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Abstract—The state-space explosion problem, resulting from

the reachability computations in controller synthesis, is one of the

main obstacles preventing supervisory control theory from having

an industrial breakthrough. To alleviate this problem a strategy is

to symbolically perform the synthesis procedure by using binary

decision diagrams. Based on this principle, the work presented in

this paper develops an efficient symbolic reachability approach

for discrete event systems that are modeled as finite automata

with variables, referred to as extended finite automata. By

utilizing a disjunctive event partitioning technique, the proposed

approach first partitions the transition relation of the considered

system into a set of partial transition relations. These partial

transition relations are then selected systematically to perform

the reachability analysis, which is the most fundamental challenge

for synthesizing supervisors. It has been shown through solving

a set of benchmark supervisory control problems for extended

finite automata that the proposed approach significantly improves

scalability in comparison to previously published results.

Index Terms—Supervisory control theory, extended finite au-

tomata, binary decision diagrams, partitioning techniques, reach-

ability analysis.

I. INTRODUCTION

S

UPERVISORY control theory (SCT) [1] is a formal
framework for modeling and control of discrete event

systems (DESs). Given a system to be controlled, the plant,
and a specification, a control function, referred to as the
supervisor, can be automatically synthesized. The supervisor
restricts the behavior of the plant in the least restrictive way,
such that the specification is always fulfilled.

SCT has gained a lot of focus within academic research
communities, though the industrial acceptance is scarce due
to the following two drawbacks: the discrepancy between the
signal-based reality and the event-based automata analysis
framework makes the rigorous modeling of systems difficult;
the computation of supervisors might result in state-space
explosion, owing to the high computational complexity and
limited amount of memory.

There are a certain number of modeling formalisms that
can be used to model DESs and are suitable for supervisor
synthesis. Specific examples include Petri nets [2], process
algebra [3], hierarchical finite state machines (HFSM) [4]
and state tree structure (STS) [5]. While Petri nets are able
to model infinite state systems, structural constraints are in
general necessary for the considered synthesis problem to be
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decidable. The ability for process algebra-based approaches
to handle efficient synthesis of large scale systems without
structural constraints has not been reported to the authors best
knowledge. On the other hand, STS and HFSM are two vari-
ants of StartChart [6], which is an extension of finite automata
(FAs) with hierarchy, concurrency and communication. The
attractiveness of STS and HFSM is that complex systems can
be modeled at different levels of detail, and hence, structured
and comprehensible models can be obtained.

In [7], an alternative modeling framework was presented
whereby users can model a discrete event system in the form
of extended finite automata (EFAs). An EFA is an augmen-
tation of ordinary automata, extended with variables, guard
expressions and action functions. As seen in many industrial
applications, parts of a system such as sensors, actuators and
buffers can be conveniently modeled using variables. The
richer structure and semantics that are provided by these
variables enable the representation of the modeled behavior
in a conciser manner than the ordinary automata.

Although the EFA modeling framework allows for compact
representations of systems, the supervisory analysis of it
remains a challenging task. In [7], the authors suggested an
algorithm to transform EFAs into equivalent FAs. Thereafter,
synthesis can be carried out by using existing approaches.
However, the disadvantage of this algorithm is that in the worst
case, the number of transitions created for FAs will be expo-
nential to the number of EFA transitions, since the algorithm
transforms guards into disjunctive normal form (DNF) and
creates a transition for each term in the DNF. In [8], the authors
presented an approach where a supervisor can be synthesized
directly from EFA models by using binary decision diagram
(BDD) [9] [10]. For BDDs, the computational complexity of
synthesis is no longer dependent on the number of states but
on the number of nodes in the BDDs representing the state-
spaces. However, the approach in [8] essentially performs the
breadth first search on a single monolithic BDD representing
the monolithic transition relation of the composed EFA model.
This might lead to huge number of nodes in the intermediate
BDDs during the synthesis, although the final BDD is usually
manageable.

Contributions: The contributions of this paper are the
following (i) By using a partitioning technique [11], it is
shown how a set of disjunctive partial transition relations,
one for each event, is constructed to represent the transition
relation of a set of EFAs. (ii) A new algorithm that exploits
the disjunctive partial transition relations to compute a BDD
representing all reachable states is proposed. (iii) Also, the
correctness of the proposed algorithm is formally proved. (iv)
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It is shown through solving a set of benchmark supervisory
control problems that the proposed algorithm has improved
scalability in comparison to the symbolic approach presented
in [8] due to its ability to explore the state-space in a structured
way, which can significantly alleviate the problem with large
intermediate BDDs.

Related work: A number of related works with respect to
the efficient synthesis using BDD are presented respectively in
[12] [13] and [14]. However these approaches are only applica-
ble for finite automata without variables. A symbolic algorithm
for supervisory control synthesis of state-tree structures (STS)
is presented in [5], but like the aforementioned approaches,
variables are not allowed in STS.

Outline: The content of the paper is organized as follows:
Section II provides necessary preliminaries used throughout
the paper. By means of a simple example, Section III infor-
mally illustrates the proposed approach. The main contribu-
tions pursued by this paper are then detailed in Section IV
and Section V. Section VI discusses the experimental results
and finally, Section VII adds some concluding remarks.

II. PRELIMINARIES

A. Extended Finite Automata

EFA is an augmentation of an ordinary finite automaton
(FA) with variables in the form of guards and actions.

