowicz operator [9].
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the Bouleware-Deser ghost is yet a consequence of Ostrogradsky’s theorem as the extra non-
linear terms in a generalized Fierz-Pauli action generically yield cubic and quartic differential
operators in the equations of motion which give rise to an additional degree of freedom, a
ghost. In four dimensions, the theory suddenly propagates six degrees of freedom instead of
the expected five where the last one is the ghost.

In 2005, Creminelli et. al. reformulated the analysis from an effective field theory point-
of-view [57], based on an earlier work by Arkani-Hamed et al. [58], which seemingly verified
the inevitability of ghosts in massive gravity. However, a sign mistake in their paper changed
the conclusion completely which was discovered in 2010 by de Rham, Gabadadze and Tolley
and allowed them to write down the first consistent nonlinear theory of massive gravity the
same year [59] [60]. This theory, known as massive gravity, requires two metrics where one
is dynamical and one is a fixed reference metric. Still, their consistency proof was only valid
in a certain decoupling limit. In 2011, Hassan and Rosen reformulated the theory in such a
way [61] that the full consistency could be confirmed [3] [62]. In addition, this setup allowed
for a simple generalization to promote the reference metric to a dynamical one [5] , leading
to a theory of two dynamical metrics on equal footing, bimetric massive gravity, which is
the central topic of this thesis. In the next section, we will explore the basics of the proof
formulation and gain insight about the dynamical structure of spacetime theories.

3.3 ADM formalism

An introductory course in general relativity typically involves deriving Einstein’s equations
by varying the Einstein-Hilbert action. Through this one studies the Lagrangian, or more
specifically the Lagrangian density, of the theory. However, it is not apparent which terms
encode the true dynamical degrees of freedom and which that merely provide constraints. To
elaborate, this has to do with the diffeomorphism invariance of the theory and this freedom
to choose coordinates introduces gauge modes which are not real degrees of freedom. In order
to illuminate this, one studies the Hamiltonian of the theory. This requires an explicit split
between space and time and hence reformulation of the covariant theory. In this treatment,
we are principally inspired by chapter 12 in [24] and appendix E of [63]. The application to
massive gravity follows the approach in [10] closely.

We start by introducing a scalar field t = t(xa), where xa are coordinates on the spacetime
manifold, which is defined in a such way that spacetime is foliated into non-intersecting
spacelike hypersurfaces Σ(t) of constant t. An illustration is provided in figure 3.1. The
normal na of these hypersurfaces is proportional to ∂at. One may then introduce a spatial
coordinate system xα on these surfaces. To connect points on different surfaces a congruence
of curves parametrized by t is installed so that events on different hypersurfaces have the same
xα provided they lie on the same curve. Combined with the t-coordinate, one obtains a four-
dimensional coordinate system xb = (t, xα) with tangent vector to the curves ta = ∂xa/∂t
satisfying ta∂at = 1. To continue, the construct eaα = (∂xa/∂yα) projects onto the surface
Σ(t). For a unit normal to the hypersurfaces one defines na = −N∂at where N is a scalar
function to ensure proper normalization known as the lapse. Naturally, naeaα = 0. With these
tools it is possible to decompose the curves’ tangent vector along the normal and the tangent
plane to the hypersurfaces, i.e. ta = Nna+Nαeaα. An infinitesimal coordinate transformation
xa = xa (t, xα) could then be formulated as
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normal

Figure 3.1: Spacetime foliated in terms of hypersurfaces Σ(t) intersected by curves parametrized by t.
The surface unit normal is given by na = −N∂at and a tangent vector to the curve can be decomposed
as ta = Nna+Nαeaα, where Nαeaα lies in the tangent plane to the surface, which is three-dimensional.

dxa = ta dt+ eaα dyα = (N dt)na + (Nα dt+ dyα) eaα, (3.15)

with a line element

ds2 = dxa dxa = gab dxa dxb = −N2 dt2 + hαβ
(
Nα dt+ dxα

) (
Nβ dt+ dxβ

)
, (3.16)

where the induced metric on the hypersurface is

hαβ = gabe
a
αe
b
β = gαβ. (3.17)

This implies that it is possible to write the time-time, time-space and space-space components
in terms of the lapse, shift and induced metric variables as g00 = NρNρ −N2, g0α = Nα and
gαβ = hαβ, respectively. In matrix form this is equivalent to

gab =
(
−N2 +Nαh

αβNβ Nβ

Nα hαβ

)
, (3.18)

with hαβ the inverse of the induced metric. From this we readily deduce the inverse

gab = 1
N2

(
−1 Nβ

Nα N2hαβ −NαNβ

)
. (3.19)

One recognizes that
√
−g = N

√
h where h = dethαβ. After having sliced up spacetime in

this fashion, one would like to define variables which carry information about the surfaces
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Σ(t). We already have the induced metric, which tells us about the intrinsic properties of
the surfaces (and lets us define a covariant derivative on them). Yet, one could also define an
extrinsic curvature, which contains information about surrounding higher-dimensional space-
time’s structure. This is given by

Kcd = −hachbd∇anb = −hac∇and. (3.20)

Here hac = δac + nanc, the natural projection tensor onto Σ(t). The last equality follows
from differentiating the normalization condition nana = −1, i.e. na∇bna = 0. This convey
information about how the normal is changing in the surrounding space, projected onto the
surface Σ(t). Equivalently, one can give the extrinsic curvature in terms of the shift and the
lapse as

−Kcd = hac∇and = ∇cnd + nanc∇and = ∇cnd + nc (na∇and) = ∇cnd + ncad, (3.21)

where we denote the acceleration analogous to the normal vector as ad. In practice, this means
that the covariant derivative of the normal vector can be decomposed into a part tangent to
the hypersurface encoded within the extrinsic curvature and a part normal to it given by the
acceleration part. By using this and the decomposition of the induced metric, one observes
that the covariant spatial components can be calculated from Kαβ = −∇βnα = −NΓ0

αβ.
Evaluating this, one concludes

Kij = 1
2N (∇iNj +∇jNi − ∂0hij) , (3.22)

where ∇i is the three-dimensional covariant derivative which acts on vectors tangent to the
hypersurface. Should we express this in a coordinate system where the components of the
shift take on a zero value, the extrinsic curvature is simply given by

Kµν = − 1
2N ∂thµν . (3.23)

From this it follows that the extrinsic curvature is manifestly spatial. Its non-zero components
convey information about the time-derivative of hαβ. Together these variables are known as
ADM variables after Arnowitt-Deser-Misner [64] who first formulated it in 1962. It is possible
to show, [24], that the Ricci scalar can be expressed as

R = R(3) +KabK
ab +K2 + surface term in the action, (3.24)

using the Gauss-Codazzi equations, relating the Riemann tensor in the higher dimensional
space to that on the hypersurfaces. Together with the previous determinant relation, the
Einstein-Hilbert action can be written as

S =
∫

ddxN
√
h
(

R(3) +KabK
ab +K2

)
, (3.25)

without the surface term. We note that the lapse and the shift do not appear with any
time derivatives, i.e. they do not encode the dynamics of the theory. This means that their
canonical momenta vanish identically and that the variations of the action with respect to
these variables, yielding zero, will act as constraint equations. By performing a subsequent
Legendre transformation on the dynamical spatial variables, hij , using the extrinsic curvature
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in (3.22), one acquires its non-zero canonical momenta. The process is simplified if one notes
that the variables only appear in terms with Kij ,

πij = δLADM

δḣij
= ∂Kij

∂ḣij

δLADM
δKij

= −
√
h
(
Kij −Khij

)
. (3.26)

With this definition it is possible to find an expression for the Hamiltonian

HADM =
(∫

Σ
πij ḣij dd−1x

)
− LADM =

∫
Σ
HADM dd−1x. (3.27)

Evaluating the expression as a Hamiltonian density using (3.25), (3.22) and (3.26), one dis-
cerns

HADM =
√
h
(
Kij −Khij

) (
2NKij −∇jNi −∇iNj

)
−N
√
h
(

R(3) +KijK
ij +K2

)
= N

(
− R(3) +KijK

ij −K2
)√

h− 2
√
h
(
Kij −Khij

)
∇jNi

=
√
h
[
N
(
− R(3) +KijK

ij −K2
)

+ 2Ni∇j
(
Kij −Khij

)]
,

(3.28)
where we have omitted a total derivative on the last line. This implies that the Hamiltonian
density can be expressed as the lapse and the shift multiplied by functions of the canonical
momenta and the spatial variables, i.e.

HADM = NR0 (h, π) +NiRi (h, π) , (3.29)

where one inverts (3.26) in order to recast the extrinsic curvature as a function of π and h,
namely

√
hKij = −const

(
πij − 1

d− 2πh
ij
)
. (3.30)

With this result in mind, we now turn to some general results from analytical mechanics
regarding constrained Hamiltonian systems. Please refer to [65] for an extensive review. As
stated before, the lapse and shift do not appear with any dynamical terms and all their
terms are linear. Hence, they are Lagrange multipliers. On-shell, i.e. when the equations of
motion are satisfied on the constraint surface, R0 and Ri are identically zero. These provide
d primary constraints in phase space, constraints valid for all times. Moreover, we can use
gauge invariance to remove additional degrees of freedom. If we evaluate the Poisson brackets
between the independent linear combinations of the primary constraints on the constraint
surface, we will discover that they yield zero in 2d − d cases. These are known as first-class
constraints and represent a gauge redundancy, in practice d opportunities to choose N and
N i, in the Hamiltonian formalism. Another way to see it is to return to the Hamiltonian
expression, again noting that no time derivatives of the lapse and shift appear which means
that their time evolution is unconstrained and that they are solely determined through a gauge
choice. These are responsible for the d diffeomorphism symmetries of the action. Counting
degrees of freedom, d(d − 1)/2 comes from hij and its canonical momentum πij bring an
additional d(d− 1)/2 possibilities. From this we subtract the d primary constraints and the
d first class constraints, leaving us with d(d− 3) remaining dynamical degrees of freedom in
phase space. Physically, this corresponds to the helicity states, and their canonical momenta,
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of a massless spin-2 particle. In four dimensions, one concludes that gravitational waves have
two polarizations.

We would like to perform a similar analysis in modified theories of gravity to check that
they propagate the correct number of degrees of freedom, corresponding to the force-mediating
particle of the theory.

3.4 Ghost-free massive gravity

If we would like to introduce a modified theory of gravity with a massive particle, we must
specify a mass term in the action. For a rank-2 tensor gab this should be a scalar density,
namely some nontrivial scalar function V (g) (potential) multiplied by the scalar density

√
−g.

This scalar function V (g) should not involve any derivatives. Since the metric comes with
two loose indices, we require another rank-2 tensor in order to contract them. The first hand
option would be to use the inverse of gab to achieve it, yet this would only add a trivial
cosmological constant term to the action. Regrettably, this implies that one cannot formulate
a covariant nonlinear interaction term suited for a spin-2 field with a sole tensor field available.
To amend this, one could supply an additional rank-2 tensor field, denoted fab, to construct
a nonlinear interaction term together with gab.

Subjected to an ADM decomposition, the corresponding shift and lapse functions of such a
theory would still come without time derivatives. Nevertheless, there is nothing a priori which
guarantees that they appear linearly in the interaction term. If they do not, their equations
of motion would involve N and N i themselves meaning that N and N i would be constrained
rather than the metric. Additionally the d constraints arising from gauge redundancy are
lost. Hence we are left with d(d− 1)/2 propagating degrees of freedom plus those from their
canonical momenta. However, for a massive spin-2 particle this represents only an extra
two degrees of freedom, one propagating and one from its canonical momentum. This is the
Bouleware-Deser ghost and it has been shown that a clever choice of the interaction potential
accompanied by a secondary condition furnish two additional constraints which eliminate this
pathological part.

