
Chalmers Publication Library

Multi-Step Sensor Selection with Position Uncertainty Constraints

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

IEEE Globecom 2014 Workshop - Wireless Networking and Control for Unmanned

Autonomous Vehicles

Citation for the published paper:
Fröhle, M. ; Zaidi, A. ; Ström, E. (2014) "Multi-Step Sensor Selection with Position
Uncertainty Constraints". IEEE Globecom 2014 Workshop - Wireless Networking and
Control for Unmanned Autonomous Vehicles

Downloaded from: http://publications.lib.chalmers.se/publication/208856

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://publications.lib.chalmers.se/publication/208856


Multi-Step Sensor Selection with Position

Uncertainty Constraints

Markus Fröhle, Ali A. Zaidi, Erik Ström, and Henk Wymeersch

Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden

E-mail: {frohle,aliabb,erik.strom,henkw}@chalmers.se

Abstract—Research on localization systems has shifted from
focusing mainly on accuracy towards a more cognitive design,
accounting for communication constraints, energy limitations,
and delay. This leads to a variety of sensor selection optimization
problems that are solved using techniques from convex optimiza-
tion. We provide a novel formulation of the sensor selection
problem over an extended time horizon, aiming to minimize
the sensing cost of an entire path while guaranteeing a certain
position accuracy. We state algorithms for determining lower
and upper bounds on the sensing cost and utilize these in a
path selection problem for autonomous agents. Simulation results
confirm the usefulness of our approach, where we observe a
benefit of optimizing over longer time horizons in low to medium
noise scenarios compared to a myopic sensor selection scheme.

I. INTRODUCTION

Increasingly sophisticated algorithms along with mas-

sive computational capabilities have enabled autonomous

agents/robots to solve complex tasks in uncertain environ-

ments, such as mapping of disaster areas and search-and-

rescue operations. For agents to explore and interact with

the environment, it is imperative for them to have a co-

herent view of this environment and their positions within

it [1], [2]. Such situational awareness is generally achieved

through simultaneous localization and mapping (SLAM) [3]

and localization using heterogeneous sensor fusion [4]. While

research on situational awareness has traditionally focused

on improving the localization accuracy, the focus has now

shifted to localization methods that are cognitive with respect

to energy and communication constraints as well as the agent’s

higher-level task [5], [6]. For instance, a higher-level task may

be the navigation/manipulation of the robot in the environment

form its current position to its intended final position.

To aid positioning, a robot is typically equipped with mul-

tiple sensors providing position information. Since the usage

of each of these sensors consumes energy, careful selection

of when to use which sensor is important. This problem is

known as sensor selection, where the agent chooses a subset

of available sensors out of the full sensor suite, in order to

optimize an objective. The objective is generally a scalarized

version (e.g., trace or determinant) of the state estimation error

covariance [7], [8], an expected utility defined by Bayes risk

[9], or a measure of information such as conditional entropy

[10]. These objectives can be optimized (i) over a single time

step [7]–[9], [11] or (ii) over a prediction window [10], [12]–

[14]. In the first class, the objectives and constraints are made

temporally separable, leading to efficient, low-complexity so-

lutions. In particular, considering either linear Gaussian [7],

[8] or general nonlinear [11] models, the optimization is

cast as a mixed integer program, and solved with relaxation

techniques. In [9], a hidden Markov model is considered, and

a greedy objective function is introduced, combining expected

utility and instantaneous cost. These greedy approaches can

be considered simplifications of the more general problem of

sensor selection over a time window. In that more general

case, the objective and constraints are temporally inseparable,

generally leading to problems that grow in complexity expo-

nentially in the prediction horizon. This complexity is reduced

through relaxation techniques [12], [14], pruning of the search

tree [13], or considering dynamic programming formulations

[10]. We point out that the above works generally focus on

minimizing a function of the state error covariance. In contrast,

for battery-constrained devices a more relevant problem is to

minimize energy consumption while placing the requirement

on the state error covariance as a constraint.