Let V = {v1, . . . , vn} be a set of n variables and Di be the
domain of vi. A variable evaluation, denoted by ⌘, assigns a
value in Di to the variable vi 2 V . For brevity, we simply
write ⌘[i] to denote the value of vi in ⌘.

Definition II.1. Extended Finite Automaton. An extended
finite automaton E defined over variable set V = {v1, . . . , vn}
is an 8-tuple

E = (L,D,⌃,!, `0, d0, Lm, Dm
)

where L is the finite set of locations; D = D1 ⇥ . . .⇥Dn is
the finite domain of the variables; ⌃ is a finite set of events
(i.e., the alphabet); `0 2 L is the initial location; d0 2 D is
the vector of the initial values for the variables; Lm ✓ L is
the set of marked locations; Dm ✓ D is the set of vectors of
marked values for the variables; ! ✓ L ⇥ ⌃ ⇥ G ⇥ A ⇥ L
is the transition relation where G is a set of guard predicates
and A is a set of actions. Each action a 2 A, as an n-tuple of
functions (a1, . . . , an), updates ⌘ to a new variable evaluation
⌘́ = a(⌘). Any function ai that does not update variable vi
is denoted by ⇠. The symbol ⌅ is used to denote an n-tuple
(⇠, ⇠, . . . , ⇠), indicating that no variable is updated.

The initial variable evaluation, denoted by ⌘0, assigns d0

to V . In the following, we simply write `
�!g/a

´` to denote
(`,�, g, a, ´`) 2!. If g is absent (i.e., g is a tautology), then
the transition is denoted as ` �!a

´`. If a is absent (i.e., a = ⌅),
then it is denoted as `

�!g
´`.

Definition II.2. Explicit state transition relation. Let
E = (L,D,⌃,!, `0, d0, Lm, Dm

) be an EFA over V =

{v1, . . . , vn}. The explicit state transition relation of E is
defined as

7!E= {(`, ⌘,�, ´`, ⌘́) 2 L⇥D ⇥ ⌃⇥ L⇥D |
`

�!g/a
´` 2!, ⌘ |= g, ⌘́ = a(⌘)},

where ⌘ is the variable evaluation before executing the tran-
sition. If g holds for ⌘, i.e., ⌘ |= g, then the transition can
be taken and ⌘ is updated by a, i.e, ⌘́ = a(⌘). Note that if
variable vi 2 V is not updated, i.e., ai = ⇠, then ⌘́[i] = ⌘[i].
For notational convenience, we shall let 7!

`
�!g/a

´̀ denote the

explicit state transitions for ` �!g/a
´`. Furthermore, we let �7!E

be the subset of transitions in E that are labeled by � 2 ⌃.

An EFA E is deterministic if there exists (`, ⌘,�, `0, ⌘0) 2
7!E and (`, ⌘,�, `00, ⌘00) 2 7!E , then we always have (`0, ⌘0) =
(`00, ⌘00). In this work, we focus on deterministic EFAs.

The full composition of two EFAs is defined as the extended
full synchronous composition.

Definition II.3. Extended Full Synchronous Composition

(EFSC). Let Ek = (Lk, D,⌃k,!k, `0k, d
0, Lm

k , Dm
), k =

1, 2, be two EFAs over variable set V = {v1, . . . , vn}, and
with the same initial and marked variable evaluations. The
EFSC of E1 and E2 is defined as

E1||E2 = (L1⇥L2, D,⌃1[⌃2,!, h`01, `02i, d0, Lm
1 ⇥Lm

2 , Dm
)

where a transition h`1, `2i �!g/a h´`1, ´`2i is defined by the
following three rules:

1) if � 2 ⌃1 \ ⌃2 and `1
�!g1/a1 ´`1 2!E1 and

`2
�!g2/a2 ´`2 2!E2 are action consistent, then

• g = g1 ^ g2,
• each action function ai of a is defined as

ai =

8
>><

>>:

a1i if a1i 6= ⇠ and a2i 6= ⇠,
a1i if a1i 6= ⇠ and a2i = ⇠,
a2i if a1i = ⇠ and a2i 6= ⇠,
⇠ if a1i = ⇠ and a2i = ⇠.

2) if � 2 ⌃1\⌃2 and `1
�!g1/a1 ´`1 2!E1 then

g = g1 and a = a1 and ´`2 = `2.
3) if � 2 ⌃2\⌃1 and `2

�!g2/a2 ´`2 2!E2 then
g = g2 and a = a2 and ´`1 = `1.

The transitions `1
�!g1/a1 ´`1 2!E1 and `2

�!g2/a2 ´`2 2!E2

are action consistent if a1(⌘)[i] = a2(⌘)[i] for all ⌘ 2 D and
i 2 {1, . . . , n} where a1i 6= ⇠ and a2i 6= ⇠. Note that if the
two transitions update variable vi to different values, then the
composed transition is not defined. A good modeling practice
is that for each variable and for each event, only one EFA is
allowed to update the variable with the event, while the same
variable can be updated in different EFAs with any other event.
In this case, the actions are structurally consistent. The EFSC
operator is both commutative and associative, and thus it can
be extended to handle an arbitrary number of EFAs.

