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We consider a ballistic detector formed in an interferometer manner which operational principle

relies on Josephson vortex scattering at a measurement potential. We propose an approach to

symmetrize the detector scheme and explore arising advantages in the signal-to-noise ratio and in

the back-action on a measured object by means of recently presented numerical and analytical

methods for modeling of a soliton scattering dynamics in the presence of thermal fluctuations. The

obtained characteristics for experimentally relevant parameters reveal practical applicability of the

considered schemes including possibility of coupling with standard digital rapid single flux quan-

tum circuits. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4902327]

Ballistic detectors are widely used for mesoscopic quan-

tum measurements.1 In these detectors, a measured system

controls a transport of particles by creating a scattering

potential. The detector scheme can be organized in an inter-

ferometer manner. For example, in the ballistic read-out of

superconducting flux qubit, the scheme contains two equal

Josephson transmission lines (JTLs), one of which is coupled

to the qubit,2 see Fig. 1(a). Fluxons propagating simultane-

ously along the JTLs serve as particles in this scheme. The

fluxon scattering at the current dipole induced by the qubit

magnetic field (see Fig. 1(b)) provides measurable time delay

between the moments of arrival of the fluxons to the end of

the JTLs. This single-shot, non-projective measurements3,4

can be made nearly non-demolition by matching the mea-

surement frequency with the frequency of coherent qubit

oscillations as described in Ref. 2. Such read-out attracts in-

terest in context of quantum computing which underwent

rapid development in the last decade.5–9

A number of works were devoted to theoretical and ex-

perimental study of the detector.10–15 It appears that the main

drawbacks in its operation come from relativistic effects of

the fluxon dynamics. In the experiment,13,14 the authors used

single annular JTL coupled to the qubit instead of a couple,

measuring deviation of the fluxon rotation frequency. The

measurement results show that this deviation does not depend

on the measured magnetic field orientation (the current dipole

polarity). The qualitative explanation is that the relativistic

fluxon characteristic size becomes much smaller than the

dipole length due to Lorenz contraction. Therefore, the total

contribution of the successive scatterings at the dipole poles to

the frequency shift is independent on the order of the poles.

Since the fluxon being inside the coupling loop induces circu-

lating current affecting the qubit, the contraction additionally

enhance the back-action. While slow fluxon is obviously pre-

ferred to gain the time response,11,12,15 the corresponding bias

current, acting as the fluxon driving force, appears to be

unreasonable for the experiment.12,13

In this work, we study two ways to overcome the

discussed drawbacks and show that symmetrization of the

coupling leads to significant increase of the detector signal-

to-noise ratio (SNR) making it independent on the fluxon ve-

locity, and drastically decreases the back-action on the qubit.

At the end of the paper, we discuss possibility of using the

considered schemes with rapid single flux quantum (RSFQ)

cells, allowing implementation of efficient interface between

superconducting qubits and room temperature electronics on

a basis of mature digital RSFQ technology.

Natural approach allowing the distinguishing of the cur-

rent dipole polarity is a shrinking of the dipole length provid-

ing the dynamics of the first scattering affecting the second

one.12 This simultaneously decreases the time response and

the back-action. The current dipole is oriented collinearly to

the direction of the fluxon propagation (see Figs. 1(a) and

1(b)), and so the fluxon velocity and the dipole length are the

paired optimization parameters.

Here, we propose another approach to overcome the

drawbacks. The idea is to make each fluxon scattering at one

pole of the dipole. This can be realized by symmetrical con-

nection of the coupling loop to the both detector JTLs as it is

shown in Figs. 1(c) and 1(d). Since the both fluxons are

involved in the scatterings, the detector response is effec-

tively increased. The dipole polarity can be easily distin-

guished by the sign of the response. The back-action in this
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scheme corresponds to the gained mutual shift of the fluxons

and thus is proportional to the output signal. Thanks to the

“orthogonal” orientation of the current dipole relatively to

the direction of propagation of the fluxons, the only optimi-

zation parameter here is the fluxon velocity.