In this paper, we assign to each sensor usage a cost. The

objective of the sensor selection problem is then to minimize

the accumulated cost over a prediction horizon, while ensuring

the state error is within a user-defined threshold. The inclusion

of convex communication constraints can be easily accom-

modated, but is not considered explicitly here. This problem

belongs to the class of temporally inseparable problems. We

formally introduce this problem and derive low-complexity

strategies (i.e., polynomial in the time horizon) for finding

upper and lower bounds on the optimal cost. In addition, we

provide numerical results comparing the proposed strategies

with a greedy policy.

Notation: Vectors are denoted in boldface (e.g., x) and [x]i
denotes its i-th entry. The matrix trace of a matrix F is denoted

by tr(F ). The identity matrix of proper size is denoted by I

(usually of size 2 × 2). ⌊·⌋ denotes the floor operator, S ≻
0 denotes a positive definite matrix, and R � 0 denotes a

positive semi-definite matrix.

II. PROBLEM FORMULATION

A. Scenario

Consider the scenario shown in Fig. 1, where a mobile agent

with estimated start position p0 wishes to reach a goal position

pgoal ∈ R
2 in discrete time steps. The agent is equipped

with M sensors providing location information, the quality of

which may be location-dependent (e.g., a GPS signal is usually

stronger closer to a window than in the middle of a building).



p0

pgoal

x in m

y
in

m

Room wall
Start position p0

Goal position pgoal

Path A
Path B
Path point

0 10 20 30 40 50
0

10

20

30

40

50

Fig. 1. Example scenario with two possible paths (A and B) from the start
position p0 = [7, 6]T to the goal position pgoal = [43, 45]T. Path A has
a path length of N = 68 positions and path B has a length of N = 80
positions (separated by black dots). The objective of the agent is to determine
the path with the lowest cost, while at all times ensuring a given positioning
accuracy.

The usage of a sensor system m ∈ {1, 2, . . . ,M} has an

associated cost (e.g., related to battery usage or maintenance)

c(m) ≥ 0. The agent can follow multiple paths to move to the

goal position (e.g., 2 paths in Fig. 1). While navigating along

any path, the agent is allowed to utilize information from one

sensor at every time step. Hence, the choice of a certain path

and the selection of sensors along that path has an associated

cost. Our goal is for the agent to determine the least costly path

to move towards the destination, while at all times ensuring a

certain accuracy in the position information.

B. System Model

Without loss of generality, we consider the agent’s state

as its position. The initial state x0 is unknown and modeled

as a Gaussian random variable x0 ∼ N (µ0, P0). The goal

position pgoal is known exactly, as is the floor plan of the

environment and the measurement quality of each sensor

across the environment. The agent is assumed to have the

ability to generate J paths from an estimated starting position

µ0 to the goal position pgoal [15]. A path j ∈ {1, 2, . . . , J} is

comprised of Nj + 1 positions, pj,0,pj,1, . . . ,pj,Nj
, where

pj,0 = µ0 and pj,Nj
= pgoal. We now drop the path

index j for notational convenience. In order to move along

the path, the agent will apply a sequence of controls uk,

k = 0, 1, . . . , N −1, associated with the linear state (position)

update equation

xk = Fk−1xk−1 +Gk−1uk−1 + nk−1, (1)

where Fk−1 and Gk−1 are known matrices, and nk−1
i.i.d.
∼

N (0, Qk−1) is the process noise in the state space model

with error covariance matrix Qk−1. At any time step k, the

measurement model of sensor m is given by

y
(m)
k = H

(m)
k xk + v

(m)
k , (2)

where H
(m)
k is a known matrix and v

(m)
k

i.i.d.
∼ N (0, R

(m)
k ) is

the measurement noise1 associated with sensor m when used

in location xk. Since the state and measurement models are

linear and the noise variables are Gaussian, the optimal state

estimator is the Kalman filter [16]. The agent now proceeds

as follows:

1) For each path, the agent determines the predicted control

sequence u0:N−1 with the help of the path positions pk;

2) For a given path and a given sequence of selected

sensing systems, the agent can compute (i) the expected

accuracy of its predicted position and (ii) the associated

cost.

