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Twin paradox with macroscopic clocks in superconducting circuits
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We propose an implementation of a twin-paradox scenario in superconducting circuits, with velocities as large
as a few percent of the speed of light. Ultrafast modulation of the boundary conditions for the electromagnetic
field in a microwave cavity simulates a clock moving at relativistic speeds. Since our cavity has a finite length,
the setup allows us to investigate the role of clock size as well as interesting quantum effects on time dilation. In
particular, our theoretical results show that the time dilation increases for larger cavity lengths and is shifted due
to quantum particle creation.
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I. INTRODUCTION

Einstein’s theory of relativity [1,2] leads to the twin
paradox, in which a twin traveling at high speeds in a
spaceship ages more slowly than her sibling, who stays at
rest. Although constant motion is relative, the paradox is
resolved by considering the acceleration experienced by the
moving twin, breaking the symmetry. The fact that moving
clocks tick slower is called time dilation, and it has been
tested experimentally to high accuracy by observing decay
rates of particles moving at relativistic speeds through the
atmosphere [3] or in an accelerator storage ring [4]. Another
approach for verification is based on state-of-the-art clocks,
where more modest speeds are enough to create measurable
time differences. Such experiments include sending atomic
clocks with commercial jets on east- and west-bound paths
around the world [5] and, very recently, in a ground-based
laboratory where the speed of the moving-ion clock was only
10 m/s [6].

Cutting-edge experiments in circuit quantum electrody-
namics (cQED) [7,8], where quantum optical effects are
investigated in the interaction of artificial atoms with one-
dimensional electromagnetic fields, have now reached ex-
perimental regimes beyond standard matter-radiation inter-
actions. In particular, it has recently been suggested that it
should be possible to observe relativistic quantum effects
[9–11] by ultrafast modulation of the boundary conditions
experienced by the electromagnetic field. This enabled the
experimental observation of the dynamical Casimir effect
[12]—a long-sought theoretical prediction of quantum field
theory—opening an avenue to explore relativistic effects
in quantum technologies [13]. Experiments in the overlap
of quantum theory and relativity are of great relevance
since we lack understanding about how the theories can be
unified.

In this paper, we propose a laboratory-based experiment
in which the twin paradox can be simulated with velocities
approaching 2% of the speed of light. By ultrafast modulation
of the electric length of a superconducting cavity, the electro-
magnetic field inside the cavity experiences similar boundary
conditions as in a cavity moving at relativistic speeds [13].
Initiating the field inside the cavity in a coherent state, the phase
of this state can be used as the pointer of a clock. We show that

for state-of-the-art experimental parameters, the phase shift
between the twin cavities can be as large as 130 deg, which is
clearly in the measurable regime.

Unlike previous setups, our scheme addresses the effects
of time dilation in relativistic quantum fields. While previous
studies assumed the clock to be pointlike, in our approach
the clock has a length of more than 1 cm, leading to a
measurably different time dilation. In that sense, this is a
proposal to test the twin paradox with macroscopic quantum
systems. This is interesting since a pointlike clock is only
affected by the instantaneous velocity and therefore can only
be affected indirectly by acceleration. However, acceleration
directly affects a quantum field contained in a cavity. The
acceleration of the cavity’s boundary conditions gives rise to
the dynamical Casimir effect [12,14], a genuine quantum effect
where motion-induced particle creation and mode-mixing
among the field modes are predicted to be observable [15].
This enables us to address further questions in the overlap of
quantum theory and relativity such as the study of quantum
effects on finite-size relativistic clocks. Indeed our theoretical
analysis shows that the dynamical Casimir effect and the
spatial extension affect the rate of the clock, i.e., time dilation.
We find that time dilation increases with the length of the
superconducting cavity. In other words, the traveling twin ages
less if his clock is larger. Particle creation gives rise to a small
shift in the time dilation, highly dependent on the details of the
trajectory. These effects show up as corrections to the standard
time dilation seen by a pointlike clock.