B. Binary Decision Diagrams

Binary decision diagrams (BDDs) [10] are powerful data
structures for representing Boolean functions. Given a set of
binary/Boolean variables B, any Boolean function h : 2B !
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TABLE I
SET OPERATIONS ON CHARACTERISTIC FUNCTIONS

Set/Operation Characteristic function

; 0
U 1
U\Ū ¬�Ū
U1 [ U2 �U1 _ �U2
U1 \ U2 �U1 ^ �U2
U1 = U2 �U1 $ �U2

{0, 1} representing false and true respectively, can be ex-
pressed as

h = (¬b ^ h|b=0) _ (b ^ h|b=1) b 2 B (1)

where h|b=0 and h|b=1 are the assignments of 0 and 1 to
all occurrences of the Boolean variable b. If we apply (1)
recursively to all the variables in B, a binary decision diagram
(BDD) can be built to represent h. A BDD is a directed acyclic
graph consisting of two types of nodes: decision nodes and
terminal nodes. A terminal node can either be 0 or 1. Each
decision node is labeled with a Boolean variable and has two
edges to its low-child and high-child, corresponding to the
cases in (1) where b is 0 and 1.

The size of a BDD refers to the number of decision nodes.
With a fixed variable ordering, the size of a BDD can be
reduced while it is still possible to apply logic operations on
it efficiently. This is commonly referred to as reduced ordered
BDDs (ROBDDs) [10]. In this paper the term BDD refers
to ROBDD. The variable ordering is a major factor affect-
ing BDD sizes. Unfortunately, finding the optimal variable
ordering for a BDD is NP-complete [15]. In our framework,
a number of heuristics are used to find suitable variable
orderings. However, this is beyond the scope of this work and
we refer the reader to [16] for the detail.

The efficiency of BDDs is mainly due to that the complexity
of performing logical operations is O(|h| · |g|) in the worst
case, where |h| and |g| are the sizes of BDDs of h and g.

A particular operator that is used extensively in the fol-
lowing is the existential quantification of a function h over
its Boolean variables. For a variable b 2 B, the existential
quantification of h is defined by 9b.h = h|b=0 _ h|b=1. Also,
if ¯B = (b1, . . . , bk) ✓ B, then 9 ¯B.h is a shorthand notation
for 9b1.9b2. . . . 9bk.h. In plain terms, 9 ¯B.h denotes all those
truth assignments of the variable set B\ ¯B that can be extended
over the set ¯B in a way that function h is eventually satisfied.

BDDs are computationally useful for representing subsets
embedded in a large set. Let U be a finite set whose n elements
are represented by dlog2 ne Boolean variables. Given a subset
¯U of U , its characteristic function �Ū : U ! {0, 1} assigns
1 to all elements u 2 ¯U and 0 to all elements u /2 ¯U .
Furthermore, set operations can be carried out on characteristic
functions using basic Boolean operators (see Table I).

To represent EFA E over V = {v1 . . . , vn} by a characteris-
tic function, sets of Boolean variables are needed to represent
the current and updated locations and values of variables. We
denote these sets of Boolean variables by BL, ´BL, BDi and
´BDi where i = 1, . . . , n. In addition, we employ another set of
Boolean variables, denoted by B⌃, to represent the alphabet.

For encoding a transition `
�!g/a

´` 2!E , we let BL
(`),

´BL
(

´`) and B⌃
(�) to respectively denote the Boolean rep-

resentations of `, ´` and � using the corresponding Boolean
variables. Recall that 7!

`
�!g/a

´̀ is a set of explicit state transi-
tions where we assume that {⌘1, . . . , ⌘m} is the set of variable
evaluations satisfying g. Hence, the characteristic function of
7!

`
�!g/a

´̀ is constructed as

� 7!
`
�!g/a

´̀
:= BL

(`) ^ ´BL
(

´`) ^B⌃
(�)^

m_

j=1

⇣ n̂

i=1

�
BDi

(⌘j [i]) ^ ´BDi
(a(⌘j)[i])

�⌘
(2)

where BDi
(⌘j [i]) and ´BDi

(a(⌘j)[i]) denote the Boolean rep-
resentations of current and updated values of vi. Consequently,
the characteristic function of EFA E is constructed as

� 7!E :=

_

`
�!g/a

´̀2!E

� 7!
`
�!g/a

´̀
. (3)

Furthermore, the characteristic function of �7!E , denoted by
� �7!E

can be constructed as

� �7!E
:= � 7!E ^B⌃

(�). (4)

C. Supervisory Control
SCT is a general framework for the design of supervisors

for DESs. Given the model of a system to be controlled, the
plant P , and the desired system behavior, the specification Sp,
the minimally restrictive supervisor S can be automatically
synthesized. The supervisor restricts the behavior of P such
that Sp is fulfilled. Two properties are expected from such a
supervisor: controllable and nonblocking [1]. Controllability
typically captures safety requirements, while nonblocking is a
special kind of liveness property.

In this work, the considered DESs are modeled by EFAs
while the SCT synthesis is performed on the underlying FAs.
Basically, supervisor synthesis starts with the generation of
the closed-loop system S0 = P ||Sp by using the EFSC. If the
plant is given as P1, . . . , Pn, then P = P1|| . . . ||Pn. Similarly,
Sp = Sp1|| . . . ||Spm. Note that according to Definition
II.3, the composed model may have transitions where states
(locations and variable evaluations) are not reachable from the
initial state. Next, the analysis is performed on the underlying
FA model of S0. Specifically, an iterative removal of states
and transitions is carried out through a series of reachability
computations, until the remaining states are both controllable
and nonblocking. The resulting system is the supervisor S,
which can be either represented by FA(s) or by a set guards
attached to the original plant [8]. For an elaborate exposition
of the supervisory control methodology, refer to [1].