Based on this information, the agent is in principle able to

asses the expected cost of any path, and thus to select the

least costly path. In the next section, we will describe how to

determine the minimal cost of a given path j ∈ {1, 2, . . . , J}.

The globally cheapest path is then found as the path that

minimizes the path cost.

III. OPTIMIZATION FORMULATION

The agent can determine the minimum total cost of a path

by solving the following optimization problem:

minimize
A

cTA1 (3a)

subject to AT1 = 1 (3b)

A ∈ {0, 1}M×N (3c)

tr
(

(I+k )−1
)

≤ ∆2, k ∈ {1, 2, . . . , N}, (3d)

where c = [c(1), c(2), . . . , c(M)]T, 1 is a column vector of

proper size containing all ones, I+k is the posterior information

matrix, and A denotes the optimization variable structured as

A =









a
(1)
1 . . . a

(1)
N

...
. . .

...

a
(M)
1 . . . a

(M)
N









, (4)

where a value of a
(m)
k = 1 activates the m-th sensor system in

the k-th time step. Constraint (3b) ensures that only one out of

M measurement systems is active at a time. Constraint (3d)

forces the trace of the inverse of the posterior information

matrix, i.e. (I+k )−1 = Pk, to remain below a user-defined

threshold ∆2, expressed in m2. This ensures that the expected2

root mean square position error (RMSE) is not more than ∆
meter.

1As a special case, not using any sensor can be modeled by having a virtual

sensor with R
(m)
k

= αI, for α > 0 extremely large.
2Note that the agent only aims to determine the path with the lowest

expected cost. This cost is computed assuming the agent measures in the
nominal positions pk . However, once a path and sensor activation schedule
has been selected, the actual position of the agent will be different from pk .
Hence, the actual root mean position error may exceed ∆. For small values
of ∆, this impact will be negligible.



We use the information form of the Kalman filter [16, Sec.

6.2] to describe the evolution of the information matrix. It can

be shown that I+k is given by the following recursion

I+k = Mk +Q−1
k−1 (5)

−Q−1
k−1Fk−1(I

+
k−1 + FT

k−1Q
−1
k−1Fk−1)

−1FT
k−1Q

−1
k−1,

where

Mk =

M
∑

m=1

a
(m)
k H

(m)
k

T (

R
(m)
k

)

−1

H
(m)
k , (6)

and initialized by I+0 = P−1
0 .

The optimization problem (3) is a combinatorial problem,

where the search space for the optimal solution grows expo-

nentially with horizon length N . This makes it impractical

to solve even when N is relatively small. Also, due to the

matrix inversion in (5), the problem involves nonlinear equality

constraints. Rather than solving (3) directly, we provide lower

and upper bounds on the cost per path.

A. Upper Bound: Dynamic Programming

By quantizing the information matrix to S levels, we

can reduce the complexity from O(MN ) [13] to O(SMN),
though we are no longer guaranteed optimality, even for large

S (due to the loss of dimensions). Our solution is based on

dynamic programming (DP) [17] over a trellis where the states

correspond to the quantized information at each time.

We define a finite state space S = {s1, s2, . . . , sS} and

an operator s , q(I+k ). The operator works two-fold: (i)

it scalarizes its argument (e.g., by computing the trace or

determinant); (ii) it maps the scalar value to s ∈ S. The state

space is constructed by partitioning the interval [0,∆2] into S

bins. As an example, we will define the operator q(·) as3

q(I+k ) =

{

sl, tr
(

(I+k )−1
)

∈ [(l − 1), l) ∆2

S
,

undefined otherwise.
(7)

Note that when constraint (3d) is violated, q(I+k ) is not defined

and thus does not correspond to any state. An illustration of

this is provided in Fig. 2, showing a trellis diagram of the

system. The trellis consists of S different states s1, s2, . . . , sS
for each of the N + 1 time steps. Note, at k = 0 we start the

algorithm in one of the S states (assuming we have a feasible

starting state with RMSE(x0) ≤ ∆), given by q(I+0 ). In this

example, the initial state is s1 (solid black circle).