Using the setup we propose, the time dilation effects
predicted in the twin paradox, as well as the effects of clock
size, can be readily demonstrated in accessible parameter
regimes. Currently, however, we will not be able to reach
the regimes (involving velocities as large as 25% of the speed
of light) required to demonstrate the effects of the dynamical
Casimir effect on time dilation predicted in this paper. While
these regimes have already been achieved in an experiment
using a single mirror in harmonic motion [12], it is more
challenging to mimic a cavity of constant proper length moving
in those regimes. However, given the accelerated rate at which
experimental advances in cQED have developed, we expect
that in the near future it will be possible to confirm our
predictions concerning particle creation as well.
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FIG. 1. (Color online) Cavity trajectories. Minkowski diagram
showing the cavity trajectories in the laboratory frame. Alice’s
cavity (green [light gray]) stays static. The mirrors of Rob’s cavity
move along trajectories composed of segments of constant proper
acceleration (red [gray]) and inertial motion (blue [dark gray]).
The dashed trajectories are those of Alice and Rob themselves and
the black line is a line of constant Rindler time. Both cavities have
the same proper length L.

II. THE TWIN PARADOX WITH CAVITIES

To describe the twin paradox scenario we consider two
different observers, Alice and Rob, in 1 + 1-dimensional
Minkowski spacetime. Alice will be inertial and stay static with
respect to our laboratory frame, with Minkowski coordinates
(t,x). Rob, on the other hand, will undergo a round trip starting
and ending at rest with respect to Alice, at the same spacetime
point. We study a simple example of such a trip, composed of
four accelerated segments and two segments of inertial motion
(see Fig. 1). During each accelerated segment, Rob moves
with constant proper acceleration a. In the laboratory frame
this corresponds to movement along a hyperbola in the (t,x)
plane. We let the duration of each segment, in the laboratory
coordinates, be equal to ta . During the inertial segments, Rob
moves with a constant velocity that is set by a and ta and
we denote the duration of these segments by ti . Thus, Rob’s
trajectory is completely described by a, ta , and ti . In the
laboratory frame, the duration of the trip is tt ≡ 4ta + 2ti .

In order to compare their elapsed proper times, Alice
and Rob need to carry some form of clocks. For this,
we will use cavities containing quantized one-dimensional
electromagnetic fields. The cavities are of constant proper
length, i.e., length measured by a comoving observer. The idea
is to prepare the cavities in identical coherent states. After the
trip, the phase shifts in the two cavities are determined and
these are used as a measure of the elapsed proper times.

In its rest frame, the cavity is constructed by inserting two
perfect mirrors separated by a distance L. We imagine Alice
and Rob sitting at the center of their respective cavities, each
of proper length L. When Rob moves with constant velocity,

his cavity is shorter in the laboratory frame due to length
contraction. Thus, during the accelerated segments, the two
mirrors must move with different proper accelerations in order
for the proper length of the cavity to stay constant. More
precisely, they need to move along different hyperbolas in the
(t,x) plane. One of the mirrors moves with greater acceleration
than Rob but for a shorter time, and vice versa for the other
mirror (see Fig. 1).

For an inertial observer, a one-dimensional (1D) electro-
magnetic field φ defined on a Minkowski spacetime back-
ground obeys the wave equation

(
∂2
t − c2∂2

x

)
φ = 0, (1)

where c is the speed of light. The two cavity mirrors introduce
Dirichlet boundary conditions φ = 0 at the points x = xl and
x = xr , with L = xr − xl . Quantizing the field in Minkowski
coordinates, we obtain a discrete set of bosonic cavity modes
with mode functions

un(t,x) = 1√
πn

sin(ωn(x − xl))e
−iωnt (2)

and frequencies ωn = πn c/L, n = 1,2, . . . .
An observer moving with constant proper acceleration a is

static in the Rindler coordinates (η,ξ ), defined by

x = c2

a
eaξ/c2

cosh(aη/c), (3)

t = c

a
eaξ/c2

sinh(aη/c). (4)

In these coordinates, the wave equation takes the same form
as in Eq. (1). The mirrors introduce Dirichlet boundary
conditions at the points ξ = ξl and ξ = ξr separated by a
distance L′ = c2

a
arctanh( aL

2c2 ) with respect to Rindler position
ξ , corresponding to a proper distance L. Quantizing the field in
Rindler coordinates gives rise to a set of bosonic cavity modes
with mode functions

vm(η,ξ ) = 1√
πm

sin(�m(ξ − ξl))e
−i�mη (5)

and frequencies �n = πn c/L′, n = 1,2, . . . .
During Rob’s trip, the state in Alice’s cavity will simply

undergo free time evolution in the laboratory frame. To relate
the initial and final states in Rob’s cavity, we use Bogoliubov
transformation techniques [16]. Before the trip, the modes in
the cavity are described by a set of annihilation and creation
operators, an and a