In order to build a potential term which automatically bring a supplemental constraint,
we first split the new tensor field fab into ADM variables,

fab =
(
−Ñ + Ñlh̃

lkÑk Ñj

Ñi h̃ij

)
. (3.31)

Next, we recast
√
−g = N

√
h as previously, and hence obtains an interaction term of the

form √
−g · V

(
g−1f

)
= N
√
h · V

(
hij , N, N

i; h̃ij , Ñ , Ñ i
)
. (3.32)

To enable this term to give the sought constraint, it suffices to require that the Lagrangian
density should be linear in N and that N should be absent in the equations of motion, as
it will render the Lagrangian linear in N i automatically [4]. More precisely, the constraint
could arise due to a combination of the equations for N and N i should such a combination be
independent of these variables. Concerning the action, this means that one ought to permit
a field-dependent redefinition of the shift N i → ni which would make the Lagrangian linear
in the lapse. Before we observed that N i appeared linearly in the kinetic terms in GR and it
will also be the case here. As a consequence, the redefinition of the shift itself must be linear
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in N ; otherwise this property would be lost. In addition, since the new shift is assumed to
be present in the constraint it must be determined through its own equation of motion, i.e.
it has to be independent of N . From this one deduces that the variation of the action S with
respect to the redefined shift can be written as

δS

δni
= δN j

δni
δS

δN j
= 0. (3.33)

As the redefinition is linear in N , so must also be the case for the (nonzero) Jacobian of the
redefinition, δN j/δni, and this leaves δS/δN j = 0. By examining (3.32), one immediately
recognizes that the potential term already comes with a factor of N in front of it, so to acquire
a Lagrangian linear in N it must resemble

V
(
g−1f

)
= 1
N
V1 + V2, (3.34)

where V1 and V2 are scalar functions of the remaining variables. Now, we proceed to find
candidate expressions which could provide us with terms of this form. It is inferred from the
ADM decomposition of gab, (3.18) (3.19), that our sole chance to obtain a term linear in 1/N
is through the square root of the inverse of gab. This motivates a potential which is a function
of a matrix S =

√
g−1f , defined through√

g−1f ·
√
g−1f = g−1f. (3.35)

Yet, performing an ADM decomposition of such a square-root matrix proves to be a formidable
challenge at first glance. Fortunately, we can use the redefinition of the shift to recast the
expression into a simpler form to make it linear in 1/N . The procedure is as following; start
by investigating the matrix g−1f and redefine the shift as

N i = ci1

(
hij , n

i
)

+Nci2

(
hij , n

i
)
, (3.36)

where the functions c1 and c2 are independent of the lapse. Then, write

N2g−1f = E0 +NE1 +N2E2, (3.37)

with matrices Ei independent of N . Here, replace the shift with its new components, (3.36),
and compare coefficients using (3.19) and (3.31). To obtain a potential term linear in N in
the Lagrangian, we require

N
√
g−1f = A +NB. (3.38)

In order for this to be consistent with (3.37), the matrices A and B must be given by A2 = E0,
B2 = E2 and AB + BA = E1. The prescribed redefinition of the shift can be read out of the
last relation. Still, the redefinition is not unique and one has some liberty to choose variables
suitable for a specific calculation. One choice is presented in appendix C. The gist of the
argument to obtain a palpable ghost-free potential lies in the structure of the matrices A and
B. To begin with, the calculation shows that A must be of rank one, which means that it can
be written as an outer product of two vectors,

A = uvT. (3.39)

With this fact in mind, it is actually possible to construct a potential term V (S) with powers
of S, as terms with multiple powers of 1/N ·A will vanish. Let us see how this can be deduced.
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Since A has rank one, it means that it will act as projection operator to a one-dimensional
subspace. Owing to this property, antisymmetric products of A:s will be linear in A. In d
dimensions, inspect a term with multiple products of S:s with the following ansatz,

Sn =
( 1
N

A + B
)n

=
n∑

m=0

(
n

m

)( 1
N

)m
AlBn−m, (3.40)

with binomial coefficients
(n
m

)
= n!/(m!(n−m)!). In component form this can be reformulated

as
Sn =

n∑
m=0

(
n

m

)( 1
N

)m
Aν1

µ1 . . . Aνm
µm

Bνm+1
µm+1 . . . Bνn

µn
. (3.41)

Next, form a potential term with antisymmetric products of A as

V (S) =
d∑

n=0
bnε

µ1µ2 ... µnλn+1 ... λdεν1ν2 ... νnλn+1 ... λd
Sν1

µ1 . . . S
νn
µn
, (3.42)

where bn are arbitrary coefficients and the ε:s are completely antisymmetric Levi-Civita ten-
sors in d dimensions. Now, replace the product of S:s in the generic expression for the
potential and arrive at

V (S) =
d∑

n=0
bn

n∑
m=0

(
n

m

)( 1
N

)m
Vn (A, B) , (3.43)

where we have collected

Vn (A, B) = εµ1µ2 ... µnλn+1 ... λdεν1ν2 ... νnλn+1 ... λd
· Aν1

µ1 . . . Aνm
µm

Bνm+1
µm+1 . . . Bνn

µn

(3.39)= εµ1µ2 ... µnλn+1 ... λdεν1ν2 ... νnλn+1 ... λd
· uν1wµ1 . . . u

νmwµm
Bνm+1

µm+1 . . . Bνn
µn
.

(3.44)

Here, one observes that all indices of the symmetric product of the vectors vνi are contracted
with indices of the antisymmetric tensor εν1ν2 ... νnλn+1 ... λd

. This yields zero if we have more
than one vνi in the product and thus the potential only contain non-zero terms with at most
one A. Hence, one could argue that following the redefinition of the shift the most general
appearance of the potential should be (3.42). One can simplify this expression considerably by
writing the product of S:s in terms of the elementary symmetric polynomials of the eigenvalues
of the matrix S. A short introduction to this topic is furnished in appendix A. We define the
n:th elementary symmetric polynomial, en(S), for a matrix of dimension d× d following [16]
as

en(S) def= 1
d!

(
d

n

)
εµ1 ... µnλn+1 ... λdεµ1 ... µnλn+1 ... λd

Sν1
µ1 . . . S

νn
µn
, (3.45)

with e0(S) = 1 and where n 6 d. The determinant of S is easily discerned as the d:th term,

detS = 1
d!ε

µ1µ2 ... µdεν1ν2 ... νd
Sν1

µ1 . . . S
νd
µd
. (3.46)

In addition, these polynomials can be acquired through a recursive formula

en(S) = (−1)n+1

n

n−1∑
k=0

(−1)k Tr
(
Sn−k

)
ek(S). (3.47)
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Explicitly, the first five terms in this expansion, relevant for four spacetime dimensions, are

e0(X) = 1, e1(X) = [X],

e2(X) = 1
2
(
[X]2 − [X2]

)
, e3(X) = 1

6
(
[X]3 − 3[X2][X] + 2[X3]

)
e4(X) = det(X),

(3.48)

with X = S, which is a standard convention, and with square-brackets denoting the trace.
Note the similarity between e2(X) and the Fierz-Pauli mass term in equation (3.3). The
potential is then given by

√
−gV (S) =

√
−g

d∑
n=0

n!(d− n)!
2 bnen(S) =

√
−g

d∑
n=0

βnen(S), (3.49)

where we have baked in the coefficients in βn. A potential of this form, will make the
Lagrangian linear in N as well as N i, as previously mentioned, providing us with an additional
constraint. However, an additional constraint is required in order to obliterate the degree of
freedom corresponding to the canonical momentum of the pathological ghost-mode. This can
be obtained by postulating that the already acquired constraint to be time invariant. Since
the constraint does not have an explicit time dependence, its evolution is generated by its
Poisson bracket with the Hamiltonian H, [66],

Ċ(x) = {C(x), H}, (3.50)

where C(x) denotes the constraint. Here, the Poisson bracket between two operators is defined
as

{A, B} =
∫

dd−1x

(
δA

δhij(x)
δB

δπij(x) −
δA

δπij (x)
δB

δhij(x)

)
, (3.51)

where the integration is performed over the constraint surface in phase space. More explicitly,
equation (3.50) can be written as

{C(x), H} =
∫

dd−1x [{C(x), H0(y)}+N(y){C(x), C(y)}] , (3.52)

where the constraint-less part of the Hamiltonian density is denoted by H0 and where the
constraint is incorporated in N · C(x). That the first bracket yields zero follows from the
previous discussion and that the second bracket vanishes was proved in [62]. We will not
discuss it further here as the proof is slightly convoluted. This concludes our explorative tour
of the basic premises of massive gravity where we have motivated the validity of an action of
type,

SHR =
M2
g

2

∫
d4x
√
−gR(g)− 2m2M2

g

√
−g

4∑
n=0

βnen(S), (3.53)

where one has yet to introduce a source term. This is often denoted as the dRGT action. In
their original papers, [59] [60], the authors followed a slightly different approach than the one
presented here following [4] [62]. Later, the consistency proof has been reformulated in other
formalisms, such as in the language of Stückelberg fields in [67]. Note that we have note yet
arrived at bimetric gravity where both metrics are dynamical, which we will examine in the
next section.
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3.5 The bimetric action
Finally, we can take a first look at the bimetric action, also known as the Hassan-Rosen
action, in four dimensions:

SHR =
M2
g

2

∫
d4x
√
−gR(g) +

M2
f

2

∫
d4x

√
−fR(f)− 2m2M2

g

√
−g

4∑
n=0

βnen(S) (3.54)

where we have imbued the dRGT action in (3.53) with a dynamical f metric term.
One of the first things one would like to investigate is potential symmetries associated with

the general action and also those which emerge for special subclasses defined by parameter
choices. Since e0 simply yields the identity matrix, this means that the β0-term is nothing
but a cosmological constant term for the ordinary g-metric. Equally, the β4-term gives a
cosmological constant term for the f -metric as e4 is the determinant. These two remarks
point at a distinguishable feature of the bimetric action owing to a particular relation between
the elementary symmetric polynomials, namely

√
g · en(S) =

√
f · ed−n(S), with n = 0, . . . , d, (3.55)

which ensures that the action is invariant under the exchanges

gµν ↔ fµν , Mg ↔Mf , βn → βd−n (3.56)

which form a discrete symmetry, [5]. In the previous section, we worked with a theory where
g bore the dynamics while f was fixed. The symmetry which we have just described entails
that we similarly could promote f to a dynamical field with its own Einstein-Hilbert term
and keep g fixed and reach the same result vice versa.

In the context of general covariance, the Einstein-Hilbert term of massive gravity shares
the same symmetry as general relativity. However, the dRGT action as a whole loses this
symmetry since the fixed reference metric appears in the mass term. As for bimetric grav-
ity, its two Einstein-Hilbert terms are individually invariant under separate diffeomorphisms
parametrized by φ and φ̃,

gµν(x)→ ∂φα

∂xµ
∂φβ

∂xν
gαβ (φ(x)) , fµν(x)→ ∂φ̃α

∂xµ
∂φ̃β

∂xν
fαβ(φ̃(x)). (3.57)

However, these symmetries are not completely lost when considering the mass term, as it
simply reduces the overall symmetry to a subgroup of diagonal diffeomorphisms where φ̄ def=
φ = φ̃, [16],

gµν(x)→ ∂φ̄α

∂xµ
∂φ̄β

∂xν
gαβ(φ̄(x)), fµν(x)→ ∂φ̄α

∂xµ
∂φ̄β

∂xν
fαβ(φ̄(x)). (3.58)

This leads us to conclude that bimetric gravity is more symmetric than massive gravity and
perhaps better suited to tackle the naturalness argument in future quantum ventures.

Still, to conclude that a theory of two dynamical metrics, massive bimetric gravity, is
consistent, one must again perform an ADM analysis. A successful result was obtained in
[5]. Briefly, this theory a priori has two Bouleware-Deser ghosts so one requires that the
action is linear in the lapses N and Ñ for both metrics. As before, one redefines the shift
variables, N i and Ñ i, and this also brings about a Lagrangian which is linear in the shifts.
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To conclude, the secondary constraint calculated in [62] is used to eliminate the degrees of
freedom corresponding to the canonical momenta of the ghosts. This leads us to a bimetric
theory which propagates d(d − 2) − 1 degrees of freedom in d dimensions. Physically, this
could be interpreted as a massless and a massive spin-2 field. Yet, each mass eigenstate is not
formed solely by one metric, but consists of contributions from the two. In the subsequent
chapter when we will discuss bimetric cosmology, we will see how one could obtain explicit
expressions for the two propagating modes through analysis of the equations of motion. The
bimetric action is the most general action involving two dynamic metrics with interaction
terms that do not contain any derivatives of them.

3.6 Matter couplings
The next natural step is to include matter terms in the action. In the so-called single-coupled
theory, one adds a matter Lagrangian in the same way as in general relativity,

√
−gLm(g, Φ), (3.59)

where Φ denotes different matter fields. Notice that these fields only couples directly to the g-
metric, but there is an implicit relation to the f -metric through the interaction potential. One
geometric interpretation is to refer to g as our ordinary spacetime metric similar to the one in
GR where theory covers an additional coupling to a spin-2 field, f , which renders the gravitons
massive. In the previous section we mentioned that the two propagating modes were built from
a superposition of the two metrics and simply coupling matter exclusively to the combined
massless mode has proved to be inconsistent [68]. The absence of ghost proof for the free
bimetric theory in [5] and [62] can be extended in a straightforward manner to a single-coupled
matter theory [68], and is explicitly presented in [69] in the ADM formalism. Moreover, the
single-coupled theory does not provide any extra contributions that ruin the special form of
the potential and resuscitate the Bouleware-Deser ghost for quantum corrections at one-loop
order [70].

An option is to let different types of matter, for instance ordinary matter and dark matter,
couple to different metrics. Another conceivable, but conceptually challenging, path is to
couple the same type of matter to both metrics. Such theories are commonly referred to
as double-coupled. Owing to the discrete symmetry between the two metrics for the free
theory depicted in (3.56), such couplings would be advantageous from the symmetry aspect.
Their phenomenology has been investigated in [71] and they pose intriguing questions on the
nature of the relation between spacetime geometry and matter prevalence. Should one decide
to couple matter to both metrics, which would then be the physical one? This acute situation
could be compared to having two rulers for distance measurements with no knowledge of
which one to use. The speed of light could be different in the two geometries, challenging the
notion of causality. These fundamental issues dampened the interest in this class of theories,
but they have undergone a revival during the last year. However, recently, it has been shown
that such models generically bring pathologies both on the classical level [69] and for first-
order quantum corrections [70] unless the couplings have specific forms. A similar analysis has
also recently been conducted in the vielbein formalism [72] for this allowed double-coupling,
which was explicitly shown to be ghost-free in [73]. The associated background cosmology
have been analyzed a couple of days ago [74], but comparisons with experimental data have
yet to be performed. It is possible to form an effective metric of g and f and obtain consistent
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results while coupling it to matter. Concerning the geometrical aspect, another possible way
to resolve these dilemmas might be achieved in a departure from our Riemannian view of
spacetime to a description founded in Finsler geometry [75]. Within this framework, the line
element would be given by a quasi-metric, involving contributions from both g and f , which
might share features with and serve as an interpretation an effective metric of theory. Much
rests to be discovered and there are excellent conditions for auspicious research findings in
the years to come.