We further define a cost ck(s) as the accumulated cost up to

time k when we are in state s ∈ S. The costs are initialized to

+∞, except for time k = 0 and state q(I+0 ), for which the cost

is set to zero (in the example, we set c0(s1) = 0). To reach the

next time step k = 1, the algorithm tests all of the M sensor

systems: for system i (corresponding to a
(i)
1 = 1), we compute

I+1 with the help of (5), the corresponding state q(I+1 ), and

cost c(i). In the example only action i puts the system in state

s1, so that best path to end in state s1 at time k = 1 has an

accumulated cost c1(s1) = c(i). In the trellis, we also maintain

3An alternative quantization could be based on log tr
(

(I+
k
)−1

)

.

...

time k = 0 1 2 . . . N − 1 N

s1

s2

sS

...

a
(i)
1

a
(j)
1

...

a
(j)
2

a
(l)
2

. . .

. . .

. . .

. . .

a
(i)
2

...
...

a
(i)
N

a
(m)
N

a
(j)
N

Fig. 2. Trellis diagram demonstrating the DP algorithm. It is comprised of
S different states s1, s2, . . . , sS for all N + 1 time steps. Here, the initial
state at time step k = 0 is s1 (solid black circle). The usage of sensor i (with

a
(i)
1 = 1) puts the agent in state s1 at time step k = 1, and with sensor j

(i.e., with a
(j)
1 = 1, j 6= i) the agent is in s2 at time step k = 1.

a pointer to the previous state (i.e., from s1 at k = 1 to s1 at

k = 0). In case a certain sensor, say m, gives rise to a I+1 that

violates (3d), q(I+1 ) is undefined and the transition is ignored.

Moving from time k = 1 to k = 2, we see in Fig. 2 that

applying sensor j from state s2 and sensor i from state s1 end

up in the same state s2 at time k = 2. In that case, the cheapest

action ending in state s2 is chosen as the one that minimizes

[c1(s1) + c(i), c1(s2) + c(j)], say action j. In that case, the

accumulated cost for s2 at time k = 2 is set to c2(s2) =
c1(s2) + c(j) and a pointer to s2 at time k = 1 is maintained.

Proceeding in this manner allows us to compute the resulting

states at the subsequent steps, gradually revealing the structure

of the trellis. At time k = N we select the terminal state s

with lowest accumulated state cost argmins cN (s). Since we

have stored the action to this state and a pointer to the state in

the previous time step k = N − 1, we can read out the whole

sequence of actions a∗1:N from the last time step N to the first

time step 1.

B. Lower Bound: Semi-definite Programming

Theorem 1 (Lower bound). Problem (3) can be relaxed to

minimize
A,Sk

cTA1 (8a)

subject to AT1 = 1 (8b)

A ∈ {0, 1}M×N (8c)

tr(Sk) ≤ ∆2 (8d)
[

Sk I

I I+k

]

� 0 (8e)

[

Q−1
k−1 +Mk − I+k Q−1

k−1Fk−1

FT
k−1Q

−1
k−1 I+k−1 + FT

k−1Q
−1
k−1Fk−1

]

� 0. (8f)

The proof is provided in the Appendix. Note that constraints

(8d)–(8f) should be met for all k, and that Mk is a function

of A (see (6)). Relaxing the integer constraint (8c) to the box

constraint A ∈ [0, 1]M×N
leads to a standard semi-definite



program (SDP), which can be solved efficiently and optimally

using standard tools. The solution will provide a lower bound

to the cost of (3). Since we relaxed the integer constraint (8c)

to obtain a standard SDP problem, we cannot directly state the

selected sensor for every time step. To unrelax the solution of

the SDP, we can use heuristics such as selecting the sensor

m at time step k which has highest value of a
(m)
k and check

whether all the constraints are still fulfilled. A feasible solution

from the solution of the SDP problem can also be obtained by

using the approaches in [7], [18], [19]. In this paper, we state

the solution of the SDP problem directly. Hence the unrelax

step is not performed and the SDP lower bound may contain

partial sensor usages.