†
n, satisfying the canonical commutation

relations [am,a
†
n] = δmn. The modes in the cavity after the trip

are similarly described by another set of operators, bn and b
†
n,

satisfying similar commutation relations. These two sets are
related by a Bogoliubov transformation, defined by

bm =
∑

n

(A∗
mnan − B∗

mna
†
n). (6)

The Bogoliubov coefficients Amn and Bmn are functions of the
trajectory parameters a, ta , and ti and the proper length L of
the cavity. We compute the coefficients analytically as power
series expansions in the dimensionless parameter h ≡ aL/c2

(see the Appendix).
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The first mode in each cavity is prepared in a coherent
state, with vacuum in the higher modes. Free time evolution
of a coherent state corresponds to a phase rotation. Since the
proper length of the cavity is preserved throughout the trip, that
is true also for the mode frequencies. Thus, we can relate the
accumulated phase shift during the trip to an elapsed proper
time by simply dividing with the frequency of the first mode.

The state in Alice’s cavity will transform only by a phase
rotation. Knowing the Bogoliubov coefficients, we can in
principle fully determine the final state in Rob’s cavity. We
are, however, only interested in the phase shift θ of the first
mode, given by (see the Appendix)

tan θ = −Im(A11 − B11)

Re(A11 − B11)
. (7)

III. EXPERIMENTAL IMPLEMENTATION

As already suggested in Ref. [13], the cQED setup used to
verify the dynamical Casimir effect [12] can be expanded
to simulate relativistically moving 1D cavities. A supercon-
ducting coplanar waveguide supports a 1 + 1-dimensional
electromagnetic field. Terminating the waveguide through
a superconducting quantum interference device (SQUID)
generates a Dirichlet boundary condition for the field at some
effective distance from the SQUID itself. Now, by modifying
the external magnetic flux through the SQUID, this effective
distance can be tuned. Thus, the boundary condition becomes
that of a moving mirror. Using two SQUIDs, we can construct
a cavity where both mirrors can be moved along arbitrary and
independent trajectories. In particular, these trajectories can be
chosen so that the relativistic motion of a cavity with constant
proper length is simulated (see Fig. 2).

To realize the twin paradox cavity trajectory described
above in a cQED setup, there are several experimental
constraints to take into account. The mirrors can effectively
be displaced a few millimeters, while the length of the cavity
itself is around a centimeter. Thus, Rob will be a “shaking twin”
rather than the usual twin going to another solar system. For
such a short trip, the relative phase shift between the cavities is
very small. We can, however, repeat the same trip many times
in order to accumulate a larger relative phase. The limit on
the number of times this can be done is set by the lifetime of
the field excitations in the cavity. The cavity can then be filled
again with photons so that the measurement can be repeated
an arbitrary number of times. Moreover, the plasma frequency
of each SQUID must be larger than all the other frequencies
involved, limiting the effective velocities and accelerations.

As an example of what can be achieved in the cQED setup,
see Fig. 3. In this example we let the microwave source play
the role of Alice’s cavity. Assuming state-of-the-art arbitrary
waveform generators to source the fluxes through the SQUID
loops, it should be possible to make ta as small as 1 ns
while still maintaining the required waveform. In this case,
the effective acceleration is limited to 1.7×1015 m/s2 if the
maximal allowed flux through the SQUIDs is not exceeded.
For a standard cavity length of 1.1 cm, this corresponds to
h = 1.3×10−3. For the parameter values listed above, and
with ti = 0, we predict relative phase shifts of up to 130 deg,
which is detectable. This scenario would correspond to an

FIG. 2. Experimental setup. Top: The flux-tuned SQUIDs gen-
erate time-dependent boundary conditions for the cavity field,
equivalent to Dirichlet boundary conditions at different effective
positions. The external fluxes �±(t) correspond to effectively moving
the boundary conditions the distances d±(t). Bottom: Sketch of the
circuit setup. The signal from a coherent microwave source is used to
represent Alice’s clock and to fill Rob’s cavity with photons. When
Rob’s cavity has been filled a set of travels is performed by flux tuning
the two SQUIDs, using the external magnetic fluxes �−(t) and �+(t).
After the trips, the field in the cavity leaks out and is down-converted
by a mixer using Alice’s clock. A phase difference between the two
clocks is then detected as a dc change at the output of the mixer.