III. A MOTIVATION EXAMPLE

Consider the simplified manufacturing cell in Fig. 1 where two
robots Robot 1 (left) and Robot 2 (right) book the resources
in two zones in opposite order to carry out the tasks. To avoid
collisions, the robots are not allowed to occupy one zone
simultaneously. It is also required that Robot 1 should start
before Robot 2. The goal is now to generate the minimally
restrictive nonblocking supervisor.
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Fig. 1. A simplified manufacturing cell

The cell can be modeled
as EFAs depicted in Fig. 2
where R1 and R2 model
the robots while Sp models
the specification. Boolean
variables z1 and z2 indicate
the resource availability in
the upper and lower zones.
Taking R1 as an example, initially z1 = 0, meaning that
the resource in the upper zone is available, then event ↵1

occurs and the value of z1 is updated accordingly. Next, if
the resource in the lower zone is available, i.e., z2 = 0,
event ↵3 occurs. Meanwhile, the previously used resource is
deallocated, i.e., z1 := 0, and the needed one is allocated.

r11R1 r12 r13

↵1

z1 = 0

z1 := 1

↵3

z2 = 0

z1 := 0

r21R2 r22 r23

↵2

z2 = 0

z2 := 1

↵4

z1 = 0

z2 := 0

s1Sp

s2

↵1 ↵2

Fig. 2. The EFA model of the manufacturing cell where s1 is both initial and
marked (double-circle). For simplicity, all values of z1 and z2 are marked.

To get a nonblocking supervisor symbolically, the approach
in [8] first constructs a monolithic BDD representation of
7!S0 , where S0 = R1||R2||Sp. Then two sets of states,
namely the states reachable from the initial state and the
ones coreachable from the marked states, can be computed by
performing the reachability computations on this BDD. After
removing the non-coreachable states from the reachable ones,
the nonblocking states are obtained. As mentioned earlier, due
to the large number of nodes in the intermediate BDDs, this
approach might not survive from the reachability computations
for relatively large systems. To alleviate this problem, the idea
is to construct a set of smaller BDDs, each one corresponding
to an event. In this way, the monolithic BDD is partitioned as
a set of BDDs with disjunction in between.

Regarding the example, for each ↵i, i = 1, . . . , 4, a BDD
that symbolically represents the explicit state transitions la-
beled by ↵i in S0, denoted by ↵i7!S0 , is constructed accordingly.
Section IV shows this event-based partitioning approach for-
mally. Subsequently, to perform reachability computations on
these constructed BDDs while suppressing the sizes of inter-
mediate BDDs, each time only a single partitioned transition
relation BDD is selected and explored locally. Note that a BDD
may have to be selected for multiple times in order to realize
the exhaustive state-space exploration. In Section V, a traversal
algorithm is presented and used to select these partial transition
relations systematically to realize the structural exploration of
symbolically represented state-space.

IV. PARTITIONING OF THE FULL SYNCHRONOUS
COMPOSITION

Partitioning of the transition relation [11] has become the
standard guideline for alleviating the state-space problem
with large intermediate BDDs. In general this is done by

splitting the transition relation into a set of partial transition
relations, connected by disjunction or conjunction. In [13],
an adaption of the disjunctive partitioning technique to FAs
was introduced. However, this approach does not work for
EFAs, since no mechanism is provided to keep track of
the variables that are not updated. By definition, the values
of these variables should remain the same values after the
corresponding transitions are taken.

In this section, we present a symbolic approach to partition-
ing the transition relation of a modular DES modeled as EFAs.
The approach constructs the set of partial transition relations
on the basis of events in the alphabet. In the sequel, we do
not differentiate between sub-plants and sub-specifications but
focus on a set of EFAs.

Let E be N � 2 EFAs E1, . . . , EN defined over variable set
V = {v1, . . . , vn} and � 7!E1

, . . . ,� 7!EN
be the corresponding

characteristic functions of 7!E1 , . . . , 7!En . For each � 2 ⌃E

where ⌃E =

SN
j=1 ⌃j , the characteristic function of �7!||E, de-

noted by � �7!||E
, where ||E = E1|| . . . ||EN , can be constructed

from � 7!E1
, . . . ,� 7!EN

by the following three steps: (1) Let
E�

= {E | E 2 E,� 2 ⌃E} and ||E� denote the EFSC of
EFAs in E� . We compute the characteristic function of �7!||E� ,
denoted by � �7!||E�

. (2) Attach a self-loop transition labeled
by � to every location of every EFA in E\E� . Let Ê� denote
the set of these modified EFAs and ||Ê� denote the EFSC of
them. We then compute the characteristic function of �7!||Ê� ,
denoted by � �7!||Ê�

. (3) Finally � �7!||E
can be computed by

performing the conjunctive operation on � �7!||E�
and � �7!||Ê�

.

Computation of the characteristic function of

�7!||E�
. Let

us assume that E�
= {E1, . . . , EM}, where 1  M  N .