IV. PERFORMANCE EVALUATION

A. Setup

The scenario is outlined in Fig. 1. The mobile agent’s

prior is given by µ0 = [7, 6]T and P0 = 0.05 I. The goal

position is pgoal = [43, 45]T. To generate paths, we utilized

a geometric path planner by first spreading 18 routing points

randomly in the environment. Using a depth-first search [15],

we generated possible paths between p0 = µ0 and pgoal

that do not go through walls. This procedure leads to 169
distinct paths (of which 2 are shown in Fig. 1) with path

lengths in the range N ∈ [58, 172]. We set ∆ = 1, Fk = I,

H
(m)
k = I, Qk = σ2

Q I, ∀k,m. We considered different process

noise levels σ2
Q ∈ {0.01, 0.1, 0.2}. We used M = 4 sensors,

defined as follows. Sensor 1 corresponds to not sensing, with

R
(1)
k = 106 I. Sensor 2 corresponds to a GPS-like sensor

which is accurate near the windows, but poor deeper inside

the environment. This is modeled through R
(2)
k = 20 I for

15 ≤ [x]1, [x]2 ≤ 35 and R
(2)
k = 2 I elsewhere. Sensor 3 is

an RFID-like sensor with 4 tags placed near the corners. This

is modeled through

R
(3)
k =































σ
2,(3)
low I, [x]1 ≤ 15, [x]2 ≤ 15,

σ
2,(3)
low I, [x]1 ≥ 35, [x]2 ≤ 15,

σ
2,(3)
low I, [x]1 ≤ 15, [x]2 ≥ 35,

σ
2,(3)
low I, [x]1 ≥ 35, [x]2 ≥ 35,

σ
2,(3)
high I, otherwise.

(9)

We set σ
2,(3)
low = 0.2 and σ

2,(3)
high = 30. Sensor 4 is an ultra

wideband-like (UWB) sensor with 4 UWB reference nodes

in the corners. Such a system would exhibit high sensor

measurement quality in the middle of the environment, but not

near the corners. This is modeled through a similar expression

as sensor 3, but where we replace σ
2,(3)
low with σ

2,(4)
high and σ

2,(3)
high

with σ
2,(4)
low . We set σ

2,(4)
low = 0.1 and σ

2,(4)
high = 10. The costs

of the sensors are set as follows: c(1) = 1 comprising the cost

of movement, and c(2:4) = [3, 2, 4]T. Note that costs c(2:4) are

higher than c(1) and can thus be considered to comprise two

parts: a cost for utilizing the specific sensor, and the cost for

movement (which is 1 in our example).

In our implementation of the DP we used S = 10 states. For

the SDP lower bound (8), we used the software package CVX

σ2
Q = 0.01

P
at

h
co

st

SDP
DP with 10 states
Greedy
Min. cost
Max. cost

σ2
Q

= 0.1

P
at

h
co

st

σ2
Q

= 0.2

Path length N

P
at

h
co

st

60 80 100 120 140 160

60 80 100 120 140 160

60 80 100 120 140 160

100

200

300

100

200

300

100

200

300

Fig. 3. Path costs for the different paths sorted by path length. Top to
bottom plot correspond to different values of the process noise variance
σ2
Q

∈ {0.01, 0.1, 0.2}. The minimum and the maximum path costs are

obtained by using the sensor with lowest and highest cost along the whole
path. The lower bound (SDP) and upper bound (DP) are compared to the
greedy solution.

[20]. As a reference method we considered a greedy approach

to solve (3): for each time step we select the cheapest sensor

such that the accuracy constraint (3d) is satisfied.

B. Results and Discussion

We will first evaluate the path cost with the three different

methods for the 169 paths between the initial agent position µ0

and the goal position pgoal (Fig. 3), and then focus on a fixed

path (Figs. 4–5). For the purpose of visualization, the paths

are sorted by path length (note that certain paths may have

the same length). Fig. 3 shows the results of the DP, SDP, and

greedy approach along with trivial lower and upper bounds

(obtained by always using the cheapest and most expensive

sensor without considering whether constraint (3d) is fulfilled),

for different values of the process noise level σ2
Q.