effective cavity displacement of 1.7 mm and a maximal
velocity of 1.4% of the speed of light. With tt = 4 ns and
the trajectory being repeated 500 times, the total travel time
is 2 μs. The time difference related to the relative phase shift

FIG. 3. (Color online) Time dilation. Relative phase shift be-
tween Rob’s and Alice’s cavities in an experimentally feasible regime.
The parameter values used are ta = 1 ns, ti = 0, and L = 1.1 cm,
leading to an effective cavity displacement of 1.7 mm and a maximal
velocity of 0.014c. With tt = 4 ns and the trajectory being repeated
500 times, the total travel time is 2 μs. Left inset: Difference between
the time dilation shown by the cavity clock and a pointlike clock as
a function of L, normalized to the total time dilation between Alice
and Rob. The blue (red) [dark gray (light gray)] curve is excluding
(including) the effects of mode mixing and particle creation. Right
inset: Difference in time dilation between the cases with and without
particle creation, again normalized to the total time dilation. The
parameter values used in the inset plots are ta = 1 ns, ti = 0, and
a = 1.7×1015 m/s2.
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agrees with what we would obtain if Alice and Rob were
instead carrying pointlike ideal clocks. Thus, we can conclude
that it is challenging but possible to simulate the twin paradox
scenario in a cQED setup.

IV. COMPARISON TO POINTLIKE CLOCK

Our cavity clock agrees very well with a pointlike ideal
clock in the parameter regime considered above. The reason
for this is that we can choose a small h value and still
accumulate a phase shift large enough to observe. To second
order in h, however, we start to see a discrepancy between
the cavity clock and a pointlike one. This difference is due
to both the finite extension of the cavity and the fact that
nonuniform acceleration leads to mode mixing and particle
creation, eventually resulting in a different phase shift for the
first mode. First, neglecting the latter effects, we note that a
cavity clock differs from a pointlike one during acceleration
only. During an accelerated segment, the proper time elapsed
according to the cavity clock is

τ a
cav = θa

ω1
= L

c

arcsinh(ata/c)

2 arctanh(h/2)
, (8)

while the corresponding expression for the pointlike clock,
obtained by integrating Rob’s proper time over the trajectory,
is

τ a
point = c

a
arcsinh(ata/c). (9)

Thus, the ratio of the proper times is given by

τ a
cav

τ a
point

= (h/2)

arctanh(h/2)
= 1 − h2

12
+ O(h4), (10)

which is smaller than one and decreases with h. This means
that an extended clock is slowed down during acceleration.
As the clock is larger, its rate becomes slower. The effects of
mode mixing and particle creation depend only on changes in
acceleration and are encoded in the second-order terms of the
Bogoliubov coefficients (A6) and (A7).

In order to observe the higher order effects, we need to use
larger h values. In earlier cQED experiments [12], effective
accelerations up to 4×1017 m/s2 have been achieved. With
such accelerations, though, the time ta would have to be very
short, making the effective motion of the mirrors difficult to
control. What we can do instead is to increase h by using
larger cavities. The inset plots of Fig. 3 show the shift in time
dilation due to the different effects, as a function of L. In order
to observe the effects of clock size, we can choose L = 6 cm,
which is easily realizable in the cQED setup. In this regime, the
clock size is clearly the dominant effect and would contribute
with an additional phase shift of 3 deg, which is possible to
resolve in the measurement stage. For even larger L, the other
effects start to become important, with mode mixing being the
dominant one. This can be clearly seen in the right inset, where
we plot the difference in phase shift between the cases with
and without particle creation.

V. CONCLUSIONS

In conclusion, we have shown that using state-of-the-art
superconducting circuit technology, the twin paradox can

be demonstrated in a ground-based experiment at velocities
approaching 1.4% of the speed of light. Using the phase of
a coherent state inside the cavity as a clock pointer, we find
that the time dilation produces a phase shift of up to 130 deg,
which is clearly in the measurable regime. We also note that at
high accelerations the extension of the clock becomes relevant:
Time dilation increases with the clock’s spatial dimension.
This opens up an avenue for the experimental exploration of
the differences between a pointlike [3,4,6] and a physically
extended clock. In the near future, we foresee that other
quantum effects on clock accuracy and time dilation can be
explored using squeezed cavity states. By analyzing the twin
paradox in a framework of quantum field theory with boundary
conditions corresponding to relativistic motion, we are able to
study theoretically the interplay of quantum effects, such as
the dynamical Casimir effect, in a paradigmatic relativistic
effect such as time dilation. In this way we take a step further
in our knowledge on the overlap between quantum theory and
relativity.
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APPENDIX: BOGOLIUBOV COEFFICIENTS