Estimation of the SNRs of the two considered detector

schemes can be obtained using the modeling of the fluxon

scattering dynamics in the frame of the sine-Gordon (SG)

equation16

/tt � /xx þ sinð/Þ ¼ �a/t þ iþ if ðx; tÞ þ isðxÞ; (1)

where the space coordinate x and the time t are normalized

to the Josephson penetration length kJ and to the inverse

plasma frequency x�1
p , respectively, a ¼ xp=xc is the damp-

ing coefficient, xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eIc=�hC

p
; xc ¼ 2eIcRN=�h, Ic is the

critical current, C is the JTL capacitance, and RN is the nor-

mal state resistance. The current densities i, if, is are normal-

ized to the critical current density Jc; i denotes the dc overlap

bias current density; if is the fluctuational current density,

which correlation function is hif ðx; tÞif ðx0; t0Þi ¼ 2acd
ðx� x0Þdðt� t0Þ, where c¼ IT/JckJ is the dimensionless noise

intensity,17,18 IT ¼ 2ekT=�h is the thermal current, e is the

electron charge, �h is the Planck constant, k is the Boltzmann

constant, and T is the temperature. is(x) describes the current

dipole. In the case of the collinear dipole orientation, this

term is isðxÞ ¼ lk½dðxþ d=2� xcÞ � dðx� d=2� xcÞ�, with

lk ¼ IpM=2LclJckJ , where 6 Ip is the current circulating in

the qubit when it is far from the symmetry point (the sign

corresponds to the current direction), M is the mutual induct-

ance between the qubit and the coupling loop, Lcl is the in-

ductance of the coupling loop, d is the dipole length, and xc

is its central coordinate. In the case of orthogonal dipole ori-

entation, the expression transforms to isðxÞ ¼ l?dðx� xcÞ,
where l? ’ 2lk.

16 The dipole amplitude doubling comes

from the fact that in the collinear case the current circulating

in the coupling loop spreads into the two streams flowing

through the top and the bottom JTL electrodes as it is illus-

trated in Fig. 1(b). The width of the coupling loop wire,

defining the width of the injected current distribution, is

assumed to be much smaller than kJ allowing the using of

the Dirac delta function. Following the work,11 we also

assumed that perturbation of the fluxon dynamics is

governed by the term is(x) expressed in the presented forms

even if the qubit is prepared initially in the symmetry point.

This is valid for relatively strong coupling, where the qubit

can be adiabatically shifted far from the symmetry point by

the moving fluxon.

In our works,19,20 it was shown that the jitter r (the

standard deviation) of fluxon propagation time (with the

mean s) through the JTL can be suppressed if the fluxon

moves with an acceleration. Following Ref. 15, we will con-

sider the case where initially resting fluxons accelerate to the

stationary velocity:21 ust ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð4a=piÞ2

q
normalized to

the Swihart velocity c ¼ wpkJ . Besides numerical simulation

of the fluxon dynamics using the Eq. (1), in the experimen-

tally relevant case, where all parameters in the right-hand

side of the Eq. (1) are small a, i, if, is � 1, one can use the

analytical approach developed for relativistic fluxon veloc-

ities (see Ref. 15). In the frame of this approach, the scatter-

ings and the noise effect are considered as perturbations to

the fluxon dynamics governed by the energy balance which

is defined by the constant terms i and a representing the

energy gain and loss.

For the two considered dipole orientations, the detector

time response Ds ¼ jsL � sRj, its jitter rR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

L þ r2
R

p
, and

their ratio, which is assumed to be the SNR, versus the bias

current i are shown in Figs. 2(a)–2(c) (here “L” and “R”

indexes denote left and right shoulders of considered inter-

ferometer). The data for the collinear and the orthogonal

dipole orientations are marked by the signs k and ? corre-

spondingly. In the collinear case, the dipole polarity (marked

as positive “þ” or negative “�”) reflects orientation of the

first pole relatively to the bias current. For the orthogonal

case, the data are shown for only one dipole polarity for

compactness, since the polarity inversion reverses only sign

of the time response. The dipole oriented collinearly is

located at the center of the JTL of the length L¼ 60, spread

over the distance d¼L/3. The orthogonal dipole is located in

such a way that its central coordinate coincides with the

coordinate of the first pole of the collinear dipole:

xc? ¼ xck � d=2. The dipole amplitude is taken typical for

the experiment:13,14 lk ¼ l?=2 ¼ 0:05. The damping pa-

rameter a ¼ 0:01 and the normalized noise intensity

c¼ 0.001 are typical for tests at 4.2 K temperature.