46



Chapter 4 Bimetric phenomenology: Cosmology

With the basic cornerstones of bimetric gravity presented in chapter 3, we move now on to
its physical, cosmological predictions. Firstly, we will show how to derive the equations of
motions and proceed with a brief analysis of their implications on the cosmic background
solutions. Then we will approach the purpose of this thesis, namely the investigation of
large-scale structures in the bimetric framework.

4.1 Equations of motion

To derive the equations of motion, one proceeds in a straightforward manner by varying the
action. To probe spacetime solutions, we set d = 4 and work with a single-coupled theory
with matter coupled to the g-metric. Hence, our starting point is the action,

S =
∫

d4x

[
M2
g

2
√
−gR(g) +

M2
f

2
√
−fR(f)− 2m2M2

g

√
−g

4∑
n=0

βnen(S) +
√
−gLm(g, Φ)

]
,

(4.1)
with terms previously discussed in sections 3.5-3.6. As in general relativity, we postulate that
the variation of the matter Lagrangian gives,

− 1√
−g

δLm(g, Φ)
δgµν

= T gµν , (4.2)

where T gµν is the stress-energy tensor in the g-sector and with T fµν = 0. Note that in a double-
coupled theory the matter variation is defined likewise. The derivation steps are exactly the
same as when one varies the Einstein-Hilbert action with a non-zero stress-energy tensor to
obtain Einstein’s equations (see for instance [24]) with exception of the interaction terms, with
the evident difference that one obtains two equations, one for g and one for f . Considering
these interaction terms, there is a subtlety involved while evaluating the variation of the
square-root matrix S =

√
g−1f . Still, since this matrix only is present in traces in the

elementary symmetric polynomials, there exists special caveats which we can use. To begin
with, the variation of S2 equals δ(S2) = (δS)S + S(δS). If we plug this into the variation of
the trace, one can reformulate it as δ(TrS) = Tr(δS) = 1/2 Tr(S−1δ(S2)) since the trace is a
linear transformation. Subsequently one proceeds to higher powers of S [61]. Together with
the recursive relation of the elementary symmetric polynomials in (3.47), the variation of the
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interaction terms is given by tensors of the following form

V int, g
µν (S) =

d−1∑
n=0

(−1)nβngµρ
(
Y (n)

)ρ
ν

(S)

V int, f
µν (S) =

d−1∑
n=0

(−1)nβd−nfµρ
(
Y (n)

)ρ
ν

(S−1)
(4.3)

where we have also incorporated the symmetry in (3.56) and whose matrix functions Y (n) are
defined according to (

Y (n)
)µ
ν

(S) =
n∑
k=0

(−1)kek(S)
(
Sn−k

)µ
ν
. (4.4)

In addition, we have used the fact that the tensors are symmetric in (4.3) [68]. We readily
obtain our terms in four dimensions as the first four terms in the series. Explicitly, they are
given by

Y (0)(S) = I

Y (1)(S) = S − [S]I

Y (2)(S) = S2 − [S]S + 1
2
(
[S]2 − [S2]

)
I

Y (3)(S) = 1
6
(
6S3 + 3S[S]2 − [S]3I − 3S[S2] + [S](−6S2 + 3[S2]I)− 2[S3]I

)
,

(4.5)

where I is the unit matrix and the square-brackets denote the trace as before.
Later on when we start to examine the perturbations required for structure formation, we

must perform an additional variation of the action, now involving perturbed metric quantities
as gµν → gµν + δgµν and fµν → fµν + δfµν . In that case, the variation of the square-root
of a perturbed matrix emerges as a delicate affair [76]. Fortunately, our ansätze for the two
unperturbed metrics will be isotropic and homogeneous, i.e. of FLRW-type, and then we
can compute these terms through a series expansion of the square-root, provided that the
perturbations are small. In terms of matrix components one acquires(√

M + ε
)
µν

=
√
Mµν + εµν√

Mµµ +
√
Mνν

+O
(
ε2
)
, (4.6)

where M is the unperturbed, diagonal background matrix and ε the matrix with the small
perturbations. One then replaces S with this expansion in (4.3) to reach the equations of
motion for the perturbations while neglecting all terms of order O

(
ε2
)
.

To simplify the analysis one clearly observes that the action in (4.1) can be subjected to
a rescaling,

fµν →
(
Mg

Mf

)2

fµν and βn →
(
Mf

Mg

)n
βn, (4.7)

which implies that the ratio between the two Planck masses in each sector Mf/Mg is a
redundant variable which can be set to unity. Note that this combination would still appear
in the equations of motion for the f -sector in a double-coupled theory. Henceforth, we will
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refer to this ratio as M? following the convention in [6]. With this in mind, we arrive at the
following equations of motion,

Gµν(g) +m2
3∑

n=0
(−1)nβngµρ

(
Y (n)

)ρ
ν

(S) = 1
M2
g

T gµν (4.8)

Gµν(f) +m2
3∑

n=0
(−1)nβ4−nfµρ

(
Y (n)

)ρ
ν

(S−1) = 0, (4.9)

where Gµν(g) def= Rµν−1/2gµνR(g) is the Einstein tensor in each sector. During the successive
treatment of the perturbations the Einstein tensors will transform as Gµν(g) → Gµν(g) +
δGµν(g) as the metrics transform as gµν → gµν + δgµν .

In general relativity, the Bianchi identity ∇µGgµν = 0, where ∇ is the covariant derivative
with respect to the g metric, implies that the stress-energy tensor obeys ∇µT gµν = 0, i.e.
it is covariantly conserved, as we saw in equation (2.27). Hence, the conservation of the
sources is a consequence of the equations of motion. The result is mimicked in bimetric
theory, yet with a resultant weaker condition due to the interaction terms. Intuitively, the
Einstein tensor in the f -sector also satisfies the Bianchi identity ∇̃µGµν = 0 where ∇̃ is the
covariant derivative with respect to f . Since the interaction potential remains invariant under
simultaneous diffeomorphisms of g and f , the following relation applies

√
−g∇µV int, g

µν (S) +
√
−f∇̃µV int, f

µν (S) = 0, (4.10)

from which one infers the following general constraint on the sources
√
−g∇µT gµν +

√
−f∇̃µT fµν = 0. (4.11)

Still, we will impose that the two stress-tensors are conserved separately, which in other words
means that each matter Lagrangian is separately invariant under diffeomorphisms. Here, we
do not have any matter sources coupled to f . If the stress-energy tensors are conserved
individually, this means that there are four constraints conveyed by the equations of motion
in d = 4, namely

∇µ
3∑

n=0
(−1)nβngµρ

(
Y (n)

)ρ
ν

(S) = 0. (4.12)

Through (4.10) one notices that they are the same in each sector. Equivalently, in d dimen-
sions one obtains d constraints and these relations are known as Bianchi constraints. We
will frequently refer to them in the sections which follow. It should be stressed that these
conditions arise from the equations of motion. Hence, they do not provide any additional
information. However, we will discover that it occasionally is more clear to replace some of
the equations with constraints to obtain a fruitful result without lengthy calculations.

4.2 Background solutions
Having established the equations of motion, we will now investigate explicit cosmological
solutions. Chiefly the discussion will be based on material in [6] interspersed with compli-
mentary results. As our goal is to compare the phenomenological predictions to those of
general relativity, we make an FLRW ansatz for the matter-coupled metric g,

ds2
g = gµν dxµ dxν = −N(t)2 dt2 + a(t)2 dx2, (4.13)
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where N(t) = 1 for cosmic time and N(t) = a(t) for conformal time following the notation
introduced in [11]. For the f -metric, we assume a more general isotropic and homogeneous
metric on the form

ds2
f = fµν dxµ dxν = −X(t)2 dt2 + Y (t)2 dx2, (4.14)

where X(t) and Y (t) are arbitrary, smooth scalar functions. The spatial part dx2 is given by

dx2 = dr2

1− kr2 + r2 dΩ2, with dΩ2 = dθ2 + sin2 θ dφ2, (4.15)

as in ordinary FLRW. We will abbreviate the expressions below by not writing out the t-
dependence of the relevant terms. If we insert these two metric ansätze into (4.12), one
concludes that the time-component of the Bianchi constraint yields1

3m2

a

(
β1 + 2yβ2 + y2β3

) (
Ẏ − ȧx

)
= 0, (4.16)

where the dot indicates a time derivative and where we have introduced the variables y = Y/a
and x = X/N following [11]. Obviously, there are two ways to ensure that this relation
is satisfied, i.e. one parenthesis has to be equal to zero. If the first one gives a trivial
result, it implies solutions where y ∝ constant. As a consequence, the calculation of the
equations of motion will generate the ordinary relativistic equations of general relativity with
a cosmological constant of order m2 and, moreover, the mass of the massive spin-2 field will
disappear [6]. Physically, this means that such a class of solutions cannot be distinguished
from ordinary general relativity at least on the background level. This motivates us to examine
solutions where the second parenthesis evaluates to zero, i.e. when

x = Ẏ

ȧ
= dY

da = Ky

H
, (4.17)

with the defined combinations Ẏ /Y = K and ȧ/a = H which we will use frequently later
on2. Since K = ẏ/y + H, the important functions for the background are the scale factor
ratio y = y(t) and the cosmic scale factor a = a(t). As for the source terms, we assume
a perfect fluid in thermal equilibrium, which implies that the stress-energy tensor appear
as in (2.23), with diagonal components T 0

0 = −ρ̄ and T ii = p̄ in the rest frame (no sum
implied). Taking this into account, calculating the equations of motion produces the modified
Friedmann equations,

3H2 −N2m2
(
β3y

3 + 3β2y
2 + 3β1y + β0

)
+ kN2

a2 = N2ρ̄

M2
g

, (4.18)

in the g-sector and

3K2 −N2m2x2
(
β4 + 3β3y

−1 + 3β2y
−2 + β1y

−3
)

+
(
K

H

)2 kN2

a2 = 0, (4.19)

in the f -sector [6] where we have used (4.17). If we restrict ourselves to a spatially flat universe,
we can set k = 0 and eliminate the corresponding terms. Through further manipulation with

1This calculation is easily performed by writing appropriate Mathematica-modules while considering the
background geometry.

2Some authors prefer to include this relation directly in the metric ansatz, see for instance [12].
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help from (4.17), it is possible to subtract these two equations from one another and obtain
a single quartic algebraic equation for y,

β3y
4 + (3β2 − β4) y3 + 3 (β1 − β3) y2 +

(
ρ̄

m2M2
g

+ β0 − 3β2

)
y − β1 = 0. (4.20)

Hence, y is determined by ρ, but we can specify this further by demanding that the source
obeys the continuity equation. If we assume that the system has an equation of state p̄ =
ωρ̄(t), the equation is the same as in (2.28), where the relation ˙̄ρ = −3Hρ̄ applies for pressure-
less dust such as in (2.29). Here, one can proceed along two paths, either solve for ρ̄ directly
from this fluid equation (2.28) or replace it in (4.20) and its differentiated version (for pressure-
less dust). In the first case, one then solves for y using the quartic equation and then inserts
this into either (4.18) or (4.19) to solve for H2. The latter choice propels us to differential
equation for y in terms of βi, whereupon one of the remaining Friedman equations is used
to solve for H2. This method is for instance used in [77], [78], [11] and [12]. For a zero-
curvature model with pressure-less dust, we readily read off ρ̄ from (4.20) and are able to find
expressions for ẏ and H through

ρ̄ = m2M2
g

[
−β3y

3 + (β4 − 3β2)y2 + 3(β3 − β1)y + 3β2 − β0 + β1
y

]
, (4.21)

ẏ

y
= −3Hβ3y

4 + (3β2 − β4)y3 + 3(β1 − β3)y2 + (β0 − 3β2)y − β1
3β3y4 + 2(3β2 − β4)y3 + 3(β1 − β3)y2 + β1

, (4.22)

H2 = m2N2
[
β4
3 y

2 + β3y + β2 + β1
3

1
y

]
. (4.23)

To facilitate comparisons with experimental data, one may normalize the βi and the density
ρ̄ to the present day Hubble-rate H0 following [79],(

m

H0

)2
βi → βi,

( 1
H0

)2
ρ̄→ ρ̄, (4.24)

rendering the βi dimensionless. As stated, to obtain an equation for y(t) we can solve the
differential equation or fix ρ̄ which gives a solution directly. The latter choice is easier since
we can put bounds on ρ̄ directly and we do not have to translate this information to constrain
the integration constants. Still, another subtlety arises due to the fact that equation (4.20)
may have as many as four solutions which introduces a conundrum regrading which solution
is valid for which times. By integrating the differential equation in (4.22) one ensures that
a proper solution is reached and that a real solution stays real. In chapter 2, we noted the
current density parameter values. Since we are interested in investigating whether bimetric
gravity can supplant dark energy, we can simply insert the remaining densities into from
(2.37) into ρ̄ while neglecting the Ωk in (2.36), because we have the same matter coupling.
This leads to a relation3

ρ̄(a) = Ωma
−3 + Ωγa

−4 ≈ 0.317a−3 + 10−5a−4, (4.25)

corresponding to Ωm and Ωγ as measured by Planck. Here, we have assumed that the physical
Planck mass and the g sector Planck mass are equal, MPL = Mg. Then, one inserts this

3The factor of three has been included in the definition of ρ̄.
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density into (4.21) and the y solution into (4.23). To proceed, we use relation (2.40). As
we remarked previously, E(a = 1) = 1, due to that we normalize by the present expansion
rate. This allows us to constrain the βi-values in (4.23). Regrettably, this leads to a solution
which is not very transparent for arbitrary βi. We will plot the solutions for some of the
one-parameter models. In figure 4.1 the finite branch solutions for y in the one-parameter
β1- and β2-models are presented. Equation (4.20) has multiple solutions and those which
produce finite values for y in the far future, a → +∞ or equivalently z → −1 following
(2.10), are referred to as finite branches. The deep past corresponds to a → 0, z → +∞,
where the solution is undefined at a = 0. For the β1-model, the ratio y is effectively zero for
small a, as observed in figures 4.1(a) and 4.1(b). This is a property shared with other models
and the cause can be found by studying the asymptotic solutions of (4.20). At early times
the ρ̄(a) term is large, dominating all other terms which forces a solution y → 0 as a → 0.
Concerning β1, it is the one-parameter model which best fits supernovae data [79] [80], and is
usually called the minimal bimetric model. However, it disagrees with observations for linear
perturbations in the subhorizon limit [11] and produces instabilities far in the past [78].