We observe in Fig. 3 that for low and medium noise levels

σ2
Q the gap between the greedy method and the DP method is

significant (top and middle plot). This means that for these

cases there is a benefit of optimizing over a longer time

horizon (multiple steps along the trajectory), and hence the DP

method provides us with a tighter upper bound on the optimal



R
M

S
E

in
m

Greedy
R

M
S

E
in

m

Time step k

DP with 10 states

Threshold ∆
Sensor 1 (no sensor)
Sensor 2 (GPS)
Sensor 3 (RFID)
Sensor 4 (UWB)

0 10 20 30 40 50 60

0 10 20 30 40

0.4

0.6

0.8

1

0.4

0.6

0.8

1

Fig. 4. RMSE plot along path A (cf. Fig. 1). The sensor used is highlighted.
Top: greedy solution (cost 145), Bottom: DP solution (cost 100). The user-
defined RMSE threshold is ∆ = 1. The noise level of sensor 4 is set to
σ
2,(4)
low

= 0.1.

path cost compared to the greedy method. If the process noise

level σ2
Q is increased further the system needs to utilize sensors

2−4 more frequently to maintain the RMSE below the desired

threshold ∆. In this case, we observe that the solution of the

greedy approach and the solution of the DP approach deliver

similar path costs (bottom plot of Fig. 3). For the case of

a high process noise, we can conclude that there is no clear

benefit of optimizing over a longer time horizon. Furthermore,

we observe that the path costs of the SDP method are for all

three different noise levels σ2
Q ∈ {0.01, 0.1, 0.2} close to the

trivial lower bound (top to bottom plot of Fig. 3). This is

incurred by the relaxation of (8c) to a box constraint, where

partial sensor usages become possible, so that the RMSE can

be kept below the desired threshold ∆ with a low path cost.

We now fix the process noise level σ2
Q = 0.1 and focus on

a particular path (path A from Fig. 1). In Fig. 4–5, we plot the

RMSE of the greedy and DP methods as a function of the time

step k, for the cases σ
2,(4)
low = 0.1 and σ

2,(4)
low = 1, respectively.

Note that the sensor quality of sensor 3 is good within each

15 m × 15 m corner of the room and its error covariance

matrix takes a value of R
(3)
k = σ

2,(3)
low I (see Sec. IV-A). Since

the start and goal positions are inside this area (cf. Fig. 1) and

sensor 3 has a lower cost compared to sensor 2 and 4, it is

utilized. In the case of path A, this is true for both the greedy

and the DP method for time step k ≤ 10 and for k ≥ 55
(see Fig. 4). In this part of the trajectory the reduction of

the RMSE due to the usage of sensor 3 is significant. Once

the trajectory of path A leaves the 15 m × 15 m square area

the error covariance matrix of sensor 3 switches to R
(3)
k =

σ
2,(3)
high I. Then the utilization of this sensor has only a marginal

impact on the reduction of the state RMSE. Despite this fact,

we observe in the top plot of Fig. 4 that the greedy method

continues to make use of the cost efficient, but poor, sensor 3

R
M

S
E

in
m

Greedy

R
M

S
E

in
m

Time step k

DP with 10 states

Threshold ∆
Sensor 1 (no sensor)
Sensor 2 (GPS)
Sensor 3 (RFID)
Sensor 4 (UWB)

0 10 20 30 40 50 60

0 10 20 30 40

0.4

0.6

0.8

1

0.4

0.6

0.8

1

Fig. 5. RMSE plot along path A (cf. Fig. 1). The sensor used is highlighted.
Top: greedy solution (cost 155), Bottom: DP solution (cost 141). The user-
defined RMSE threshold is ∆ = 1. The noise level of sensor 4 is set to
σ
2,(4)
low

= 1.