Hence, �7!||E� consists of a set of explicit state transitions
that are in the form of (h`1, . . . , `M i, ⌘,�, h´`1, . . . , ´`M i, ⌘́)
where ⌘, ⌘́ are the current and updated values of n variables.
According to Definition II.3, the value of vi 2 V in the variable
evaluation ⌘́, i.e., ⌘́[i], is dependent on how it is updated
during the EFSC. If vi is not updated by any EFA, then
⌘́[i] = ⌘[i]. On the other hand, if it is updated to different
values, then according to Definition II.3 the transition does
not occur. By taking this into account, we further decompose
the computation of � �7!||E�

into two stages. First, we define
�
,!||E� as the explicit state transitions of �7!||E� where all the
updated variable evaluations are excluded. The characteristic
function of

�
,!||E� , denoted by � �

,!||E�
, can be constructed as

� �
,!||E�

:=

M̂

k=1

9 ´BD.� �7!Ek
(5)

where Boolean variable set ´BD
=

´BD1 [ . . . [ ´BDn . In
(5), the existential quantification, described in Section II-B,
is performed on all � �7!Ek

to remove all the Boolean variables
representing the updated values of variables in V .

Next, we deal with the updating of variables that are missing
in the characteristic function of

�
,!||E� . In the following

definitions we focus on the update of one single variable vi
between two EFAs E1 and E2, and then we extend the result
to all variables in V for all EFAs in E� .
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Definition IV.1. Updated transition relation for variable

vi. For EFA E and variable vi, the updated state transition
relation for vi through �, denoted by �7!vi,E , is defined as

�7!vi,E= {(`, ⌘,�, ´`, ⌘́) | ` �!g/a
´` 2!E and

⌘ |= g and a(⌘) = ⌘́ and ai 6= ⇠}.

In this definition, �7!vi,E contains all the state transitions
of � where variable vi is updated; other variables can either
be updated or not. Note that �7!vi,E might be empty if for
all transitions of �, ai = ⇠. Moreover, we denote by the set
�7!E \ �7!vi,E those transitions of � with vi not being updated.

Recall that, from Definition II.3, each action function ai
can be divided into four if-then constructs: (1) Both a1i and
a2i update vi; ai = a1i . (2) Only a1i updates vi; ai = a1i . (3)
Only a2i updates vi; ai = a2i . (4) None of a1i and a2i updates
vi; ai = ⇠. Subsequently we define the interaction transition
relation for variable vi through event �, to represent the set
of transitions in correspondence with item (1) – (4) above.

Definition IV.2. Interaction transition relation for variable

vi. Let E1 and E2 be two EFAs and vi be a variable. The
interaction transition relation for variable vi through event �,
denoted by I(�,vi)

j where j = 1, . . . , 4, can be defined as

I(�,vi)
1 = {(h`1, `2i, ⌘,�, h´`1, ´`2i, ⌘́1) |

(`1, ⌘,�, ´`1, ⌘́1) 2 �7!vi,E1 and

(`2, ⌘,�, ´`2, ⌘́2) 2 �7!vi,E2}.
I(�,vi)
2 = {(h`1, `2i, ⌘,�, h´`1, ´`2i, ⌘́1) |

(`1, ⌘,�, ´`1, ⌘́1) 2 �7!vi,E1 and

(`2, ⌘,�, ´`2, ⌘́2) 2 �7!E2 \ �7!vi,E2}.
I(�,vi)
3 = {(h`1, `2i, ⌘,�, h´`1, ´`2i, ⌘́2) |

(`2, ⌘,�, ´`2, ⌘́2) 2 �7!vi,E2 and

(`1, ⌘,�, ´`1, ⌘́1) 2 �7!E1 \ �7!vi,E1}.
I(�,vi)
4 = {(h`1, `2i, ⌘,�, h´`1, ´`2i, ⌘) |

(`1, ⌘,�, ´`1, ⌘́1) 2 �7!E1 \ �7!vi,E1 and

(`2, ⌘,�, ´`2, ⌘́2) 2 �7!E2 \ �7!vi,E2}.
By Definition IV.2, we can compute the characteristic func-

tion of the updated state transition relation of E1||E2 for vi
through �, denoted by �7!vi,E1||E2

, as follows,

� �7!vi,E1||E2
:=

3_

j=1

�
I
(�,vi)
j

(6)

Note that the characteristic function of I(�,vi)
4 is not included

in the computation, since variable vi is not updated there.
Next, we recursively apply Definition IV.2 and the compu-

tation of (6) to all the EFAs in E� and denote the result by
the characteristic function � �7!vi,||E�

. Furthermore, I(�,vi)
4 in

Definition IV.2 can also be recursively applied to all EFAs in
E� . For the sake of simplicity, we stick with the same notation
I(�,vi)
4 for the extension. Subsequently, we let �7!v,||E� be the

updated state transition relation for all variables in V through

� and its characteristic function, denoted by � �7!v,||E�
can be

constructed as

� �7!v,||E�
:=

n̂

i=1

(� �7!vi,||E�
_ �

I
(�,vi)
4

). (7)

That is, � �7!v,||E�
contains a set of composed state transitions

labeled by �. Among the set of transitions, some variables are
updated while others that are not updated will remain the same
values, as expressed by the characteristic function �

I
(�,vi)
4

.
Finally, by the computations (5) and (7), we have

� �7!||E�
:= � �

,!||E�
^ � �7!v,||E�

. (8)

Computation of the characteristic function of

�7!||Ê� . The
second step is concerned with how locations and variables are
updated for the EFAs in E\E� on occurrence of �. It is known
that when � occurs, all the locations in E 2 E\E� will remain
the same while the updating of variables will follow that in
the transitions labelled by � in E� . In this step, we start by
attaching a self-loop transition labeled by � to every location
of E 2 E\E� . We use Ê� and �yE to respectively denote the
set of the modified EFAs and the set of self-loop transitions
for every E 2 Ê� . Then, by using the characteristic functions
of �yE , denoted by � �yE

, � �7!||Ê�
can be constructed as

� �7!||Ê�
:=

^

E2Ê�

� �yE
. (9)

Computation of the characteristic function of

�7!||E.