The β2-model has the nice feature of producing a constant ratio y ≈ 1 at late times, which
means that one obtains a de Sitter solution for the theory. A de Sitter solution is characterized
by a constant H0 in cosmic time and by a solution proportional to a in conformal time and
we see that this is true in 4.1(f), where the late time curve’s asymptot is a. Such a solution
allows for an analytic4 solution of the equations of motion for linear scalar perturbations [7].
Yet, it has a peculiar zero at a ≈ 0.5 where it switches branches to the y = 0 solution, also
permitted by (4.20). One may interpret this as if the past was solely governed by one metric
g as in general relativity (y = 0 implies that there is no f -metric) until a point where the
change y 6= 0 turns on the f -metric, from which onwards the whole system evolves towards a
de Sitter universe. An idea is that this may be related to the filtering concept of degravitation,
which we discussed in section 3.1. The transition in figures 4.1(c) and 4.1(d) is rather abrupt
and thus one might consider including additional βi-terms to mitigate it, fitting for a more
viable physical theory. With our choice of ρ̄ neither the β3- nor the β4-model provide valid
solutions at a = 1.

Regarding the more interesting, multi-βi models, we do not have sufficient information
from the equations to fix both two parameters, but we have to express one in terms of
the other. Validity conditions have been adressed in [80] and we will attempt to follow the
analyses conducted in [11] and [12]. Still, their parameter values are obtained from comparison
with supernovae and structure growth data whereas our experimental input comes through
density factors. Hence, there will be a qualitative agreement and parameter values will differ
slightly. At present, the infinite branch β1β4-model seems to be the two-parameter model
which best fits experimental data while avoiding instabilities on the background level as well
as for perturbations [11][12]. Its stability condition has been found as 0 < β4 < 2β1 [12] with
best fits comparing with growth data as β1 = 0.48, β4 = 0.94. To obtain the proper solution
branch, we set β4 = 0.94 in (4.21) and use the normalization condition in (4.23) to solve
for β1. With the Planck data, β4 = 0.94 produces a solution β1 = 0.46 which violates the
stability argument and does not yield a y solution for late times, see figure 4.2(a). However,
if we shift the values slightly by for instance setting β4 = 0.9, an allowed β1-value is acquired

4This can be surmised from the structure of equations (4.28)-(4.35) in section 4.3 as the time-derivatives of
the background variables vanish and one can form linear combinations of the fields which yield one mode that
couples to matter and one which does not.
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(b) β1: scale factor ratio vs. g−metric scale factor.
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(c) β2: scale factor ratio vs. redshift.
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(d) β2: scale factor ratio vs. g−metric scale factor.
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(e) β1: conformal energy function vs. a.
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(f) β2: conformal energy function vs. a.

Figure 4.1: Solutions for y in the one-parameter β1-model with β1 ≈ 1.27 and the β2-model with
β2 ≈ 0.79. Note that E(a) in conformal time is a · E(a) using ordinary cosmic time.
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(b) β1β4: scale factor ratio solution branches.

Figure 4.2: Stable and unstable parameter combinations.
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(b) β2β4: scale factor ratio solution branches.

Figure 4.3: The “on”-solution shifts with different sets of β2- and β4-values.

and the y solution will be stable in the future as illustrated in figure 4.2(b). We deem that
the negative solutions are not viable as a negative scale factor would not make sense for the
f -metric ansatz. As for the β2β4-model, we find that it features the same on/off-behavior
as the pure β2-model. However, different but still consistent parameter combinations could
induce the transition to occur at different times, as seen in figures 4.3(a) and 4.3(b) in figure
4.3.

4.3 Scalar perturbations
Serving as a catalysis for structure formation, we will embark on the treatment of linear scalar
perturbations in bimetric gravity. Similar expressions for the tensor perturbations are listed
in appendix B. For the perturbed metrics we make an ansatz

ds2
ḡ+δg(s) = −N2 (1 + Eg) dt2 + 2Na∂iFg dt dxi + a2 [(1 +Ag) δij + ∂i∂jBg] dxi dxj , (4.26)

ds2
f̄+δf (s) = −X2 (1 + Ef ) dt2 + 2XY ∂iFf dtdxi + Y 2 [(1 +Af ) δij + ∂i∂jBf ] dxi dxj ,

(4.27)

where the perturbation variables {Eg, f , Fg, f , Ag, f , Bg, f} depend on both space and time.
This ansatz connects to Weinberg’s notation in [22], which we investigated in section 2.2.2,
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and was adapted to massive bigravity in [7] as well as in [11]. In the matter sector, we demand
the same form for the perturbed stress-energy tensor as in (2.64) with Fg instead of F . We also
define the velocity divergence as θ def= ∂iu

i. Moreover, to facilitate the analysis of different wave
modes we Fourier transform the spatial terms as before, ∂i → −iki, k2 = k2 = k2

i + k2
j + k2

k.
We demand that the wave modes are isotropic. By varying the action (4.1), keeping terms up
to linear order in the perturbations, and omitting the phase factor exp (−ik · x), we arrive at
the following equations of motion 5:

• δg
(s)
0−0:

3H
N2

(
HEg − Ȧg

)
−k2

[
Ag
a2 + H

N

(
2Fg
a
− Ḃg
N

)]
+m2yP

2
(
3∆A− k2∆B

)
= ρ̄δ

M2
g

, (4.28)

• δg
(s)
0−i:

iki

[ 1
N2

(
HEg − Ȧg

)
−m2 a

N

Py

x+ y
(xFf − yFg)

]
= − θ

ikiM2
g

, (4.29)

• δg
(s)
i−i (spatial trace):

1
N2

[(
2Ḣ + 3H2 − 2Ṅ

N
H

)
Eg +HĖg − Äg − 3HȦg + Ṅ

N
Ȧg

]
+

m2
[
xP

2 ∆E + yQ∆A
]

= 0,
(4.30)

• δg
(s)
i−j (off-diagonal components):

k2

2

[
Ag + Eg

a2 + H

N

(
4Fg
a
− 3Ḃg

N

)
+ 2Ḟg
aN
− 1
N2

(
B̈g −

Ṅ

N
Ḃg

)
+m2yQ∆B

]
= 0,

(4.31)

• δf
(s)
0−0:

3K2

x2N2

(
KEf − Ȧf

)
− k2

[
Af
y2a2 + K

xN

(
2Ff
ya
− Ḃf
xN

)]
− m2P

2y3

(
3∆A− k2∆B

)
= 0,

(4.32)

• δf
(s)
0−i:

− iki
xN

[
1
xN

(
KEf − Ȧf

)
+ m2P

y2
1

x+ y
(yFg − xFf )

]
= 0, (4.33)

5In this report this calculation has been performed in Mathematica through the creation of a designated
script involving components of the background geometry using the standard formulae for the connection,
covariant derivative, Ricci tensor, scalar curvature etc. plus the additional interaction terms required in (4.8).
Regarding the terms from the Einstein tensor in the g−sector, they are the same as those in general relativity,
see equations (2.82)-(2.85). The expression for the perturbed square-root matrix was simplified using the
expansion in (4.6). In total, this verifies the result published in [11].
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• δf
(s)
i−i (spatial trace):

1
x2N2

[(
2K̇ + 3K2 − 2

(
ẋ

x
+ Ṅ

N

)
K

)
Ef +KĖf − Äf − 3KȦf +

(
ẋ

x
+ Ṅ

N

)
Ȧf

]
+

m2

xy2

[
P

2 ∆E +Q∆A
]

= 0,
(4.34)

• δf
(s)
i−j (off-diagonal components):

k2

2

[
Af + Ef
y2a2 + K

xN

(
4Ff
ya
− 3Ḃf
xN

)
+ 2Ḟf
xayN

−

1
x2N2

(
B̈f −

(
ẋ

x
+ Ṅ

N

)
Ḃf

)
− m2Q

xy2 ∆B
]

= 0,
(4.35)

with

P
def=β1 + 2β2y + β3y

2, (4.36)

Q
def=β1 + β2(x+ y) + β3xy, (4.37)

∆A def=Af −Ag, (4.38)

∆E def=Ef − Eg, (4.39)

∆B def=Bf −Bg. (4.40)

The associated Bianchi constraints from (4.12) for these perturbations are

∇µpert

3∑
n=0

(−1)nβngpert
µρ

(
Y (n)

)ρ
0

(Spert) = m2P

[
k2x

x+ y

N

a
(yFf − xFg) +

1
2
(
3
{
yȦf − xȦg

}
− k2

{
yḂf − xḂg

}
+ yK

{
3∆A− 3∆E − k2∆B

}) ]
= 0,

(4.41)

and

∇µpert

3∑
n=0

(−1)nβngpert
µρ

(
Y (n)

)ρ
i
(Spert) = ikim

2
[
− P

2 (xEf − yEg)− yQ∆A

− y

x+ y

a

N

[
P
({
xḞf − yḞg

}
− 4H {xFf − yFg}

)
+ Ṗ (xFf − yFg)

]
− P

(x+ y)2
a

N

(
ẏx2Ff − ẏy2Fg − 2ẏxyFg + ẋy2 {Ff + Fg}

)
+ P

x+ y

[((
a

N

)3
− N

a

)(
y2 {KFf −HFg}

)
−
(
a

N
− N

a

)
Hx2Fg

] ]
= 0,

(4.42)

where the last line vanishes for conformal time. Their reciprocals expressed in terms of the
stress-energy tensor defined in (2.64) are

∇µTµ0 = δ̇ + θ + 3
2Ȧg −

k2

2 Ḃg + k2Fg = 0, (4.43)
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and

∇µTµi = θ̇ +
[
Ṅ

N
−H +

(
a

N

)2
H

]
θ + k2

2 Eg +H
a

N

k2

N
[N − a]Fg = 0, (4.44)

where the last expression is reduced to

∇µTµi = θ̇ +Hθ + k2

2 Eg = 0, (4.45)

in conformal time. With these expressions, we are now ready to start the solution machinery
and, for convenience, we will work in conformal time.

4.3.1 Subhorizon solution and WKB approximation
The subhorizon case for these equations have been throughly explored in [11], where one
deduces the limit as in general relativity in section 2.2, namely (k/a)Φ � H2Φ ∼ HΦ̇ ∼ Φ̈,
i.e. every differentiation supplies an additional factor of H, which will be more visible in the
next chapter in equation (5.8) when we transform these derivatives to be of the scale factor
a. Moreover, it is sensible that K should scale in the same way, i.e. K ∼ H and that terms
Ag, f and Eg, f should be of the same order as kFg, f and k2Bg, f as they take this form in the
line elements in (4.26) and it would be odd if it were otherwise. In Newton’s gauge, where
Fg = Bg = 0 for the g-metric exactly as in general relativity, taking this limit, neglecting the
Ff -terms in the δg(s)

0−i and δf
(s)
0−i-equations, (4.29) and (4.33), while using (4.43) and (4.45)

produces (
k

a

)2(
Ag + m2ya2

2 PBf

)
− 3m2yP

2 ∆A = ρ̄δ

M2
g

, (4.46)

from δg
(s)
0−0, (4.28), and for the trace δg(s)

i−i, (4.30),(
Ḣ −H2 + a2ρ̄

2M2
g

)
Eg +m2a2

(
xP

2 ∆E + yQ∆A
)

= 0, (4.47)

and for the off-diagonal components δg(s)
i−j , (4.31),

Ag + Eg +m2a2yQBf = 0. (4.48)

In the f -sector, the corresponding equations for δf (s)
0−0, δf

(s)
i−i and δf

(s)
i−j , (4.32), (4.34) and

(4.35), are (
k

a

)2(
Af −

m2a2

2y PBf

)
+ 3m2P

2y ∆A = 0, (4.49)

−
[
K̇ −

(
H + ẋ

x

)
K

]
Ef +m2a2x

y

(
P

2 ∆E +Q∆A
)

= 0, (4.50)

Af + Ef −
m2a2

x
QBf = 0, (4.51)

which means that we are left with a system of algebraic variables which source the evolution
equation for δ in (4.43). Deviations from general relativity can be evaluated in the subhorizon

57



large-scale structure context in terms of a couple of parameters which can be observed by
experiments like Euclid. In [11], they investigate three primary probes highlighted by Euclid,
[81]; the growth rate of large-scale structures f(a, k) which is related to δ̇ through

f(a, k) def= d log δ
d log a ≈ Ωγ

m, (4.52)

where the γ is the growth index and Ωm the matter density we discussed in (2.37), a modifi-
cation Q(a, k) of Newton’s constant in (2.51) and (2.90) respectively as

k2Ag
def= Q(a, k)a

2δρ̄

M2
g

, (4.53)

and an effective anisotropic stress
η

def= −Ag
Eg
, (4.54)

resulting from the fact that Ag and Eg do not have to be equal to one another in (4.48)
whereas Φ = Ψ by default in (2.85) in Newton’s gauge in GR. As stated the full analysis is
provided in [11], with the conclusion that the β1β4-model is the one whose predictions for
these parameters mostly differ from those of GR and hence it is probably the first model
which one may rule out.