(time step 10 < k < 55). Although a measurement from this

sensor is utilized the RMSE increases from one time step to the

other. This is caused by the poor sensor quality in combination

with the high process noise level of σ2
Q = 0.1. Hence the

greedy method also needs to utilize the more expensive sensor

2 multiple times in a row in order to keep the RMSE below the

threshold ∆. For regions deep inside the room, where sensor 2

does not have a sufficiently high measurement quality, sensor

4, which is the most expensive sensor, needs to be utilized

in order to meet the RMSE constraint (3d). In contrast to the

greedy approach, the DP approach considers the accumulated

path cost over the entire path. The sensor leading to the lowest

total path cost (while maintaining (3d)) is selected instead (see

bottom plot of Fig. 4). This is achieved by utilizing sensor 3

whenever its measurements are of good quality (for time step

k ≤ 10 and for k ≥ 55), and sensor 4 when this is not the

case. Note that the usage of sensor 4 coincides with it having

a high measurement quality, i.e., at positions pk along the

trajectory where R
(4)
k = σ

2,(4)
low I. The solution of the greedy

method results in a total path cost of 145 compared to 100 for

the DP method.

In Fig. 5 the RMSE of the state xk is plot for σ
2,(4)
low = 1. The

reduction of the RMSE by utilizing sensor 4 is lower compared

to the previous case (cf. Fig. 4). Both the greedy and the DP

approach now need to make use of the expensive sensor 4 more

frequently. Similar as before, the greedy approach uses sensor

4 whenever the usage of the remaining sensors would violate

the RMSE threshold constraint (time step 30 ≤ k ≤ 38). The

DP approach uses sensor 4 whenever sensor 3 does not have a

high measurement quality. Still with this increased number of

usages of sensor 4, this sensor selection scheme leads to lowest

accumulated path cost. The greedy method has a path cost of

155 compared to 141 for the DP method. Due to the high



noise (in the state space model and the sensor measurements)

the gap between these two methods has become smaller and

hence the benefit of optimizing over a longer time horizon has

decreased.

In contrast to the greedy and DP methods, the SDP method

allows partial sensor usages through the relaxation which have

been made. Hence, the RMSE of xk attains the threshold ∆
arbitrarily close whenever this is beneficial to reduce the total

path costs.

V. CONCLUSION

We have stated the sensor selection problem over an ex-

tended time horizon, aiming to minimize the sensing cost of

an entire path while guaranteeing a certain position accuracy.

Since the complexity of this sensor selection problem increases

exponentially with time horizon, we provided upper and lower

bounds on the total path cost that can be computed efficiently.

An upper bound on the original problem is obtained through

quantization and dynamic programming. The reformulation

of the sensor selection problem to a standard semi-definite

programming problem and relaxation of the integer constraints

provides us with a lower bound. These bounds have been

analyzed and compared to a greedy solution method. In

scenarios with low to medium noise (in the state space and

measurement models), we observed a benefit of optimizing

over a longer time horizon in comparison with a myopic sensor

selection scheme.

APPENDIX

Proof of Theorem 1. Introduce a positive semi-definite slack

matrix Sk ∈ R
2×2, Sk � 0, where

Sk − (I+k )−1 � 0. (10)

We recall the Schur complement, given by [18]
[

Q S

ST R

]

� 0 ⇔ R ≻ 0 and Q− SR−1ST � 0. (11)

We now apply the Schur complement to (10) to get the linear

matrix inequality
[

Sk I

I I+k

]

� 0. (12)

This allows us to rewrite constraint (3d) as constraint (8d)–

(8e) where we have ensured that tr((I+k )−1) ≤ tr(Sk) ≤ ∆2

holds. We now relax (5) by

I+k � Mk +Q−1
k−1 (13)

−Q−1
k−1Fk−1(I

+
k−1 + FT

k−1Q
−1
k−1Fk−1)

−1FT
k−1Q

−1
k−1,

meaning that the predicted information matrix together with

the obtained information through measuring will always pro-

vide more information than what is strictly needed. Using the

Schur complement, and the fact that Qk−1 is a covariance

matrix and hence symmetric, we can express (13) as (8f).

ACKNOWLEDGMENT

This work is supported, in part, by the European Re-

search Council under Grant No. 258418 (COOPNET), and

by EU FP7 Marie Curie Initial Training Network MULTI-

POS (Multi-technology Positioning Professionals) under Grant

No. 316528.