Consequently, by (8) and (9), � �7!||E
can be constructed as

� �7!||E
:= � �7!||E�

^ � �7!||Ê�
. (10)

By performing the above symbolic computation for each
� 2 ⌃E, the symbolic representation of 7!E can be equally
represented as the disjunction of all the symbolically repre-
sented partial transition relations. That is,

� 7!||E =

_

�2⌃E

� �7!||E
. (11)

V. EFFICIENT REACHABILITY COMPUTATION

The reachability computation is the most fundamental chal-
lenge for synthesizing supervisors. The basic symbolic algo-
rithm for computing reachable states requires a single BDD
of the monolithic transition relation 7!||E, which can be
constructed by the approach in [8]. Unfortunately, for many
practical applications, the size of this BDD is very large.
The partitioned partial transition relations, constructed in Sec-
tion IV can provide a much more concise representation, but
they cannot be used with the basic reachability computation.
In this section, we present a novel algorithm that performs
the reachability search for partial transition relations and
meanwhile, reduces the sizes of intermediate BDDs.
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A. Event-based Reachability Algorithm

Taking as input the characteristic function of the initial
state and the set of partial transition relations, Algorithm 1
computes the characteristic function of all reachable states
of the composed system ||E. More specifically, the algorithm
maintains a set of active partial transition relations, Wk, during
the execution. For each iteration, depending on some heuristics
H, similar to the heuristics described [14], the partial transition
relation where new states are most likely to be reached by the
existing ones, is selected and a local exhaustive reachability
search (Algorithm 2) is performed on it. If more states are
reached on � �7!||E

, the dependent transition relation sets D�
e

and D�
v , defined in Definition V.1 and V.2, are appended to Wk

for further exploration. In particular, D�
e contains all the partial

transition relations with all events �0 being topologically next
to � in E; D�

v contains all the transition relations with all
events �0 being identified with respect to the variables in the
associated guards that are possibly updated by the transitions
of �. The algorithm terminates when there are no active
transition relations left in Wk.

Definition V.1. Event dependent transition relation set. Let
E = {E1, . . . , EN} where N � 2, ⌃E =

SN
j=1 ⌃j and ||E =

E1|| . . . ||EN . The event dependent transition relation set of �,
denoted by D�

e is defined as

D�
e = {�0

7!||E| �0 2 ⌃

�
e and �0 6= �},

where ⌃

�
e ✓ ⌃E is the successor event set of � in accordance

with locations, defined as

⌃

�
e = {�0 2 ⌃E | 9E 2 E s.t. (`,�, g, a, `0) 2 !E

and (`0,�0, g0, a0, `00) 2 !E}.
Definition V.2. Variable dependent transition relation set.

Let E = {E1, . . . , EN} be the set of N � 2 EFAs over
V = {v1, . . . , vn}, ⌃E =

SN
j=1 ⌃j and ||E = E1|| . . . ||EN .

The variable dependent transition relation set of �, denoted by
D�

v , is defined as

D�
v = {�0

7!||E| �0 2 ⌃

�
v and �0 6= �}

where ⌃

�
v ✓ ⌃E is a set of events related to the alteration of

guard evaluations. As a transition of � is taken, variables may
be updated, which might alter the guard evaluations for other
transitions. The set of events for these transitions is defined as

⌃

�
v = {�0 2 ⌃E | 9vi 2 V and 9Ej 2 E and 9Ek 2 E s.t.
(`j ,�, g

j , aj , `0j) 2!Ej and (`k,�
0, gk, ak, `0k) 2!Ek

and aji 6= ⇠ and vi 2 var(gk)}
where var(gk) denotes the variables that appear in guard gk.

B. Proof for the correctness of Algorithm 1 in Section V

Next, we prove the correctness of Algorithm 1 by proving
that it computes all the reachable states.

Lemma V.1. At iteration k of Algorithm 1, Wk contains all
active transition relations that are sufficient for the current
reachable state set �k

Q to reach more states in one step.

Algorithm 1 Event-based Reachability
1: input W0 := {� �7!||E

| � 2
SN

j=1 ⌃j}, q0 := (h`01, . . . , `0N i, ⌘0)
2: let k := 0,�k

Q := �{q0}
3: repeat

4: k := k + 1
5: H: Pick and remove � �7!||E

2 Wk�1

6: �k
Q := Local Reachability (� �7!||E

,�k�1
Q )

7: if ¬(�k
Q $ �k�1

Q ) then

8: Wk := Wk�1 [ {��0
7!||E

| �0 2 D�
e [D�

v}
9: end if

10: until Wk = ;
11: return �k

Q

Algorithm 2 Local Reachability
1: input � �7!||E

,�Q

2: let m := 0,�m
Q := �Q

3: repeat

4: m := m+ 1
/*BL

E is the set of Boolean variables representing locations of
EFAs in E; BD = BD1 [ . . . [ BDn is the set of Boolean
variables representing the current values of n variables; B⌃

is the set of Boolean variables representing ⌃E. */
5: �m

Q := �m�1
Q _ 9(BL

E [BD [B⌃).(�m�1
Q ^ � �7!||E

)

6: until �m
Q $ �m�1

Q
7: return �m

Q

Proof: The lemma can be proved by induction.
The basic step: When k = 0, the current reachable state

set �0
Q comprises merely the initial state, while W0 initially

contains all partial transition relations for the considered
system. Therefore, the lemma holds for k = 0.