Another method which has been suggested as a valid option in several cases for large k, is to
solve the system generally to obtain two coupled second-order differential equations for the two
remaining dynamical fields, in a set Ξ = {Ψ, Φ}, and then substituting them with an ansatz
of type Ξ = Ξ0 exp (iωN) [12]. This is a type of Wentzel–Kramers–Brillouin approximation
(WKB), which is often used in quantum physics to locate approximate solutions to partial
differential equations whose spatial coefficients vary. Here one assumes that ω changes slowly
in time, i.e. obeys ∣∣∣∣ ω̇ω2

∣∣∣∣� 1. (4.55)

Such an approach enables one to express the (approximate) eigenfrequencies of the system as
functions of the ferociously complicated general pre-factors, which are made up by background
constituents, of the reduced system. This has been proposed as a sensible option to study
instabilities of the linear perturbations. However, this are very new results and caution must
be taken so that the approximation holds in the regimes which one would like to examine.
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Chapter 5 Numerical methods and solution strategy

In this chapter we will discuss algebraic algorithms to solve the system of linear scalar pertur-
bations in bimetric gravity and the numerics involved. Principally, we are interested in solving
the system in such a way that we obtain two coupled second-order differential equations of
two variables. This is a delicate problem since not all permitted gauge choices allow such a
formulation in terms of the original system variables. Then, should one succeed in obtaining a
solution, we specify a set of parameter values and provide a set of consistent initial conditions
to start the numerical machinery to arrive at an expression for the dynamical evolution of
the system. We will start this chapter with specifying which properties our solutions should
have. To begin with, a physically viable solution should obey two criteria following [63],

(i) Initial value variation: A small variation of the initial values should produce a small
variation in the solution over a fixed, compact region of spacetime. Mathematically, this
connects to stability theory and the variation could be measured using various specific
norms.

(ii) Causal structure: A change in the initial values in a specific region in spacetime should
not yield change(s) in the solution beyond the causal future of this region.

Since the perturbations in this study appear on top of a homogeneous, isotropic background
universe with decoupled wave modes, we are unable to investigate the second criteria, but the
first will guid us towards stable solution.

5.1 First attempt: Differential-algebraic equations

By performing a Fourier transform and through decoupling of the different wave modes, the
system of equations of motion has been reduced to a system of differential-algebraic equations
(DAEs). These are ordinary differential equations which appear together with an algebraic
constraint, more specifically a system such that

{
q̇ = f(q, t)
0 = g(q, t).

(5.1)

Constraints such as 0 = g(q, t), which can be expressed in terms of the generalized coordinates
together with time involved are known as holonomic constraints [82]. If the constraint is
expressed in terms of the velocities involved, it is usually a nonholonomic constraint, which
cannot be expressed as 0 = g(q, t). Differential-algebraic problems appear frequently in
numerous physical applications; in classical mechanics one, for instance, encounters
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mẍ(t) + λ(t)x(t) = 0
mÿ(t) + λ(t)y(t) = −g
x(t)2 + y(t)2 = L2,

(5.2)

which is a mathematical description of the equations of motion for a pendulum with a point
mass m at coordinates (x, y) and length L subjected to a gravitational acceleration g. The
tension of the pendulum is encoded in λ(t), which acts as a Lagrange multiplier in the equa-
tions.

An important property of DAEs is their differentiate index, which measures the distance
to the corresponding ordinary differential equation, i.e. how many times the system must
be differentiated in order to obtain a system of ODEs. In our case for the perturbations in
bimetric theory we are left with a system with an algebraic constraint accompanied by several
differential equations, where the highest derivatives are of order two. The system as a whole
bears an index two in order to obtain a differential equation for each field.

The solution procedure when dealing with these types of systems is twofold; firstly a recast-
ing of the problem through index reduction is necessary and secondly a consistent set of initial
conditions must be provided by the user in order to calculate the trajectory. In Mathematica
the routine NDSolve can handle some types of DAEs of index 1, but does not by default
index reduce a system, which can been accessed through the option "IndexReduction". This
method works either through the graph-based Pantelides algorithm, "Pantelides", or the
slower Structural matrix method, "StructuralMatrix", where the latter takes variable can-
cellations in the different equations into account [83]. After the reduction, it is possible
introduce dummy derivatives to ensure that the system is not overdetermined or to project
the solution onto a surface defined by the original constraints. However, performing an anal-
ysis of the gauge-invariant system in [7] using this framework proved to be a dead end, as
Mathematica could not per see handle complexity of the nested equations without further
user assistance, resulting in multiple kernel collapses as different initial values were tested.
To be more precise, the task proved formidable to find initial values which satisfied all con-
straints of the system as these were not visible. Still, this approach may be more fruitful in
the future as algorithms improve. Hence, a road forward could be deduced if one were able
to recast the system into form of ordinary differential equations.

5.2 Second strategy: Redefining fields and eliminating auxiliary
variables

To simplify the numerical problem solving, we reduce the system in order to obtain two
coupled second-order differential equations, which are simpler to solve numerically provided
that there are no singularities in the coefficients. In general relativity, this problem reduced
to a single second order differential equation, (2.89) and (2.91), and hence we expect to find
something similar given the shared properties of the theories. In order to solve the system,
we can use the gauge freedom to set some of the redundant variables to zero. Of course, all
information must still be contained in the system through the remaining variables and the
gauge must be fixed completely. Principally, we will work with three options, which are listed
below with key advantages and shortcomings:

60



(i) Gauge invariant variables: The equations of motion are solved using variable combi-
nations which are gauge invariant, i.e. independent of gauge. The procedure to obtain
such variables for general relativity following [23] was explained in section 2.2.2. How-
ever, the physical interpretations may not be transparent as results tend to be expressed
for particular gauge choices.

(ii) Conformal Newton gauge: The choice Bg = Fg = 0, which is an ubiquitous option in
ordinary relativistic cosmology. This allows us to make direct comparisons with predic-
tions from general relativity without variable transformations and set initial conditions
based on GR in the past, which fit cosmological observations.

(iii) Longitudinal gauge: Here, Ff = Fg = 0, which casts the δf (s)
0−i-equation, (4.33), into a

particularly easy form and also abbreviates (4.42) considerably.

It has turned out that there is by no means a unique way to achieve this sought coupled
system. To complicate the matter further, several choices, among them the Newton gauge,
have not yielded straightforward solutions of correct differential order. More specifically,
for some choices the second order derivative of one field vanishes leaving one second order
differential equation and one of first order. Fortunately, in the Fg = Ff = 0 gauge, one
may obtain a second order system using conformal time following Könnig and Enander by
redefining the fields as

Φg = Ag −HḂg,
Ψg = Eg −HḂg − B̈g,

(5.3)

and in the f -sector,

Φf = Af −
(
Y

X

)2
KḂf ,

Ψf = Ef −
(
Y

X

)2
(
B̈f + 2KḂf −

Ẋ

X
Ḃf

)
,

Bf → Bg + ∆B,

(5.4)

which allows us to construct the combinations δg(s)
0−0 + 3Hδg(s)

0−i + y4(δf (s)
0−0 + 3Kδf (s)

0−i) and
the off-diagonal δf (s)

i−j +H/(Ky4)g(s)
i−j in equations (4.28), (4.29), (4.32) and (4.33) and (4.35)

and (4.31), respectively which yield,

a2ρ̄

M2
g

(k2δ + 3Hθ)− k4(y4Φf + Φg) = 0, (5.5)

Φg + Ψg + K

H
y2(Φf + Ψf ) = 0, (5.6)

where we can solve for Φf and Ψf in terms of {Φg, Ψg, δ, θ}. The goal is to obtain two
second-order differential equations involving the fields {Φg, Ψg}. An equation for ∆B is
acquired from δg

(s)
i−j according to (4.31). To establish expressions for δ and θ we begin by

solving for Φ̇f in δf
(s)
0−i, (4.33), and insert this into δf

(s)
0−0, (4.32), while substituting from

the expressions for Ψf , Φf and ∆B. Then one simultaneously solves for δ and θ using this
reduced δf (s)

0−0-equation as well as the reduced δg(s)
0−0-equation, (4.32) and (4.28) respectively.
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In total, this leaves us with a system dependent on {Φg, Ψg, Bg} and their derivatives. To
conclude, we seek to eliminate Bg. Fortunately for us, this is possible owing to the properties
of the background, encoded in the Friedmann equations. We impose the constraint (4.17), the
background relation (2.29) and solve for ẏ and ÿ recursively using equation (4.22) and (4.23)
where we at the same time replace all H-terms. Among the equations at hand in section
4.3, eight equations of motion, two stress-energy Bianchi constraints and two Einstein tensor
+ bimetric interaction term Bianchi constraints, with a possible maximum of eight linear
independent equations, we can pick out three which we have not used so far, to solve the
remainder of the system. In reality, one of them will constrain Bg and hence there are only
two linear independent choices when the information is combined. A particularly nice choice
is to pick the velocity equation δf (s)

0−i, the trace δg(s)
i−i and the perturbed energy conservation

equation in (4.33), (4.30) and (4.43) respectively. Inserting all previous information and field
expressions into these three equations, one proceeds by Gauss elimination to produce solutions
for {Φ̈g, Ψ̈g, Ḃg}. Remarkably, all non-differentiated Bg terms vanish and the Ḃg equation
will take the following form

Ḃg = N
(
Φ̇g, Ψ̇g, Φg, Ψg, background terms

)
, (5.7)

which means that it can be differentiated to replace B̈g without introducing new derivates of
higher order than {Φ̈g, Ψ̈g}. Supplying this differentiated solution for B̈g into the solutions for
{Φ̈g, Ψ̈g} gives two independent second-order differential equations for {Φg, Ψg}. To analyze
these, we insert sensible values for k or take the limit k → 0 to obtain the superhorizon solution
at the final stage and transform the normalized fields so that we may plot the quantities in
terms of the scale factor a(t) according to( 1

H0

)
Φ̇→ aE(a) d

daΦ, (5.8)

with E(a) calculated from the background equations. A transformation rule for Φ̈ is reached
by applying (5.8) twice.

In order to determine the system we have to provide two initial values for the fields as well
as two for their derivatives. We are interested in plotting the variables from the inflationary
epoch, corresponding to roughly a ∼ 10−3, till today at a = 1. Since we have assumed that
we are dealing with small perturbations, we must pick values for the fields which are small
relative to the other parameters involved. Here, we will select values of the order 10−6 owing
to our normalization of the other fields. Concerning physical solutions, which we discussed in
the introduction of this chapter, we will vary these initial values of an order of 10 % and see
how the results differ. To begin with, we study superhorizon solutions with the β1-model we
investigated in section 4.2 with β1 ≈ 1.27. The superhorizon solutions are plotted in figure
5.1 from a = 0.0017, which is approximately the earliest time Mathematica allowed due to
the behavior of the pre-factors, assuming that the derivates at early times are negligible with
a log a-axis. We vary the initial values slightly in figures 5.1(a) and 5.1(b), which affects the
magnitudes of the fields slightly but not the shape of the curves. The potentials are frozen
in at an early stage The ΛCDM solution with background data according to section 2.1 in
Newton’s gauge for equation (2.89) is plotted in figure 5.2, valid for all k-modes. Qualitatively,
the shape for the curves do not differ but since the latter is valid for all k, caution must be
taken concerning the magnitudes. Moreover, we are plotting in completely different gauges
and a transformation must ensue to make a direct comparison. These are unresolved issues,
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Figure 5.1: Superhorizon solutions for the minimal bimetric β1-model in Fg = Ff = 0, both with
Φ̇g(a = 0.0017) = Ψ̇g(a = 0.0017) = 0 where the dot signifies a derivative with respect to a, but with
different initial values for the fields.
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Figure 5.2: Solution for ΛCDM for pressure-less dust, following (2.89), with the same initial values
as in 5.1(a).

which will be addressed in upcoming works. We have also checked to place in a small k-value,
k = 0.0001 instead of taking the limit k → 0 as well as a larger k-value k = 1. The results are
found in figures 5.3(a) and 5.3(b), where one draws the conclusion that the approximation
k = 0 is indeed value for the superhorizon case and that results starts to differ for larger k.
As for the infinite-branch β1β4-model, the system has been solved using the consistent values
in section 4.2 but the results have yet to be graphically illustrated.