To determine the Bogoliubov coefficients Amn and Bmn in
Eq. (6) we use techniques developed in Ref. [16]. The Bogoli-
ubov coefficients relating the modes of an inertial observer to
those of a uniformly accelerating observer are expressed as
Klein-Gordon inner products [17], αmn = (vm,un) and βmn =
−(vm,u∗

n), where un and vm are given by Eqs. (2) and (5).
αmn and βmn account for mode mixing and particle creation,
respectively. The resulting integrals cannot be evaluated in
terms of elementary functions, but to second order in h ≡
aL/c2 we can write the coefficients as

αmn = α(0)
mn + α(1)

mnh + α(2)
mnh

2, (A1)

βmn = β(0)
mn + β(1)

mnh + β(2)
mnh

2, (A2)

with

α(0)
nn = 1, α(1)

nn = 0, α(2)
nn = −π2n2

240
,

α(0)
mn = 0, α(1)

mn = √
mn

(−1)m−n − 1

π2 (m − n)3 , m �= n,

α(2)
mn = √

mn
((−1)m−n + 1) (m + 2n)

2π2 (m − n)4 , m �= n, (A3)

β(0)
mn = 0, β(1)

mn = √
mn

1 − (−1)m−n

π2 (m + n)3 , m �= n,

β(2)
mn = √

mn
(−(−1)m−n − 1) (m − 2n)

2π2 (m + n)4 .
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During each accelerated segment of the trip, the fundamental
mode of the cavity acquires the phase

θa = π arcsinh(ata/c)

2 arctanh(h/2)
, (A4)

while for an inertial segment the corresponding phase shift is

θi = πcti/(γL), (A5)

γ =
√

(ata/c)2 + 1 being the Lorentz factor during the in-
ertial motion. By composing transformations described by

Eqs. (A1)–(A3) and their inverses, with appropriate Rindler
and Minkowski time-evolution phase transformations in be-
tween, we can find the Bogoliubov coefficients relating the
cavity modes before and after the trip. Only terms up to second
order in h are kept.

Acting with the Bogoliubov transformation on the vector
of first moments of the cavity state and tracing out the higher
modes, the expression in Eq. (7) is obtained for the phase shift
of the first mode, provided that the initial phase is zero. The
explicit expressions for the relevant coefficients are

A11 = (
1 + 6α

(2)
11 h2

)
ei(4θa+2θi ) + h2

∞∑

k=2

(
α

(1)
k1

)2
[2e(k+3)iθa+2iθi + 2e2(k+1)iθa+(k+1)iθi − 2e(3k+1)iθa+(k+1)iθi − 2e(3k+1)iθa+2kiθi

+ 2e(k+3)iθa+(k+1)iθi − 2e4iθa+(k+1)iθi + e2(k+1)iθa+2iθi + e4kiθa+2kiθi + e2(k+1)iθa+2kiθi ]

−h2
∞∑

k=2

(
β

(1)
k1

)2
[2e(−k+3)iθa+2iθi + 2e2(−k+1)iθa+(−k+1)iθi − 2e(−3k+1)iθa+(−k+1)iθi − 2e(−3k+1)iθa−2kiθi + 2e(−k+3)iθa+(−k+1)iθi

− 2e4iθa+(−k+1)iθi + e2(−k+1)iθa+2iθi + e−4kiθa−2kiθi + e2(−k+1)iθa−2kiθi ], (A6)

B11 = 2ih2β
(2)
11 [sin(4θa + 2θi) − sin(2θa + 2θi) + sin(2θa)] + 2ih2

∞∑

k=2

(
α

(1)
k1 β

(1)
k1

)
[sin((4θa + 2θi) k)

− 2 sin((3θa + 2θi) k) cos(θa) −2 sin((3θa + θi) k) cos(θa + θi) + sin((2θa + 2θi) k)

+ 2 sin((2θa + θi) k) cos(θi) + sin(2θak) +2 sin((θa + θi) k) cos(3θa + θi)

+ 2 sin(θak) cos(3θa + 2θi) − 2 sin(θik) cos(2θa + θi)] . (A7)
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