The inductive step: We assume that at iteration k where
k � 1, the lemma holds. Next we prove by contradiction that
the lemma holds at iteration k+1. Assuming that at iteration
k+1, there exists � �7!||E

/2 Wk but it contains new states that
can be reached from �k

Q. Since the lemma holds at iteration
k, Wk�1 contains all transition relations leading to reachable
states from �k�1

Q . Let us assume that there exists a subset of
Wk�1, denoted by ˆWk�1 that consists of all partial transition
relations where more states can be reached from �k�1

Q . (i)
Consider that � �7!||E

is removed before iteration k. Then
� �7!||E

/2 Wk�1 at iteration k. Suppose the algorithm selected
another transition relation ��0

7!||E
at iteration k. An exhaustive

reachability search is then performed on it. If ��0
7!||E

2 ˆWk�1,
then new reachable states are found by Algorithm 2 and
Algorithm 1 puts these partial transition relations of D�0

e

and D�0

v back into the relation set. If ��0
7!||E

/2 ˆWk�1, the
reachable state set will be unchanged. By the assumption,
if ��0

7!||E
2 ˆWk�1, we have � �7!E

/2 D�0

e [ D�0

v . Then,

there will be no more state that can be reached from �k
Q in

� �7!||E
at iteration k + 1, which contradicts the assumption.

If ��0
7!||E

/2 ˆWk�1, the partial transition relations that lead to
more reachable states at iteration k + 1 are all in Wk. This
also contradicts the assumption. (ii) Consider that � �7!||E

is
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removed from Wk�1 at iteration k. If � �7!E
2 ˆWk�1, there

exists some states that are reached in one step from �k�1
Q .

Since Algorithm 2 is an exhaustive search, at iteration k + 1,
there can not be more new states that are found in � �7!||E

. This

contradicts the assumption. If � �7!||E
/2 ˆWk�1, the reachable

state set is unchanged, which again contradicts the assumption.
To sum up, on the basis of the two cases above we can

prove that the lemma holds at the iteration k + 1.

Theorem V.1. Algorithm 1 terminates in a finite time and the
output is the complete set of reachable states.

Proof: In each step of Algorithm 1, zero or more states
are added to the set of reachable states. Since the total set of
states is finite, the reachable state set can only grow in a finite
number of times. When no new state is found, one transition
relation is removed from Wk at each time. Since Wk is also
finite, the algorithm terminates in finite time. If the algorithm
terminates, by Lemma V.1, Wk will hold all partial transition
relations that can be used to find more reachable states. Since
the algorithm has terminated because of the emptiness of Wk,
no more state can be reached from �k

Q. Therefore, Algorithm
1 returns the complete set of reachable states.

C. Algorithm Efficiency

It is known that the minimally restrictive supervisor synthe-
sis is NP-hard [17], which implies in the worst case no solution
can be faster than the brute-force one. However, by leveraging
the efficiencies of symbolic computation, this issue can be
alleviated for many practical systems. After representing sets
by BDDs, the computational complexity of synthesis is no
longer dependent on the number of states but the sizes of
relevant BDDs. Therefore, a symbolic algorithm involving
BDDs with smaller sizes, tends to be more efficient.

As mentioned in Section II that for two BDDs h and g,
the computational complexity of performing logic operations
on h and g is O(|h| · |g|) in the worst case. To expand the
reachable state set, the approach of [8] performs the operation
�k�1
Q ^� 7!||E where �k�1

Q denotes the BDD representation of
the existing reachable states. However, the monolithic � 7!||E

usually contains numerous nodes and therefore the operation
will be time and memory consuming. Algorithm 1, on the other
hand, has a lower space demand, since each time the algorithm
only manipulates one selected partial transition relation that for
most cases is much smaller than the monolithic one.

In contrast to the straightforward way in [11] that reachable
states are expanded by performing one-step reachability search
iteratively on each partitioned transition relation, the strategy
employed by the proposed algorithm can effectively reduce
the sizes of intermediate BDDs. In particular, we notice that
Algorithm 1 is based on two nested loops. The inner loop,
as depicted in Algorithm 2, performs exhaustive breadth-
first search on the selected partial transition relation for the
corresponding event. The local exhaustive search can make
the BDD representing the intermediate reachable states enter
its saturated shape earlier, thus redundant nodes are eliminated
by the reduction rules, whereas the technique of [11] generates
new nodes in a near random fashion. Moreover, when more

TABLE II
COMPARISON BETWEEN THE EXPLICIT STATE ENUMERATION FA

SYNTHESIS AND THE SYMBOLIC SYNTHESIS

Model Classical Synthesis (s) Symbolic Synthesis (s)