5.2.1 Noether identities

A different approach1, suggested by Solomon, suitable for modified gravity, to obtain gauge
invariant combinations is to analyze the perturbed action with help from Noether identities
[84]. These relate the equations of motion to one another and are direct consequences of
the gauge invariance of the action. Firstly, one identifies the simultaneous transformation,
i.e. gauge variation, of the perturbed variables which leaves the action invariant. In bimetric
gravity, one proceeds in the same way as in general relativity as we did in section 2.2.2, since
the bimetric action is invariant under simultaneous diffeomorphisms of g and f following
(3.58) as we discussed in section 3.5. Under a coordinate transformation xµ → xµ + ξµ(x),

1This method was partly used in [12] with a succinct description.
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Figure 5.3: Superhorizon solutions for the minimal bimetric β1-model in Fg = Ff = 0, both with
Φ̇g(a = 0.0017) = Ψ̇g(a = 0.0017) = 0, Φg(a = 0.0017) = Ψg(a = 0.0017) = 10−5 but for different
wave modes k.

where ξµ(x) are arbitrary first-order scalar functions as in section 2.2.2, the perturbed part
of each metric transforms as in (2.72), namely

δgµν → δgµν + Lξ ḡµν , δfµν → δfµν + Lξ f̄µν . (5.9)

Reminding ourselves that the scalar parts are obtained from the components ξS through the
splitting ξi following the notation in [22], we arrive at

∆Eg = 2
N
∂t

(
ξ0
N

)
, ∆Ag = 2H

N2 ξ0, ∆Bg = − 2
a2 ξ

S , ∆Fg = − 1
Na

(
ξ0 + ξ̇S − 2HξS

)
, (5.10)

∆Ef = 2
X
∂t

(
ξ0
X

)
, ∆Af = 2Kξ0, ∆Bf = − 2

X2 ξ
S , ∆Ff = − 1

XY

(
ξ0 + ξ̇S − 2KξS

)
,

(5.11)

where we have lowered the indices with the unperturbed metric in each sector, echoing (2.79).
For the matter sector, one simply subjects the stress-energy tensor to the same treatment,
and LξT̄µν yields,

∆δ = N∂t

(
ρ̄

N

)
ξ0, ∆θ = − 1

a2∂iξ0. (5.12)

Here we have calculated the perturbations with lowered indices δTµν as in [22], i.e.

δTµν = ḡµλ
[
δTλν − δgλσ T̄ σλ

]
. (5.13)

Then, one considers an arbitrary variation of the action, where the components in the La-
grangian can be written as the variation of each field multiplied by the field’s equation of
motion. At this point, one replaces the variation of the field with its gauge variation which
must render δS = 0 by default, i.e.

δS =
∫

d4x

[∑
i

Eφi
∆φi

]
= 0, (5.14)

where Eφi
is the equation of motion for each perturbation field φi and ∆φi the variation

presented in (5.10), (5.11) and (5.12). Through integration by parts one arrives at coefficients
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involving the different equations of motion multiplied by either ξ0 or ξS . As stated these
functions are arbitrary and hence their coefficients must equal zero for δS = 0 to hold.
The relations produced are the Noether identities. If a field’s equation of motion can be
deduced from a combination of the other equations of motion involved in these identities, it
is superfluous. This makes it easy to safely set some of these fields to zero with one option
per Noether identity. In our case, the Noether identity for ξ0 enables us to set one of the
variables {Ag, Af , δ} to zero and the one for ξS lets us choose one of {Bg, Bf}.2 Moreover,
by integrating the θ-variation spatially, we obtain an additional field to place in the identity.

To continue, the calculation can be further facilitated by splitting the components into
dynamical fields and auxiliary fields [84]. In order to do so, we study the second-order
action formed by inserting the first-order perturbed metrics and Taylor expanding up to
second order in these perturbation variables. Naïvely, one would assume that one also has
to take purely second-order perturbations into account, but since such terms only appear in
the equations of motion multiplied by background variables, they vanish as the background
equations are satisfied. The fields which have kinetic terms in the second order action are the
dynamical ones, while the rest are auxiliary, having algebraic equations of motion. However,
we must first fix the gauge before starting to eliminate the auxiliary fields, as some of the
terms in the second-order action are relics (not physical degrees of freedom) which violate
the requirement that the action is solely invariant under infinitesimal transformations of first
order. To incorporate this fact, we can settle on a gauge based on the Noether identities and
then recast the surviving auxiliary fields as combinations of the remaining dynamical fields.

In practice, for our bimetric setup we insert the perturbed metrics into the dynamical
terms

√
−gR(g) and

√
−fR(f) in the action, Taylor expand and count the fields with kinetic

terms. At first glance, this task might seem daunting but fortunately, we can use the first-
order equations of motion to put some of the terms to zero or express them in terms of δ and
θ. This leaves us with {Ag, Af , Bg, Bf , δ} as dynamical and the residual fields are auxiliary.

Instead of setting a field in each set to zero, we can express them in terms of one another.
A fitting choice which provides a solution to the system is to set Af = 0 and

δ = 1
2
(
−3Ag + k2Bg

)
, (5.15)

which gives θ(t) = −k2Fg in the energy conservation equation (4.43). To proceed one solves
for Ȧg in δg(s)

0−i, (4.29), while implementing the θ solution and inserts the result into δg(s)
0−0,

(4.28). Then one extracts the auxiliary field Ef from δf
(s)
0−i, (4.33), and places the expression

into δf (s)
0−0, (4.32). With these two density equations we are able to obtain a simultaneous

result for Ff and Fg, which can be implanted into the velocity equations, δg(s)
0−i, (4.29),

and δf
(s)
0−i, (4.33), to produce expressions for Eg and Ef . The remaining variables are the

dynamical fields {Ag, Bg, Bf}. This time, it will be Ag that eventually drops out upon
inspection of the last equations. To achieve this, we replace all auxiliary fields and background
contributions in δg

(s)
i−i, δg

(s)
i−j , δf

(s)
i−i and δf

(s)
i−f , (4.30), (4.31), (4.34) and (4.35), which will

yield two second-order differential equations for {Bg, Bf}, the terms involving Äg vanish,
and a constraint equation for Ag = N (Ḃg, Ḃf , Bg, Bf ,background terms) is acquired. By

2One can easily recognize this by noting that the variations of these fields do not come with any derivatives
of ξ0 or ξS . Hence, there will be no differentiated terms of their equations of motion in the final identities and
their equations of motion can be written in terms of the ones of the remaining fields.
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differentiating this constraint we are able to remove the Ȧg-terms and are left with two
coupled equations depending on the fields {Bg, Bf} and their derivatives. To demonstrate
this in Mathematica, we have solved the system using this procedure for the case of the β1β4-
model. However, the final pre-factors have been difficult to analyze due to their intrinsic
complexity; it is not certain whether specific limits can be taken but further, more extensive
studies will hopefully enlighten us in this task. The goal is to compare this solution with
the one calculated in the Fg = Ff = 0-gauge where all expressions have been transformed to
gauge invariant variables to serve as a crosscheck. Moreover, presumably even more efficient
gauge choices for the solution strategy will be proposed in the near future.
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Chapter 6 Outlook

This thesis has served as an introduction to relativistic perturbation theory as well as bimetric
cosmology. What remains to be explored, which unfortunately did not make it into this thesis
due to the limited schedule, is calculating the contributions for the ISW effect in bimetric
gravity, which will originate both from the superhorizon translation provided by the comoving
curvature perturbation, which we do not know whether it is conserved or not in this case,
as well as the integral from recombination till today of the differentiated bimetric potentials
interpreted in Newton’s gauge carried out in conformal time. Of course, comparisons with
experimental data must be performed using the setup established in section 2.3.1.

Equally intriguing is the comparison with the analytic Newtonian expressions and the
further simplified WKB approximation for the general case. Upcoming experiments, such
as Euclid will serve to put more narrow bounds on the parameters, testing the viability of
the theory as well as of ΛCDM. Ideally, black holes, gravitational lensing and other probes
could be combined to select the best parameters. The recently introduced ghost-free double-
coupling with its associated cosmology should prove interesting in this context, providing
valuable insights.

As pointed out, regarding instabilities, much remains to be resolved and one could imagine
nonlinear contributions originating from the Vainshtein mechanism, which we briefly men-
tioned in section 3.2, to have significant impact on the interpretation, rendering previous
discarded theories valid. Hence, it will take some time and careful reasoning to establish a
set of guidelines. Of the more theoretical aspects, the location of a functioning degravitation
mechanism would be most welcome. Naturally, a solid interpretation of the extra metric fµν
as well as gµν in these models has to be provided, especially from the spacetime geometry
point of view. Consequences connected to the weak and strong equivalence principles should
also be investigated scrupulously.

The potential experimental biases from underlying assumptions based on ΛCDM will
have to be settled statistically more throughly in several independent analyses. It could
also be of great value, if one could modify existing numerical general relativity packages
to accommodate bimetric gravity, which would provide augmented results with respect to
Mathematica. Future comparisons with other promising theories should bring additional
transparency when it comes to observables and help to establish a permanent foothold in the
vast landscape of modified theories of gravity.

67



References

[1] Supernova Search Team Collaboration, A. G. Riess et al., Observational evidence from
supernovae for an accelerating universe and a cosmological constant, Astron.J. 116 (1998)
1009–1038, arXiv:astro-ph/9805201 [astro-ph].

[2] Supernova Cosmology Project Collaboration, S. Perlmutter et al., Measurements of Omega
and Lambda from 42 high redshift supernovae, Astrophys.J. 517 (1999) 565–586,
arXiv:astro-ph/9812133 [astro-ph].

[3] S. Hassan and R. A. Rosen, Resolving the Ghost Problem in non-Linear Massive Gravity,
Phys.Rev.Lett. 108 (2012) 041101, arXiv:1106.3344 [hep-th].

[4] S. Hassan, R. A. Rosen, and A. Schmidt-May, Ghost-free Massive Gravity with a General
Reference Metric, JHEP 1202 (2012) 026, arXiv:1109.3230 [hep-th].

[5] S. Hassan and R. A. Rosen, Bimetric Gravity from Ghost-free Massive Gravity, JHEP 1202
(2012) 126, arXiv:1109.3515 [hep-th].

[6] M. von Strauss, A. Schmidt-May, J. Enander, E. Mörtsell, and S. Hassan, Cosmological
Solutions in Bimetric Gravity and their Observational Tests, JCAP 1203 (2012) 042,
arXiv:1111.1655 [gr-qc].

[7] M. Berg, I. Buchberger, J. Enander, E. Mörtsell, and S. Sjörs, Growth Histories in Bimetric
Massive Gravity, JCAP 1212 (2012) 021, arXiv:1206.3496 [gr-qc].

[8] K. Hinterbichler, Theoretical Aspects of Massive Gravity, Rev.Mod.Phys. 84 (2012) 671–710,
arXiv:1105.3735 [hep-th].

[9] C. de Rham, Massive Gravity, arXiv:1401.4173 [hep-th].

[10] A. M. Schmidt-May, Classically Consistent Theories of Interacting Spin-2 Fields. PhD thesis,
Stockholm University, Department of Physics, 2013.

[11] A. R. Solomon, Y. Akrami, and T. S. Koivisto, Cosmological perturbations in massive bigravity:
I. Linear growth of structures, arXiv:1404.4061 [astro-ph.CO].

[12] F. Könnig, Y. Akrami, L. Amendola, M. Motta, and A. R. Solomon, Stable and unstable
cosmological models in bimetric massive gravity, arXiv:1407.4331 [astro-ph.CO].

[13] M. S. Volkov, Hairy black holes in the ghost-free bigravity theory, Phys.Rev. D85 (2012) 124043,
arXiv:1202.6682 [hep-th].

[14] R. Brito, V. Cardoso, and P. Pani, Black holes with massive graviton hair, Phys.Rev. D88
(2013) 064006, arXiv:1309.0818 [gr-qc].

[15] J. Enander and E. Mörtsell, Strong lensing constraints on bimetric massive gravity, JHEP 1310
(2013) 031, arXiv:1306.1086 [astro-ph.CO].

[16] K. Hinterbichler and R. A. Rosen, Interacting Spin-2 Fields, JHEP 1207 (2012) 047,
arXiv:1203.5783 [hep-th].

68

http://arxiv.org/abs/astro-ph/9805201
http://arxiv.org/abs/astro-ph/9812133
http://arxiv.org/abs/1106.3344
http://arxiv.org/abs/1109.3230
http://arxiv.org/abs/1109.3515
http://arxiv.org/abs/1111.1655
http://arxiv.org/abs/1206.3496
http://arxiv.org/abs/1105.3735
http://arxiv.org/abs/1401.4173
http://arxiv.org/abs/1404.4061
http://arxiv.org/abs/1407.4331
http://arxiv.org/abs/1202.6682
http://arxiv.org/abs/1309.0818
http://arxiv.org/abs/1306.1086
http://arxiv.org/abs/1203.5783


[17] S. Hassan, A. Schmidt-May, and M. von Strauss, Metric Formulation of Ghost-Free
Multivielbein Theory, arXiv:1204.5202 [hep-th].

[18] C. Deffayet, J. Mourad, and G. Zahariade, A note on ’symmetric’ vielbeins in bimetric, massive,
perturbative and non perturbative gravities, JHEP 1303 (2013) 086, arXiv:1208.4493 [gr-qc].

[19] A. Joyce, B. Jain, J. Khoury, and M. Trodden, Beyond the Cosmological Standard Model,
arXiv:1407.0059 [astro-ph.CO].

[20] A. Einstein, Die grundlage der allgemeinen relativitätstheorie, Annalen der Physik 354 (1916),
no. 7 769–822.

[21] Planck Collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters,
Astron.Astrophys. (2014) arXiv:1303.5076 [astro-ph.CO].