REFERENCES

[1] G. Schirner, D. Erdogmus, K. Chowdhury, and T. Padir, “The Future of
Human-in-the-Loop Cyber-Physical Systems,” Computer, vol. 46, no. 1,
pp. 36–45, 2013.

[2] G. Kruijff, M. Janíček, S. Keshavdas, B. Larochelle, H. Zender,
N. Smets, T. Mioch, M. Neerincx, J. Diggelen, F. Colas et al., “Ex-
perience in System Design for Human-Robot Teaming in Urban Search
and Rescue,” in Field and Service Robotics. Springer, 2014, pp. 111–
125.

[3] S. Thrun and Y. Liu, “Multi-robot SLAM with Sparse Extended Infor-
mation Filers,” in Robotics Research. Springer, 2005, pp. 254–266.

[4] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative Localization in
Wireless Networks,” Proceedings of the IEEE, vol. 97, no. 2, pp. 427–
450, 2009.

[5] J. Fink, “Communication for Teams of Networked Robots,” Ph.D.
dissertation, Elect. Syst. Eng., Univ. Pennsylvania, Philadelphia, PA,
Aug 2011.

[6] G. Garcia, L. Muppirisetty, E. Schiller, and H. Wymeersch, “On the
Trade-Off Between Accuracy and Delay in Cooperative UWB Localiza-
tion: Performance Bounds and Scaling Laws,” Wireless Communications,

IEEE Transactions on, vol. 13, no. 8, pp. 4574–4585, Aug 2014.

[7] S. Joshi and S. Boyd, “Sensor Selection via Convex Optimization,” IEEE

Transactions on Signal Processing, vol. 57, no. 2, pp. 451–462, 2009.

[8] M. Shamaiah, S. Banerjee, and H. Vikalo, “Greedy Sensor Selection:
Leveraging Submodularity,” in 49th IEEE Conference on Decision and

Control (CDC). IEEE, 2010, pp. 2572–2577.

[9] D. Cohen, D. L. Jones, and S. Narayanan, “Expected-utility-based
Sensor Selection for State Estimation,” in IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2012,
pp. 2685–2688.

[10] J. L. Williams, J. W. Fisher, and A. S. Willsky, “Approximate Dy-
namic Programming for Communication-Constrained Sensor Network
Management,” IEEE Transactions on Signal Processing, vol. 55, no. 8,
pp. 4300–4311, 2007.

[11] A. S. Chhetri, D. Morrell, and A. Papandreou-Suppappola, “On the Use
of Binary Programming for Sensor Scheduling,” IEEE Transactions on

Signal Processing, vol. 55, no. 6, pp. 2826–2839, 2007.

[12] X. Shen and P. Varshney, “Sensor Selection Based on Generalized
Information Gain for Target Tracking in Large Sensor Networks,” IEEE

Transactions on Signal Processing, vol. 62, no. 2, pp. 363–375, Jan
2014.

[13] M. P. Vitus, W. Zhang, A. Abate, J. Hu, and C. J. Tomlin, “On Efficient
Sensor Scheduling for Linear Dynamical Systems,” Automatica, vol. 48,
no. 10, pp. 2482–2493, 2012.

[14] M. Huber, “On Multi-Step Sensor Scheduling via Convex Optimization,”
in 2nd International Workshop on Cognitive Information Processing

(CIP), June 2010, pp. 376–381.

[15] S. M. LaValle, Planning Algorithms. Cambridge university press, 2006.

[16] D. Simon, Optimal State Estimation: Kalman, H infinity, and Nonlinear

Approaches. John Wiley & Sons, 2006.

[17] D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena
Scientific Belmont, MA, 1995, vol. 1, no. 2.

[18] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
university press, 2009.

[19] Z.-Q. Luo and W. Yu, “An Introduction to Convex Optimization for
Communications and Signal Processing,” IEEE Journal on Selected

Areas in Communications, vol. 24, no. 8, pp. 1426–1438, 2006.

[20] M. Grant and S. Boyd, “CVX: Matlab Software for Disciplined Convex
Programming,” http://cvxr.com/cvx, March 2014.