CMT (1, 5) 0.003 0.02
CMT (5, 1) 0.009 0.04
CMT (1, 7) 0.06 0.39
CMT (7, 1) 0.02 0.06
CMT (3, 3) 25 3.1
CMT (5, 5) M.O. 59
EDP (5, 10) 4.2 0.4
EDP (5, 50) M.O. 0.55
RAS 1.55 0.13
RAS-EH 41.33 0.87
BSP T.O. 210
AGVs M.O. 0.87
PME 3.42 0.14

M.O. indicates memory out and T.O. indicates time out (15 min).

reachable states are found on a partial transition relation in the
inner loop, by Definition V.1 and V.2, the dependent partial
transition relations are added into set Wk. The algorithm then
switches to the most related region of the state-space for
further exploration. In this way, not only the fix-point can
be reached earlier, but also the intermediate BDDs with more
redundant nodes could be attained.

VI. CASE STUDIES

The proposed approach has been integrated in the synthesis
algorithm in Supremica [18] that uses JavaBDD [19] as the
BDD package. In this section, it is applied to the following
set of benchmark examples to demonstrate the efficiency1: the
resource allocation system (RAS) together with its extension
(RAS-EH) [20], the iron ball sorting process (BSP) [21],
automated guided vehicles (AGVs) [22], the parallel manu-
facturing example (PME) [23], cat and mouse tower (CMT)
and extended Dinning Philosophers (EDP) [24].

We first compare the performance between the classic
explicit state enumeration approach and the presented ap-
proach. As Table II shows, for those systems with smaller
state-spaces, the state enumeration method is slightly better
than the symbolic approach where the BDD representation
may contain more nodes than the states. As the systems
become larger and more complex, e.g., AGVs, the symbolic
approach obviously outperforms the standard approach that
suffers from enumerating a large number of states explicitly
when handling systems with the state-space 10

6. Regarding
BSP, the conversion from EFAs to FAs that are the input for
the classical approach, takes long time (more than 15 minutes).

The second comparison is made between the monolithic
symbolic approach of [8] and the presented approach. It can
be observed from Table III that both the monolithic and
the partitioning approaches can handle AGVs and synthesize
the supervisor in a short time. However, by comparing the
maximum number of BDD nodes, i.e, BDD Peak, during the
reachability computation, which can express the maximum
memory usage, the monolithic approach needs nine times more
memory than the partitioning approach. Regarding the iron ball
sorting process, even though the final number of supervisor
states is only 2026, the intermediate BDDs are large due to

1The experiments are carried out on a standard PC (Intel Core 2 Quad
CPU, 2GB RAM) running Ubuntu 12.04.
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TABLE III
COMPARISON BETWEEN TWO SYMBOLIC SYNTHESIS APPROACHES

BDD Monolithic Approach BDD Partitioning Approach
Model Reachable States Supervisor states BDD Peak (R) Computation Time (s) BDD Peak (R) Computation Time (s)

RAS 1.19⇥ 104 8761 2826 0.49 215 0.13
RAS-EH 1.84⇥ 106 0.68⇥ 106 42314 18.67 2275 0.87
BSP 2026 2026 M.O. � 16640 210
AGVs 2.29⇥ 107 1.15⇥ 107 9663 3.60 1001 0.87
PME 8.13⇥ 105 0.46⇥ 105 1022 0.24 225 0.14
CMT (1, 5) 605 579 447 0.01 255 0.02
CMT (5, 1) 1056 76 635 0.06 590 0.04
CMT (1, 7) 1198 1156 801 0.10 321 0.39
CMT (7, 1) 2710 155 1074 0.15 974 0.06
CMT (3, 3) 2.96⇥ 105 1.64⇥ 105 8761 5.0 1963 3.1
CMT (5, 5) 1.07⇥ 1010 3.15⇥ 109 � T.O. 17353 59
EDP (5, 10) 1.6⇥ 105 1596 1157 0.5 134 0.4
EDP (5, 50) 3.46⇥ 108 1.38⇥ 105 7743 1.25 178 0.55
EDP (5, 100) 1.05⇥ 1010 1.05⇥ 106 16915 80 192 1.3
EDP (5, 200) 3.28⇥ 1011 8.20⇥ 106 � T.O. 206 3.5

M.O. indicates memory out during the reachability search (due to large intermediate BDDs) and T.O. indicates time out (15 min).

the high complexity. The monolithic approach fails to explore
the state-space, while the partitioning approach obtains the
supervisor within four minutes. For the last two benchmark
examples, cat and mouse tower and extended dining philoso-
phers, the partitioning approach can also handle relatively large
problem instances within an acceptable time. As mentioned
before, since the proposed partitioning algorithm is on a basis
of the alphabet, more iterations than the monolithic algorithm
might be needed to reach the final fixed point. However,
the intermediate BDDs produced during the computation are
smaller in terms of numbers of BDD nodes.

VII. CONCLUSIONS

This paper presents a symbolic supervisor synthesis approach
for DESs modeled by EFAs. Experimental results have shown
that the proposed algorithm has better performance and scal-
ability than the previously presented work. We believe this
can further promote the practical usage of EFAs for modeling
and analyzing large scale DESs. In our future work, we
will seek to improve the performance of the algorithm by
further developing the heuristics for selecting partial transition
relations. We also consider the possibility of combining our
approach with hierarchical approaches such as STS, which is
presented in [5].
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