[22] S. Weinberg, Cosmology. Oxford Univ. Press, Oxford, 2008.

[23] V. F. Mukhanov, H. Feldman, and R. H. Brandenberger, Theory of cosmological perturbations.
Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions,
Phys.Rept. 215 (1992) 203–333.

[24] T. Padmanabhan, Gravitation: Foundations and Frontiers. Cambridge University Press,
Cambridge, 2010.

[25] D. Baumann, “Cosmology: Part III Mathematical Tripos.” University lecture notes, 2014.
http://www.damtp.cam.ac.uk/user/db275/Cosmology/Lectures.pdf.

[26] H. Kurki-Suonio, “Cosmology i & ii.” University lecture notes, 2005.
http://www.helsinki.fi/~hkurkisu/cosmology/Cosmo0.pdf.

[27] C. Hirata, “Physics 217bc: The Standard Model - Cosmology.” University lecture notes, 2008.
http://www.tapir.caltech.edu/~chirata/ph217/.

[28] S. Dodelson, Modern cosmology. Academic Press, San Diego, CA, 2003.

[29] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time. Cambridge
monographs on mathematical physics. Cambridge Univ. Press, Cambridge, 1973.

[30] S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of
Relativity. Wiley, New York, NY, 1972.

[31] B. A. Bassett and R. Hlozek, Baryon Acoustic Oscillations, arXiv:0910.5224 [astro-ph.CO].

[32] SDSS Collaboration, D. J. Eisenstein et al., Detection of the baryon acoustic peak in the
large-scale correlation function of SDSS luminous red galaxies, Astrophys.J. 633 (2005) 560–574,
arXiv:astro-ph/0501171 [astro-ph].

[33] L. Amendola, M. Kunz, M. Motta, I. D. Saltas, and I. Sawicki, Observables and unobservables
in dark energy cosmologies, Phys.Rev. D87 (2013) 023501, arXiv:1210.0439 [astro-ph.CO].

[34] EUCLID Collaboration, R. Laureijs et al., Euclid Definition Study Report, arXiv:1110.3193
[astro-ph.CO].

[35] Planck Collaboration, P. Ade et al., Planck 2013 results. I. Overview of products and scientific
results, arXiv:1303.5062 [astro-ph.CO].

[36] R. Sachs and A. Wolfe, Perturbations of a cosmological model and angular variations of the
microwave background, Astrophys.J. 147 (1967) 73–90.

[37] Planck Collaboration, P. Ade et al., Planck 2013 results. XIX. The integrated Sachs-Wolfe
effect, arXiv:1303.5079 [astro-ph.CO].

[38] W. Hu, Dark synergy: Gravitational lensing and the CMB, Phys.Rev. D65 (2002) 023003,
arXiv:astro-ph/0108090 [astro-ph].

69

http://arxiv.org/abs/1204.5202
http://arxiv.org/abs/1208.4493
http://arxiv.org/abs/1407.0059
http://arxiv.org/abs/1303.5076
http://www.damtp.cam.ac.uk/user/db275/Cosmology/Lectures.pdf
http://www.helsinki.fi/~hkurkisu/cosmology/Cosmo0.pdf
http://www.tapir.caltech.edu/~chirata/ph217/
http://arxiv.org/abs/0910.5224
http://arxiv.org/abs/astro-ph/0501171
http://arxiv.org/abs/1210.0439
http://arxiv.org/abs/1110.3193
http://arxiv.org/abs/1110.3193
http://arxiv.org/abs/1303.5062
http://arxiv.org/abs/1303.5079
http://arxiv.org/abs/astro-ph/0108090


[39] P. J. Mohr, B. N. Taylor, and D. B. Newell, CODATA Recommended Values of the Fundamental
Physical Constants: 2010, Rev.Mod.Phys. 84 (2012) 1527–1605, arXiv:1203.5425
[physics.atom-ph].

[40] S. Weinberg, The Quantum Theory of Fields: Supersymmetry. The Quantum Theory of Fields.
Cambridge University Press, Cambridge, 2000.

[41] S. Weinberg, The Cosmological Constant Problem, Rev. Mod. Phys. 61 (1989) 1–23.

[42] G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO
Adv.Study Inst.Ser.B Phys. 59 (1980) 135.

[43] S. Dimopoulos and L. Susskind, Mass Without Scalars, Nucl.Phys. B155 (1979) 237–252.

[44] C. de Rham, G. Gabadadze, L. Heisenberg, and D. Pirtskhalava, Nonrenormalization and
naturalness in a class of scalar-tensor theories, Phys.Rev. D87 (2013), no. 8 085017,
arXiv:1212.4128 [hep-th].

[45] C. de Rham, L. Heisenberg, and R. H. Ribeiro, Quantum Corrections in Massive Gravity,
Phys.Rev. D88 (2013) 084058, arXiv:1307.7169 [hep-th].

[46] N. Arkani-Hamed, S. Dimopoulos, G. Dvali, and G. Gabadadze, Nonlocal modification of gravity
and the cosmological constant problem, arXiv:hep-th/0209227 [hep-th].

[47] G. Dvali, S. Hofmann, and J. Khoury, Degravitation of the cosmological constant and graviton
width, Phys.Rev. D76 (2007) 084006, arXiv:hep-th/0703027 [hep-th].

[48] M. Fierz and W. Pauli, On relativistic wave equations for particles of arbitrary spin in an
electromagnetic field, Proc. Roy. Soc. Lond. A173 (1939) 211–232.

[49] M. Ostrogradski, Mémoires sur les équations différentielles relatives au problème des
isopérimètres, Mem. Acad. St. Petersbourg VI 4 (1850) 385.

[50] S. Weinberg, The Quantum Theory of Fields: Foundations. The Quantum Theory of Fields.
Cambridge University Press, Cambridge, 1995.

[51] H. van Dam and M. Veltman, Massive and massless Yang-Mills and gravitational fields,
Nucl.Phys. B22 (1970) 397–411.

[52] V. Zakharov, Linearized gravitation theory and the graviton mass, JETP Lett. 12 (1970) 312.
[Pisma Zh. Eksp. Teor. Fiz 12 (1970), 447].

[53] A. Vainshtein, To the problem of nonvanishing gravitation mass, Phys.Lett. B39 (1972) 393–394.

[54] E. Babichev and C. Deffayet, An introduction to the Vainshtein mechanism, Class.Quant.Grav.
30 (2013) 184001, arXiv:1304.7240 [gr-qc].

[55] D. Boulware and S. Deser, Inconsistency of finite range gravitation, Phys.Lett. B40 (1972)
227–229.

[56] D. Boulware and S. Deser, Can gravitation have a finite range?, Phys.Rev. D6 (1972) 3368–3382.

[57] P. Creminelli, A. Nicolis, M. Papucci, and E. Trincherini, Ghosts in massive gravity, JHEP
0509 (2005) 003, arXiv:hep-th/0505147 [hep-th].

[58] N. Arkani-Hamed, H. Georgi, and M. D. Schwartz, Effective field theory for massive gravitons
and gravity in theory space, Annals Phys. 305 (2003) 96–118, arXiv:hep-th/0210184
[hep-th].

[59] C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli Action, Phys. Rev. D82
(2010) 044020, arXiv:1007.0443 [hep-th].

[60] C. de Rham, G. Gabadadze, and A. J. Tolley, Resummation of Massive Gravity, Phys. Rev.
Lett. 106 (2011) 231101, arXiv:1011.1232 [hep-th].

70

http://arxiv.org/abs/1203.5425
http://arxiv.org/abs/1203.5425
http://arxiv.org/abs/1212.4128
http://arxiv.org/abs/1307.7169
http://arxiv.org/abs/hep-th/0209227
http://arxiv.org/abs/hep-th/0703027
http://arxiv.org/abs/1304.7240
http://arxiv.org/abs/hep-th/0505147
http://arxiv.org/abs/hep-th/0210184
http://arxiv.org/abs/hep-th/0210184
http://arxiv.org/abs/1007.0443
http://arxiv.org/abs/1011.1232


[61] S. Hassan and R. A. Rosen, On Non-Linear Actions for Massive Gravity, JHEP 1107 (2011)
009, arXiv:1103.6055 [hep-th].

[62] S. Hassan and R. A. Rosen, Confirmation of the Secondary Constraint and Absence of Ghost in
Massive Gravity and Bimetric Gravity, JHEP 1204 (2012) 123, arXiv:1111.2070 [hep-th].

[63] R. M. Wald, General relativity. Chicago Univ. Press, Chicago, IL, 1984.

[64] R. L. Arnowitt, S. Deser, and C. W. Misner, The Dynamics of General Relativity,
Gen.Rel.Grav. 40 (2008) 1997–2027, arXiv:gr-qc/0405109 [gr-qc].

[65] G. Date, Lectures on Constrained Systems, arXiv:1010.2062 [gr-qc].

[66] J. Khoury, G. E. Miller, and A. J. Tolley, Spatially Covariant Theories of a Transverse,
Traceless Graviton, Part I: Formalism, Phys.Rev. D85 (2012) 084002, arXiv:1108.1397
[hep-th].

[67] S. Hassan, A. Schmidt-May, and M. von Strauss, Proof of Consistency of Nonlinear Massive
Gravity in the Stückelberg Formulation, Phys.Lett. B715 (2012) 335–339, arXiv:1203.5283
[hep-th].

[68] S. Hassan, A. Schmidt-May, and M. von Strauss, On Consistent Theories of Massive Spin-2
Fields Coupled to Gravity, JHEP 1305 (2013) 086, arXiv:1208.1515 [hep-th].

[69] Y. Yamashita, A. De Felice, and T. Tanaka, Appearance of Boulware-Deser ghost in bigravity
with doubly coupled matter, arXiv:1408.0487 [hep-th].

[70] C. de Rham, L. Heisenberg, and R. H. Ribeiro, On couplings to matter in massive (bi-)gravity,
arXiv:1408.1678 [hep-th].

[71] Y. Akrami, T. S. Koivisto, D. F. Mota, and M. Sandstad, Bimetric gravity doubly coupled to
matter: theory and cosmological implications, JCAP 1310 (2013) 046, arXiv:1306.0004
[hep-th].

[72] J. Noller and S. Melville, The coupling to matter in Massive, Bi- and Multi-Gravity,
arXiv:1408.5131 [hep-th].

[73] S. Hassan, M. Kocic, and A. Schmidt-May, Absence of ghost in a new bimetric-matter coupling,
arXiv:1409.1909 [hep-th].

[74] J. Enander, A. R. Solomon, Y. Akrami, and E. Mörtsell, Cosmic expansion histories in
doubly-coupled, ghost-free massive bigravity, arXiv:1409.2860 [gr-qc].

[75] Y. Akrami, T. S. Koivisto, and A. R. Solomon, The nature of spacetime in bigravity: two
metrics or none?, arXiv:1404.0006 [gr-qc].

[76] J. Enander, Cosmological tests of massive bigravity. Licentiate thesis, Stockholm University,
Department of Physics, 2012.

[77] Y. Akrami, T. S. Koivisto, and M. Sandstad, Cosmological constraints on ghost-free bigravity:
background dynamics and late-time acceleration, arXiv:1302.5268 [astro-ph.CO].

[78] F. Könnig and L. Amendola, Instability in a minimal bimetric gravity model, Phys.Rev. D90
(2014) 044030, arXiv:1402.1988 [astro-ph.CO].

[79] Y. Akrami, T. S. Koivisto, and M. Sandstad, Accelerated expansion from ghost-free bigravity: a
statistical analysis with improved generality, JHEP 1303 (2013) 099, arXiv:1209.0457
[astro-ph.CO].

[80] F. Könnig, A. Patil, and L. Amendola, Viable cosmological solutions in massive bimetric gravity,
JCAP 1403 (2014) 029, arXiv:1312.3208 [astro-ph.CO].

71

http://arxiv.org/abs/1103.6055
http://arxiv.org/abs/1111.2070
http://arxiv.org/abs/gr-qc/0405109
http://arxiv.org/abs/1010.2062
http://arxiv.org/abs/1108.1397
http://arxiv.org/abs/1108.1397
http://arxiv.org/abs/1203.5283
http://arxiv.org/abs/1203.5283
http://arxiv.org/abs/1208.1515
http://arxiv.org/abs/1408.0487
http://arxiv.org/abs/1408.1678
http://arxiv.org/abs/1306.0004
http://arxiv.org/abs/1306.0004
http://arxiv.org/abs/1408.5131
http://arxiv.org/abs/1409.1909
http://arxiv.org/abs/1409.2860
http://arxiv.org/abs/1404.0006
http://arxiv.org/abs/1302.5268
http://arxiv.org/abs/1402.1988
http://arxiv.org/abs/1209.0457
http://arxiv.org/abs/1209.0457
http://arxiv.org/abs/1312.3208


[81] Euclid Theory Working Group Collaboration, L. Amendola et al., Cosmology and
fundamental physics with the Euclid satellite, Living Rev.Rel. 16 (2013) 6, arXiv:1206.1225
[astro-ph.CO].

[82] H. Goldstein, C. Poole, and J. Safko, Classical Mechanics. Pearson Education, Limited, 2013.

[83] M. Sofroniou and R. Knapp, Advanced Numerical Differential Equation Solving in Mathematica,
tech. rep., Wolfram Research, Inc, 2008.

[84] M. Lagos, M. Bañados, P. G. Ferreira, and S. García-Sáenz, Noether Identities and
Gauge-Fixing the Action for Cosmological Perturbations, Phys.Rev. D89 (2014), no. 2 024034,
arXiv:1311.3828 [gr-qc].