FIG. 1. (a) Ballistic Josephson vortex interferometer scheme. G box represents a fluxon generator, Q box—a qubit, and C box—a comparator. (b) Cross-

sectional scheme of continuous JTL coupled with a qubit. (c) The detector scheme in which the coupling loop is connected symmetrically to the both JTLs. (d)

Cross-sectional scheme of the proposed symmetrical coupling. S denotes superconductor and I—isolator. The black arrows show current induced by the qubit

magnetic field, the red arrows show the direction of the fluxon propagation.
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The bias current decrease makes the dipole effect

more pronounced decreasing velocities of the fluxons, see

Fig. 2(a). Figs. 2(b) and 2(c) illustrate that the latter finally

leads to significant jitter increase19,20 which becomes espe-

cially enhanced in the vicinity of the threshold bias current,

leading to the fluxon capturing by the dipole in some real-

izations, that manifests itself as the SNR curve bend.

Though this effect can not be traced using the analytical

approach (the corresponding data are shown by the solid

curves), the SNR estimation for larger bias currents is con-

sistent with the results of numerical simulations (obtained

with averaging over 10 000 realizations, presented by dot-

ted curves) revealing the SNR enhancement due to the

symmetrization by the factor of 5. For the optimal bias cur-

rent range, the symmetrical scheme possesses the SNR

well above 100, see the inset of Fig. 2(c) for parameters

corresponding to T< 100 mK temperature range. Since the

damping in real experiment depends on the specific tunnel

resistance of a long Josephson junction, one would expect

a decrease of one order of magnitude10 in the dissipation

parameter compared to T¼ 4.2 K, so a¼ 0.001. At the

same time, if the temperature is not too low T� 50 mK, so

that the thermal noise is predominant,22 then the normal-

ized noise intensity scales proportional to the temperature

down to c ’ 10�5.

The flux Ucf captured by the coupling loop in the two

considered cases can be calculated as convolution of the

according function Fclk or Fcl? representing the coupling

loop placement in the detector (corresponding to the is(x))

with the magnetic flux of the vortex. The flux affecting the

qubit UBA is then expressed as follows:

UBAk ¼
M

Lcl
Ucf ¼

M

Lcl
Fclk � Uf l
� �

Xð Þ; (2)

UBA? ¼
M

Lcl
Fcl? � Ufl1ð Þ X1ð Þ � Fcl? � Ufl2ð Þ X2ð Þ

� �
; (3)

Uf l ¼
4eh

1þ e2hð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p ; (4)

where FclkðxÞ ¼ Hðxþ d=2� xcÞ � Hðx� d=2� xcÞ and

Fcl?ðxÞ ¼ Hðx� xcÞ, H is the Heaviside step function, X and

u are the central coordinate of the fluxon and the fluxon’s ve-

locity which can be found using the approaches presented in

Ref. 15, h ¼ ðx� XÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p

, and Uf l is the vortex mag-

netic flux distribution.

The back-action flux dependences on the time are shown

in Fig. 2(d). Assuming that probability for non-adiabatic

transitions is small,12 we can consider an integral influence

of the flux as a quantitative characteristic of back-action.

The qubit phase perturbation can be expressed as follows:

du ¼
Ð s

0
dE0ðtÞdt=�h with dE0(t) being the deviation of the

qubit energy level splitting dependent on time due to influ-

ence of the back-action flux.12 Therefore, the definite time

integral a ¼
Ð s

0
UBAðtÞdt is a comparison parameter for quali-

tative estimation of the back-action. It is seen that the sym-

metrization provides significant back-action reduction

because of differential origin of the back-action flux.

Fig. 2(c) shows that the SNR can be rather small in the

case of collinear dipole orientation in the detector. It can be

increased by increase of the qubit coupling strength (the

dipole amplitude l) or by placement of the dipole poles close

to the ends of the JTL. The latter provides the first scattering

FIG. 2. (a) The detector time response,

(b) its jitter, and (c) the SNR versus

the bias current. a¼ 0.01, c¼ 0.001,

lk ¼ l?=2 ¼ 0:05, L¼ 60, xck ¼ 30,

d¼ 20, xc? ¼ 20. Inset of (c) presents

the SNR dependence for a¼ 0.001 and

c¼ 10�5 for orthogonal orientation of

the dipole. (d) The back-action flux

versus time for the same parameters of

the schemes and i¼ 0.02.
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occurring at low fluxon velocity and suppression of the

damping effect of fluxon scattering at the second dipole pole.

However, the both approaches increase the back-action. We

found the optimal collinear dipole placement at d ’ 15� 20

by fixing it first pole near the beginning of the JTL: xc1k ¼ 5

and varying the dipole length at the optimal bias current

value i¼ 0.046, see Fig. 3. For the shorter dipole length, the

poles start to compensate each other, while for the larger

ones the integral back-action flux begins to grow nonlinearly.

For the orthogonal dipole case, the data are shown by solid

lines. The symmetrical scheme clearly possesses the superior

characteristics.

In Ref. 14, it was argued that with the progress in super-

conducting quantum computing, a lot of data will be proc-

essed at low temperatures, and therefore the using of mature

digital RSFQ electronics23 as an interface between quantum

circuits and room temperature electronics is quite natural.

The considered schemes can be easily incorporated with

RSFQ circuits, since they imply single-shot measurements

and can be implemented on nearly the same element basis as

RSFQ cells, i.e., using discrete JTLs. In this case, one can

use standard RSFQ circuits improving overall interface char-

acteristics, e.g., increasing the time resolution of the output

detector comparator using RSFQ time vernier11 or simulta-

neously reading-out several coupled qubits16 using RSFQ

splitter tree.24

Fig. 4 presents the SNR of the detector with orthogonal

dipole orientation versus the bias current, the dipole ampli-

tude, its central coordinate, and the noise intensity. The value

of the normalized inductance coupling lumped Josephson

junctions in the discrete detector JTLs is l ¼ 2eLcjIcj=�h ¼ 1,

where Lcj is the absolute inductance value and Icj is the criti-

cal current of the junction. For the low damping case, the

bias current increase leads to the transition of the system

from the “locked” to the “running phase” mode, considered

in Ref. 20, which is accompanied by multiple creations of

fluxon-antifluxon pairs and manifests itself by abrupt SNR

growth that is seen in Fig. 4(a) for i ’ 0:5. For the low bias

current values, e.g., around i¼ 0.1, the system is in the con-

ventional “locked” mode (corresponding to single fluxon

propagation) with working bias current margins well exceed-

ing the standard RSFQ margins 625%. Inset of Fig. 4(b)

shows that for the chosen bias current value (i¼ 0.1) and

found optimal dipole placement xc? ¼ 7 (see the SNR versus

xc? curves in Fig. 4(b)) at the noise intensity value c¼ 10�5,

the detector SNR can be as high as SNR¼ 600 for a¼ 0.01

and SNR¼ 1800 for a¼ 0.001. If these values are excessive,

they allow the decreasing of the back-action by reducing the

strength of the qubit coupling (see the SNR versus l depend-

ence in the inset of Fig. 4(a)) or the increasing of the working

bias current margins by increasing the damping (the SNR

curves for different damping values are shown in Fig. 4(a)).

In conclusion, we optimized the Josephson vortex inter-

ferometer in respect to the SNR and the back-action trade-

off. We have shown that symmetrization of the scheme leads

to significant SNR increase due to the involvement of the

both fluxons in the scattering events and effective increase of

the scattering potential amplitude. At the same time, the

FIG. 3. (a) The SNR and (b) the inte-

gral back-action flux versus the current

dipole length, a¼ 0.01, i¼ 0.046,

c¼ 0.001, lk ¼ l?=2 ¼ 0:2, L¼ 60,

xc1k ¼ 5; xc? ¼ 8.

FIG. 4. (a) The SNR versus the bias cur-

rent at different values of the damping.

c ¼ 0:001; l? ¼ 0:4; xc? ¼ 20. Inset

shows the SNR versus the current dipole

amplitude for a¼ 0.01 and i¼ 0.1. (b)

The SNR versus the dipole position at

different bias current values, a¼ 0.01,

c¼ 0.001, l? ¼ 0:4. Inset shows the

SNR versus the noise intensity for

i¼ 0.1, xc? ¼ 7; a ¼ 0:01; 0:001. The

length of the discrete JTLs is: L¼ 40

and l¼ 1.
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back-action is drastically reduced because of differential ori-

gin of the back-action flux. The SNR estimation for the both

cases of utilization the continuous and the discrete JTLs, for

experimentally relevant parameters, is well above 100. This

opens the opportunity of using the considered detector in

practical applications including implementation of a unified

interface circuit on the basis of RSFQ digital cells for linking

the room temperature electronics and it quantum supercon-

ducting counterparts.
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