[85] P. Borwein and T. Erdelyi, Polynomials and Polynomial Inequalities. Springer New York, New
York, 1995.

[86] C. de Rham, G. Gabadadze, and A. J. Tolley, Ghost free Massive Gravity in the Stückelberg
language, Phys.Lett. B711 (2012) 190–195, arXiv:1107.3820 [hep-th].

[87] S. Alexandrov, Canonical structure of Tetrad Bimetric Gravity, Gen.Rel.Grav. 46 (2014) 1639,
arXiv:1308.6586 [hep-th].

72

http://arxiv.org/abs/1206.1225
http://arxiv.org/abs/1206.1225
http://arxiv.org/abs/1311.3828
http://arxiv.org/abs/1107.3820
http://arxiv.org/abs/1308.6586


Chapter A Elementary symmetric polynomials

This appendix elaborates on the polynomials en(S) in the potential term of bimetric theory,
namely

2md
d∑

n=0
βnen(S), where S =

√
g−1f. (A.1)

Given d variables, an elementary symmetric polynomial of degree n is formed by adding
together all distinct products of n variables, n 6 d, i.e. a polynomial which is symmetric
under any permutation of its variables. In an example with variables x and d = 3, the
elementary symmetric polynomials are

e0 (x1, x2, x3) = 1,
e1 (x1, x2, x3) = x1 + x2 + x3,

e2 (x1, x2, x3) = x1x2 + x2x3 + x1x3,

e3 (x1, x2, x3) = x1x2x3.

(A.2)

The elementary symmetric polynomials of a d× d matrix S are defined through,

en(S) def= 1
d!

(
d

n

)
εµ1 ... µnλn+1 ... λdεµ1 ... µnλn+1 ... λd

Sν1
µ1 . . . S

νn
µn
, (A.3)

with e0(S) = 1 and where n 6 d, from which we readily read off

ed(S) = 1
d!ε

µ1 ... µdεµ1 ... µd
Sν1

µ1 . . . S
νd
µd

= detS, (A.4)

and e1(S) = TrS. In other words, the elementary symmetric polynomials constitute a “de-
formed determinant” with the d variables as the row/column entries of S where the Levi-Civita
tensors keep track of the permutations of distinct products of the chosen n row/column en-
tries. The elementary symmetric polynomials can be related to one another via the recursive
formula

en(S) = (−1)n+1

n

n−1∑
k=0

(−1)k Tr
(
Sn−k

)
ek(S), (A.5)

derived from Newton’s identities [85], where its corresponding relation usually is presented as

en(S) = 1
n

n∑
k=1

(−1)k−1ek−n(S)pk(S), (A.6)
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where pk(S) is the k:th power sum of the eigenvalues λi of S labeled by i = 1, . . . , d, i.e.

pk(S) =
d∑
i=1

λki . (A.7)

Clearly p1(S) = TrS and the subsequent higher powers can be written as pk(S) = Tr(Sk),
which is a rudimentary result in linear algebra. One then arrives at (A.5) by redefining the
summation variable.

It is possible to write the expansion of the determinant in terms of elementary symmetric
polynomials as

det(1 + S) =
d∑

n=0
en(S), (A.8)

which can be deduced by replacing S with 1+S in (A.4) in all terms but the polynomial one.
An interesting symmetry relation also arises directly from the definition,

en(S) = detS · ed−n
(
S−1

)
. (A.9)

When varying the action, we obtain the related matrix terms Y (n). They can be expressed
in terms of the elementary symmetric polynomials through

(
Y (n)

)µ
ν

=
n∑
k=0

(−1)kek(S)
(
Sn−k

)µ
ν
. (A.10)

Writing out the terms in matrix form for n 6 3 which appear in our expressions, one arrives
at

Y (0)(S) = 1

Y (1)(S) = S − [S]1

Y (2)(S) = S2 − [S]S + 1
2
(
[S]2 − [S2]

)
1

Y (3)(S) = 1
6
(
6S3 + 3S[S]2 − [S]31− 3S[S2] + [S](−6S2 + 3[S2]1)− 2[S3]1

)
(A.11)
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Chapter B Tensor perturbations in bimetric gravity

As in general relativity, the linear tensor perturbations are the trace- and divergenceless
constituents. These requirements could be accommodated through an ansatz,

ds2
ḡ+δg(t) = −N2 dt2 + a2

[
dx2 + 2h(g)

xy (t, z) dx dy + h(g)
xx (t, z)

(
dx2 − dy2

)]
, (B.1)

ds2
f̄+δf (t) = −X2 dt2 + Y 2

[
dx2 + 2h(f)

xy (t, z) dx dy + h(f)
xx (t, z)

(
dx2 − dy2

)]
, (B.2)

for gravitational waves propagating in the z-direction, first presented in [7] with a de Sitter
background, where the tensors are symmetric under the exchange of spatial indices. Note
that the relation detailed in (4.17) still applies since the unperturbed metric is the same. The
tensor perturbations are pure physical propagating modes and suffer hence from no gauge
redundancy. We will restrict ourselves to conformal time as the equations become slightly
more transparent. Moreover, we will express the result in Fourier modes while dropping the
phases. Since no time components are present for the perturbations, the 0 − 0 and 0 − i
equations are trivial, as the 4− 4 due to that no part of the perturbations travels parallel to
the axis of propagation. After some calculations we arrive at the following,

• δg
(t)
i−i:

± 1
2

[ 1
a2

(
k2h(g)

xx + 2Hḣ(g)
xx + ḧ(g)

xx

)
+m2Qy

(
h(g)
xx − h(f)

xx

)]
= 0, (B.3)

• δg
(t)
i−j :

1
2a2

[
1
a2

((
k2 − 2Ḣ

)
h(g)
xy − 2Hḣ(g)

xy + ḧ(g)
xy

)
+ m2Q

y

(
y2h(g)

xy − h(f)
xy

)]
= 0, (B.4)

• δf
(t)
i−i:

± 1
2

[
1
a2

(
k2

y2h
(f)
xx + 1

x2

({
2H − ẋ

x
+ 3 ẏ

y

}
ḣ(f)
xx + ḧ(f)

xx

))
− m2Q

xy2

(
h(g)
xx − h(f)

xx

)]
= 0,

(B.5)

• δf
(t)
i−j :

1
2a4

[
1

x2y2

(
ḧ(f)
xy −

{
2H + ẋ

x
+ ẏ

y

}
ḣ(f)
xy

)
+
(
k2

y4 + 2
x2y2

{
ẋ

x
H + ẋ

x

ẏ

y
− Ḣ − ẏ

y
H − ÿ

y

})
h(f)
xy

]
−

m2Q

2a2xy4

(
y2h(g)

xy − h(f)
xy

)
= 0.

(B.6)
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In the de Sitter case, x = y = constant = α and it easy to form linear combinations of the
two sectors to obtain for equations of motion for the two propagating massive modes and the
two massless modes respectively as,

h(+)
xx

def= h(g)
xx + α2h(f)

xx , h(−)
xx

def= h(g)
xx − h(f)

xx ,

h(+)
xy

def= h(g)
xy + α2h(f)

xy , h(−)
xy

def= h(g)
xy − h(f)

xy .
(B.7)

Future analyses related to superhorizon effects should also focus on these in order to calculate
additional contributions, such as the prevalence of E-modes and B-modes in bimetric gravity,
measuring the magnitude of primordial gravitational waves.
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Chapter C A redefined shift

In this appendix we present the steps given in [4] to redefine the shift variable, relation (3.36)
in section 3.4, in a consistent manner in massive gravity. We will arrive at the same modified
variables given in [10] and provide some comments based on the review [9].

Following our brief discussion in section 3.4, we seek to match the terms matrix by matrix
in (3.37) and (3.38) to obtain the proper redefinition. In terms of the ADM parametrizations
of g−1 and f in (3.19) and (3.31) respectively, (3.37) turns into

N2g−1f =
(

Ñ2 − Ñlh̃
lkÑk +N lÑl −Ñj +N lh̃lj

N2hilÑl −N i
(
Ñ2 − Ñlh̃

lkÑk +N lÑl

)
N2hilh̃lj −N i

(
−Ñj +N lh̃lj

)) ,
(C.1)

where the contents in the parentheses on the second row matches the terms on the row above.
If we decompose the g metric shift N i as in (3.36) and introduce a new variable,

am
def= 1

Ñ

(
−f0m + cl1flm

)
, (C.2)

the combination in (3.37) yields

E0 = Ñ

(
a0 aj
−a0c

i
1 −ci1aj

)
, E2 =

(
0 0(

hil − ci2cl2
)
Ñl

(
hil − ci2cl2

)
h̃lj

)
, (C.3)

and the last matrix E1 becomes

E1 =
(

cl2Ñl cl2h̃lj

−
(
Ña0c

i
2 + cl2Ñlc

i
1

)
−
(
Ñci2aj + ci1c

l
2h̃lj

)) , (C.4)

where we have moved the scalar terms around in all expressions. Then the match with
equation (3.38), i.e. A2 = E0, B2 = E2 and AB + BA = E1, implies

A = 1
Ñ
√
x

(
a0 aj
−a0c

i
1 −ci1aj

)
, B =

√
x

(
0 0

Di
kÑ

k Di
j

)
, (C.5)

with the new variables

x
def= 1

Ñ3

(
a0 − cl1al

)
,
√
xDi

k
def=
√(

hil − ci2cl2
)
h̃lk. (C.6)

The form of the matrix A is easy to read off since squaring E0 gives E2
0 = xE0. At this

point, we would like to establish a relation between the two coefficient functions c1 and c2.
To accomplish this, we first observe that the matrix D =

√
Hh̃ where both H and h̃ are

symmetric matrices1. This means that we can find an expression for its inverse by expanding
1The variable x is a scalar.
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the square-root. One commences by rewriting D =
√

1 + (Hh̃− 1) where 1 is the identity
matrix, whose expansion in powers of Hh̃− 1 is

D = 1 + 1
2(Hh̃− 1)− 1

8(Hh̃− 1)2 + . . . (C.7)

Now, if we multiply this expansion by h̃ and compare it with the expansion of the transpose
product, (h̃D)T, we realize that they are identical owing to that h̃ and H are symmetric. In
component form, this translates to

h̃ikD
k
j = h̃jkD

k
i. (C.8)

Using this relation and comparing the expressions in (C.5) and (C.4) through AB + BA = E1,
one obtains

ci2 = 1
Ñ
Di

k

(
ck1 − Ñk

)
. (C.9)

If we introduce our redefined shift variable ni as

nk
def= 1

Ñ

(
ck1 − Ñk

)
, (C.10)

this reduces to
ci2 = Di

kn
k. (C.11)

By inserting this result into equation (C.6) and using (C.8), one arrives at a matrix equation
for D,

√
xD =

√
(h−1 −Dn(Dn)T) h̃, (C.12)

which is solvable in terms of ni, h and h̃. In other words all variables c1, c2 and D can be
written as combinations of these two variables, from which we infer that there exists shift
variables which render N

√
g−1f linear in N . Explicitly, we solve for D by squaring (C.12).

Once again using relation (C.8) and collecting terms with D, this implies in component form

Di
jQ

j
kD

k
l = hij h̃jl, Q

j
k = xδjk + njnmh̃mk. (C.13)

Multiplying both sides with the matrix Q from the right, rearranging terms and taking the
square-root, this yields

(DQ)2 = h−1h̃Q ⇒ D =
(√

h−1h̃Q

)
Q−1. (C.14)

Here, we would like to calculate the inverse matrix Q−1 to establish D and it is easy to do
through QQ−1 = 1 where we observe that (nnTh̃)2 = (nTh̃n)nnTh̃ since h̃ is a symmetric
matrix. This propels us towards the conclusion,

Q−1 = 1
x

(
1− nnTh̃

)
. (C.15)

Indeed, D can be determined as a function of ni, h and h̃. Expressed with our new shift
variable ni, equation (C.2) corresponds to

a0 = Ñ + nkÑk, ai = nkh̃ki. (C.16)
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To summarize, this calculation shows that it is possible to rewrite the shift variable N i of the
g-sector as

N i = Ñni + Ñ i +NDi
kn

k, (C.17)

which gives a Lagrangian linear in N which allows us to remove one of the Bouleware-Deser
ghost’s degrees of freedom, provided that no higher order interaction terms introduce nonlin-
earities in N (this is why we investigate the properties of the potential and find interaction
terms which adhere to this). The last degree of freedom is eliminated by demanding this
constraint to be constant in time [62]. As previously stated, this calculation is analogous
in pure bimetric theory, but the required variable definitions and relations are slightly more
complicated [5]. It is also possible to construct a proof in the Stückelberg formalism, [86] [67],
and in the vielbien formulation of massive/bimetric gravity, [16], with a full analysis in [87].

In massive gravity, the extra constraint coming from the redefined shift can also be inferred
from an analysis of the Hessian of the Hamiltonian, H, of the theory, [60] [9], which is
calculated through

Hµν = ∂2H
∂Nµ∂Nν

. (C.18)

If detHµν = 0, this guarantees that the Hessian cannot be inverted and hence we cannot
solve the equations of motion for all shift variables and the lapse variable. One of them must
be deduced as a combination of the others, implying a constraint. Of course, detHµν = 0, is
not achieved by default for a generic Hamiltonian, so we must choose potential terms which
obey this condition.
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